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ABSTRACT

A common method to infer that solar properties vary with position is to compare linear estimates of
averages of those properties centered at different locations. If some of the confidence intervals for the
averages do not overlap, one concludes that the property varies. In order for this conclusion to be sta-
tistically valid, the lengths of the intervals must be adjusted to obtain the correct “simultaneous cover-
age probability.” We illustrate the notion of simultaneous coverage probability using coin tossing as an
example. We present four methods for adjusting the lengths of confidence intervals for linear estimates,
and a complementary approach to infer changes based on constructing a linear estimator that is directly
sensitive to changes. The first method for constructing simultaneous confidence intervals is based on
Bonferroni’s inequality, and applies generally to confidence intervals for any set of parameters, from
dependent or independent observations. The second method is based on a y? measure of fit to the data,
which allows one to compute simultaneous confidence intervals for any number of linear functionals of
the model. The third method uses a y? distribution in the space of estimates, which yields “Scheffé”
confidence intervals for the functionals. The fourth method, which produces the shortest confidence
intervals, uses the infinity-norm in the space of estimates to construct “maximum-modulus” confidence
intervals. We apply the four methods to search for radial changes in averages of solar angular velocity,
using data from Big Bear Solar Observatory (BBSO) averaged for the 4 yr 1986, 1988-1990. Finally, we
apply the new differencing estimator to the BBSO data, finding strong evidence that the average solar
angular velocity is lower near the poles than near the equator over a range of depths, as is observed at

the surface as well.

Subject headings: methods: statistical — Sun: oscillations — Sun: rotation

1. INTRODUCTION

Backus-Gilbert theory (Backus & Gilbert 1968, 1970;
Backus 1970a, b, ¢) and the SOLA method described by
Pijpers & Thompson (1992, 1994) estimate certain weighted
spatial averages of some physical property from indirect
linear measurements. Often, averages sensitive to different
regions in the object of study are compared to try to identify
differences in properties between the regions. For example,
in both geophysics (e.g., Backus & Gilbert 1970; Parker
1970; Johnson & Gilbert 1972; Masters 1979; Oldenburg
1979, 1981) and astrophysics (e.g., Christensen-Dalsgaard,
Schou, & Thompson 1990; Dippen et al. 1991; Gough
1985; Gough & Toomre 1991), estimates of averages cen-
tered at different depths are frequently plotted in the same
figure, perhaps inviting the reader to compare the estimated
values at different depths. A common plotting method is to
use upright crosses centered at the depths and values of the
estimates, with the lengths of the horizontal bars corre-
sponding to the nominal resolutions, and the lengths of the
vertical bars corresponding to the nominal uncertainties. It
does not appear to be appreciated generally that the
nominal uncertainties must be magnified somewhat for
comparisons of different confidence intervals to be valid. In
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this paper, we illustrate the issue of simultaneous versus
individual confidence intervals, and give four methods to
compute simultaneous confidence intervals for linear esti-
mates of linear functionals, including “Backus-Gilbert”
and SOLA estimates, that can be used to compare estimates
of averages centered at different points. We apply the
methods to Big Bear Solar Observatory (BBSO) normal-
mode frequency estimates averaged over the 4 yr 1986 and
1988-1990 (Woodard & Libbrecht 1993) to test for radial
changes in a quantity related to the solar angular-
momentum density. Finally, we present a complementary
method to infer spatial changes of physical properties,
based on tailoring a linear estimate to be sensitive to the
change in question, and apply the method to BBSO data to
infer that over a range of depths, the Sun rotates more
slowly near the poles than near the equator.

2. LINEAR ESTIMATES OF SOLAR ROTATION

The algebra in this section applies generally to linear
inverse problems, but we shall use notation particular to the
inverse problem of estimating solar angular velocity from
eigenfrequency splittings. The physical problem we address
is to learn about the distribution of angular velocity in the
solar interior, Q(r, u), where r is radius and u is the cosine of
colatitude. We do so from the deviations of the frequencies
of normal modes of the Sun from the degenerate multiplet
frequencies {w,,} at which the Sun would oscillate were it
not rotating, neglecting other sources of splitting such as
aspherical structure and magnetic fields (n is the principal
order, I is the degree, and m is the azimuthal order). Obser-
vers usually report these deviations, {Aw,,}, as “a-
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coefficients ” {a;, }, which are estimates of the coefficients in
the expansion

Aa), 21+1 m
M=L Pl = 1
27t jgl a]nl J L s ()

where P; is the Legendre polynomial of degree j. The value
of L has been variously chosen to be I, [i(I + 1)]*/2, and
I + %. In practice, observers estimate a-coefficients only up
to some maximum index j,,,, which is eventually less than
2l + 1. Observers also report standard deviations {g;,} of
the estimates of the a-coefficients. Below we use estimates of
a-coefficients with j_,. = 12; to first order in Q, only the
odd-numbered coefficients are related to the angular veloc-
ity Q. It is often asserted that the errors {¢;,} in the esti-
mates of {a;,} are essentially independent and
Gaussian-distributed; we shall assume that that is true in
our data analysis, but in our derivations we allow arbitrary
error correlation.

To first order in the angular velocity Q, the relation
between the angular velocity and the part of the splitting
that is odd in m, A, w,;,,, is the linear integral

T T
: = f dr f dluKnlm(ra M)Q(r’ #) H (2)
m o -1

where the “ splitting kernels ” are of the form

Knlm(r’ ﬂ) = Knl(r)VVIm(:u) + Lnl(r)le(:u) . (3)

Expressions for the components of the right-hand side in
terms of the eigenfunctions and density of the reference
model are given by Sekii (1993), and in the Appendix. A
property of the expansion (3) we shall exploit below is that
L,, is small compared with K,(r) except near the inner
turning point of the (n, [) multiplet, and thus

Komlrs 1) = Ku(r)Win(w) - )

This property was employed by Sekii (1993, 1995) to
develop an efficient method to estimate the two-
dimensional distribution of angular velocity in the Sun from
eigenfrequency splittings.

Let J denote the multi-index (j, n, [) and # the set of
values J can take. We denote the number of elements in the
set ¢ by N. The set ¢ contains ordered triples with all
combinations of values of n and [ corresponding to the
observed multiplets, but only odd values of j between 1 and
Jmax- We write the relation between the observations and the
angular velocity abstractly as follows:

6J=KJQ+€J, JG/. (5)

Here K;Q is a linear functional of the angular velocity €
and may be written as an integral K, Q = | K,(r, pQ(r, p),
with data kernel K(r, p) related to the kernels K, (r, ) of
equation (3) through equation (1)—see Brown et al. (1989)
for precise expressions. We deliberately use the same nota-
tion for the data kernel and the linear functional derived by
integrating against the data kernel; context should obviate
possible confusion. The noise terms {¢,} are assumed to be
realizations of zero-mean Gaussian random variables with
covariance matrix Z; this notation requires that we impose
an arbitrary but fixed ordering on the set ¢. We abbreviate
the N equations (5) using vector notation:

F=IQ+c. ©
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Provided there is no repeated measurement of any a,, the
functionals {K,},. , are linearly independent, a property
we shall use below.

Let ¥ denote an arbitrary angular-velocity distribution.
Forany A = (4;);. yand y = (y,); . 4, define

Aoy= JZIIIJ Vs> @)
A K, p)= JZ/IJ Kr, ), (®)

and

A K¥=G-K¥=4i-KY) = JZ}X,K,‘I‘. )

Define the two-norm in the usual way, |i] = (4 * 4)'/?, and
(for a positive-definite N by N matrix X) the weighted two-

norm
lAlg=/2 4. (10)

From this point forward, except in the Appendix, L
denotes a linear functional (such as a spatially weighted
average) defined for rotation models. Suppose we wish to
estimate the linear functional LQ from data é. A fundamen-
tal result of linear inverse theory is that this is impossible
without additional information unless one can write L as a
linear combination of the data functionals {K,}; ie., one
can estimate LQ with finite uncertainty only if
LY = 1 - KY¥ for some 4 and all ¥ (Backus & Gilbert 1970).
The corresponding linear combination of the data, 4 - 8, is
an unbiased estimate of LQ. Much of Backus-Gilbert theory
consists of methods for selecting 4 so that the functional L is
a localized average of Q and can be estimated with reason-
able uncertainty. Pijpers & Thompson (1992, 1994) discuss
an alternative, computationally efficient strategy for choos-
ing 4, called SOLA.

This paper concerns estimating M such linear functionals
{L,}#~ | with simultaneous confidence. Let {A,}2L, be the
collection of N-vectors such that L, = A, * K; since {K,} is
a linearly independent set, only one A, can solve this equa-
tion. We assume for convenience that {A,} are linearly inde-
pendent, but their choice is otherwise arbitary, so
Backus-Gilbert and SOLA estimates are included as special
cases, as are the tailored differencing kernels we derive
below. The assumption of linear independence is for conve-
nience of notation, not necessity. A consequence of the
linear independence is that M < N; i.e., we restrict ourselves
to estimating no more linear functions than we have data.

Each estimate A, * d is an unbiased estimate of the corre-
sponding functional L, Q; under our assumption of Gauss-
ian errors, the estimates are jointly Gaussian since they are
linear combinations of Gaussian random variables. Let LQ
be the M-vector (L, Q) ,, and let A (with no subscript) be
the M by N matrix whose (k, J)'" entry is A,;. It is well
known that A - é has the M-dimensional Gaussian distribu-
tion with mean vector L and covariance matrix

E=AZ-A. (iy
The variance of the estimate A, - 1is

kk - (1 2}

{1}

T

Eal N

v
T a4 s 1; 1 2
he estimates, 2 normalized version of the covariance

It will be useful as well to have the correlation matrix T of
+
L
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F1G. 1.—The 10 averaging kernels for Q, as a function of radius. The kernels were derived using the Backus-Gilbert method.

matrix:
r=A-x-X, (13)
where
A
Kk.’ = ﬂ . (14)
Tk

From BBSO splitting data (Woodard & Libbrecht 1993),
we shall try to estimate averages of the quantity

3 1
Q) =7 f (1 = @)Qr, pdp , (15)
-1
which is related to the angular momentum
dh = Q,(Np(ryr*dr . (16)

This quantity is interesting because the existence of a region
with rapid variation would be evidence for a torque, if stress
were proportional to shear. Since Q; involves the angular

projection of Q(r, u) onto the function 1 — u2, asymp-

totically as I — oo, it affects only the first a-coefficients
{ay}. Conversely, asymptotically {a,,} contain informa-
tion about only the Q; component of Q. The data kernel for
a1 is K,(r), which is defined in the Appendix. Of the a-
coefficients, {a,,;} are the most accurately measured. For
these reasons, we used only the first a-coefficients in our
study of Q,.

We averaged the reported BBSO {a,,,} splitting coeffi-
cients using equal weights for the 4 yr 1986, 1988-1990, for
1336 multiplets in the range 20 < I < 140. We assumed that
the standard deviations of the errors in the coefficients are
as reported, unless they were reported to be less than 0.1
nHz, in which case we set them to 0.1 nHz. We assumed
that the errors are independent. We used the Backus-
Gilbert method to construct ten averaging kernels for Q,
centered at different depths. Figure 1 plots the 10 kernels;
Table 1 lists the centers of the averaging kernels, their
widths as defined by Backus & Gilbert (1968), the corre-
sponding linear combination of the data (A, * d), and the
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TABLE 1

SUMMARY OF THE AVERAGING KERNELS FOR THE ESTIMATED RADIAL
AVERAGE OF Q,

Formal
Kernel Center/R Width/R Estimate/nHz Error/nHz
1....... 0.510 0.111 429.140 2.873
2. 0.555 0.072 432.812 1.343
3. 0.599 0.057 434.561 1.002
4....... 0.651 0.052 436.369 0.950
Seeeen. 0.699 0.043 437981 0.767
6....... 0.750 0.034 444395 0.804
Teeeinnn 0.800 0.024 441.784 0.768
8....... 0.850 0.018 438.367 0.850
9.t 0.900 0.013 445.104 0.680
10...... 0.950 0.009 450.712 0.908

Notes—Col. (2) radii of the “centers” of the averaging kernels
(f rLZ/f L?), in solar radii. Col. (3): widths of the kernels using the defini-
tion of Backus & Gilbert 1968. Col. (4): estimated averages of Q,/2n. Col.
(5): standard deviations of the estimates, computed using eq. (12).
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TABLE 2

CORRELATION MATRIX I' CORRESPONDING TO THE 10 AVERAGING KERNELS

782
1.0000 0.3061 0.1282 0.0901 0.0463
0.3061 1.0000 0.1230 —0.0724 —0.0290
0.1282 0.1230 1.0000 —0.0660 0.0794
0.0901 —0.0724 —0.0660 1.0000 —0.4593
0.0463 —0.0290 0.0794 —0.4593 1.0000
0.0516 —0.0616 0.0556 0.1386 —0.3951
0.1325 —0.0092 0.0800 0.1234 —0.1508
—0.0751 —0.0570 —0.0525 0.0272 0.0732
—0.0517 0.0092 0.0175 0.1193 0.0131
0.1208 0.0934 0.1166 0.0680 0.2108

0.0516 0.1325 —0.0751 —0.0517 0.1208
—0.0616 —0.0092 —0.0570 0.0092 0.0934
0.0556 0.0800 —0.0525 0.0175 0.1166
0.1386 0.1234 0.0272 0.1193 0.0680
—0.3951 —0.1508 0.0732 0.0131 0.2108
1.0000 0.0366 —0.0608 0.1048 0.1650
0.0366 1.0000 0.2446 0.2791 0.1886
—0.0608 0.2446 1.0000 0.3904 0.1910
0.1048 0.2791 0.3904 1.0000 0.3419
0.1650 0.1886 0.1910 0.3419 1.0000

standard deviations of the estimates. Table 2 contains the
correlation matrix I of the 10 estimates.

3. SIMULTANEOUS CONFIDENCE INTERVALS FOR
LINEAR FUNCTIONALS

3.1. Simultaneous Coverage Probability

Consider tossing a (possibly loaded) coin independently
100 times to find a confidence interval for the probability p
with which the coin lands heads. The distribution of the
number of heads in 100 tosses is, under these assumptions,
binomial with 100 trials and probability p of success in each
trial. Provided p is not too close to zero or one, this distribu-
tion is approximated well by a Gaussian distribution with
mean 100p and standard deviation 10[p(1 — p)]*/>. With
high probablity, 10[p(1 — p)]*/*> will be close to the stan-
dard deviation, where p = (number of heads observed)/100
is the sample proportion. Provided p is not too close to zero
or one, the distribution of the sample proportion is approx-
imately Gaussian with mean p and standard deviation ¢ =
[p(1 — p)]'/?/10. Since the chance that a standard Gaussian
random variable is between —196 and 1.96 is 0.95,
Pr {|p — p| <1966} ~ 0.95. Consequently, an approx-
imate 95% confidence interval for p is given by

I=1[p— 1966, p + 1.965] . 17

The coverage probability of the confidence interval I is the
chance that I contains p. Note that this probability makes
sense only before the data are observed: the coverage prob-
ability refers to properties of the procedure applied to
random data, not to the ultimate numerical values one
computes after observing the data. After observing the data
and calculating a confidence interval, the interval either
does or does not contain p, and there is no more random-
ness in the problem. At that point, the “confidence level,”
which is equal to the coverage probability of the random
interval before observing the data, quantifies our un-
certainty about whether in fact the confidence interval
contains p.

Now suppose that we wish to know whether there is a
difference between the probablities p, and p, of heads of
two possibly biased coins. One way to do this is to compare
P, and p,, the sample proportions of heads in 100 indepen-
dent tosses of each coin separately. Intuition and common
practice suggest that we can use p; and p, to construct 95%
confidence intervals for p, and p,, then conclude that p, #
p,, if the confidence intervals do not overlap. In fact, testing
the hypothesis that p, = p, in this way has a higher signifi-
cance level (lower confidence level, loosely speaking) than is
commonly recognized: if p, and p, are independent,
then the chance that both p, — 1.966, < p; < p, + 1.966,
and p, — 1966, <p, <p,+ 1966, is only about

0.95 x 0.95 = 0.9025. Thus if the two 95% confidence inter-
vals do not overlap, we have only about 90% confidence
that p, # p,. (More precisely, we could reject the hypothe-
sis that p, = p, at significance level approximately 0.1, not
0.05.) The essential point is that even though each interval
I;, j =1, 2, contains its corresponding p; with probability
1 —a, part of the time that I, contains p,, I, will not
contain p,, and vice versa. As a result, the chance that both
intervals contain their parameters, the simultaneous cover-
age probability, is less than 1 — . Figure 2 illustrates this
point. If we try to compare the probabilities of heads for N
coins in this way, we end up with a simultaneous confidence
level of about 0.95" x 100%. Conversely, if we want to end
up with simultaneous 95% confidence, we need to begin
with 0.95'" x 100% confidence intervals for each p;. The
situation is more complicated when the sample proportions
p; are not independent, which is more directly analogous to
comparing several linear estimates in an inverse problem,
since estimates centered at different points typically involve
correlated linear combinations of the same data, as in our
helioseismological example of § 2.

Fi1G. 2—Illustration of the issue of simultaneity. The circles represent
contours of the joint probability density function of the random variables
X and Y. The chance that X is in the (infinite) shaded vertical sliceis 1 — a,
as is the chance that Y is in the horizontal slice. However, the chance that
X is in the shaded region and Y is in the shaded region is the probability
that (X, Y)is in the small square, which is less than 1 — . In this sketch, X
and Y are independent, so the probability that (X, Y) is in the square is
(1 — )?. In general, the probability that both X and Y are in a pair of
ranges depends on their joint distribution. The text gives four ways to
adjust the lengths of a set of M confidence intervals so that the chance the
intervals simultaneously contain their M associated parameters is at least
1—a.
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3.2. Bonferroni Simultaneous Confidence Intervals

Bonferroni’s inequality (e.g., Bickel & Doksum 1977) says
that the probability that at least one of the events {4, }}
occurs is no larger than the sum of the chances that each
occurs; ie., Pr {4, occurs or A, occurs or ... or Ay
occurs} < Y L, Pr {4, occurs}.

Suppose we have a procedure for producing a set of (not
necessarily simultaneous) 1 — o’ confidence intervals for the
parameters L, Q, k = 1, ..., M. The chance that at least one
of these intervals fails to contain its corresponding param-
eter is the chance that at least one of the events {A,}i,
occurs, where A, is the event that the kth confidence interval
fails to contain its parameter. Each of these events has (by
assumption) probability «'. Bonferroni’s inequality implies
that the chance that one or more of the M intervals fails to
contain its corresponding parameter is no larger than Mo/,
regardless of the correlation among the estimates. Conse-
quently, the chance that all the confidence intervals simulta-
neously include their corresponding parameters is at least
1 — Mo'. It follows that if o' = a/M, so that the original
intervals have coverage probability 1 — a/M, the set of M
confidence intervals has simultaneous coverage probablity
at least 1 — a, as desired. Note that Bonferroni’s inequality
does not constrain us to use the same confidence level for
each interval; we need only insist that the sum of the non-
coverage probabilities of each of the intervals equal at most
o. This gives one the freedom to construct shorter con-
fidence intervals for some of the functionals of interest, to
minimize the maximum length of the intervals, or to mini-
mize some weighted sum of the lengths of the intervals,
however the practitioner may choose.

The Bonferroni approach to simultaneity can be quite
useful, especially when the number of simultaneous con-
fidence intervals one desires is not too large. It is particu-
larly easy to use, since we need no assumption about the
dependence of the estimates. In our helioseismological

SPATIAL VARIATION OF SOLAR PROPERTIES 783

example, the covariance among the estimates is such that
Bonferroni’s inequality is nearly sharp, and little is gained
by more complicated analyses.

Suppose we desire to have a set of simultaneous 95%
confidence intervals for the 10 averages of angular velocity
described above. Bonferroni’s inequality implies that if we
start with confidence intervals with individual coverage
probabilities 1 — 0.05/10 = 0.995, the intervals will have
simultaneous coverage probability at least 95%. Since the
chance that a standard Gaussian random variable is
between —2.81 and 2.81 is 0.995, the intervals

([Ac* 8 — 2817, A, - 6 + 281,112, (18)

have simultaneous 95% coverage probablity. These inter-
vals are plotted in Figure 3. A 95% confidence interval for
a single estimate would have length 2 x 1.967,, so the
increase in length required for simultaneity is (2 x 2.817,)/
(2 x 1.967,) ~ 1.43. This ratio increases with the number of
intervals, and for Gaussian errors, decreases with increasing
confidence level: for example, for 99% simultaneous con-
fidence in this same problem, the ratio would be about
3.27/2.56 ~ 1.28.

3.3. Simultaneous Confidence Intervals Based on
x* Misfit to the Data

Since the errors {€,} are zero-mean Gaussian random
variables with covariance matrix X, the distribution of
lell3-1 is x* with N degrees of freedom (recall that N is the
cardinality of J). If x = (x% ,)"/* is the square root of the
(1 — &) x 100 percentage point of the y2 distribution with N
degrees of freedom, by definition

Pr{llelg-1<y}=1-a. (19)
Thus
Pr{l6 —KQz- <y}=1—-ua. (20)

TT T Ty T T
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FiG. 3—Four sets of simultaneous confidence intervals for the 10 averages of Q,. The lengths of the intervals are proportional to the standard deviations
of the estimates; other choices are possible. The shortest intervals (heaviest lines) are the maximum-modulus intervals; on this scale, they are indistinguishable
from the Bonferroni intervals, which are the next shortest. The third-shortest intervals (medium-weight lines) are the Scheffé intervals, and the widest (thin
lines extending beyond the boundary of the plot) are those derived using the y? distribution in the 1336-dimensional data space. One cannot pass a straight
line through any of the confidence intervals except the widest, so we may reject the hypothesis that Q, is constant at significance level 0.05.
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Forany L, = A; * K, define

b =inf {L,'¥:]|6 — K¥|z-: < ¥} (21)
and
w = sup {L,¥:[|6 — K¥|5-. <y} . 22
Then
Pr{h,<LQ<u}>1-—u; 23)

ie, [l, w] is a 1 — o confidence interval for L,Q. Note
that the constraint set for this optimization problem,
{¥:]|6 — K¥|z-: < x}, does not depend on L,. The opti-
mization problems measure different properties of a single
set that has probablity 1 — « of containing the noise-free
observations. As a result, the simultaneous coverage prob-
ability of the M intervalsis 1 — a:

Pr{l, <L Q<u andl, <L,Q<u,and...
andlMSLMQSuM}ZI—oc. (24)

It is possible to find [, and u, explicitly: if || KQ — §||z-, <
¥ (which occurs with probability 1 — a),

|Ax -6 — A KQ| =|A, - (KQ + ¢) — A, - KQ|

=]A; "€l

< lAxligllells-s

< 2IAds (25)
= XATk - (26)

This bound is attained provided {K} are linearly indepen-
dent (which we have assumed), so [, = A * § — y||A,|ly and
= A0+ yllAllz. See also Stark (1992). This gives an
explicit solution to the problem of constructing simulta-
neous confidence intervals for any number of linear func-
tionals of Q. The lengths of the intervals are proportional to
the standard deviations of the corresponding estimates,
with constant of proportionality (y2 ,)*/%. The intervals thus
have the same relative lengths as we found using Bonfer-
roni’s inequality (for equal coverage probability 1 — o’ for
each interval).

For N = 1336 data, the value of y needed to get 95%
simultaneous coverage probability is about 37.71. The
resulting confidence intervals are plotted in Figure 3. The
simultaneous confidence intervals for the 10 averages of
solar angular velocity derived using the 2 distribution with
N degrees of freedom are longer than the Bonferroni inter-
vals by a factor of 37.71/2.81 ~ 13.42. The confidence inter-
vals obtained this way are unnecessarily wide, especially
when one is interested in few linear combinations compared
with the number of data.

3.4. Confidence Intervals Based on the M-Dimensional
Gaussian Distribution

There are innumerable choices of simultaneous con-
fidence intervals for the collection of functionals {L, Q}, and
one might consider using a procedure that gives intervals
that are in some sense optimal for the problem at hand. For
example, one might seek to minimize the length of the
longest of the joint confidence intervals, to minimize a
weighted sum of the lengths of the intervals, or to construct
intervals that support certain inferences by being likely to
exclude certain values (Banjamini & Stark 1996 construct
simultaneous confidence intervals that are less likely to
contain zero). The two procedures presented above have the

Vol. 459

property that the lengths of the intervals are proportional
to the standard deviations of the estimates, which is a rea-
sonable way to put the estimates on an equal footing. In
other words, both give values of a constant ¢ so that the set
of intervals {[A; & — cty, Ay * 6 + ct]}P-, are simulta-
neous 1 — a confidence intervals for {L, Q}.

This section presents two standard choices for joint con-
fidence intervals based on the joint distribution of the esti-
mates: “Scheffé” intervals and “maximum-modulus”
intervals (e.g., Lehmann 1986). Scheffé intervals derive from
the event that the vector of estimates lies in an ellipsoid
centered at the vector LQ of true values of the functionals,
and their lengths are related to the y? distribution with M
degrees of freedom. Maximum-modulus intervals derive
from the event that the vector of estimates lies in a hyper-
rectangle centered at LQ, and require integrating a corre-
lated multidimensional Gaussian density. They give the
smallest constant ¢ described above.

3.4.1. Scheffé Intervals

Since A - & has a Gaussian distribution with mean LQ
and covariance matrix E, [|A + § — LQ|2-, has the ¥? dis-
tribution with M degrees of freedom. Thus

Pr{lA-6—LQIZ. < yh,)=1—0. 27

As in § 3.3, we can find a 1 — « confidence interval for the
linear functional y * LQ by finding the smallest and largest
values y * B can take for p satisfying |A - 6 — Bl|2-, < xZ .-
We are particularly interested in the components of L,
which corresponds to takingy = ¢, k = 1, ..., M, where ¢,
is the M-vector all of whose components are zero except the
kth, which is unity.
Essentially the same derivation as in § 3.3 shows that

{[A -0 — xlledlls, A - 6 + xllel=1}its (28)

where y = (x3,,)"/* are simultaneous 1 — « confidence inter-

vals for {L,Q}. Since |le,||z = 74, we again end up with con-
fidence intervals whose lengths are proportional to the
standard deviations of the estimates, but this time the con-
stant of proportionality is (yZ ,)"/?, which is smaller than
(x% .)*/* when the number of data N exceeds the number of
estimated functionals M, approximately by the ratio
(M/N)'2, For 95% confidence intervals for the 10 func-
tionals in our helioseismological example, we compute
¢ = (x3.05.10)"/* = 4.279, so the resulting intervals are long
than the Bonferroni intervals by a factor of 1.52, but are
8.81 times shorter than those based on the y? distribution
with N degrees of freedom. These intervals are plotted in
Figure 3.

3.4.2. Maximum-Modulus Intervals

We have now seen a variety of methods that give simulta-
neous confidence intervals whose half-lengths are a
common multiple ¢ of the standard deviations {,} of the
estimates. Maximum-modulus intervals are of this form, but
have the smallest value of ¢ that gives the correct simulta-
neous coverage probability:

Ak'(s_LkQ

m
Pr < max
Tk

k=1

5c}=1—a. (29)

If o =0.05, for example, we know that for M =1,
¢ = 1.96 suffices. The first section of this paper shows that if
M =2 and the estimates A, -  and A, - é are statistically
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independent, it suffices to take ¢ to be the 100(1 — &/
2)12 = 100(0.975)/2 ~ 98.7 percentage point of the Gauss-
ian distribution, which is about 2.23. For Gaussian errors,
the estimates are independent when the coefficients in the
linear combinations are orthogonal vectors, for example,
when they depend on mutually exclusive subsets of the data.
Typically, the estimates are dependent. Note that if we wish
to compare only two linear estimates, we get more precise
inferences by finding a single confidence interval for the
difference functional (A; — A,) * KQ; we take this approach
in § 4 below. Only when we want to compare more than
two averages does it make sense to use simultaneous con-
fidence intervals, and even then, if our only goal is to make
comparisons, better procedures exist than those based on
confidence intervals.

We can find ¢ by integrating the joint density of v, =
(Ap -0 —L.Q)/r, k=1, ..., M, over hypercubes with
various side lengths, to find the side half-length that gives
probability 1 — «. By construction, {v,} are jointly normal
with zero mean and unit variance; their covariance matrix
is the correlation matrix I" defined in equation (13). The
constant ¢ thus solves

(2”)_M/2|Tl_1/2 J dv, J dvy -+ J dvy

X exp <—

where |T'| is the determinant of I'. For a general covariance
matrix T, ¢ cannot be found in closed form. However, it can
be found iteratively by performing the integral (30) numeri-
cally for trial values of c. Since the integral is monotone in c,
a bisection cor other search can find ¢ to any desired preci-
sion.

Alternatively (and much less expensively), one may
approximate the probability by counting the fraction of the
time a pseudcrandom multivariate Gaussian variable lands
in a hypercube with side length 2c. This is easily accom-
plished in the computer data analysis language MATLAB
(The Math Works 1985-1990). Let g =T, let nsim be the
number of pseudcrandom variates to compute, and let M be
the number of averages (so that g is an M by M matrix). Then
the command

1 T
2|F|v r v)—l—oz, 30

p=sum(all(abs(chol(g)’*randn(M,nsim))
<=c))/nsim

estimates the coverage probability of a hypercube with side
2c.

We performed a sequence of such simulations using the
matrix I" given in Table 2 to estimate the value of ¢ corre-
sponding to 95% simultaneous coverage probability for the
10 averages of angular velocity. We found that ¢ = 2.789
gave an estimated coverage probability of 0.9502 in 10°
trials. If one believes that pseudorandom numbers behave
like random numbers in this problem, the results of § 3.1
yield a confidence interval for the actual coverage probabil-
ity corresponding to c. The estimated standard deviation of
the estimated probability is [1070.9502(1 — 0.9502)]'/? ~
2.17 x 1074, so0 a 95% confidence interval for the coverage
probability would be [0.9498, 0.9506].

This choice of ¢ gives confidence intervals that, in this
application, are shorter than the Bonferroni intervals by the
factor 2.79/2.81 ~ 0.99, which is not much savings for the
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TABLE 3
Method c
Maximum modulus...... 2.789
Bonferroni ................ 2.807
Scheffé ...........c........ 4.279
Data g2 ..coooininnnnnnn. 37.711

Notes—Constants ¢ derived by
various means described in the text,
such that the intervals {[A - é — c7,,
A+ 6 +cr ]} are simultaneous 95%
confidence intervals for the 10 radial
averages of Q; corresponding to the
averaging kernels in Fig. 1.

extra effort. For other covariance matrices, the savings can
be greater, and the savings typically increase as the number
of estimates M grows. Table 3 displays the normalization
constants ¢ for the four methods discussed, for the helio-
seismological example; Figure 3 plots the four sets of con-
fidence intervals.

4. AVERAGING KERNELS FOR SPATIAL CHANGES

In this section, we construct averaging kernels that are
sensitive to the difference between averages of the angular
velocity, rather than localized averaging kernels.

4.1. Differences in Radial Averages of Q,

Consider testing the hypothesis that the average of Q,
near the radius 0.55R (L, Q) differs from that near 0.70R
(L5 Q). If we base the inference on the shortest simultaneous
confidence intervals we have constructed for the 10 averages
(with ¢ = 2.789), we would not reject the hypothesis that the
averages of Q, are equal at significance level 0.05, because
the simultaneous confidence intervals, [429.07 nHz, 436.56
nHz] and [435.84 nHz, 440.12 nHz], overlap. However, we
would expect to have done better had we considered only
the two averages. Had we constructed simultaneous 95%
confidence intervals for just L,Q and LsQ, ¢ would be
smaller, but it could not be less than 1.96, the value for a
single estimate and for any number of perfectly correlated
estimates.

Suppose that we had begun this study with the hypothe-
sis that these two averages of Q; were equal, and that we
wanted to concentrate all our resources to determine
whether there was in fact a difference between them. We
could then have proceeded by estimating the difference
(L, — Ls)Q directly. The estimate (A, — A5) *+ 6 = —5.169
nHz has standard deviation 1.566 nHz, so

[—5.165 —1.96 x 1.566 nHz, —5.169 + 1.96 x 1.566 nHz]
=[—8.238 nHz, —2.099 nHz] (31)

is a 95% confidence interval for the difference of the aver-
ages. This interval does not contain zero, so we would have
rejected the hypothesis that the averages of Q; near the two
depths are the same at significance level 0.05.

We caution the reader that it would not be statistically
sound to reject the hypothesis that L, Q = L;Q based on
our analysis here: the quoted 0.05 significance level is incor-
rect, since we first looked at the estimates before deciding to
test that hypothesis. In fact, we chose to compare L, Q and
L Q precisely because the test based on simultaneous con-
fidence intervals would fail to reject, while the test based
directly on the single estimate (A, — As) * 6 would reject.
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As intimated above, simultaneous 95% confidence inter-
vals for L,Q and Ls;Q with lengths proportional to the
standard deviations of the estimates can be no shorter than
the intervals [430.180 nHz, 435.444 nHz] and [436.478 nHz,
439.484 nHz], which use ¢ = 1.96. These intervals fail to
intersect by 1.034 nHz, which is an upper bound on what we
could hope to achieve by comparing confidence intervals; in
comparison, the confidence interval for the difference does
better: it fails to include zero by 2.099 nHz. Thus a con-
fidence interval derived directly for the difference is more
able to detect a difference than a procedure that compares
simultaneous confidence intervals for the separate averages.
This is true quite generally, and results from the facts that
the standard deviation of the estimator of the difference is
no larger than the sum of standard deviations of the two
estimates (which follows from the triangle inequality), and
that ¢ is a nondecreasing function of the number of func-
tionals one estimates (in the class of simultaneous con-
fidence intervals whose lengths are proportional to the
standard deviations of the estimates, simultaneous intervals
must be at last as long as nonsimultaneous intervals).

4.2. Differences in Angular Averages of Q

Figure 4 shows the angular dependence of three localized
averaging kernels for angular averages of angular velocity.
The kernels are not very localized, but trying to construct
kernels more localized than these results in even larger
negative sidelobes. Among the advantages of estimating dif-
ferences are (i) it may avoid the question of simultaneity,
since the value of one functional is enough to tell whether
rotation varies with latitude, and (ii) we can construct a
satisfactory “differencing kernel” in some cases (as here)
where it is impossible to find a localized linear combination
of the data kernels.

To estimate an average difference of angular velocity at
low and high latitudes, we need to find a linear combination
of the data kernels that is nonnegative over some range of
latitudes, nonpositive on another set of latitudes, zero else-

Vol. 459

where, and such that its integral is zero. The approximation
(4) shows that the radial part and angular part of the data
kernel K, can be separated approximately, and that the
radial part does not depend on m. Since the a-coefficients
{a,}i=3 are linear combinations of splittings for different
values of m but a fixed (n, I) multiplet, the radial dependence
of the data kernels for those a-coefficients is the same. Thus
we obtain a simpler problem if we use only one (n, [) multi-
plet at a time; we need worry about only the angular depen-
dence of the linear combination of data kernels, and the
radial dependence will take care of itself, to a first approx-
imation. We can later take linear combinations of the
resulting averaging kernels for different (n, ) multiplets to
bring more data to bear on the estimate.

We found a linear combination of the angularly depen-
dent functions W,,(u) of equation (3) such that the com-
bination is positive at low colatitudes and negative at high
colatitudes, using the SOLA method described by Pijpers &
Thompson (1992, 1994), with target function satisfying

W
L “Tdp = -1, (33)

and
L Tl = 1. (34)

The constant p, is the colatitude at which the target func-
tion changes sign; the precise form of T is given in the
Appendix. The corresponding linear combination of the full
data kernels, 4 * K(r, p), changes sign at a radially depen-
dent colatitude, p(r), which is in fact quite close to u,. Once
the radial variation of the complete data kernels is included,
the integral of 4 - K(r, u) on each side of u(r) differs slightly
from +1 by the multiplicative factor C,;, which is derived in

SOLA Kernels Concentrated in u
o o
I

o

0.0 0.2 0.4

0.6 0.8 1.0

FiG. 4—Plot of the angular part of three localized averaging kernels for an angular average of rotation. They are poorly localized, but kernels more

localized than these have even larger negative sidelobes.
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the Appendix. As a result, the linear functional

L

iA-K (35)

- 2nC,,

differences averages of the rotation rate (in cyclic frequency)
at low and high latitudes, and an unbiased estimate of LQ is
given by
1
2nC,,

A6, (36)

The BBSO splitting data for the years 1986, 1988-1990
have 1336 multiplets in common. We averaged correspond-
ing a-coefficients for those multiplets for the 4 yr, with equal
weights. The variation of the latitude of the sign change is
small for all the kernels we constructed for individual multi-
plets: | uo(r) — uo | never exceeded 0.004. There is no other
sign change in the averaging kernels, as is desired.

We averaged groups of 100 differencing kernels for indi-
vidual multiplets with similar turning depths to obtain 14
kernels for differences of angular averages of Q sensitive to
different ranges of radius (the most deeply penetrating
group had only 36 multiplets). Figure 5 shows an example
one of these average kernels. Since all the averaging kernels
change sign extremely close to the cone u = pg,, so do aver-
ages of them. Since the averaging kernels all integrate to
zero, so do averages of them. Since, by assumption, mea-
surement errors for different a-coefficients are independent,
the estimated averages are independent as well. As a result,
it is simple to compute maximum-modulus confidence
intervals for the averages; as in § 3.1, the individual inter-
vals should have coverage probability 0.95''* ~ 0.9963,
which for Gaussian random variables gives ¢ = 2.678.
Figure 6 plots maximum-modulus simultaneous 95% con-
fidence intervals for the difference between angular averages
of Q against an average of the turning depths of the multi-
plets that contribute to the 14 average kernels. The esti-
mated difference is roughly constant among all but the
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deepest of the averages, and none of the confidence intervals
but that for the deepest average includes zero. This indicates
that over a range of depths, the low-latitude region rotates
faster on average than the high-latitude region, as is
observed at the surface of the Sun.

5. CONCLUSIONS

The lengths of confidence intervals for estimated solar
properties must be adjusted if one wishes to compare esti-
mates, for example, to infer that those properties vary spa-
tially. The adjustment is straightforward and can be
accomplished in a number of ways. We examined four ways
to construct simultaneous confidence intervals, within the
class of procedures that give intervals whose lengths are
proportional to the standard deviations of the estimates.
The method that yields the shortest intervals is based on
finding a hypercube that has probability 1 — « of contain-
ing the correlated errors in the estimates, which yields
“maximum-modulus ” confidence intervals. The next short-
est intervals in our helioseismological example derive from
the Bonferroni inequality, followed by “ Scheffé ” confidence
intervals, which derive from an ellipsoid with probability
1 — a of containing the correlated errors in the estimates,
and finally by confidence intervals that derive from an ellip-
soid with probability 1 — « of containing the original, poss-
ibly correlated, data errors. The ordering of the lengths of
the latter three sets of intervals depends on the correlation
of the data errors, the correlation of the estimates, the
number estimated functionals, and the number of data. It is
always true that the maximum-modulus intervals will be
shortest in the class of procedures that yield interval lengths
proportional to the standard deviations of the estimates,
and that whenever the number of estimates is smaller than
the number of data, the Scheffé intervals will be shorter than
those based on the ellipsoid in data space. It is difficult to
say a priori where the lengths of the Bonferroni-derived
intervals will lie in the hierarchy.

We have assumed throughout this paper that the data
errors are realizations of Gaussian random variables with

Lo T

—
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0.4~

0.2—

0.0 . . A ] . A : |

| 1 F——

0.0 0.2 0.4

0.6 0.8 1.0

r/Re

FIG. 5—A kernel for the difference between averages of the angular velocity at low and high latitudes constructed by averaging 100 such kernels for
individual multiplets with similar turning depths. The kernel changes sign on a single surface that lies almost exactly at latitude 56°3, and its integral is zero.
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FIG. 6.—Maximum-modulus simultaneous 95% confidence intervals for differences in averages of angular velocity above and below colatitude Ho =
3 x 13712, The radial and angular weights in the averages differ, but they change sign almost exactly at u,, and integrate to +1 above and below Ho- The
abscissa of each interval is an average of the turning depths of the multiplets contributing to the estimate.

mean zero and known covariance matrix. This assumption
might be unrealistic but is often the best one can adopt: the
details of the data reduction, which would be necessary for
characterizing the errors more accurately, are typically
unavailable. The application of the methods we have pre-
sented for constructing simultaneous confidence intervals
depends on the joint distribution of the data errors. In par-
ticular, the confidence interval lengths the Bonferroni
method gives depend critically on the fact that the tails of a
normal distribution are very thin. If the true error distribu-
tion has thicker tails (for example, because of outliers), even
if the covariance matrix were known exactly, the Bonferroni
bound could change substantially. The maximum-modulus
intervals are the next most sensitive to the tail behavior of
the error distribution, followed by the procedures derived
from the %2 distribution.

‘We used all four methods to compute simultaneous con-
fidence intervals for 10 radial averages of Q,, a quantity
related to the angular-momentum density, from BBSO
splitting data averaged for the 4 yr 1986, 1988-1990. All sets
of intervals but that based on the y? distribution in data
space support the inference that Q, varies with radius. (We
can reject the hypothesis that Q, is constant at significance
level 0.05.) In this example, the maximum-modulus intervals
are shortest, followed by Bonferroni’s intervals, the Scheffé
intervals, and the intervals based on the y2 distribution in
data space.

Directly estimating the change in the property of interest
generally leads to more precise inferences than does com-
paring simultaneous estimates. It is sometimes possible to
estimate changes in circumstances where it is not possible to
construct localized averages. We constructed linear com-
binations of a-coefficient kernels of individual (n, ) multi-
plets that change sign only once, near a prescribed boundary

between a high- and a low-latitude region, by exploiting the
degeneracy of the data kernel to decompose the problem
approximately. The linear combinations have zero inte-
grals, and therefore serve as kernels for the difference
between averages of angular velocity in the two regions. By
averaging these differencing functionals for modes with
similar turning depths, we obtained functionals sensitive to
the difference of the average angular velocity between low
and high latitudes over different ranges of radius. We esti-
mated these functionals of the Sun’s angular velocity from
BBSO splitting data and found strong evidence that over a
range of depths, the low-latitude region rotates faster on
average than the high-latitude region.

An obvious next step is to construct linear combinations
of a-coefficient splitting kernels with isolated sign changes
in both radius and colatitude, to estimate two-dimensional
variations of solar angular velocity. Constraining the sign
changes of the linear combination will require solving high-
dimensional quadratic programs, which is far costlier than
the method we employed here to reduce the dimension of
the problem to unity.
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AST 95-04410, and NASA grant NAGW-2515. Much of
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APPENDIX

DERIVATION OF THE CONSTANTS C,,

In this Appendix, we return to the notation at the beginning of § 2; L will no longer denote a linear functional, but instead a
measure of the total horizontal wavenumber, and K will no longer be associated with a-coefficients.

We consider adiabatic eigenfunctions satisfying a perfectly reflecting boundary condition; to a first approximation, the
displacement eigenfunctions & can be written in polar coordinates (r, 6, ¢) in the form

&(r, ) = RIC, PT, & L™ dPY/dO, & imL™" csc OPT)e™? ~ionn'] (A1)

where (here) L = [I(I + 1)]"/? and PP(cos 0) is the associated Legendre function of the first kind, of degree [ and order m,
normalized so that the integral of its square from 0 to 1 is unity. The frequency w,;,, and the amplitude functions & (r) and &,(r)
of the radial and horizontal components of the displacement eigenfunctions are real. The amplitudes &, and &, depend on n
and /, but we do not include the dependence in the notation.

Equation (3) exhibits the splitting kernel for the singlet (n, I, m) in its degenerate form. Note that the symbols L,; and K,
again pertain to the (n, /) multiplet. The factors in equation (3) that depend on the radial coordinate r are given by

Knl(r) = (63 + étzl -2 lfr éh)prz/lnl s (A2)
and
L.r) =& pr*/lu (A3)
where
R
I, = f (& + Epr?dr, (A4)
0
and p is the density of the background state. The components of the kernel that depend on the angular variable u = cos 0 are
WinlW) = PP(n)* (A5)
and
-2 d
X lm(ﬂ) =L E; H lm(tu) - th(li) s (A6)
where
1 aw,,
Hinl) = 5 (1 = 1) 8 4 ). (a7

In the case of high-order solar p-modes, the term L, (r), which is proportional to &7, is small compared with K,(r) except
near the inner turning point, and therefore

Ko, 1) =~ Ko(r)Wi() - (A8)
Since the a-coefficient a, is the linear combination
6= Y. in (»9)
the functions
V= 3 W (A10)
and
Zp= mi_ly,mX,m (Al11)
satisfy
Kir, b) = Ku(r)W (1) + L% (1) (A12)

where one can obtain y by inverting the linear relations (1).
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We seek a vector 4 that is zero in all components except those corresponding to the (n, ) multiplet (in the example we
consider explicitly, there are j,,,,/2 = 6 values of j corresponding to this multiplet, and hence 6 indices in J for which 4, # 0),
such that the linear combination of the a-coefficient kernels have the properties discussed in § 4, namely,
<0, p=p)
A - K(r, ﬂ){ , Al13
<0, p<pr) (A1)
Ji- - K(r, pdp =0, (A14)
ro(r) 1
jdrj dud - K(r, p)= —1, fdrf dui - K, p)=1. (A15)
0 ro(r)

We use the degeneracy of the a-coefficient kernels to treat the angular dependence separately as a first approximation. The
functions W dominate the angular dependence of the kernels. We find the coefficients 4 so that the linear combination
Y; Aju W satisfies

1
L Z A Wi(Wdp =0, (Al6)
J
using the SOLA method described by Pijpers & Thompson (1992, 1994) with target function
T(p) = — A p?(u® — D — pj) (A17)
where
Suz —1
=, Al18
P=a = (A19)

1 (2B + 5)F+72
F~ 16 2B + 1)p+ 1/2 > (A19)
and u, is the specified colatitude at which T changes sign.

In our computational example, we used § = 4. For j,., = 12, the asymptotic form of the a-coefficient kernels shows that it
is impossible to fit the target function adequately for f > 5, while one can fit it almost perfectly when 8 < 4. We chose § = 4
because it gives the highest value of u,, namely 3/(13)*/2, which corresponds to a latitude of 5623.

The functions H,,(1) vanish at u = 0 and = 1. This follows from their definition (A7) together with the facts that {W,,,} are
even functions of x and that W,,(1) = 0. Thus the constraint (A16), together with the definition of X ;(u) (determined by eqns.
[A6], [A7], [A10], and [A11]), imply that the integral from =0 to u=1 of Y Aju X j() vanishes also. Consequently,
condition (A16) ensures that the corresponding linear combination of the full data kernels satisfies condition (A14).

We find that for the value of 4 determined using SOLA, the linear combination of the full kernels, 4 * K(r, u), changes sign
only once, at yio(r). Therefore, the conditions (A15) can be satisfied simply by scaling 4. It is straightforward to show that

R 1
C.= j dr J dul - K(r, p) (A20)
0 no(r)
R
= L [1 — E@IKu(r) — Lylr)] — L) H ppto)r)dr (A21)
~1, (A22)
where the small parameter &(r) is given by
1
e =1- j 2 A Wildp - (A23)
no(r) Jj
Thus a kernel for the difference between the average angular velocity at low and at high latitides is given by
1
— 4K, p), (A24)
Cnl
and an unbiased estimator of the difference is
1 A-é (A25)
Cnl '

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...459..779G

No. 2, 1996

SPATIAL VARIATION OF SOLAR PROPERTIES 791

Since the kernels C,; !4 - K(r, ) all integrate to zero and have a single sign change quite close to the cone u = p,, so do linear
combinations of them. Therefore, by averaging collections of these kernels, we can obtain new kernels that satisfy the
constraints but involve more of the data with smaller coefficients, decreasing the variance of the corresponding estimate. We
followed this strategy, averaging sets of 100 kernels for different multiplets with similar turning depths, to estimate differences
in angular velocity across the surface 4 = u, averaged over different ranges of radius. The resulting estimates have uncer-

tainties smaller than the individual estimates C,;'4 * & possess.
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