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ABSTRACT

We propose a mechanism to explain the observed suppression of p-mode surface velocities in solar
active regions. We show that a horizontal magnetic field can lower the upper turning point and change
the skin depth for a simple plane-parallel adiabatically stratified polytrope. In addition to power sup-
pression, the magnetic field alters the phase of p-modes. Simultaneous measurements of phase as well as
amplitude in the active and quiet regions would provide an additional diagnostic for probing the struc-

ture of active region magnetic fields.

Subject headings: Sun: activity — Sun: magnetic fields — Sun: oscillations

1. INTRODUCTION

Observations show that p-mode power is substantially
suppressed in magnetic regions (see Lites, White, &
Packman 1982; Tarbell et al. 1988; Title et al. 1992). The
reduction in power in magnetic regions can be large as a
factor of 2-3 relative to nonmagnetic regions (Tarbell et al.
1988). Cally (1995) investigated the effects of weak-to-mod-
erate vertical magnetic fields on solar f~ and p-modes and
suggests “slow mode leakage ” as a responsible mechanism.
According to this mechanism, the slow magnetoacoustic
wave propagates out of the acoustic cavity carrying away
p-mode energy from layers close to the surface. Another
possible explanation is that the upper turning point
(acoustic cutoff point) of the solar p-modes is lowered in the
presence of a magnetic field (Title et al. 1992; Brown 1994).
A related possibility is the the attenuation length or skin
depth in the evanescent region is reduced in the presence of
a magnetic field. Furthermore, it is likely that the obser-
vations sample a different position in the evanescent tail of
the p-mode eigenfunction in magnetic regions because of
magnetic effects on the temperature structure of the atmo-
sphere.

In this paper, we use a simple model to illustrate some
aspects of these effects. We discuss how the presence of
horizontal magnetic fields affects the acoustic cutoff point
and the surface amplitude of the p-mode eigenfunctions and
present qualitative results that clearly show that magnetism
can play an important role in the apparent suppression of
p-mode power. We also take up the question of whether the
reduction of power carries any information about the struc-
ture of the solar magnetic field, which might thus lead to
diagnostics.

Briefly summarized, our findings are as follows. Horizon-
tal magnetic fields can cause suppression of p-mode ampli-
tudes, but not under all conditions; the effect depends upon
the run of magnetic field with depth. Magnetic fields can in
principle be distinguished from acoustic perturbations, but
only by effects depending on the direction of propagation.
The effect of the magnetic field on the acoustic cutoff point,
which is independent of propagation angle, can always be
duplicated by a perturbation to the sound speed.

The paper is organized as follows. In § 2, we present a
description of the generalized governing equations and how
they reduce for the model in consideration. Section 3 deals
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with various results regarding the upper turning point and
skin depth. In § 4, we discuss, on the basis of our present
simple model, the effects of the magnetic fields on the solar
p-modes.

2. THE GOVERNING EQUATIONS

Consider a perfectly conducting ideal gas permeated by a
horizontal magnetic field B = B(z)£. The equilibrium state
is described by the equations:

d B?
(P + 8_1:) (1)

dz
p=2%pT, @

where p(z), p(z), and T(z) are the gas pressure, density, and
temperature, respectively. Gravity acts in the negative z-
direction and is assumed to be constant; the gas constant 2
is kg/m,, where kg is Boltzmann’s constant and 1, is the
mean molecular weight.

We restrict ourselves in this paper to purely vertical (or
radial) displacements v = (0, 0, v,) about the equilibrium
(egs. [1] and [2]). This case captures the effect of the mag-
netic field on the acoustic cutoff frequency. This is the domi-
nant magnetic effect on p-modes as long as the magnitude
k, of the horizontal wavenumber k, and characteristic scale
heights H satisfy the inequality k, H < 1. At sufficiently
short wavelengths, terms proportional to kZ B2, which rep-
resent the restoring forces of magnetic pressure and tension,
become important. These terms depend on the relative
angle between k, and B and as such carry information
about the direction of the magnetic field. The value of k, at
which these Lorentz force terms become important may be
roughly estimated as w,./c,, where w,, and ¢, are the acous-
tic cutoff frequency and sound speed, respectively. For
photospheric values of the parameters the corresponding [
value for the mode must be of order 3000; at lower values of
I, cutoff effects dominate and the approximation made in
this paper should be reasonably accurate. We have written
down some of these terms elsewhere (Jain, Hindman, &
Zweibel 1995) and will return to the wavenumber-
dependent effects in a future paper (Hindman, Jain, &
Zweibel 1996).

According to the linearized MHD equations of ideal
MHD (see, e.g., Thomas 1983), the vertical component of

—p(Z)g s
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the velocity v,(z) exp iwt is governed by the equation

d*v, dv,
ﬂld_22'+d2_z+ﬂ3vz=0, (3)

where
d
M1=csz+vi’ d2=p—1£[p(cs2+vi)]’ 'd3=w2'

@

Here, y is the adiabatic exponent (taken to be constant);
cfz) = (yp/p)** is the adiabatic sound speed and v,(z) =
{B?/[4np(z)]}'/* is the Alfvén speed. Notice that the Alfvén
and sound speeds appear on exactly the same footing. This
means that it is impossible to distinguish magnetic effects
from acoustic effects in the limit k, — 0 if the density profile
is the same in the magnetic and nonmagnetic models.

We reduce equation (3) to a canonical form through the
substitution

v, = V(2)P(2) )
where V(z) is governed by the canonical equation
d*v 2 oy 1d (A k%
@V ey — 2= 24 (F2) 2 6
2 TeV=0 = 2dz<42¢1> 22 ©
and
o
P(z) = exp (— % f j dz) ) W)
The wavenumber k2 can be written as
2 wz - w?nac

© T + @1 ®

where the magnetoacoustic cutoff frequency w?,. is defined
by

» _ g+ Q- Vi/H)? Lt 2 — y)vi/H,)
2 2
z(cs + UA)

T
_ 2
x—d-(c3+vi)—(i—”)i<ﬁ"—>, )
dz

2 dz\H,

and the magnetic scale height by H,,! = — (1/B)(dB/dz).
Note that w2, is quite different from the nonmagnetic
acoustic cutoff frequency, w2, which is given by

v’g> | vg dcl
st -
4ci(z)  2cXz) dz

However, if the adiabatic index y of the gas happens to be
equal to 2, which is the “adiabatic index” for one-
dimensional compression of a magnetic field, equation (9)
would be the same as equation (10) with the magneto-
acoustic speed (c2 + v%)'/? replacing the acoustic speed.
This shows that the somewhat complicated form of w,y,,, is
caused by the differing compressibilities of the thermal and
magnetic gases. Also note that these are the cutoff fre-
quencies for v, and not for V - v; in general these are not the
same (see, e.g., Gough, 1991).

In § 3 we compute turning points and eigenfunctions for
p-modes in four simple model atmospheres. All of these
atmospheres are based on a polytrope modified by mag-
netic fields. For the polytrope, the temperature T(z) varies

2
@, =

(10)

linearly with depth:

20

T() = To(l - i) , z<zy; (11)

T, is the temperature at the reference level z =0 and z =
zo > 0 is the surface. The equilibrium density and pressure
can be calculated using equations (1) and (2):

_Po (,_=zY" .
pz) = AT, (1 ZO), <1z (12)

z m+1
P(z) = Po(l - —> , 2<1Zo; (13)
Zo

where m = (gzo,/2T,) — 1 is the polytropic index and p, is
the gas pressure at z =0. For a “convectively neutral”
atmosphere with zero buoyancy, m = 1/(y — 1). This is the
case considered here. The quantity z, introduced in equa-
tion (11) can now be identified as z, = (m + 1)%T,/g. The
acoustic cutoff frequency for this atmosphere is w2 =
(2 — y)g?/4cZ, which diverges at the surface z = z,,.

In the absence of magnetic field, equations (1), (11), and
(12) reduce the governing equation (3) to

@_(m+l)é& ma? b =
dz?  (zo—2) dz  g(zo—2) =

In order that v, and dv,/dz are bounded at the surface
z = z,, the solution of equation (14) is given by (see Abra-
mowitz & Stegun 1970)

v, = 6(zo — z)” ™2 J,,,I:Za) /% (20 — z)] , (15)

where € is an arbitrary constant and J,, is the Bessel func-
tion of the first kind. Note that, according to equation (15),
these horizontally invariant oscillations are not quantized
in frequency. The lack of quantization is a consequence of
our use of slab geometry rather than spherical geometry
and the discrepancy with solar oscillations is not important
for the purpose of this paper.

0. (14)

3. RESULTS

All of the numerical examples shown in the figures use the
set of parameters Ty = 4200 K, p, = 868.2 ergs cm™?,
y=5/3, m=15 #=6425x 10" cm? s™2 K™, and
g =274 x 10* cm s~ 2 The values are taken from the
Harvard-Smithsonian Reference Atmosphere and corre-
spond to those at the temperature minimum (see Gingerich
et al. 1971). The sound speed is 6.7 km s~ ! at the reference

height (z = 0). The cyclic frequency is denoted by v.

3.1. Upper Turning Point

We consider four different simple magnetic field profiles.

Case 1: Uniform B[B(z) = B,]—The magnetic field is
considered to be uniform, and the field strength is assumed
to be B, = 200 G, corresponding to an Alfvén speed of
~9.95km s~ ! at the reference height. In the case of uniform
fields, the equilibrium pressure, density, and hence the
sound speed, c(z) remain unchanged from the non-
magnetized model. Thus the temperature, density, and pres-
sure profiles are given by equations (11), (12), and (13). It is
evident from Figure 1 that the upper turning point is
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F1G. 1.—The cutoff frequency v, (left) (in mHz) as a function of z (right) (in kilometers) for the uniform B case. Solid curves are for the nonmagnetized
model (i.e., acoustic cutoff frequency), and the dashed curves for the magnetized model (i.e., magnetoacoustic cutoff frequency). Note the increase in cutoff
frequencies and the decrease in the upper turning points (dashed curves) in the presence of such a field. Also note that this is frequency dependent.

lowered in the presence of such a field. This occurs because
of the large increase in Alfvén speed toward the surface
z = z,,, which creates a magnetoacoustic barrier of modest
size.

Case 2: Uniform v,.—In this case we consider the equi-
librium magnetic field B(z) and density p(z), to be structured
in such a way that B%(z) oc p(z), so that the Alfvén speed is
constant. We consider the example where v, ~ 7.5 km s~ !
throughout the polytrope. We also assume that the mag-
netic field does not modify the sound speed as a function of
depth. Thus, the temperature profile is given by equation
(11), and one may obtain the following expression for the
density.

(16)

p(z) = 20 [vvi + 203(2)]"',

RT, 2¢3

This way, the density in the magnetized and nonmagnetized
model is the same at depth but unlike the nonmagnetized
model, the density here is not zero at the surface. It is clear
from Figure 2 that, unlike the uniform B case, the acoustic
cutoff frequencies decrease in the presence of such a field.
We can understand this behavior as follows. Near the top of
the atmosphere, v, dominates c, and it can be shown that
w?,. o g*/vZ, so the magnetoacoustic barrier is lower than
the purely acoustic barrier. At large depths ¢, > v,, and it
can be shown that

2 4
wilac x w:cl:l - U_IZ\ <5 - _):I ’
Cs Y

so the barrier is lowered by a factor of order (1 — v3/c2). At
intermediate depths the cutoff frequency is also lowered.
Case 3: Gaussian profile for B?(z):same densities—We
now consider B%(z) = B} el~=*20/5¥ Relevant quantities are
illustrated in Figure 3 is for the case B, = 200 G, z, = 300
km and a = 100 km. In this case we assume that the density

17

p(z) remains unchanged between the nonmagnetized and
the magnetized model and is given by equation (12). The
pressure p(z) in the presence of such a field is then given by

i m+1 + BZ(ZO) BZ(Z)
Z, 2u 2u

It is clear that the temperature profile (sound speed) must
change (see Fig. 3) so as to keep the layer cooler. The mag-
netoacoustic speed (c2 + v3)'/?, however, exceeds by a small
amount the acoustic speed in the unmagnetized reference
model. This is generally the case in a neutrally buoyant
magnetic layer, because the magnetic field has y =2, a
larger value of y than the thermal pressure it replaces. It can
be shown from equation (9) that for such a localized mag-
netic field the first term is always positive, but since
(d/d,)vi/H,,) > 0 between ~ —200 km and ~ —400 km, the
third term is negative in this layer. The combination of
vi/H,, and (d/d,)(c? + vZ) makes the second term also nega-
tive between ~ —200 km and ~ —400 km. Thus, we expect
w2, to be negative in the region where the magnetic field is
strong. Since the sound speed and Alfvén speed profiles are
symmetrical about z = —300 km, the changes in the mag-
netoacoustic cutoff frequency v,,,. are also expected to be
fairly symmetrical. Note that in Jain et al. (1995), the mag-
netoacoustic cutoff frequency was plotted incorrectly. The
corrected version is shown here in Figure 3.

Although the large gradients associated with a thin mag-
netic layer cause large local increases in the cutoff fre-
quency, the associated acoustic barrier is geometrically thin,
so waves can tunnel through them with little attenuation.
The attendant mode suppression is therefore expected to be
small.

Figure 3 also shows, as expected, that only modes with
upper turning points within the layer can be affected by it.
This shows that selective reduction of mode power could be
a diagnostic of localized, subsurface perturbations.

p(2) = Po(l (18)
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FiG. 2—The cutoff frequency v, (left) as a function of z (right) for uniform v, case. Note the decrease in cutoff frequencies (dashed curves) in the presence of

such a magnetic field.

The three cases considered here show strikingly different
behavior in the size and even the sign of the effect and its
dependence on frequency (or, more generally, lower turning
point). What effects have been omitted from these models,
and which, if any, corresponds to generally accepted ideas
about the structure of the solar magnetic field? In answer to
the first question, we have not accounted for the possible
fibril nature of the field, which would probably increase the
size of the effect, just as concentrating magnetic flux into
bundles increases its effect on mode frequencies (Bogdan &
Zweibel 1985), nor have we accounted for possible varia-
tions in heating associated with the magnetic field. As for
the second question, it seems unlikely that the field
increases with depth as fast as p'/? (second model), as this
would imply very large fields even at moderate depths. The
third model, the thin layer of magnetic field, is locally
unstably stratified (Newcomb 1961), and the choice of
density is not justified thermodynamically. These problems
reflect the well-known difficulty of storing magnetic flux
tubes in the solar convection zone. It is thus important to
construct a neutrally stable atmosphere with localized mag-
netic field, which solves the stability although not the ther-
modynamic problem. The next case takes this point into
account.

Case 4: Neutrally stable model with localized magnetic
fields—From hydrostatic equilibrium equation, we have

d dp,,

iz 19)

where p,, = [B%(z)]/2u, is the magnetic pressure. Intro-
ducing marginal stability into the hydrostatic equation
yields the Brunt-Véisala frequency in the presence of a mag-
netic field:

2_ 9 dpn\ , g dp
N2 yp(gp+ dz>+pdz. (20)

Assuming N2 = 0, i.e., enforcing the marginal stability con-
dition (dp/dz) = (p/yp)dp/dz) in equation (19), yields
2
—l)g=—-——-—.
R v — 1y o dz

By specifying the plasma B = p/p,,, we can solve equations
(19) and (21) for p and c2, respectively. As an example, we
choose f to be

2
BE) = Bo exp [(z = Z“) ] . 22)

In Figure 4, we have taken B, =0.3, z; =300 km and
a =100 km. This then corresponds to a magnetic field
strength of ~415 G at z = —300 km. The buoyancy fre-
quencies are zero for both the magnetized and
unmagnetized atmospheres. We solve equations (19) and
(21) by imposing the boundary condition that at z » — oo,
the gas pressure and the sound speed are the same in the
nonmagnetized and magnetized models. Note that the mag-
netized atmosphere is not polytropic around z = —300 km
because of the localized magnetic field. Also note that the
surface of the magnetized atmosphere has moved further
out (see Fig. 4¢). In other words, the atmosphere has puffed
up near the surface. This can be understood as a mass con-
servation effect. By Bernoulli’s integral, the pressure at
depth supports the overlying weight and is the same in the
magnetized and unmagnetized models. The magnetized
region is partially evacuated, so there must be a density
enhancement above the magnetic layer.

In Figure 4d, we have plotted the magnetoacoustic cutoff
frequency as a function of z for this model. The result is
similar to the Gaussian case shown in Figure 3c. What
drives v2,, to be negative can be understood as follows.
Refer to equation (9). It is clear that (c2 + vZ) is positive
throughout, so the first term in the equation (9) is always
positive. However, the second term becomes negative

2y
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F16. 3.—Various parameters like (a) the magnetic pressure, (b) the Alfvén and sound speeds, (c) the cutoff frequency v,, and (d) v2/H,, as a function of z for
a Gaussian profile for B(z). Note that the square of the magnetoacoustic cutoff frequencies (dashed curves) is negative in the presence of such a field.

between — 150 km and —360 km due to the combined effect
of vi/H, and (d/dz)(c? + v}). When (d/dz)(c? + v3) <0,
vi/H,, > 0 and vice versa, thus maintaining a negative sign
for the second term in this region. Also, (d/dz)(vi/H,) > 0 in
this region and hence the third term is negative. It is the
combination of second and third terms, which dominates
the first term, in equation (9) leading to a negative vZ,..
Figure 4d shows an impressively large magnetoacoustic
barrier just below the magnetic layer. However, the barrier
is geometrically so thin that most modes tunnel through it
will little attenuation—likewise for the second, smaller
barrier that occurs just above the layer. Thus, little power
suppression is expected.

3.2. Eigenfunctions

We expect changes to the eigenfunctions v, in the pres-
ence of a magnetic field in addition to the change in turning
point. The magnitude of the effect should depend upon the
structure of the magnetic atmosphere and the frequency of
the mode. We consider a few examples to illustrate this. The
eigenfunction for the nonmagnetized model is calculated
using equation (15). We solve equation (3) numerically, for a
uniform field strength B = 200 G, where the coefficients o/ ;,
</ ,, and .o/ ; are given by equation (4). (The WKB approx-
imation is violated near the turning point and in fact in a
significant part of the domain. Therefore we choose to solve
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Fi1G. 4—Various parameters like (a) the magnetic pressure, (b) the Alfvén and sound speeds, (c) the gas pressure, and (d) the cutoff frequencies as a function
of z for neutrally stable atmosphere (case 4). The dashed curves represent the parameters in the magnetized model whereas the solid curves are for
nonmagnetic polytrope model. The dot-dashed line in the pressure diagram is the total (gas + magnetic) pressure in the magnetized model.

the wave equation itself rather than using the WKB
approximation). We impose the boundary conditions that
(@) the amplitudes are the same deep in the nonmagnetized
and magnetized atmospheres and (b) the Lagrangian pres-
sure perturbation at the surface is zero.

Consider a mode of frequency v =2 mHz. Note from
Figure 1 that a mode of frequency 2 mHz has an upper

turning point at around z = —100 km in the absence of
magnetic field and at around z = —400 km in the presence
of a uniform 200 G field.

Figure 5 compares the eigenfunctions v, as a function of z
for the nonmagnetized and magnetized models (case 1). The
solid curve represents the solution in the nonmagnetized

model. The solution is generated by using equation (15)
since it gives finite dv,/dz at the surface. The dashed curve
corresponds to the eigenfunction in the presence of a
uniform 200 G field. The solution, in general, is given by
v(z) = A T{z) + BT(z) where T, and T, asymptotically
approach the J and Y Bessel function solutions of equation
(14) as z —» — oo. The coefficients &/ and # are then deter-
mined by the two boundary conditions, and equation (3) is
integrated once again with the known values of &/ and 4.
This way, the amplitude of the waves are the same as in the
unmagnetized case at z > —oo and dv,/dz =0 at z = z,. It
is clear from Figure 5a that the eigenfunctions are the same
for both cases throughout the polytrope except near the
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F1G. 5.—The eigenfunctions v, as a function of z for a mode of fre-
quency v = 2 mHz in a uniform B field (B = 200 G). The solid line shows
the eigenfunction for the nonmagnetic model, and the dashed curve the
eigenfunction in the presence of a uniform magnetic field (case 1). Note that
the amplitude near the surface is suppressed in the presence of a uniform
field.

surface. This is because deep down in the polytrope, the
plasma B, defined as the ratio of gas pressure to magnetic
pressure, is very large and hence the effect of the magnetic
field on v, is insignificant. However, near the surface one
expects magnetism to play an important role since f is
small. In Figure 5, we show the region near the surface. It is
clear from Figure 5 that the amplitude of the eigenfunction
is reduced in the presence of a uniform magnetic field.

We also consider a mode of higher frequency to see if the
eigenfunctions vary by a different amount. In Figure 6, we
repeat plots of Figure 5 except that we now consider v = 4
mHz. Note that the effect is larger at 4 mHz than at 2 mHz
despite the fact that the change in turning point is not as
large at 4 mHz as it is at 2 mHz. Inspection of Figure 6
shows that the eigenfunctions for the magnetized and
unmagnetized atmospheres cross several times below the
turning points, because the phases and wavelengths are
slightly different (although the wavefunction at depth in the
magnetized model turns out to be nearly the J function). If
we could see to all depths we would see alternating
enhancement and suppression of power. Another example
of this occurs in the next case.

In Figure 7, we investigate the effects of greater magnetic
field strength (B = 400 G) for the mode of frequency v = 4
mHz. It is obvious from comparing Figures 6 and 7 that all
effects are larger, including the phase shifts.

In Figure 8a, we illustrate the eigenfunctions as a function
of z for a mode of frequency 1.5 mHz in the presence of a

0.60F ' ' T i T
0.50
0.40F

0.30F
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0.00E 3
-1000 -800 -600 -400 -200 0 200
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FiG. 6.—Same as Fig. 5 except that here the frequency of the mode is
v =4 mHz.
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F1G. 7—Same as Fig. 6 except that here the magnetic field strength
B =400 G. Note that the eigenfunctions for the magnetized and
unmagnetized atmospheres cross several times below the turning points,
because the phases and wavelengths are slightly different.

constant v, field (case 2). Again, the surface amplitude in the
presence of such a field is suppressed in comparison to the
nonmagnetic case. In this case, since the magnetoacoustic
cutoff frequency decreases compared to the nonmagnetic
case (see Fig. 2), one would expect the surface amplitude to
be enhanced. We plot x? (see eq. [8]) as a function of z in
Figure 8b. The dashed line corresponds to the constant v,
case and the solid line to the nonmagnetic case. It appears
that the vertical wavelength increases below =~ —1000 km
in the presence of magnetism. As a result the nodes get
slightly shifted toward the surface. So, even though the
turning point is raised compared to the nonmagnetic case,
the surface amplitude decreases because of the shift in the
wavefunction.

In Figure 9, we consider a mode of frequency v = 1.8
mHz and plot the eigenfunctions as a function of z for the
nonmagnetized and magnetized models (case 3). Unlike
Figures 6 and 7, Figure 8 shows that the change in the
amplitude of the eigenfunction in the presence of a
Gaussian-type magnetic field profile is insignificant, as
expected from the discussion of Figure 3c. Similar results
are obtained for other values of v. This is further due to the
limitation of these polytropic models to large f, so that the
entire atmosphere is gas pressure dominated. This is
another reason which motivates us to consider case 4, in
which it is now possible to have a low f§ regime.

Figure 10 shows the eigenfunctions for the marginally
stable model (for case 4) as a function of z for a mode of
frequency v =4 mHz. It is interesting to note that the
power in this case is only slightly suppressed in the presence
of magnetism. We predicted this from the appearance of
Figure 4e, which shows tall but thin magnetoacoustic bar-
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FiG. 8.—{a) The eigenfunctions v, as a function of z. The solid line shows the curves for nonmagnetized model and the dashed curves in the presence of a
constant Alfvén speed atmosphere (case 2). (b) The square of vertical wavenumber k2 as a function of z for magnetized (case 2) and nonmagnetized

atmospheres.

riers at depth. It should be noted that the power measured
at fixed temperature instead of a fixed geometrical height
for such a model would actually show enhancement com-
pared to the nonmagnetized case. For example, in Figure
10, T = 6000 K corresponds to z ~ 0 for magnetized and
z = —100 km for nonmagnetized model and so if we con-
sider power at this temperature, it will appear to be
enhanced.

3.3. Equivalence of Magnetic and Acoustic Perturbations

In a nonmagnetic atmosphere, the acoustic cutoff fre-
quency is given by equation (10). Imagine a small acoustic
perturbation Ac2(z) in c2. Linearizing in (AcZ/c?) gives a
correction to w2, which can be written as

Ac?

2 2 S
Aw;, = —w;, —
CS

9 dAc?
2c2 dz

In a magnetic atmosphere, the magnetoacoustic cutoff fre-
quency is given by equation (9). Assuming (vi/c?) <1 we

23)

T T T T T T

E ]
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Fic. 9.—The eigenfunctions v, as a function of z. The solid line shows
the curves for the nonmagnetized model, and the dot-dashed curve shows
the presence of a Gaussian-type magnetic field (case 3).

linearize and obtain a correction to the magnetoacoustic
cutoff frequency, Aw2,.,

2 _ 2 é 2—ypgvi , 2=k
Awmac wac(cs2> + 2C§Hm + 2CSZHm
d2 2—y)d (vX\, vg dva
s TP (A) L ETA L (g
2" 2 &\m)t e ®

Note that if y were equal to 2, Aw?,, would be equal to AwZ,
if we just set vi = AcZ. However, since the compressibility of

V, (arbitrary units)

_2[
—-2000

-1000 -500 0 500
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-1500

FiG. 10.—The eigenfunctions v, as a function of z for a mode of fre-
quency v = 4 mHz. The solid line shows the curves for nonmagnetized
model and the dashed curves for a neutrally stable model with localized
magnetic field (case 4). The field strength at z = —300 km corresponds to
~415 G. Note that the power in this case is only slightly suppressed.
However, if the power is measured at a fixed temperature instead of a fixed
geometrical height for such a model it would actually show enhancment
compared to the nonmagnetized case. For example, T = 6000 K corre-
sponds to z ~ 0 for magnetized and z ~ —100 km for nonmagnetized
model, and so if we consider power at this temperature, it will appear to be
enhanced.
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F16. 11.—The square of perturbed sound speed (solid line) and the
Alfvén speed (dashed line) as a function of z for the Gaussian profile field
(case 3).

the thermal and magnetic gas are different (y # 2), the two
types of perturbation cannot be exactly the same. Let us
treat the magnetic field as known and solve for the acoustic
profile that gives the same turning point perturbation by

AN A AR ey e ar AR RN RARRARRA el LARRAARAs LARARIRRD}
T T

T
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FiG. 12—The square of perturbed sound speed (solid line) and the
Alfvén speed (dashed line) as a function of z for the uniform v, model (case
2).
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FiG. 13.—The square of perturbed sound speed (solid line) and the
Alfvén speed (dashed line) as a function of z for marginally stable model
(case 4). As can be seen from eq. (26), the sound speed never returns to its
unmagnetized value, although the relative perturbation becomes smaller
with depth.

equating (23) and (24):

g d , , Op  ,
LAz — P p2 - 19 D Da
2c2dz ° ¢ 2t dz 2 OA 2

F(z) . (25)

Equation (25) is a first-order ordinary differential equation
(ODE) for Ac?(z). The solution is

Ack(z) = fzduF (u) exp [fzdw gﬂf%:l , (26)

Zc

which satisfies the boundary condition Ac?(z.) = 0. In some
cases one might let z, » — oo on the grounds that it is diffi-
cult to produce thermal perturbations at depth. In the case
of a buried magnetic field with f becoming large both near
the surface and at depth, equation (26) shows that Ac?
cannot vanish both near the surface and at depth, but must
take on a constant value at one of these locations.

It is interesting to note that for a uniform field (case 1), all
the terms inside the large parentheses on the right-hand side
of equation (25) are zero, yielding Ac? = v (neglecting the
homogeneous solution). This was expected from comparing
the expressions of acoustic cutoff frequencies (see egs. [9]
and [10]) between a uniform B atmosphere and a non-
magnetic atmosphere. Thus, in the presence of a uniform
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field, even if the compressibility of the thermal and magnetic
gas are not the same (y # 2), a perturbation in the acoustic
cutoff frequency can be produced by any model with the
same fast mode speed.

For the Gaussian profile (case 3), the condition (vZ/c2) <
1 is valid except right at the surface. So we solve equation
(25). The homogeneous solution is given by Ac? = [a(z,
— z)" ™= 1127 where a is an arbitrary constant of integra-
tion. We find a particular solution to equation (25) by
numerically integrating from depth to the surface, which in
general will not satisfy the boundary condition of a finite
Ac? at the surface. We then add the homogeneous solution
to this particular solution. This allows Ac? to be finite at the
surface. We plot Ac? and v3 as a function of z in Figure 11.

When the constant v, case is considered (case 2), the
inequality v3/c2 < 1 is satisfied only below —300 km, so
equation (25) is invalid. However, we can proceed by equat-
ing (9) and (10) and solving for the perturbed sound speed,
Csp» from the following resultant equation:

deZ, 22 g
= W=y @7

In Figure 12, we plot (c2, — ¢2) and v} as a function of z.
Recall that v, is uniform and is ~7.5 km s~! throughout
the polytrope.

For the neutrally stable atmosphere with localized field
(case 4), we once again solve equation (27) but now from the
new surface z = z,. Since w2, — [yg(m + 1)]/[4(z, — z)]
near the surface, we integrate equation (27) from the surface
downward considering c2, & ¢? near the surface. Figure 13
shows (cZ, — ¢Z) and v} as a function of z. As can be seen
from equation (26), the sound speed never returns to its
unmagnetized value, although the relative perturbation
becomes smaller with depth.

4. DISCUSSION

In this paper we have used four simple models, all based
on a polytrope, to show how magnetic fields affect p-mode
power observed at a fixed height. We have chosen a fiducial
height and temperature of —100 km and 6000 K and
surface field strengths of a few hundred Gauss. The mean
field in plage regions is in the range 150-200 G (Title et al.
1992) but the rms field, which is relevant to this investiga-
tion, is larger because of the concentration of the field into
flux tubes. Despite the fact that magnetogram observations
detect the vertical component of the field, our models are
quantitatively reasonable.

We have identified four mechanisms by which magnetic
fields affect surface amplitudes. First, the turning points can
be lowered. Second, the skin depth in the evanescent region
can be reduced. Third, the phases and wavelengths of the
eigenfunctions can be changed. Finally, the temperature
structure of the atmosphere itself, and hence the regions of
line formation, can be affected, as in Figures 4 and 10.

Although we have demonstrated suppression by 40%-—
60% in some cases (Figs. 6 and 7), the circumstances under
which this occurs appear to be rather tightly constrained.
Models in which the field is stored in a thin, subsurface
layer show little suppression, either because the fields we
constructed are small (case 3) or, more generally, because
the changes are so spatially localized that the modes can
tunnel through them (cases 3 and 4). The field apparently
has to be strong near the surface (cases 1 and 2).

p-MODE SURFACE AMPLITUDES 485

We also showed that changes to the cutoff frequency
brought about by a magnetic field can also be caused by an
acoustic perturbation, which can be constructed by solving
a first-order ODE. However, the other propagation charac-
teristics of the modes will differ, because the cutoff fre-
quency and magnetoacoustic speed in the two models
cannot simultaneously be made the same.

The analysis is based on polytropic models where the
pressure and density must vanish at some height in the
atmosphere. Above this height exists a vacuun. The wave-
functions in such models can be strongly affected by the
surface boundary condition. Modes of 3 or 4 mHz have an
upper turning point that is less than a skin depth from the
surface. Another problem is that the Alfvén speed becomes
infinite at the surface, which greatly modifies the surface
boundary condition. It is also worth noting that since we
have not developed a thermodynamically self-consistent
solar model, the presence of a magnetic field alters the
density and temperature structure in a manner that we can
prescribe somewhat arbitrarily. However, Hindman (1995)
has developed a self-consistent solar model where the solar
interior smoothly matches onto an outer atmosphere. He
also finds that the field must be strong near the surface to
achieve suppression. Evans & Roberts (1990) have also
found that for k # O the surface amplitudes reduce in the
presence of a uniform field embedded in an isothermal
atmosphere.

We now briefly mention the ramifications of our results
for two other helioseismic diagnostics: wave travel times,
and wave phase shifts.

Because of the lowering of the upper turning point and
the increase in the progagation speed of the wave in the
presence of magnetic fields, we expect the wave travel time
between one location and another in the active and quiet
regions to be different (see Jefferies et al. 1994; Duvall et al.
1995). We will address this issue in some detail in our future
work but on the basis of this analysis, we expect the wave
travel time in the magnetic region (for example, where the
upper turning point is lowered by ~ 300 km) to be shorter
by as much as 30s.

Direct examination of equation (6) suggests that the pres-
ence of magnetism affects the vertical wavenumber x
through the acoustic cutoff frequency and the propagation
speed. This in turn changes the vertical wavelength and the
phase of the p-modes. The comparison between phase dif-
ferences measured at a given height between the modes pro-
pagating in active regions and a weakly magnetized nearby
regions may well give some information about the magnetic
field structure in active regions. We strongly recommend
simultaneous phase observation of the p-modes in active
and quiet regions of the Sun.

The present investigation is for k — 0, but it suggests that
a comparison of p-mode power between quiet and active
regions would vary as a function of frequency and horizon-
tal wavenumber.

Finally, although we did not perform a modal calcu-
lation, our work has bearing on the frequencies of p-modes
that are affected by magnetic fields (Campbell & Roberts
1989; Evans & Roberts 1990; Goldreich et al. 1991; Jain &
Roberts 1993). The field strength varies with time and with
location as active regions merge and decay on the solar
surface. On a longer timescale, variations with the solar
cycle are also to be expected (Bachmann & Brown 1993).
On the basis of this analysis, we expect changes in the size of
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the p-mode cavity and the rate at which the eigenfunctions
decay in the evanescent region. All these would be reflected
in the frequency shifts and linewidths of the p-modes.

The general conclusion to be drawn is that the upper
turning point changes due to magnetism and that obser-
vations at different heights in the evanescent tail of the
eigenfunction will yield different power in the solar p-modes
when compared between the magnetic and nonmagnetic (or
weakly magnetized) regions.
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