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ABSTRACT

Solutions for the stellar winds of hot luminous stars are obtained by solving the magnetohydro-
dynamic (MHD) equations combined with the radiatively driven outflow formalism given by Castor,
Abbott, & Klein. We consider the interaction of radiation pressure and collimated magnetic fields for a
nonrotating star. The streamline shape has been prescribed from a phenomenological point of view. In
order to decouple the MHD equations, we assume all the lines contributing to the radiation pressure are
optically thick. Spherically and nonspherically symmetric mass distributions are considered. In both
cases, the dependence of the terminal velocity on the star luminosity and magnetic strength is discussed.
It is found that the terminal flow speed is strongly affected by slight variations of both the luminosity
and the mass distribution asymmetry but shows a weak correlation with the magnetic field intensity. The
present formalism can be thought of as a wide generalization of the MHD solutions introduced by Low
& Tsinganos. Highly collimated magnetic structures, as well as rotation, are considered in another paper.

Subject headings: MHD — stars: magnetic fields — stars: mass loss

1. INTRODUCTION

Although it is an event common to all stars along the
evolutionary sequence, the mass ejection phenomenon is
particularly severe in hot luminous objects, namely, O, OB,
and Wolf-Rayet stars. The theory of radiation-driven winds
is successful in explaining with some detail the gross proper-
ties of the winds from early-type objects in terms of mass-
loss rates and terminal velocities. As is well established, hot
stars have an extremely intense radiation field that is
absorbed by thousands of UV metal lines in the outer atmo-
spheric shells. This absorption yields an outward acceler-
ating force (typically stronger than gravity by a large factor)
that is sufficient to start and sustain the stellar wind (Lucy
& Solomon 1970).

Spectroscopically, this behavior results in the presence of
broad violet-displaced absorption lmes and/or prominent P
Cygni profiles along the UV spectrum, as observed by the
Copernicus and IUE satellites (Morton 1967; Morton,
Jenkins, & Brooks 1969). Even though strongly model
dependent, some limiting values for the mass-loss rate, M,
and terminal velocity, V, of hot stars can be derived from
the available observational information. It is widely
accepted that for the objects we are dealing with, M, has
values within the range 10”7 to 1075 My yr~! (Knapp &
Morris 1985) or still greater (Kwan & Webster 1993). In
turn, V,, belongs to the range 1000-3000 km s~ for early-
type objects (Lamers & Leitherer 1993), while it runs from
1500 to 4000 km s~ ! for W-R stars (Abbott & Conti 1987).

The stellar material, however, does not freely flow
because of its interaction with magnetic structures originat-
ing beneath the stellar surface. In principle, the magnetic
field sets up the flow channels along which the wind flows.
But owing to the frozen-in condition and the relatively high
initial kinetic energy, the outflowing stellar plasma, driven
by the intense radiation pressure, drags out the field lines
and stretches them continuously. Thus, magnetic fields of
hot stars for which the radiative push is dominant would
adopt open, nearly purely radial configurations.
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Another important feature that seems to be common to
both OB and W-R stars is their colatitude-dependent mass
distribution. In fact, aspherical mass densities are rather the
rule and not the exception among astrophysical bodies. The
nearest and best-documented example of asymmetric mass
outflows is our star, the Sun. The bulk of the solar wind
emerges from discrete magnetically open zones and has two
components: low-density streams originating in the coronal
holes and a slow wind coming from the neighboring denser
helmets (Withbroe 1989).

Many other examples of nonisotropic outflows can be
found along the evolutionary sequence: the CO bipolar
flows associated with young stellar objects (Fukui 1989), the
elliptical or “butterfly-shaped ” planetary nebulae (Kwock
1982), or the noncircular disks, presumably resulting from
previous ejections, that surround many luminous blue vari-
ables (Davidson 1989). Nonisotropic outflows were report-
ed to emerge from Be stars (Friend 1990; Taylor 1992),
while there is growing evidence that winds from W-R stars
have their origin at the poles, which are expected to be
regions of lower density than the equatorial zone (Zickgraf
& Schulte-Ladbeck 1989; Eenens 1992).

Nevertheless, outflows from OB or W-R stars take place
under different dynamical circumstances. Actually, there is
no evidence of azimuthal velocity in W-R stars, perhaps
because their spectra are dominated by the wind and no
reliable rotational features can be found. On the other hand,
mass outflows from O and B stars, which are known to be
fast rotators, are strongly affected (and eventually governed)
by the high azimuthal velocity.

If the radiative term is neglected (which seems to be
plausible for late B-type and A-type stars), the problem
under analysis reduces to a well-known family of analytic
magnetohydrodynamic solutions (Tsinganos & Trussoni
1991; Trussoni & Tsinganos 1993; Rotstein & Ferro
Fontan 1995a, b). However, it becomes highly difficult when
the radiation pressure governs the flow. In order to solve
this problem, some attempts have been made since the
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pioneer work of Lucy & Solomon (1970) for a rotationless,
nonmagnetic, radiatively driven wind from an early-type
star. Among these are the works of Castor, Abbott, & Klein
(1975), Abbott (1978), and Pauldrach et al. (1990).

The equatorial wind solutions for luminous magnetic
rotators have been treated by Friend & MacGregor (1984),
Poe & Friend (1986), Casinelli et al. (1989) and Casinelli
(1992). In turn, the influence of Alfvén waves on the terminal
velocity of non-rotating, magnetized winds was exhaus-
tively analyzed by Casinelli (1982) and dos Santos, Jatenco-
Pereira, & Opher (1993).

The aim of this work is to extend the analytic class of
MHD wind solutions introduced by Low & Tsinganos
(1986) in order to include the effect of the radiation pressure.
Needless to say, some idealizations are necessary to keep
the problem at a solvable level. For this reason, we will
assume that all UV lines are optically thick. In § 2 we will
discuss the implications and plausibility of this assumption
and the functional form that the radiative term must adopt
in order for the MHD equations to be decoupled.

As in Hu & Low (1989), we will simulate the asymmetry
in the mass density distribution through a mass assymetry
parameter, while assuming spherically symmetric Mach-
Alfvén surfaces. Although the general formalism is present-
ed, we shall concentrate on the solutions for a purely radial,
nonrotating magnetic field, postponing to another paper
the treatment of highly collimated, rotational configu-
rations. In this way, we shall end up with a first-order differ-
ential equation with no critical points (owing to the
rotationless hypothesis), which will allow us to interpretin a
simpler manner the physical mechanisms that drive the
wind. Section 3 is devoted to this task, while in § 4 we
discuss the results obtained.

2. GENERAL FORMALISM

2.1. The Mathematical Framework

The steady dynamical interaction between an inviscid,
compressible fluid of high electrical conductivity, which has
magnetic field lines originating in a central object that gen-
erates a spherically symmetric gravitational field, and a
radiation field is described within the MHD framework by
the following equations:

V-(v)=0, 2.1)
V-B=0, 2.2)
Vx@wxB)=0, (2.3)

POV =—VP+ s (Vx B) X B—pgé, + fra, (24)

El{—Bp(v-V)T+9V-v=,@(r,0),

5 (2.5)

where v represents the bulk velocity of the flow, B the mag-
netic field intensity, p the mean density, # = kypT/m the
gas pressure, g = GM,/r* the gravity acceleration, and f,,
the force exerted on the fluid by the radiation field. The
remaining parameters, kg, G, M,, m, and T, are the
Boltzmann constant, gravitational constant, stellar mass,
mean molecular weight of the fluid, and the temperature of
the gas, respectively. 2(r, 0) represents, as in Low &
Tsinganos (1986), the volumetric rate of energy that must be
added to the flow in order to reach the terminal regime. It
may be interpreted as the particular distribution of heating
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and/or cooling sources along the outflow that consistently
closes the system of dynamic equations (2.1)-(2.4).

Note that the thermodynamics of the outflow could be
fixed through a polytropic relation between pressure and
mass density via the specification of a constant polytropic
index y; in this case, the magnetic field structure would be
determined once the dynamical equations are solved. But it
seems at least unrealistic to specify the heating mechanisms
along the entire wind region at which the outflow takes
place. What is more, this procedure could lead to unsuitable
streamline shapes. For this reason, we will take on the
opposite approach; based on plausibility criteria, we will
prescribe the magnetic field configuration, and then we will
calculate the self-consistent heating distribution that allows
the wind to take place along the flow region.

2.2. The Magnetohydrodynamic Field

As we have already mentioned, a certain number of
hypotheses are needed to keep the set of equations (2.1)-
(2.4) at a workable level. Therefore, it must be noted that we
are mainly interested in the average values of the dynamic
variables that may be related to observations. Average
large-scale structures can be considered by neglecting any
localized configuration in a two-dimensional formalism
that assumes rotational symmetry. Thus, with 04 =0, note
that equations (2.1)-(2.2) can be written in terms of two
scalar functions as

1 n R
B= T sin 0 VA(r, 0) x é, + Byé,

2.6)

and

pY = VAo(r, 0) x é, + pvgé, , 2.7)

r sin 0
where A(r, 0) and A(r, 0) are defined as the magnetic flux
function and the mass flux function, respectively.

In turn, the é, and é, components of equation (2.3) lead to
the general result that A, can be expressed as a function of
the magnetic flux function (Tsinganos 1982). As for the rest,
Ao(A) is a free function of A(r, 6). In turn, the é, component
of equation (2.3) yields another free function of A(r, ),
namely, the electrostatic potential Q,:

v x B = VQy(A4) = %% VA, 0). 2.8)

Provided we define for convenience

0, _0A,
=4 @4 A=77

we get from equation (2.8), by means of equations (2.6) and
(2.7), a general relation between the magnetic and velocity
fields, which is

v = pi? B + Q(A)r* sin e, . (2.9)

A(4)
p
We will analyze the rotationless regime in which the mag-
netic field lines are pushed by the intense radiation field and
adopt a purely radial configuration. By definition, a field
line is the region of the meridional plane for which A(r, 6) is
constant; for our purpose, it is sufficient to define

A(r, 6) = af (0) (2.10)
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where a is a constant and f(6) is, in principle, an arbitrary
function of colatitude. Moreover, note that from equation
(2.9) the poloidal Mach-Alfvén function can be defined:

A2 2
M3(r, 6) = M(r, 0) = o= = P2
p B

where the subindex p denotes the poloidal component. Note
that the easiest way to introduce any deviation from spher-
icity in the mass distribution is through the mass flux func-
tion, assuming spherically symmetric Mach-Alfvén surfaces,
that is, 0y M(x, 6) = O (see eq. [2.11] above). As has already
been mentioned, for the objects we are dealing with, there is
growing evidence of the existence of an equatorial static
region, denser than the polar zones at which the wind takes
place. In order to simulate such mass density distribution,
we will set

AA) = A1 + jAM? = A1 + {sin? )2, (2.12)
where j is an arbitrary constant, { = ja, and the constant 4
defines the polar mass density at the Alfvénic point. A non-
rotational regime requires v, = 0 and Q,(4) = constant (see

egs. [2.7] and [2.9]). Thus, by means of equation (2.12), the
magnetohydrodynamic field becomes

(2.11)

2
&=§mw,m=%=m 2.13)

0 W M(x) | cos 6]
" My, x* (1+{sin? §)Y2°

where M, refers to the initial Mach-Alfvén number; besides,
the dimensionless distance x = r/R, has been defined, as
well as the initial velocity of the outflow ,

2M,¥
Vo= Ho A
and the polar magnetic flux at the photosphere,

vp=0,=0, (214)

b

a
Y=Bx=10=0=2—.
RY

2.3. The Radiation Field

Let us consider the radiative force f;,4. Following Castor
et al. (1976, hereafter CAK), we will assume a spherically
symmetric radiation field and Sobolev approximation,
which in turn depends on the velocity gradient. Given that
the velocity field reduces to its radial component, it is easy
to see that the radiation force will act only in the radial
direction. Bearing this result in mind, as in the CAK model,
we will consider the continuum and line contributions to
the radiation pressure through an expression of the form

fmd=P< +Zgi>,

1

where o, is the mass scattering coefficient of the free elec-
trons and L, the star luminosity. The first term on the
right-hand side of equation (2.15) represents the continuum
contribution to the radiation pressure, while the second
term adds the effect of momentum transfer through UV
lines.

The contribution of each strong line (t; > 1) to the radi-
ation field is (Cassinelli 1979)

nF,, Avp dv
¢ pugdx’

oL,
4nric

(2.15)

gi= (2.16)
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so that the acceleration on strong lines is independent of the
line strength, and the total acceleration is proportional to
the number of strong lines. Moreover, if only strong lines
existed, the line acceleration would depend linearly on
dv/dx.

We will adopt the line opacity-independent depth scale
defined by CAK:

0,7T; ®
t=-—= ‘=J~ o, pdr
K; r

for a static atmosphere ,

-1

dx

= 0,P0,; for an expanding atmosphere .

2.17)

In this way, the contribution of all lines, ) ; g;, can be
expressed in a convenient manner so that equation (2.15)
can be written in the form

o, L,

Jaa=p [1+ F@)],

4nr?c
where F(t) is defined as the force multiplier. Taking into
account the most abundant species in the stellar atmo-
sphere, the force multiplier F(f) can be computed as a func-
tion of the normalized optical depth ¢ (CAK ; Abbott 1982).
Traditionally, the resulting curve is fitted by means of expo-
nential functions of the form

F(t) = ke, (2.18)

where o and k are two parameters to be adjusted in order to
reproduce the resulting data. It must be mentioned that
both constants depend upon the particular characteristics
of the star. Roughly, for the typical ranges of interest of the
normalized optical depth, k is a number within the interval
0.01-0.6, and « is of the order of 0.5-0.7.

In view of equation (2.16), and noting that the mass con-
servation law (eq. [2.1]) imposes

) .
4nr®pv, = constant = M,

dv,

dx

for a purely radial velocity field, equation (2.18) can be
4nR,

written as
F(t) = k| —=%— (2 a. 2.1
() <6e vth M*) <x U" ) ( 9)

2.4. Two-dimensional Equations with Radiation
and Magnetic Field

Taking into account equations (2.12)—(2.19), after some
rather cumbersome algebra, the é, and é, components of
equation (2.4) can be written in terms of the Mach-Alfvén
function as

4 _(M\ 2z?
—P= |[‘ 5(‘) M
X {(1 - - k[eM 6,(%)
A (M\_Z
x? A\ x? Mx?
M
6*(?)

X {C(l -+ k[eM

T
e

(2.20)
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4
0p P = s sin 6 cos 6, (2.21)
where we define the dimensionless gas pressure
7
P=2 ?"2 ,
as well as
GM, (iu,)? 1A% &
ZP=—2(0) =t Mi=4—%,
R, <‘P) <V> Y

V, being the escape velocity from the central object (but
with no appreciable radiation), V, = v,(x = 1, 8§ = 0), &, the
escape energy, and &), the magnetic energy. We have also
introduced the parameter € defined as

ATR VE &L Vo 6.8y
aevthM*M(z) B éae DthMg - éaepvovth ’

where I' is defined as I' = ¢,L,/4ncGM,, and &, is the
luminous energy.

It can be easily seen that the set of equations (2.20)-(2.21)
can be reduced to a decoupled pair of equations provided
we set « = 0 or o = 1, which are mathematical restrictions
equivalent to assuming all lines are either optically thin or
optically thick, respectively. The approximation o =0
brings no line contribution and was already treated by
Tsinganos, Trussoni, & Sauty (1993). Thus, we will discuss
the case a = 1.

As has already been mentioned, « and k are parameters
used to fit the computational data to an exponential func-
tion along a wide range of values of the variable t. However,
we have checked that in the wind region, the parameter ¢
takes on values of the same order. Thus, within the range of
interest of ¢, the force multiplier can be considered a linear
function of the velocity gradient. For each given set of initial
parameters, the value of the parameter k was iteratively
determined in order to intersect the « =1 and Abbott
(1982) curves for the mean value of the parameter t. We
started each integration of equations (2.20)-(2.21) with an
estimated value of the parameter k; once these equations
were solved, we evaluated the interval of values of t to
adjust the value of k; after no more than two or three iter-
ations, the method converges. Figure 1 displays one of the
curves obtained from Abbott (1982) and one constructed
with o = 1. It can be seen that the force multiplier results
overestimated (underestimated) for the lower (higher) values
of the interesting normalized optical depth by no more than
10%.

With « =1, equation (2.21) can be immediately inte-
grated to obtain

€ =

P(x, 0) = ;i— sin? 0 + I1,(x), (2.22)

where I1,(x) is the pressure component that depends only
on the radial distance to the star. Setting equation (2.20)
equal to the derivative of equation (2.22) with respect to x
allows us to obtain an equation for IT,(x) and another for
M(x), namely,

4 k Z1-T
axnl(x) = — ; ax U(X) + % |6x U(x)l - l;(x)x“ )’

(2.23)
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J
1
0.0001 0.0010

t

Fic. 1.—Force multiplier, F(), is shown as a function of the depth
scale-independent line opacity t. The solid line is the result obtained by
Abbott (1982) for a star with T, = 30,000 K and Ne/W = 1.0(+11) cm 3,
k = 0.156, and a = 0.609. The dashed-dotted line is a curve with & = 1 and
k = 0.0068 that adjusts the values of Abbott in the center of the region of
interest, in this case, 0.0002 < ¢t < 0.0004.

Bk Z*1-T) _ 8

4
U0 = 510,00~ =5 os =~ 5, 224
where we have defined
U(x) = Ai (2") (2.25)
and
4¢
=eZ?=—F. 2.26
d PVo 0w (226)

Note that from equation (2.14), up to a constant value,
the variable U(x) represents the velocity of the fluid. Given
that all the remaining variables are written in terms of IT, (x)
and M(x), equations (2.23)—(2.24) are sufficient to determine
the dynamic and thermodynamic states of the system. The
integration of the basic variables will be accomplished for
different boundary conditions in the next section.

3. WIND SOLUTIONS

3.1. Solutions for{ =0

In order to clarify the role played by the radiative force
within the present framework, let us solve the set of equa-
tions (2.23)—(2.24) assuming that the mass density is spher-
ically distributed. An additional advantage of the { =0
hypothesis is the fact that solutions become analytical.
Under such circumstance, equation (2.24) can be written in
the form

2

(1 + d0)U'(x) = — el (3.1
where we have defined w = Bk/4, a prime denotes differen-
tiation with respect to the variable x, and & takes into
account the sign of the derivative of U(x); 6 = —1(+1) cor-
responds to an atmosphere that expands with a velocity
that monotonically increases (decreases to a nonzero final
value).

Notice that this formalism is an extension of the one
introduced by Low & Tsinganos (1986), to which it reduces
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for w = 0. The inclusion of a radiative term substantially
modifies the wind solutions: on the one hand, it allows for
the outflow to be initially sub-Alfvénic; on the other hand,
there now exists a subfamily of outflow solutions with
increasing velocity. In fact, we are mainly interested in this
last class of solutions, so we will directly integrate equation
(3.1)for 6 = —1. Note that the condition @ > 1 is necessary
and sufficient for the derivative of U(x) to be positive defi-
nite along the entire wind region. In this case, it can be
immediately obtained:

1
(@ — 1)x2’°

where C is an integration constant. From its definition (eq.
[2.25], we have

Ux)=C (3.2)

1
=Cx% — —
Mkx)=C o1’ (3.3)
and, given that C fits the Mach-Alfvén number at the origin,
1
=My, +—— .
C ot ——7> (34

so that the remaining variables are easily obtained as

1 1
1~ @ 1)x2]| cos 0] (3.5)

and, by direct integration of equation (2.23),

2
() = — % + 2(%) a- r)M(,(al—2 - 1)

17
ux, 0) = ﬁ" [Mo + =
0

1 X—a 1
X [‘2"—1 In <x T a) - ?] , (36)
where we have defined
a?=(@—1)C=Myw—-1)+1. (3.7

It must be noted that, because of the condition w > 1,
a’ < 1, so that x > a along the entire wind region. Two
points deserve to be discussed in view of equation (3.5): on
the one hand, for values of @ very close to unity (albeit
greater), it seems that the terminal velocity at the poles,

1
Ve = Vo[l + m] , (3.8

can reach arbitrarily high values; and, on the other hand,
given that w oc L, (see eq. [2.26]), it seems that the terminal
velocity decreases for increasing star luminosities. We must
bear in mind that w actually depends on a parameter, k,
that is introduced to fit observational data, so that the rela-
tion between v, w, and L, is more complicated than it would
seem from equations (2.26) and (3.5). If the star luminosity is
slightly increased, the resulting force multiplier F(t) will be
also enhanced; thus, k must take a lower value in order to
again intersect the Abbott (1982) curve at the same value of
t (see Fig. 1). In fact, we can show that for a slight increase in
L,, o actually decreases. In doing that, let us write expres-
sion (2.19), taking into account equation (3.3), as

kn 1

F(t)=§k,5f’7—v’

(3.9)
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where we have defined & = L1/3, and we have introduced

7R, Vic
="a0 (3.10)
and
(k1
v—cM*<mH> G o 3.11)

where kg and oy are the Boltzmann and Stefan-Boltzmann
constants, respectively. Suppose we now have a certain
solution with a given value L, of star luminosity, to which
corresponds a given value of the parameter k, say k,. Let us
increase the luminosity by a factor m > 1 (although m ~ 1);
in order to keep fixed the value of F(t), k must take on a new
value given by

_ k,vm'/8
kLT m—1)+v’

From its definition (eq. [2.26]), it is easy to see that we
can write the variable w in terms of . and v as

ke
4y

Provided w, and w, respectively denote the values for L,
and L, = mL,,

ks

(3.12)

= (3.13)

f’.’_l=k_1m7/s=m3/4 k&L(m — 1)+V.
w, k, v

(3.14)

Given that m > 1, ,; > w,. Thus, the terminal velocity
V,, increases with luminosity. Figure 2 displays such behav-
ior for a given set of initial parameters.

Moreover, if the luminosity were increased in such a way
that @ could take a value very close to unity, the velocity
gradient would be strongly enhanced. Under such circum-
stances, the parameter k must be diminished in order to
keep fixed the value of F(t). Then, w < 1, violating the
hypothesis of a positive velocity gradient. In brief, within
this framework, only values of w sufficiently higher than
unity allow for changes in the values of the photospheric
parameters with no variation in the physical behavior of the
solutions.

0: 1 1 1 3
1.000 1.005 1.010 1.015 1.020
L,

F1G. 2—Terminal velocity v,, in terms of the initial velocity ¥, as a
function of the star luminosity in terms of a given initial star luminosity.
The dependence is so high that an increase of 2% in the luminosity
increases the terminal velocity by a factor of 4.
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Let us return now to equation (3.6) to note that there
exists another boundary condition. In doing that, let us first
note that, from equation (2.23) and in view of solution (3.3),
if IT;(x) has an extreme, it must be a maximum. In fact,
pressure is initially an increasing function provided the con-
dition

Ve

(x=1)>0=4>(1— I‘)<-—>2M0 (3.15)
1)

is fulfilled. Then, given that IT,(x) — O for x — oo, the condi-

tions at the origin,
1 1 1—a Vo )2

M1 l“)(a2 1)[2(1 ln<1 n a) 1] ><Ve> , (3.16)
is sufficient for the pressure IT,(x) to be positive along the
wind region. That is, in view of definition (3.7), the higher
the luminosity, the lower the initial velocity ¥, must be for
the inequality (3.16) to hold. This result is almost to be
expected from equation (3.8), if the resulting terminal veloc-
ity is not to reach an arbitrarily high value. Consequently,
the pressure needed to push the flow against the gravita-
tional pull decreases for increasing luminosities. This fact
has to do with the existence of an equatorial static region;
in this zone, the only force acting inward is gravitation,
which is reduced by the continuum radiation by a factor of
1 —T. Given that I increases as the luminosity does, the
equatorial equilibrium is sustained by a lower pressure in
this case. Moreover, the energy needed to start and sustain
the outflow will be consistently lower.

Another important point emerges from equation (3.6).
The initial regime is governed by expression (3.15). In fact,
provided this inequality is fulfilled, the temperature profile
shows a maximum (located close to the photosphere) resem-
bling the temperature distribution of a chromosphere. But
far from the star, as can be easily seen, pressure drops to a
zero final value as x~2. In turn, the Mach-Alfvén function
behaves as x?; thus, temperature asymptotically decreases
to a constant value.

This fact is related to the behavior of the thermodynamics
of the flow. An effective polytropic function, say 7, can be
defined in the usual way as

dinT =(y — 1)dlnp, (3.17)
in such a way that, at the pole, its expression reduces to

1, 24T MO
T T T T ML)

In view of equations (3.3) and (3.6), we conclude that far
from the star, the wind reaches a nearly isothermal regime;
thus, the internal energy of the outflow is entirely absorbed
by the expansion and y — 1. Let us analyze in the remaining
part of this section the role played by the asymmetric mass
distribution.

(3.18)

3.2. Solutionsfor{ # 0

Before numerically integrating equation (2.24), let us
discuss some interesting physical properties of this model.
In doing this, let us notice that for the case L, — 0 (that is,
o — 0 and I" - 0), the resulting equation (2.24) was studied
by Hu & Low (1989) for a purely radial configuration, while
Trussoni & Tsinganos (1993) and Rotstein & Ferro Fontan
(1995b) have analyzed the resulting outflow for curved mag-
netic fields. Provided L, # 0, once the radiative force is
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fixed at the base of the wind through the intrinsic luminous
parameters of the star, the two formalisms must look
similar.

In fact, it must be emphasized that the equatorial balance
of forces is not affected by the radiative push (except for the
continuum contribution, as mentioned above) because of its
cos 0 dependence. Then, as in the case L, — 0, if the weight
of the plasma equatorial column is enhanced via the param-
eter {, pressure must also be increased in order to keep the
equatorial region in static equilibrium.

The 0-dependent component of the total pressure, IT,(x),
merely compensates for the Lorentz force in order for a
fluid element to outflow on a given field line. Then, the
frozen-in condition, under which the wind spatially evolves,
fixes the equatorial value of IT,(x), no matter what the value
of { is. As a result, the higher value of {, the higher the value
of the component IT,(x). At the pole, this enhanced value of
IT,(x) leads to a higher acceleration and, consequently, to a
higher terminal velocity.

We must bear in mind that the radiation force does not
depend on the parameter {, so that the mass asymmetry
effect does not compete with the radiative action but is
superimposed on it. As a result, for a given set of boundary
values, the terminal velocity within this framework is higher
than in the L, — 0 formalism.

However, a slight difference exists between the two for-
malisms. While in the L, -0 framework, wind solutions
that do not monotonically increase to the terminal regime
can be found (Hu & Low 1989), in our case we must claim
as a necessary condition U’(x) > O for all x (otherwise, the
Sobolev approximation would not be valid). It is easy to
see, from equation (2.24), that this condition reduces to

U’(x)>0-§>—41/—(2’— forl>w
T T VIM(1-T) ’
2
=¢ 4Vo forow>1. (3.19)

SVIM(1-T)

Figures 3-5 show the behavior of the variables (x),
IT;(x), and the required energy at the pole Q(x) =
2(x)R,. Vg (uo/Y?). For the given values of the parameter ¢,
the terminal velocity of the wind remains within 1.5-3 V,, as
measured for hot luminous stars (Abbott 1982). Unlike the

3r T T T T T T T

VNe

ol i Ll 1, N A Ll "
0 10 20 30 40 50 60
x=T1/R.

-

Fi1c. 3.—Terminal velocity v,, is shown in terms of the escape velocity
V, as a function of the dimensionless distance x. We show the results
obtained for different values of the parameter {. From top to bottom,
{=8,5and3.
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F1G. 4.—Left-hand panel: Gas pressure in terms of the magnetic pressure as a function of the dimensionless distance x for the three cases of Fig. 3. From
top to bottom, { = 8, 5, and 3. Right-hand panel: Energy at the pole in terms of the energy radiated by the star as a blackbody as a function of the
dimensionless distance x for the three cases of Fig. 3. From top to bottom,{ = 8, 5, and 3.

{ =0 case, pressure is now a monotonically decreasing
function that quickly drops to interstellar values. Notice
that inequality (3.15) is no longer valid for { # 0; instead,
the high initial acceleration requires a decreasing pressure
function in order for the terminal velocity to remain
bounded within the observed values.

In all cases, the heat distribution reduces to a heating
source practically attached to the photosphere. From the
discussion at the end of the previous section, it is expected
that the higher the value of {, the higher the value of Q,,
because more energy is required to sustain the flow until the
higher terminal velocity is reached. But in all cases, the
necessary power is only a low percentage of the blackbody
power radiated by the star. Moreover, as has already been
mentioned, the Lorentz force (acting in the 6 direction) is
only counterbalanced by the component IT,(x) of the total
pressure. For a given mass distribution, any increment in
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FiG. 5.—Terminal velocity v, in terms of the escape velocity ¥, as a
function of the modulus of the photospheric magnetic field at the surface of
the star for the three cases of Fig. 3.

the value of the photospheric magnetic field leads to an
enhancement of the §-dependent part of the gas pressure. In
turn, it leads to a decrement in the component IT,(x) (via the
equatorial balance of forces), so that the terminal velocity
decreases for growing values of B,. This feature is shown in
Figure 5. It must be mentioned that this is the way in which
the magnetic field acts in the dynamics of the stellar wind. It
neither directly governs the outflow nor explicitly in its
thermodynamics. The magnetic structure imposes the
geometry of the flow channels along which the wind
develops, and through this geometry, participates in the
balance of forces. However, it must be noted that, compared
with luminosity or mass distribution, variations in the mag-
netic field only slightly affect the terminal velocity of the
wind.

4. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the properties of rotation-
less, magnetized stellar outflows initialized by the radiative
force. The streamlines’ shape has been prescribed from a
phenomenological point of view. It is suspected that, owing
to the dragging action of the fluid, accelerated by the intense
radiation field, the magnetic lines are pushed away and
stretched outward, adopting a radial, bicycle wheel-like
configuration.

The magnetic field sets up the flow tubes along which the
plasma flows. At the same time, the flow tubes are carried
away by the outflowing plasma; this is a direct consequence
of the frozen-in condition and plays an important role in the
dynamics of the wind. As we have already mentioned, in our
formalism we did not explicitly include any magnetic ener-
getic mechanisms. However, the energy Q(x) added to the
outflow could include a magnetic mechanism, e.g., dissi-
pation of Alfvén waves, that could be efficient in driving the
wind, as suggested by dos Santos et al. (1993) and others. By
means of the frozen-in condition, an increase in the mag-
netic field intensity leads to a decrease in terminal velocity,
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for the following reason: the Lorentz force, acting in the
é, direction, is counterbalanced only by the colatitude-
dependent part of the gas pressure IT,(x), so that both
increase together. While at the equator, the plasma column
is supported in static equilibrium by the gas pressure gra-
dient, at the pole IT,(x) does not act, because of its sin 6
dependence. Thus, a lower polar gas pressure contributes to
accelerating the flow, and it overcomes the gravitational
pull with a smaller terminal speed.

As expected, the terminal velocity of the flow increases
with the radiation pressure. It must be remembered that we
have considered all lines as optically thick by assuming
o = 1. At first sight, it could look rather arbitrary, but the
flow takes place within a narrow interval of the normalized
optical depth. In this way, the force multiplier can be ade-
quately fitted through a linear dependence on the velocity
gradient.

Through the mechanisms discussed in § 3.2, the asym-
metric mass distribution leads to the enhancement of the
terminal velocity. As we have pointed out, with a spherically
symmetric mass distribution, wind solutions can be found
in which the terminal velocity is lower than the initial speed.
These kinds of solutions cannot be found for { # 0. The
combined action of both the luminosity and the balance of
gas pressure coming from mass asymmetry accelerates the
wind until the terminal regime is reached. Within this for-

malism, unlike the CAK model, the radiative push contrib-
utes to, but does not completely govern, the dynamics of the
outflow.

Related to this is the distribution of energy sources. Basi-
cally, it consists in a heating source attached to the base of
the wind, close to the stellar surface. Roughly, the power
needed to sustain the mass ejection does not exceed about
10% of the blackbody power radiated by the star. Such
energy rates can be supplied by several meaningful mecha-
nisms, such as wave dissipation or resistive heating. They
have been suggested as the driving mechanisms of the out-
flows from cool and hot stars (Hartmann & MacGregor
1982; dos Santos et al. 1993).

Many hypotheses have been employed in order to keep
the problem at a solvable level. In particular, the spherical
symmetry of the Alfvénic surfaces, though it has an unclear
physical meaning, has basically been assumed in order to
reduce the mathematical complexity of the problem. Never-
theless, the resulting behavior and the values obtained for
the different wind variables adjust quite well to fit the
observational data, and in addition, the basic character-
istics of the kind of outflows we have studied are well
described within this framework. In conclusion, we think
that a further effort is worthwhile in order to improve the
present models.
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