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ABSTRACT

Motivated by the idea that gravitational instability in the gaseous disk of the galaxy may form giant
molecular clouds, we consider the linear theory of viscous, magnetized, self-gravitating gas disks. The
effective viscosity of the interstellar medium in the solar neighborhood is of order 0.8 km s~ ! kpc.
Viscous, self-gravitating disks are known to be unstable, and for the solar neighborhood the growth rate
of the viscous instability is ~10® yr~!. After defining a quantitative measure of the nonaxisymmetric
responsiveness of the disk R, we show that R declines as viscosity is increased. Magnetized, inviscid self-
gravitating disks in solid-body rotation are also known to be subject to an instability that is similar to
the viscous instability. We show that this instability is not present in differentially rotating disks, and
that magnetic fields also tend to reduce nonaxisymmetric responsiveness.

Subject headings: galaxies: ISM — galaxies: kinematics and dynamics — galaxies: structure —

ISM: magnetic fields

1. INTRODUCTION

It has been proposed that individual giant molecular
clouds (GMCs), or groups of GMCs, form by gravitational
instability in the gas layers of disk galaxies (Elmegreen 1979,
1987, 1989, 1991; Cowie 1981; Jog & Solomon 1984;
Balbus & Cowie 1985; see also the discussion of Goldreich
& Lynden-Bell 1965, hereafter GL, and the review of
Elmegreen 1992). This idea finds observational support in
the work of Kennicutt (1989), who showed that in the star-
forming regions of disk galaxies the gas layer is close to
gravitational instability, according to the criterion of
Toomre (1964). While there is now a well-developed linear
theory of disks that incorporates many of the important
physical effects, the purpose of this paper is to incorporate
two pieces of physics whose qualitative effects have not been
fully appreciated: magnetic fields and viscosity. We con-
sider these effects together because both may be important
for the formation of GMCs, and their dynamics are closely
connected.

The galactic disks familiar to the observer are composed
of a stellar component with several populations, and a
multiphase gaseous component. At the outset we shall
adopt an isothermal fluid model for the interstellar medium
(ISM), identifying the velocity dispersion of clouds in the
ISM with the sound speed in our isothermal model. The
appropriateness of this model has been extensively dis-
cussed and criticized elsewhere (see, e.g., Levinson &
Roberts 1981; Cowie 1980; Scalo & Struck-Marcell 1984;
Tomisaka 1987; Elmegreen 1989). Our view is that this
model represents the pressure tensor of the ISM in a crude
average sense, and thus can be used to understand the inter-
play between pressure, rotation, and self-gravity in disks.

We shall also neglect the gravitational interaction of the
stars and gas. Considered separately, the stellar and gaseous
components each have a characteristic wavelength 1, where
that component is most responsive to perturbations. In the
thin-disk limit for a component with surface density X, and
Toomre’s parameter Q = ¢,x/GX (here k is the epicyclic
frequency and c, is the velocity dispersion), we have 4, ~
2n%Q2GX/x?. In the solar neighborhood X ~ 41 M, pc™2
for the stars, £ ~ 13 M pc~? for the gas (Gould 1990;
Kuijken & Gilmore 1989), k ~ 36 km s~ kpc~?, the radial
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velocity dispersion of the stars is ~45 km s~ ' (Binney &
Tremaine 1987), and the velocity dispersion of
the gasis ~6 km s ! (Crovisier 1978). Then for the gaseous
component Q ~ 1.2, while for the stellar component,
0 ~28 (these estimates are highly uncertain), so
Ac(stars)/A(gas) ~ 17. Thus the characteristic scales for the
gas and stars are widely separated. In this limit the gas and
stars are close to being decoupled gravitationally, although
at A (gas), for example, the stellar background can still exert
a substantial destabilizing influence on the gas (see, e.g., Jog
& Solomon 1984). In order to focus on the effects of mag-
netic fields and viscosity, however, we shall consider only
the gaseous component and neglect the effect of the stellar
background.

As a further approximation we shall assume the gas layer
is infinitesimally thin. This approximation may be evalu-
ated by noting that the scale height z, of a self-gravitating
sheet is nQ*GX/k? hence z,/A. = 1/2n, so the approx-
imation is fair. The correction factor for finite thickness can
be calculated exactly for a self-gravitating gaseous sheet (see
GL). Finite thickness tends to make the self-gravitating
sheet more stable than its thin counterpart, lowering the
velocity dispersion of the marginally stable disk by 30% at
fixed surface density.

The plan for the remainder of the paper is as follows. In
§ 2 we develop the linearized equations for evolution of a
viscid, magnetized disk. In § 3 we evaluate the effect of finite
viscosity, and in § 4 we consider the effect of magnetic fields.
Section 5 contains a summary and conclusions.

2. LINEAR THEORY OF VISCOUS, MAGNETIZED DISKS

The equations governing the evolution of a thin gas layer
are the two-dimensional continuity equation

DinX
=-V-V, 1
Dt @)
the Euler equations
DV
7 2
=1 @
and the Poisson equation
V2® = 41GZ i(z) . 3
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Here D/Dt is the connective derivative, V is the velocity
measured in an inertial frame, and

(B-V)B VB’

f=-V@+®,+® +cInX) +
4mp 8mp

£V + (%)V(V V). @

Here @, is a fixed axisymmetric potential, @ is the rest of the
potential associated with the disk, and ®; is any imposed
external potential. The density p = X£/H, where H is a
(constant) scale height. The viscosity v is assumed to be
independent of density and position.

The magnetic field is assumed to lie entirely in the plane
of the disk. It can then be obtained from a vector potential
A2, where Z is normal to the plane of the disk. The evolu-
tion of 4, is given by

DA,
Dt

so that the vector potential is carried with the fluid.
Equations (1) and (2) can be combined by taking the

divergence of equation (2) and D/Dt of equation (1) to
obtain

=0, )

D*InX DV D
_ . ¢ —_— .V .
D¢? VoS <V Dt Dt v ) ©)

The term in parentheses can be rewritten in terms of the
rate-of-strain tensor,

€ij = %(aj Vi+ 6 V) M
and the “ potential vorticity ”
VxV
&= ( . ) . ®

Since V x ¥V has only one component, normal to the plane
of the disk, we regard it as a scalar. The result is Hunter’s
equation:
D’InX 1
th = —V 'f+ eijeij—zfzzz (9)

(Hunter 1964; GL).

Now consider a fiducial point in the disk that corotates
with the gas at, in standard cylindrical coordinates, R = R,
and ¢ = ¢, + Qyt (we assume Q, < 0). Erect a local Car-
tesian coordinate frame x. y with x=R - R, and y =
Ro(¢p — ¢o — Q). Velocities measured in this frame, which
rotates with frequency Q,, are denoted v. Assuming that
departures from the fiducial point are small, | 6x|/R, ~ € <
1, one can expand the equations of motion (eq. [2]), or
Hunter’s equation, through first order in € to obtain a local
model of the disk.

In the local model the equilibrium consists of a constant
surface density X, constant sound speed c,, and rectilinear
shear v = 2Axp, where A = (r/2)(dQ/dr) > 0 is one of Oort’s
constants. This model neglects the curvature of the orbits,
but it includes the essential local elements of disk dynamics:
shear, tides, and Coriolis force.

Notice that in the absence of viscosity and magnetic
fields, the local model is fully characterized by a single
dimensionless parameter: Toomre’s Q. It is then convenient
to scale all other physical quantities in terms of the charac-
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teristic length GZ/k* (~45 pc in the solar neighborhood),
characteristic time 1/k (~2.7 x 107 yr), and characteristic
mass G*X3/k* (~2.5 x 10* M). These can be combined to
form a characteristic velocity GZ/x (~1.6 km s™!) and a
characteristic viscosity G>X%/x3 (~0.07 km s~ ! kpc).

In the local model the potential vorticity is

_va+ZQ
==

For the equilibrium local model, &, = 2(Q + A4)/ = 2B/,
where B is one of Oort’s constants. In the absence of vis-
cosity and magnetic fields, D&/Dt = 0 in an isothermal fluid.
Otherwise,

¢ (10)

= (1

(e.g. Pedlosky 1987). When one transforms from an inertial
frame to a rotating frame, all the terms in Hunter’s equation
are unchanged, except the potential vorticity.

Now consider the small perturbations to the equilibrium
local model. We set £ =X, + 06X, v— 2A4xp + v, & =
2B/Z + 8¢, A,= A,y + 6A,. The linearized form of
Hunter’s equation, the continuity equation, the induction
equation, and the potential vorticity equation are, respec-
tively,

D? 8% 06v, 0dv
Z_ %~ _ _v. hitet B
DE 3, V-of+ 2A( 2 + o )
— 2B(£y 0% + X, 8¢, (12a)
D 6
Dt z—o =-V-ov, (12b)
2 0A,= — (v -V)A 12
Dt z = v zZ ) ( C)
D V x of
Di 0 = %, (12d)
where
B x V254,32
- _ 2 22 Y 94z
of = —V(0¢ + ¢ 0Z/Z,) + 4p
+ W2 80 + (4v/3)V(V - dv) . (13)

Here D/Dt = /0t + 2Ax d/dy is the derivative moving with
the unperturbed flow.

A convenient way of analyzing the linearized equations of
motion in a shear flow, invented by Julian & Toomre (1966;
JT) and GL, is to consider the evolution of perturbations of
the form exp (ik - x), where k, = —24kt + k.o, and k, =
constant. We shall refer to an individual Fourier com-
ponent of this form as a “shearing wave.” The representa-
tion of fluid variables in terms of shearing waves is complete
(any perturbation can be decomposed into a sum of shear-
ing waves), and it has the advantage that it eliminates
explicit spatial dependences from the perturbation equa-
tions, since (D/Dt)[ f(t) exp (ik * x)] = (9f/dt) exp (ik - x). If
k, > 0, and if the radial wavenumber is initially large and
positive, then as it evolves it grows smaller, passes through
zero, and then becomes large and negative. We shall decom-
pose the perturbation into shearing waves and then use the

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...462..725G

No. 2, 1996

governing equations to write ordinary differential equations
for the evolution of the wave amplitudes.

From now on we denote the amplitudes of the shearing
waves by 0, 64,, etc., and drop the subscript zero on
unperturbed variables. For each shearing wave, the solution
to the Poisson equation is

2nG
0p=———0%.
L3
One can then use the definition of potential vorticity and
the continuity equation to eliminate dv. Hunter’s equation,
the potential vorticity equation, and the induction equa-
tion, respectively, then reduce to

(14)

& 5% L K2
e +az( — 2nGZ | k| + 2| k| e
d&}: k, k. 4y
-y x k12| —
U [“lkl’ 1kl <3>]

2
+ 6622(29 +44 l’;‘ I’)

(k x B

— 2 2 .

i0A, |k’ ——— anp =2X|k|*d9;, (152)
d(sf z(k ) 2 z —

. 0A kP - 2+v|k| 8 +& 5 )=0, (15b)
dod, i

dt |k|2Z

x (d‘% (k - B) + 6E5(k - B) + 6X2B(k - B)) =

(15¢)

Here d¢; is the Fourier coefficient of any external potential,
and we have abbreviated (k * B) * £ as k x B, since the cross
product has only one component.

One can now evolve an arbitrary linear amplitude dis-
turbance in a viscous self-gravitating disk by Fourier
decomposing it, evolving the Fourier coefficients with equa-
tions (15a)—(15c), and then reassembling the Fourier com-
ponents at the desired time.

Parts of equations (15a)—(15c) have been considered by
other authors. Hunter & Horak (1983) considered the evo-
lution of shearing waves in a viscous disk. The equations
they wrote down are nearly equivalent to the viscous part of
our equations (15a)—(15c¢). Similarly, shearing waves in mag-
netized disks have been considered by Elmegreen (1987),
who wrote down a set of equations equivalent but not iden-
tical to the magnetic parts of equations (15a)—(15c).

3. VISCOUS, UNMAGNETIZED DISKS

For clarity, we have separated our discussions of vis-
cosity and magnetic fields. This section considers disks with
viscosity but no fields, while the next section considers disks
with magnetic fields but no viscosity.

What is the effective viscosity of the local ISM? In an
ordinary gas, viscosity v is approximately the mean free
path [ multiplied by the sound speed c,. If we regard the
ISM as a “fluid” composed of dense clouds with mean
column density {N), then the mean free path is | = (N)/

LINEAR THEORY OF SELF-GRAVITATING GAS DISKS 727

{n), where (n) is the mean hydrogen number density of the
ISM.! For a typical diffuse cloud with A, =0.2,
{N) ~ 4 x 10%° cm~2 (Spitzer 1978), while (n)> ~ 1 cm 3,
so | = 130 pc. The velocity dispersion of clouds is ¢, ~ 6 km
s~ ! (Crovisier 1978). If the mean free path becomes as large
as the cloud epicyclic amplitude c,/x, then the viscosity is
modified (see, e.g., Goldreich & Tremaine 1978; also Yuan
1984, and Steiman-Cameron & Durisen 1988). Here ¢ /k ~
170 pc, so this effect is not a large correction. The viscosity
is then v ~ lc; ~ 0.8 km s~! kpc, comparable to the esti-
mates of Yuan (1984) and Yuan & Cheng (1991).
How does the viscosity scale with Galactocentric radius?
For a self-gravitating sheet, the central density is p, =
k2/2nQ?G. Thus if the mean cloud column density, cloud
velocity dispersion, and Q are constant with radius,
v ~ 1/k2. In comparison to the characteristic viscosity v, =
G>X%/x>, however, we have v/v, = (N )2rn%Q3u/Z, where u
is the mean molecular weight. Then if Q, (N), and ¢, are
constant with radius, v/v, ~ 1/Z, and the viscosity again
decreases inward.

3.1. Axisymmetric Modes

The dispersion relation for the axisymmetric modes of a
viscous, unmagnetized disk can be recovered from equa-
tions (15a)-(15¢) by setting k, = 0, B = 0, and assuming the
perturbed quantities scale as e”. Then the waves do not
shear, i.e., k, = constant. The dispersion relation is

[ + K% — 209G |k, | + 2 k2 + s(dv/3)k2]
X (s+kiv)—vk2ik?=0. (16)

Two of the three branches of this dispersion relation are
damped versions of the usual density waves. In the limit of
small viscosity, the damping rate is

2
Re () ~ — vk (1 + ji>

where w? = [Im (5)]? ~ «? — 2nGZ | k.| + c2 k2 is the dis-
persion relation for the usual density waves.

Consider the dispersion relation for gaseous density
waves in the solar neighborhood. Using the solar neighbor-
hood parameters given in § 1, the estimated viscosity is
11G?2?%/x3, and Q = 1.2. Turning off the viscosity, the
minimum of w? (where the disk is most responsive to
perturbations) lies at k= nGZ/c2 =49 kpc™!, where
w = +0.55k. Turning on the viscosity, the minimum
of w? lies at slightly lower wavenumber, but now
o = (£0.69 — i0.8)x. Evidently the viscosity is large enough
to overdamp density waves.

In the limit of small viscosity, the third branch of equa-
tion (16) becomes

17

vk22nGZ | k.| — c2 k?)
T k? - 2nGZ | k| + c2k2’
The growth rate is positive for small |k, |, so viscous, self-

gravitating disks are unstable. This recovers the result of
Lynden-Bell & Pringle (1974). For our standard solar

(18)

! This implies that the viscosity is inversely proportional to density,
contrary to what we have assumed in writing eq. (4). For the local model,
however, the linearized equations do not change even if v depends on
the density, since the equilibrium shear stress is constant in space.
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FiG. 1.—Maximum (over k,) growth rate of the viscous instability of

self-gravitating disks, as a function of viscosity v and Toomre’s Q. The
contours are at logarithmic intervals of 10*/2,

neighborhood parameters, the maximum over k, of the
growth rate is 0.32«. Figure 1 shows the maximum of the
growth rate over k, for various values of Q and v. Evidently
for v 2 G?X?/k® and Q < 2 the growth rate is a substantial
fraction of k.

The physical origin of the viscous instability lies in the
connection between rotational support and potential vor-
ticity noted by Lynden-Bell (1966) and Hunter (1964). This
relation is most clearly seen in Hunter’s equation (eq. [9]):

D*InX
Dt?

Recall that D/Dt is the convective derivative, fis the acceler-
ation on each fluid element, and e;; = (9; V; + 0, V))/2 is the
rate-of-strain tensor. Negative-definite terms on the right-
hand side of equation (19) are stabilizing in the sense that
they tend to decrease fluctuations in the surface density. The
potential vorticity enters as a negative-definite term on the
right, and is the only place where rotation appears in
Hunter’s equation. Thus rotation supports the local model
against gravitational instability through the potential vor-
ticity and only through the potential vorticity. Processes
that cause the potential vorticity to evolve, such as vis-
cosity, or magnetic fields, can induce instability by compro-
mising rotational support.

1
= '-V 'f+ eijeij—‘iczzz . (19)

3.2. Nonaxisymmetric Response of Viscous Disk

GMC s form a concentration of mass in the disk on a
timescale of a few times 107 yr, and this concentration of
mass causes a response in the surrounding material. In the
case of a point mass in a stellar disk, JT have shown that the
mass involved in this response, or wake, can greatly exceed
the mass of the perturber if the disk is close to gravitational
instability. The presence of the wake will influence the
amount of mass incorporated into the GMC as it forms and
the rate at which that mass accumulates. It is therefore of
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interest to understand how viscosity affects the response of
the disk.

First we shall define a quantitative measure of
“responsiveness.” Because the formation of the wake
around a GMC-like perturber is a predominantly non-
axisymmetric phenomenon, and because nonaxisymmetric
shearing waves have a complicated time evolution, one
must solve a representative initial-value problem to charac-
terize the response.

The initial-value problem we have chosen is the response
to a localized concentration of mass that is suddenly intro-
duced at ¢t = 0. A convenient functional form for this pertur-
bation is

> - aM,
P 2n(a® + 127

which has total mass M, (arbitrary, but set to 1G?Z3/k* ~
2.5 x 10* M, in this case) and characteristic scale a, which
we have set to 2GZ/k? ~ 90 pc. We also assume the rotation
curve is flat, so that A = —Q/2. A typical response of an
inviscid disk to this perturbing surface density after a time
4/k ~ 1.1 x 108 yr is shown in Figure 2a.

We now define the responsiveness R as

1
M,

where the factor of 1 prevents double counting of the
responding fluid elements.

How do we expect the responsiveness to depend on v?
Viscosity alters the evolution of shearing waves in two
ways. First, it causes the potential vorticity of the disk to
evolve. Second, it has a damping effect, as can be seen in
equations (15a)—(15c), where it multiplies a term pro-
portional to d 6%/dt. Which effect dominates? On a long
enough timescale, the evolution of potential vorticity will
dominate, since the purely unstable viscous modes will
grow exponentially, whereas individual nonaxisymmetric
shearing waves eventually decay away. We are motivated
by our interest in GMC formation, however, to consider the
response of the disk on timescales of a few times 1/x, com-
parable to the timescale for GMC formation. Comparison
of Figure 2a (v = 0) and Figure 2b (v = 11G*Z?/k>) shows
that viscosity can indeed inhibit the responsiveness of the
disk.

More generally we have evaluated R for a variety of v and
Q. The results are shown in Figure 3. The response declines
as v increases for all values of Q; thus, viscous damping
dominates over potential vorticity evolution. This result is
not sensitive to our choice of t,, and holds at least for
t; < 12/x. over which period R grows approximately as t2.
For Q =1 in an inviscid disk, the perturber provokes a
response that contains 21 times its own mass. This confirms
the extreme sensitivity of self-gravitating disks noted in the
context of thin stellar disks by JT. The response is gradually
reduced as v is increased, and begins to drop significantly
for v 2 G*X%/k>. Thus in the linear regime, and on time-
scales of a few orbital periods, viscosity tends to reduce the
responsiveness of the disk.

(20)

R, Q;t,a) = szxIEZ(x, nl, (21)

4. MAGNETIZED, INVISCID DISKS

Magnetic fields and viscosity share the property that they
cause potential vorticity to evolve. In viscous disks this
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Fi1G. 2—Typical response of a viscous, unmagnetized disk to a perturbing mass placed at x = y = 0. The disk has Q = 1.2, the perturber is introduced at
t = 0, and the response is shown at t = 4/k. The contours are at intervals of 6%/ = 0.01. Dashed contours represent negative surface density perturbations.

(@) v = 0.(b) v = 11G?Z?/x (solar neighborhood value).

compromises the rotational support of the disk, leading to
instability. Magnetized disks in solid-body rotation were
considered by Lynden-Bell (1966), who showed that they
are unstable at long wavelengths. Elmegreen has calculated
the evolution of nonaxisymmetric waves in a differentially
rotating thin disk (Elmegreen 1987; Elmegreen 1991 also
considers nonaxisymmetric waves in a disk of finite thick-
ness, approximately incorporating the Parker instability).
Elmegreen showed that under some circumstances growth
of nonaxisymmetric waves is enhanced, and in others it is

Sz |621/2 M,
)
T

R =

il N | Ll
0.1 1 10
vi3/G2E?

Fi1G. 3.—Responsiveness R = jdleézl/ZM » (see § 3.2) of a viscous,
unmagnetized disk as a function of viscosity v and Toomre’s Q.

inhibited by the presence of the magnetic field. Our work
below builds on Elmegreen’s results.

First, however, what is the magnetic field in the solar
neighborhood? Pulsar rotation measures and many other
lines of evidence tell us that the Galaxy has a magnetic field
with a significant ordered components on scales 2100 pc.
Locally, the ordered component of the magnetic field is
~ 1.6 uG and is oriented in the azimuthal direction (Rand &
Kulkarni 1989). The mean density of the ISM is
~3 x 1072 g cm™3, implying V,, ~2.6 km s™', and
V4, =~ 0. This should be compared to the local velocity dis-
persion of the ISM, ~6 km s ™!, so V,,,/c, ~ 0.4.

4.1. Axisymmetric Modes

The dispersion relation for axisymmetric modes in a mag-
netized, inviscid disk can be obtained from equations (15a)—
(15c) by setting k, = 0, v = 0, and letting the perturbation
scale as e*. In terms of the Alfvén velocity ¥V, = B/(4np)*/?,
the dispersion relation is

s* 4 [k — 2nGE k| + 2 k2 + (k x V)2 + (k - V)]
+ 245tk x V)b * V) + (k - V)
x (c2k? — 2m2nGZ |k, |) = 0. 22)

If A #0 and V,, # 0, then the shear will tend to wrap up
the unperturbed field and k x ¥, will be time dependent.
Equation (22) is valid in the WKB sense only in the limit
that k x ¥V, is slowly varying.

To recover Lynden-Bell’s (1966) instability, we set the
shear rate 24 = 0. The growth rate of the unstable modes
can then be obtained analytically in the limit ¥, < c,. The
result is

2 _ (k- V)’2nGZ k.| — c2k3)
T k? = 2nGZ | k| + (¢2 + VIKE®

(23)
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FiG. 4—Typical response of a magnetized, inviscid disk to a perturbing mass placed at x = y = 0. The disk has Q = 1.2, the perturber is introduced at
t = 0, and the response is shown at ¢ = 4/x. The contours are at intervals of 5%/ = 0.01. Dashed contours represent negative surface density perturbations.

(@) Vi, = 0, V,, = 0.4c (solar neighborhood values). (b) V,, = Vi =0.

Notice the remarkable similarity between equation (23) and
equation (18), the dispersion relation for the viscous insta-
bility. This reflects the similarity in the underlying physics
causing the instabilities: in both cases potential vorticity is
no longer conserved, compromising rotational support.
Now consider a differentially rotating disk (4 # 0).
Suppose the magnetic field is purely radial at t = 0. Then
kx Vy,=0and k * V, =k,V,,. Because differential rota-
tion appears as purely linear shear in the local model, the

. ————T , — I
Q=1
Q=11
Q=12

=n.10_ -

(3

> Q=14

n

o

&

o

<

L}

&= Q=18 A
Q=28
a1 L " » 1l ) N TR A |
0.01 0.1 1

Vy/c,

FiG. 5—Responsiveness R = | d%x|0Z|/2M p» (see § 3.2) of a magne-
tized, inviscid disk as a function of the azimuthal Alfvén velocity ¥,, and
Toomre’s Q. The radial Alfvén velocity ¥, = 0.

magnetic field evolves as V,, = constant, V,, = 24tV,,.
Then k - ¥V, = constant, and k x V, = k. V,, =k, 2A4tV,,.
Evidently when |t| < 1/A, the field is rapidly changing, in
the sense that |dV,/dt|/| V4| ~ k, so the WKB approx-
imation is invalid. When |¢| > 1/4 the field changes more
slowly but V,, is small in comparison to V.

In the limit V,, > V,,, when the WKB approximation is
valid, the general dispersion relation (22) becomes

s?[s% + k2 — 2nGX | k.| + (2 + VIk2]=0. (24)

The nontrivial solutions to this dispersion relation are
essentially the familiar density waves of inviscid,
unmagnetized spiral structure theory, except that the sound
speed has been replaced by the magnetosonic speed. These
modes are more stable than they would be without the mag-
netic field. The Lynden-Bell instability is hidden in the
trivial solution s? = 0. The growth rates of these modes are
of order xV,,/V,,; numerical integrations confirm that they
grow only weakly. We conclude that Lynden-Bell’s insta-
bility is not present in differentially rotating disks.

4.2. Responsiveness of a Magnetized Disk

While axisymmetric modes are stabilized by the magnetic
field, it is possible that nonaxisymmetric waves are not. To
evaluate this possibility, we have measured the responsive-
ness R (see eq. [21] for the definition of R) of magnetized
disks. Thus we integrate the initial-value problem consisting
of an imposed perturbing surface density introduced at
t =0, and evaluate the mass involved in the response at
t = 4/xk.

A typical response is shown in Figure 4. Figure 4a shows
the response of a model with V,, =0, V,, = 04c,, and
0 = 1.2 (appropriate for the solar neighborhood). A com-
parison panel shows the response at t = 4/k for a model
with ¥, = 0. The presence of this subthermal magnetic field
reduces the amplitude of the response somewhat.
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We have evaluated the responsiveness for various values
of ¥, and Q. The results are shown in Figure 5. As might be
anticipated, the response is a monotonically declining func-
tion of both V,, and Q. Magnetic fields do not destabilize a
differentially rotating disk; rather they increase stability by
providing new support against self-gravity in the form of
magnetic pressure. The stabilizing effect of the field becomes
significant once the magnetic pressure becomes comparable
to the gas pressure.

5. DISCUSSION

For viscous, self-gravitating disks, we have shown the
following. (1) The effective viscosity of the gas layer in the
solar neighborhood is of order 0.8 km s~ ! kpc, similar to
the estimates of Yuan (1984) and Yuan & Cheng (1991). It is
likely that the viscosity decreases inward in the galaxy. (2)
For viscosities this large, the axisymmetric viscous insta-
bility of self-gravitating disks (Lynden-Bell & Pringle 1974)
is present with a growth rate of ~0.3x & 10® yr~*. (3) Vis-
cosity obviously causes the usual density waves to damp. At
the characteristic scale for density waves in the solar neigh-
borhood the waves are overdamped. (4) While viscosity
induces an axisymmetric instability, it also has a damping
effect. The sum of these two effects is such that if we intro-
duce a perturbing mass into the disk at t = 0, and measure
the amplitude R of the response (defined in § 3) a few times
1/x later, R declines with increasing viscosity. The reduction
in responsiveness is large for v 2 G*Z?/x>. This surprising
victory of the damping effects of viscosity is only temporary,
of course, since on long enough timescales (many e-folding
times), the instability will dominate.

Our work on viscosity is most directly comparable to
that of Hunter & Horak (1983). They considered a model
that has no structure in the direction parallel to the rotation
vector (p = constant, independent of z), rather than a thin
disk. Aside from this difference (which implies that the
Poisson equation is solved differently), the equations they
considered are equivalent to ours. They evaluated the
behavior of the nonaxisymmetric shearing waves using a
WKB approximation, and found strong damping of density
waves and strong growth of “vortices,” equivalent to the
third, unstable mode in our dispersion relation. These
authors were principally interested in applications to cir-
cumstellar disks.
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For magnetized self-gravitating disks, we have shown
that (1) the magnetic instability of self-gravitating disks in
solid-body rotation discovered by Lynden-Bell (1966) is not
present in differentially rotating disks, and (2) the net effect
of adding a magnetic field is to reduce the nonaxisymetric
responsiveness R of the disk. The reduction becomes large
when the Alfvén speed approaches the sound speed.

Our work on magnetized disks is most directly compara-
ble with that of Elmegreen (1987). He wrote down and inte-
grated a set of equations that are equivalent to ours, and
our numerical results are consistent with his. Elmegreen
found that for disks that are almost in solid-body rotation
(i.e., A < k), the magnetic field enhanced the growth of some
nonaxisymmetric waves. This can be understood as a mani-
festation of Lynden-Bell’s (1966) instability, which may be
relevant to regions within spiral arms where the rotation
curve is locally solid body. For disks with a locally flat
rotation curve, however, we have shown that magnetic
fields reduce the nonaxisymmetric responsiveness. Our
work cannot be compared directly with Elmegreen (1989),
which includes heating and cooling, or with Elmegreen
(1991), which incorporates vertical buoyancy.? Both these
effects can be destabilizing, but we have not considered
them here

In conclusion, both viscosity and magnetic fields can sig-
nificantly alter the linear development of perturbations in a
self-gravitating disk. The effects of viscosity appear to be
somewhat more important in the solar neighborhood.
These results suggest that it is not a good approximation to
neglect either effect, particularly in studies of the nonlinear
development of gravitational instability in galactic disks.

I am grateful to my thesis adviser, Jeremy Goodman, for
his unfailing patience and good advice, and to Steve Balbus,
Bruce Draine, Jim Gunn, and Jerry Ostriker for their com-
ments. Bruce Elmegreen in particular made many detailed
and helpful comments on several versions of this paper.
This research is supported in part by a grant from the
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2 This later paper includes a discussion of the stabilizing effect of mag-
netic fields for flat rotation curves in the presence of cooling.
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