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ABSTRACT

We have obtained fully general relativistic equilibrium configurations of black hole-neutron torus
systems and have analyzed their stability. Although several authors have discussed whether such systems
can be sources of gamma-ray bursts, their arguments have been based on the qualitative nature of black
hole-neutron torus systems because such configurations have not yet been solved. Moreover, since black
hole-neutron torus systems are supposed to form after coalescence of binary neutron stars or after col-
lapse of a massive star, a newly formed torus may be in a rather hot state. Therefore we have developed
a numerical code that can handle configurations of cold and hot (0.1, 1, and 10 MeV) neutron tori.

Recently, polytropic tori around black holes have been shown to suffer a global runaway instability.
As for neutron tori, the self-gravitating tori closely orbiting around the black holes with the mass range
of 1-3 M, are destroyed in a timescale Aty < 1 s as a result of this instability. This is a much shorter
timescale than the evolutionary timescale that is relevant for the current model of gamma-ray bursts
based on the merger of binary neutron stars. This result probably excludes the possibility of neutron tori

models for gamma-ray bursts as sources at cosmological distances.

Subject headings: accretion, accretion disks — binaries: close — black hole physics —
gamma rays: bursts — methods: numerical — stars: neutron

1. INTRODUCTION

Structures of highly relativistic axisymmetric fluid bodies
have been solved by several authors (see, e.g., Butterworth
& Ipser 1975, 1976; Komatsu, Eriguchi, & Hachisu 1989;
Cook, Shapiro, & Teukolsky 1992; Bonazzola et al. 1993).
They have been concerned mainly with structures of rotat-
ing configurations of a single body or a single star partly
because it is the simplest situation for highly relativistic
cases and partly because it is the easiest model to solve.

However, from the astrophysical point of view, important
phenomena are often related to interactions between two
bodies or among several bodies, such as collisions of stars
or galaxies, binary systems of stars, star-torus systems,
active galactic nuclei consisting of a massive black hole and
a surrounding thick accretion disk (see, e.g., Abramowicz,
Jaroszynski, & Sikora 1978; Jaroszynski, Abramowicz, &
Paczynski 1980; Paczynski & Wiita 1982), and so on.

Furthermore, from a purely general relativistic point of
view, the investigation of the effects of surrounding matter
on the relativistic bodies such as neutron stars or black
holes is a very interesting and challenging problem. If the
mass of the surrounding matter cannot be neglected, the
central bodies may be significantly affected compared to
isolated single bodies. In particular, the central black holes
surrounded by massive matter are no longer Kerr-type
black holes.

Self-gravitating equilibrium configurations of star-torus
systems in general relativity were first obtained by Nishida,
Eriguchi, & Lanza 1992), and several gravitational effects of
tori on polytropic stars were intensively investigated. Lanza
(1992) succeeded in obtaining equilibrium thin disks around
black holes. Very recently (Nishida & Eriguchi 1994) we
solved the problem of the structure of equilibrium thick tori
around black holes. All of these investigations used a poly-
tropic equation of state (hereafter EOS) for the tori.
However, in order to study astrophysical phenomena preci-
sely, it is preferable to use more realistic EOSs. In particu-
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lar, for some situations, the density of the tori will become
so high that EOSs for the neutron matter must be included.

In this paper we will investigate compact neutron tori
around black holes. This kind of configuration may be
formed from interacting binary neutron stars. Neutron stars
in a close binary system are considered to spiral in as the
angular momentum of the system is being lost via gravita-
tional radiation, and eventually they coalesce.

It is very difficult to simulate the final stage of
coalescence. So far, only some particular aspects of this
problem have been investigated (see, e.g., Oohara & Naka-
mura 1992). In most simulations the final stage of
coalescence is roughly as follows. A rotating object with the
mass of ~1-2 M appears in the central part and is sur-
rounded by a rotating torus of a comparable but smaller
mass. The outer radius of the torus is ~100 km. Such a
system may also be formed from collapse of a massive rotat-
ing star (Woosley 1993; Paczynski 1993). The maximum
density inside the torus reaches ~10!3 g cm ™3, and the
maximum temperature is &2 MeV. These values are typical
for a very hot neutron star. Therefore it is very important to
obtain precise equilibrium configurations of tori not only
with cool but also with hot neutron matter. In this paper,
several EOSs for neutron matter with several constant tem-
peratures (0, 0.1, 1, and 10 MeV) (Lattimer & Swesty 1992)
are used to obtain equilibrium tori by extending the
numerical scheme of Nishida & Eriguchi (1994).

Moreover, configurations of this type have been dis-
cussed in relation to the sources of gamma-ray bursts.
Several authors have suggested that gamma-ray bursts may
occur in the merger of neutron star binaries (see, e.g., Piran
1993). Gamma-ray bursts had been considered for many
years to be associated with compact objects in our Galactic
disk. However, after the distribution of more than 150
gamma-ray bursts was detected by the BATSE experiment,
it was found that the sources of gamma-ray bursts are dis-
tributed isotropically on the sky but not uniformly in the
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radial direction (Fishman et al. 1992). This observation sug-
gests that sources of bursts are located at cosmological dis-
tances rather than at galactic distances (Murakami et al.
1988).

Hot neutron matter can be a good candidate for a source
of gamma-ray bursts because neutrino and antineutrino
annihilation may result in gamma rays (see Nishida et al.
1995 for further discussion). However, the efficiency of this
mechanism depends strongly on the topology of the
neutron matter. It is required that the source region of the
gamma rays must be optically thin (see, e.g., Narayan,
Paczynski, & Piran 1992). For neutron matter with configu-
ration that is of a spheroidal shape, there occurs a optically
thick baryonic wind. In this respect, a toroidal configu-
ration is appropriate for the gamma-ray burst because the
centrifugal barrier protects the region near the rotation axis
from pollution (see Fig. 1).

However, even for toroidal configurations, it was demon-
strated (Nishida et al. 1995) that polytropic tori with the
adiabatic index y = 4/3 are unstable against the runaway
instability proposed by Abramowicz, Calvani, & Nobili
(1983). Therefore we need to investigate whether or not the
same instability may set in for a realistic torus around a
black hole. We will show in the present paper that the
runaway instability also exists for cold and hot neutron tori
and that because of this instability they survive only for a
much shorter time than that needed to meet the results of
observations of gamma-ray bursts.

In § 2 the basic equations and the numerical scheme to
obtain equilibrium solutions are described briefly. The

numerical scheme shown here is mainly based on that used
by Nishida & Eriguchi (1994). However, in order to obtain
realistic neutron tori, some extension from their method is
required, and this will be explained. EOSs for neutron tori
are also discussed.

In § 3 the runaway instability against axisymmetric mass
overflow for neutron tori is investigated. Stability of con-
figurations can be determined by examining equilibrium
solutions, i.e., neither normal mode analyses nor numerical
simulations are required. The basic concept of the runaway
instability and the validity of the method used in the present
investigation are explained in detail by Nishida et al. (1995).
Although behavior of the instability depends on the choice
of EOS, all tori with EOSs for the neutron matter suffer this
overflow instability. By investigating the runaway insta-
bility of neutron tori, it can be concluded that the black
hole-torus model is unlikely to be a candidate for a source
of gamma-ray bursts, although it might be the source of
other high-energy phenomena.

2. EQUILIBRIUM TORI

In this section we will summarize briefly the basic equa-
tions and the numerical scheme for equilibrium structures
of a black hole-torus system. As we will apply our equi-
librium models of black hole-torus systems to realistic
outcome of merging of neutron stars, we choose reasonable
but minimum assumptions.

We assume four conditions for the spacetime as follows:
the spacetime is (1) stationary, (2) axisymmetric, (3) equato-
rially symmetric, and (4) asymptotically flat.

F16. 1.—A schematic figure of the baryonic wind from a hot torus. The filled circle at the center represents a black hole. Two ellipses are the cross sections
of a torus in a meridional plane. The baryonic wind, which is shown by shaded region, cannot reach the rotation axis because of the centrifugal barrier. Thus
there exists a baryon-free funnel (white region) along the axis. In this funnel, neutrino-antineutrino annihilation to e* e~ pairs forms a fireball expanding

relativistically, and from this fireball gamma rays are finally emitted.
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Under these conditions the metric can be written as
ds* = —e*dt* + e**(dr? + r*d0*) + B%e” *’r* sin® 0
x (dé —wdt)*, (1)

where t and ¢ are the coordinates associated with the time-
like and the axial symmetries, respectively. The coordinates
r and 0 are the radial and the polar coordinates, respec-
tively. Ambiguity of these coordinates can be removed by
the requirement of the following relation:

grr = rzgse . (2)

Metric coefficients a, B, v, and w are functions depending

only on r and 0. The units ¢ = G = 1 are chosen throughout

this paper. In this coordinate system, assumption 3 can be
written as

fO=f(r-190), 3)

where f'is an arbitrary function that is symmetric about the
equatorial plane. Assumption 4 means that the matter exists
within a finite region near the central part of the coordinate
system. From this it follows that

v~ — M/r, 4
o~ 2J/r, &)
B~1, (6)

at a far distance from the center. Here M and J are the total
gravitational mass and the total angular momentum of the
system, respectively.

Concerning matter, three assumptions are made: it is
assumed to be (a) perfect fluid, (b) barotropic, and (c) circu-
larly rotating.

By assumption a the stress-energy tensor for the matter,
T**, can be written as

T* = (e + pu*u’ + ¢*'p , ™

where u*, p, and € are the four velocity, the pressure, and the
energy density, respectively.

Condition b means that the pressure of the matter can be
represented as a function of only the baryon mass density of
the matter. In this paper, EOSs for neutron matter with
several temperatures that satisfy the above condition are
used.

For simplicity, we require condition ¢, which means that
the matter has only a rotational motion around the rotation
axis but no meridional circulation. Thus the four-velocity
can be written as follows:

e“V
U =——=(1,0,0,Q), ®)
J1 =02
where v is the velocity of a fluid element measured in an
inertial frame of a zero angular momentum observer
(Bardeen 1973),i.e.,

v = (Q — w)r sin 6Be” 2" . )

Here Q is the angular velocity of the fluid measured by an
observer at infinity, i.e.,

d¢
Q=—. 10
it (10)
In stationary, axisymmetric, and circularly rotating
models, the existence of a black hole can be expressed in a
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simple manner (see, e.g., Bardeen 1973). On the event
horizon, i.., on a smooth null hypersurface spanned by two
Killing vectors, metric coefficients must behave as follows:

B=0, (11)
=0, (12)
@ = wy = constant , (13)

where wg is the dragging of the inertial frame on the
horizon. It is important to note that the coordinate locus of
the horizon can be transformed into a sphere of a constant
radius, i.e.,

r=h, (14)

by keeping the form of equation (1) unchanged (Carter
1973). Here h is a certain constant. These consist of a com-
plete set of boundary conditions on the horizon.

The other boundary condition for the metric comes from
the requirement of geometrical regularity at the coordinate
singularity, i.e., on the rotation axis. It can be expressed as

a=InB—v, (15)

atg=0.

Under the assumptions mentioned before, Einstein equa-
tions for v, B, w, and a can be written straightforwardly.
The precise forms of equations for these metric coefficients
are not shown here (see Nishida & Eriguchi 1994).

Equations for hydrostatic equilibrium can be written as

v vQ

1_UZVu+1_lQ>=0.(16)

Here s the specific angular momentum defined by

Vp + (e + p)(Vv —

1=—%. 17
t

In order to obtain equilibrium structures of barotropic
stars, a rotation law must be specified. We choose the rota-
tion law that [ is constant throughout a torus. By using this
rotation law, equation (16) can be integrated into

dp 1 )
J€+p+v+zln(1—v)—ln(l—Ql)—C, (18)

where C is a constant of integration.

The method of calculating solutions is the same as that
for black hole—polytropic torus systems, which was
described in Nishida & Eriguchi (1994), except that we
improved the treatment of EOSs to include neutron equa-
tions of state.

It is sufficient to specify only four parameters to obtain a
unique solution for neutron tori, although six parameters
are needed for polytropes. The difference arises from the
fact that there is no need to specify the polytropic index N
and the maximum baryon mass density p,,,,. The maximum
baryon mass density need not be specified, because at each
point the mass-energy density distribution € can be
obtained without ambiguity from equation (18) and so can
be the maximum baryon mass density p,,,,. This is in con-
trast to polytropic cases where only K¥p_. can be
obtained.

Therefore, four parameters, which must be specified to
obtain a unique solution for neutron tori, are chosen as
follows:
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1. The ratio of the radius of the event horizon h to the
outer boundary of the torus r,,, is h = h/r .

2. The dragging of the inertial frame on the horizon is
Wy

3. The ratio of the radius to the inner boundary of the
torus ry, to the outer radius is r,,/r,,.

4. The specific angular momentum of the torus is L.

In the case of neutron tori, since tabulated forms of the
EOSs are employed, we cannot follow exactly the same
procedure that we used for polytropes. In tables of the
EOS:s for the neutron matter, discrete values for the energy
density, the rest mass density, and the pressure are given.
Therefore we have to use some interpolation scheme to
evaluate values between data points. We use the piecewise
polytropic interpolation scheme (see, e.g., Miiller & Eri-
guchi 1985). We assume that a polytropic relation is satis-
fied between two neighboring data points. The polytropic
constant K and the polytropic index N between two data
points are determined by using the equation

p=Kie"Np,_, <p<p,e_,<3e< €. (19

Here K; and N, are corresponding values between (i — 1)th
and ith points and are determined from data at two neigh-
boring points.

Consequently the integration of the first term of the left-
hand side of equation (18) from zero to € becomes

Y, [In(K;€!™ + 1) - In (K; €1 + 1)]
i=1

+ In(K, 14 €/Nmet 4 1) — ln(Km+1571n/N"l+1 +1)
x (€, <€<¢€,.). (20

In this paper four types of EOSs for the neutron matter are
used for our calculations. Their density-pressure relations
are plotted in Figure 2. The EOS for 0 MeV is that of Bethe
& Johnson (1974), and EOSs for 0.1, 1, and 10 MeV are

16 =TTT I T l T TT I' T rrnrT l' LI LR I T l_r'[ Trrr I TT I)/
| 7 -
| . // .
L // §
14— / ]
- /, 4
L /) i
7
i . ]
12 — e —
s [ L §
2 10— P -
_g; L - - ’// i
- T = ——————— OMeV(BJ) -
s 7 e 0.1MeV —
S 1.0MeV E
6— .= ee-————- 10MeV —
4 C 11 l 11 43 | L1 1 1 l j - I 11 i1 I I - I 1 1 1 1 i J - | l-
8 9 10 1 12 13 14 15 16
log(e)

FiG. 2.—The pressure p/c? is plotted against the energy mass density €
for four EOSs. The EOS for 0 MeV is obtained by Bethe & Johnson (1974),
and the EOSs for 0.1, 1, and 10 MeV are calculated by Lattimer & Swesty
(1992) under the assumption of constant temperature. However, since there
is no data for the range below p ~ 10° g cm 3 for the EOS of 10 MeV, a
polytropic EOS is used to fit the leftmost boundary of the 10 MeV data for
the calculations of this paper. In this figure, lines of 0 and 0.1 MeV overlap
each other in the region 10® g cm ™3 < p < 10'! g cm™3. The same thing
occurs for 0.1 and 1 MeV in the region 10'' gem ™3 < p 5 10'* gem™?
and for 0.1, 1, and 10 MeV in the region 10'* gem™* < p < 10!° gcm 2.
As seen from this figure, for the same density, the higher the temperature of
the neutron matter becomes, the higher the pressure tends to be.
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those calculated by Lattimer & Swesty (1992) for constant
temperatures. It is obvious that the hotter the neutron
matter becomes, the higher the pressure tends to be for the
same energy density. The higher pressure implies that struc-
tures of equilibrium configuration may be significantly
changed for the hot states because equilibrium states are
achieved by the balance of the three forces, i.e., the gravita-
tion, the centrifugal force, and the pressure gradient. Thus, if
the maximum pressure at the center is the same for different
equilibrium models, neutron tori with higher temperature
must have a lower maximum density.

3. RUNAWAY INSTABILITY

In this section we will analyze the axisymmetric stability
of the black hole—torus system against mass overflow. We
will show that massive tori are unstable against mass over-
flow. This was described as runaway instability by Abramo-
wicz et al. (1983). It should be noted that in this runaway
instability the relativistic Roche lobe overflow plays a key
role. As mentioned before, the basic concept of the runaway
instability is explained and an analysis for a black hole—
polytropic torus system is given in Nishida et al. (1995). The
difference between a polytropic torus and a neutron torus in
analyzing the runaway instability is that there are four
parameters to be specified for a neutron torus, although five
for a y = 4/3 polytropic torus. This does not mean that a
neutron torus is easier to investigate than a polytropic
torus, because there are no scaling parameters that can be
specified freely for a neutron torus. For the analysis of the
runaway instability, the most practical choice of these four
physical parameters is as follows:

total gravitational mass of the system = M ,
total angular momentum of the system = J ,
gravitational mass of the black hole = M,
and
angular momentum of the black hole = J,.

Since the total mass and the total angular momentum are
conserved during an axisymmetric accretion, we have

oM =0 (21)
and
8J=0. (22)

Furthermore, the change of the mass and the change of the
angular momentum of the black hole must satisfy the fol-
lowing relation:

8J, = 16M,,. (23)

The runaway instability can be analyzed in a four-
dimensional abstract space as is done for polytropic tori
(Nishida et al. 1995). This is because one equilibrium con-
figuration can be represented by four physical quantities:
M,J, M,, and J,, ie., a point in this four-dimensional
space. In this space, we need to investigate only a two-
dimensional surface, &, determined from conditions (21)
and (22). On this surface, there is a critical curve, £, which
consists of critical configurations. Here critical configu-
rations are those equilibrium states in which the matter of
the torus fills up its Roche lobe. Equilibrium states exist
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FiG. 3.—The locus £ of critical equilibrium configurations for 0.1 MeV
tori is shown in the (J,/J)-(M,/M) plane, which is a surface in the four-
dimensional parameter space sliced by M = 2.8 M, and J = —6.0 x 10*®
g cm? s~ !, where the geometrical units, ¢ = G = 1, are used. All the equi-
librium configurations lie above the curve £. Virtual configurations for
which mass overflows the Roche lobe lie below the curve #. The arrows
represent the direction of the evolutionary response of critical configu-
rations to infinitesimal mass transfer. Directions of the arrows indicate that
all the critical equilibrium configurations shown in the figure are unstable
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against the mass overflow.
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only above this critical curve. Thus there are no equilibrium
configurations under the critical curve. We will call this
region a forbidden region.

Condition (23) determines a direction of evolution of the
system once an accretion begins. If this direction is toward
the forbidden region, the critical solution considered is
unstable against the runaway instability. In other words, by
comparing the value of the slope of the critical curve, i.e.,

0J
o-(2),,
6Mh M,J

and the value of I, we can determine whether the critical
model is stable or not.

In Figure 3, the surface & of 0.1 MeV models is shown.
As seen from this figure, all calculated models are unstable,
i.e., the runaway instability occurs for all models on the
critical line. Results for tori with 0, 0.1, and 1.0 MeV
neutron EOSs are given in Tables 1-3. In these tables, M,,
and J,, are the gravitational mass and the angular momen-
tum of the torus, respectively. As seen from these tables, all
calculated models, irrespective of the temperature, are
unstable against the mass overflow. Furthermore, the value
of |I/@| increases as the mass of the tori decreases. This
behavior is different from that of polytropic tori (Nishida et

(24)

TABLE 1
CRrITICAL MODELS FOR NEUTRON TORI WITH 0 MEV

M, JulJ Tout [ 1®] 1/®|
M=20M, J=280x 10*® gcm? ~*
4279E-02...... 2.884E —01 3.991E+06 1.570E+ 01 1.355E+01 1.159E + 00
2.623E—02...... 1.762E — 01 3.896E + 06 1.568E + 01 1.349E+ 01 1.162E+00
1.573E—-02...... 1.053E—-01 3.800E + 06 1.566E + 01 1.340E + 01 1.169E + 00
3.211E-03...... 2.146E—02 3.525E+06 1.561E+01 1.342E + 01 1.163E+00
8.194E—-04...... 5.419E —03 3.135E+06 1.554E +01 1.329E+01 1.169E + 00
2426E—04...... 1.585E—03 2.820E + 06 1.548E+01 1.312E+01 1.180E + 00
6.859E—05...... 4.429E —04 2.562E + 06 1.542E +01 1.294E + 01 1.192E+00
4797E—06...... 3.032E—05 2.163E+06 1.532E+01 1.266E + 01 1.210E+00
2.579E—-07...... 1.599E—06 1.871E + 06 1.522E+01 1.243E+01 1.225E+00
5.535E—08...... 3.399E—-07 1.753E + 06 1.518E +01 1.229E+01 1.235E+00
1.833E—09...... 1.106E—08 1.556E + 06 1.511E+01
M=20Mg, J=10x 10* gcm?s™*
1.086E—02...... 6.349E + 01 4.639E + 06 1.333E+ 04 1.171E+ 04 1.139E+00
6.676E—03...... 3.901E+01 4.507E+06 1.331E+ 04 1.172E+ 04 1.136E+00
1.863E—03...... 1.080E + 01 4.025E + 06 1.326E + 04 1.160E + 04 1.143E+4+ 00
3.757E—-05...... 2.100E—01 2.903E +06 1.310E+ 04 1.119E+04 1.170E+00
1.655E—06...... 9.040E — 03 2.414E+06 1.300E + 04 1.097E + 04 1.185E+ 00
6.157TE—07...... 3.343E—03 2.298E + 06 1.297E + 04 ... ...
TABLE 2
CRITICAL MODELS FOR NEUTRON ToRI WITH 0.1 MEV
M, JulJ Tout 1] 1®] [1/©]
M=28Mg, J=710x10* gcm?s~!
2.326E+400...... 1.023E+00 1.874E + 06 1.541E+00 8.000E —01 1.926E +00
2314E+00...... 1.020E + 00 1.867E+ 06 1.547E + 00 7.766E — 01 1.992E + 00
2.301E+00...... 1.016E + 00 1.860E + 06 1.554E+00 8.000E —01 1.942E + 00
2.285E+00...... 1.011E+00 1.852E+06 1.561E+00
M=28My,J=50x10* gcm? s~!
6.504E—02...... 1.07SE+00 7.841E + 06 5.176E +01 4.711E+01 1.099E + 00
5.358E—02...... 8.825E—01 7.586E + 06 5.169E +01 4.704E + 01 1.099E + 00
4431E—02...... 7.269E—01 7.341E+06 5.161E+01 4.672E+01 1.105E+00
3.632E—02...... 5.935E—-01 7.109E + 06 5.154E+01 ...
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TABLE 3
CRITICAL MODELS FOR NEUTRON ToRI WITH 1.0 MEV *

M, Juld Tour [ 0] /@]
9.366E—02...... 1.596E + 00 1.480E+07 5.265E+01 4.785E +01 1.100E + 00
7.591E—03...... 1.250E—-01 9.828E + 06 5.202E+01 4.618E+01 1.126E +00
5.332E—04...... 8.601E—03 7.712E +06 5.165E+01 4.519E+01 1.143E+00
4423E—-05...... 7.091E—04 6.723E+06 5.144E+01 4.483E+01 1.147E+00
3959E—06...... 6.430E —05 5.783E+06 5.117E+01 . .

*M=28MyJ=70x10* gcm?s*.

al. 1995). Therefore neutron tori are always unstable irre-
spective of their mass. This implies that a neutron torus
around a black hole that fills its Roche lobe will fall into the
black hole in a dynamical timescale, i.e., ~10~% s, which is
~10°-10° times shorter than that required to be a source of
a gamma-ray burst.

4. DISCUSSION

We have shown that all our calculated models are
unstable. For neutron tori, their instability is excited by
several different mechanisms. This situation is different from
that for polytropic tori (Nishida et al. 1995). Here we will
discuss how the neutron tori becomes unstable and what
mechanism is the main cause of instability during the accre-
tion process. Comparing carefully the results of Abramo-
wicz et al. (1983) and Wilson (1984) with ours, we find that
there are four key factors on which the criterion of the
runaway instability depends.

The first factor is the self-gravity of the torus. Abramo-
wicz et al. (1983) have calculated models, some of which are
self-gravitating and others of which are non-self-
gravitating, and they have shown that inclusion of self-
gravity makes tori more unstable. This tendency can be
easily explained as follows. The self-gravity of the torus is
likely to bind itself tightly by its gravitational force so that
the innermost surface of the torus gets closer to the density
maximum point of the torus, i.e., moves outward. On the
other hand, the cusp is pushed away toward the black hole
by the gravitational force of the torus. When a small frac-
tion of the mass of the torus falls onto the black hole, the
gravitational force of the torus decreases and the gravity of
the black hole increases. This means that the surface of the
torus expands or moves closer to the black hole and that
the cusp moves closer to the torus compared to non-self-
gravitating models. Thus a self-gravitating torus is more
unstable than a non-self-gravitating one.

The second factor is the mass ratio of the torus to the
black hole. It should be noted that even if we consider the
mass of the torus, we may treat it as if it is a non-self-
gravitating body. Here we neglect the self-gravity of the
torus when we refer to the mass ratio of the torus to the

black hole. For polytropic models of Abramowicz et al.
(1983) and Nishida et al. (1995), the torus becomes unstable
when the mass ratio increases. Although in the models of
Wilson (1984) there are no unstable tori, it has still been
shown that models tend to approach an unstable region
when the mass ratio is increased. When a non-self-
gravitating polytropic torus loses its mass, it is obvious that
the torus shrinks irrespective of its polytropic index. The
cusp moves toward the torus because of the increase of the
gravitational force of the black hole (here it should be noted
that the gravity of the mass fallen to the black hole is con-
sidered to be self-gravitating in Wilson’s models). Thus the
cusp and the innermost surface of the torus behave qualit-
atively in the same way whatever the mass ratio of the
initial critical equilibrium is. The stability depends on the
location of the cusp of the critical model. If it is closer to
the marginally stable orbit or if the mass ratio is small, then
the critical torus becomes smaller. When the torus loses its
mass, the torus shrinks faster than the cusp moves, and so
the torus becomes stable.

The third factor is the spin-up of the black hole. As dis-
cussed by Wilson (1984), when the angular velocity of the
black hole increases, the cusp moves toward the black hole
and the torus is stabilized. Although Wilson (1984) con-
cluded that this effect plays the most significant role in the
accretion process, it has been shown by our results that
there are still unstable models even if we include the effect of
spin-up.

In Table 4 we summarize the relation between three key
factors and qualitative results of different authors, including
us. From this table it can be seen that the order of impor-
tance of the three factors is as follows:

self-gravity > spin-up > massratioup .

We cannot tell how important is the softness of matter—the
fourth factor—by comparing it with other factors.
However, we can see that the softness of the matter should
be deeply related to the instability from the difference
between the results of the y = 4/3 polytropic tori and the
neutron tori as shown in the previous section.

The softness of the matter can be expressed effectively by
a polytropic index N. For polytropic tori, Abramowicz et al.

TABLE 4

Basic FACTORS INCLUDED IN THE RUNAWAY INSTABILITY ANALYSIS BY SEVERAL AUTHORS

Factor Abramowicz et al. 1983 Wilson 1984 Nishida et al. 1995 Present Results
Stability............... Unstable Stable Unstable Unstable
Self-gravity ........... Yes/no No Yes Yes
M,/M change ........ Yes Yes Yes Yes
BH spin change...... No Yes Yes Yes
N>3 ... No No No Yes

Note—" Yes ” means that the factor is included. “ No ” means that the factor is not included. “ Yes/no ” means
that the factor is included for some models and is not included for other models.
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(1983), Wilson (1984), and Nishida et al. (1995) have investi-
gated only N = 3 polytropes so that it seems to be of no use
to argue about the effect of the polytropic index. However,
it is possible to explain the results for the neutron tori by
assuming that neutron tori have some typical effective poly-
tropic index that can be used to discuss the runaway insta-
bility. To study the effect of the polytropic index, we have
calculated equilibrium models of Newtonian tori with
various polytropic indices by using the pseudo-Newtonian
potential (see, e.g., Abramowicz et al. 1983). By investigating
these models, we found that polytropes with larger N are
more unstable. Since the tori with the EOSs for neutron
matter have regions where the effective polytropic index is
larger than 3, it is natural that all neutron tori are unstable.

All investigations of the runaway instability of tori are
restricted to models with constant angular momentum dis-
tribution, so we cannot argue about effects by means of the
change of the angular momentum distribution. They may
be argued in our future investigations.

This paper is based on the first author’s (S. N.) Ph.D.
thesis, which was submitted to the University of Tokyo in
partial fulfillment of the requirements of the doctorate. We
would like to express our gratitude to A. Lanza, with whom
we enjoyed useful discussions of the runaway instability. We
would also like to thank M. A. Abramowicz for his sugges-
tion to apply our numerical code to the astrophysical phe-
nomena.
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