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ABSTRACT

We investigate the degree to which moderate stellar rotation rates can influence the two-dimensional
density structure in the winds of four classes of stars: Wolf-Rayet, B[e], asymptotic giant branch (AGB),
and novae. These classes are distributed across the H-R diagram and have a wide range of escape speeds
and wind acceleration. Furthermore, all have members which possess asymmetric circumstellar nebulae.
It has been suggested that these asymmetries could result from stellar winds which have moderate equa-
torial density enhancements. Large enhancements may arise as the result of stellar rotation as demon-
strated by the wind-compressed disk (WCD) model of Bjorkman & Cassinelli. Instead of a dense disk,
here we consider a milder distortion called a wind-compressed zone (WCZ). A WCZ is said to occur if a
star rotates more slowly than the disk formation threshold and if the density at the equator is more than
about 3 times that at the pole. We assume that the stellar winds obey a standard f-velocity law and
consider the effects of varying two of the velocity law parameters: the terminal speed, v,, and the
exponent, . For a given rotation rate, the wind compression is enhanced as either v,, is decreased or f8
is increased, because both correspond to a smaller acceleration of the wind. A general result from our
model simulations is that the asymptotic density and flow structure are predominantly governed by the
ratio w/wp, where w is the stellar rotation rate normalized to the critical speed and wj, is the threshold
value needed for disk formation. For the Wolf-Rayet and B[e] models which have moderate wind ter-
minal speeds and shallow velocity laws (f = 3), a WCZ can form even at rotation rates of order 10%
and 20% critical, respectively. For the AGB model with a low terminal speed and a § = 3 velocity law, a
WCZ can form at 15% critical. Finally, we consider novae, which have time-variable wind properties. In
particular, the location of the sonic point is time dependent, so we compute models with a range of sonic
point radii. In favorable cases, a WCZ can form for white dwarf rotation rates of less than 20% critical;
however, further work will be required to properly treat the extended subsonic region of nova winds.

Subject headings: novae, cataclysmic variables — stars: AGB and post-AGB — stars: mass loss —
stars: rotation — stars: Wolf-Rayet

1. INTRODUCTION

With astrophysical observations of better resolution, it is
becoming apparent that aspherical mass loss occurs for
stars throughout the H-R diagram. Perhaps one of the most
striking examples of a bipolar flow comes from Hubble
Space Telescope images that reveal a strong axisymmetric
geometry for the circumstellar envelope of the luminous
blue variable (LBV), n Carinae (Ebbetts et al. 1992; Hester
et al. 1995). Other LBV stars also have axisymmetric
nebulae, such as AG Car (Leitherer et al. 1994; Schulte-
Ladbeck et al. 1994) and HR Car (Hutsemékers & Van
Drom 1991; Schulte-Ladbeck et al. 1993a). Some other hot
stars exhibiting aspherical mass loss include the Be stars,
the B[e] stars, and the Wolf-Rayet stars. The Be and B[e]
winds are thought to harbor dense equatorial disks, as evi-
denced by their infrared excess, line profile shapes, and
polarimetric properties (Coté & Waters 1987; Struve 1931;
Coyne & McLean 1982; Allen & Glass 1976; Zickgraf et al.
1985; Schulte-Ladbeck et al. 1992). Among the Wolf-Rayet
stars, some exhibit intrinsic polarization, and aspherical
ring nebulae are observed in a few cases (Schulte-Ladbeck
et al. 1991; Schulte-Ladbeck, Hillier, & Nordsieck 1993b;
Notaet al. 1995).

Aspherical wind phenomena also have relevance for the
outflows of cool giant and supergiant stars. It has been
suggested that the SN 1987A ring could result from the
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expansion of the supernova explosion into an equatorially
enhanced slow wind from the red supergiant phase (Luo &
McCray 1991; Wang & Mazzali 1992; Blondin & Lundg-
vist 1993). Although not as.explosive, a similar scenario
may account for the broad range of observed planetary
nebula (PN) morphologies (Balick 1987; Kahn & West
1985; Icke 1988). In PNe, the fast low-density wind from the
central star of the PN overtakes the slow, dense aspherical
wind driven off the star during the asymptotic giant branch
(AGB) phase. The resulting wind-wind collision generates a
thin, dense expanding shell and a bipolar nebula (Frank &
Mellema 1994). As one last example, the expanding shells
from many nova outbursts are also observed to be aspheri-
cal and often axisymmetric with elliptical or bipolar mor-
phologies (Rosino 1977; Duerbeck 1987).

In all of these examples, there are two ways in which the
wind geometries are distorted: (1) the mass loss from the
star is aspherical and/or (2) the outflow becomes aspherical
after leaving the star. There are several mechanisms for gen-
erating an aspherical mass loss of the first kind. If a star is
rotating rapidly, additional material may be ejected from
the equatorial region as a result of the reduced gravity
(Friend & Abbott 1986). An example is the rotationally
induced bi-stability mechanism of Lamers & Pauldrach
(1991). If the wind near the equator becomes optically thick
in the Lyman continuum, a change in the distribution of
lines that drive the wind will result, such that the equatorial
mass loss increases dramatically and the flow becomes
slower and denser than the polar wind. Rapid stellar
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rotations may occur in some single stars as a result of star
formation, or in binary systems as a result of “spin-up”
from the secondary (Livio & Soker 1988). In addition to
rotation, magnetic effects can also lead to equatorially
enhanced wind flows (Hartmann & MacGregor 1982; Poe,
Friend, & Cassinelli 1989).

For aspherical mass loss of the second kind, some distor-
tion and density enhancement is produced in the wind itself.
Bjorkman & Cassinelli (1993, hereafter BC) developed a
wind compression model for rotating stars, in which
angular momentum conservation leads to an equatorially
enhanced wind density. For a star that is part of a binary,
the companion object can gravitationally focus the wind
from the primary so that a wind enhancement forms in the
secondary’s orbital plane (Friend & Castor 1982). Finally, if
a toroidal magnetic field exists in the wind, magnetic
tension in the equatorial region can “pinch” the flow at a
shock interface, resulting in an axisymmetric wind bubble
that is extended along the poles (Chevalier & Luo 1994).

In this paper we concentrate on the rotational distortion
effects that occur in the wind (intrinsic or arising from spin-
up). The effects of rotation on winds have become better
understood through the consideration of two-dimensional
flow effects by BC and Owocki, Cranmer, & Blondin (1994).
These papers developed the wind-compressed disk (WCD)
model for an axisymmetric isothermal line-driven wind.
Results were presented for Be stars, for which there is clear
spectral evidence of rapid rotation. In the wind compression
model, flow from higher latitudes orbits toward the equator.
The depletion of stellar wind material from higher latitudes
results in a density enhancement at the equator. If the com-
ponent of the flow speed perpendicular to the equator is
supersonic, then a pair of shocks form above and below an
equatorial disk. The postshock cooling creates a very dense
disk (i.e., a WCD). In the WCD models, typical v sin i rota-
tion rates of Be stars, which range from 30% to 80% critical,
are sufficient to form high-density, shock-compressed equa-
torial disks. It is essential that the wind compression
produce a shock-bounded disk for there to be a 2-3 order of
magnitude increase in the density that is necessary to
explain many of the observations. These include strong
Balmer emission lines, IR continuum excesses, and intrinsic
polarization.

In addition to Be stars, the winds from other stellar types
may also be affected by equatorial wind compression.
Although the wind compression model of BC was originally
developed in the context of line-driven winds, the expres-
sions governing the wind flow are kinematical and do not
require the wind to be line driven. So, independent of the
wind-driving mechanism, if the velocity distributions used
in the wind model are a good approximation to the outflow
of a star, and if all other model assumptions (discussed in
the following section) are fulfilled, then the wind compres-
sion model should yield the correct stellar wind structure.

In developing the WCD model, it was found that disk
formation becomes more likely if (1) the star is rotating
more rapidly or (2) the wind acceleration is small, in which
case disk formation can occur at rotation rates that are slow
relative to breakup. The radial acceleration of a steady state
wind is v(dv,/dr), and it follows that the wind acceleration
will be small if the wind terminal speed, v, is small (since
v, < v,,) or the velocity gradient, dv,/dr, of the wind is small.
Thus, stellar winds that are most likely to be affected by
wind compression are those with low terminal speeds or
small velocity gradients.
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In the case of the rotating Be stars, their winds are
affected by wind compression because they have relatively
small terminal speeds. The presence of a thin, dense disk is
suggested by line emission observations from the Be winds.
However, in the stellar winds of many other types of stars,
disks are not always necessary to explain the observations,
such as the polarization of Wolf-Rayet winds or the ellip-
tical morphologies of PNe. So in this paper we emphasize
wind-compressional effects in the regime of slow rotations,
where there is asignificant equatorial density enhancement
but a shock-compressed disk does not form. We refer to
these models without disks as “wind-compressed zone”
(WCZ) models.

The primary purpose of this paper is to assess the
occurrence of wind-compressional effects across the H-R
diagram. Threshold rotation rates for a sequence of equato-
rial compressions are determined for the winds of several
different stars. This paper is structured as follows. In § 2 the
formulae describing the wind flow structure and density
distribution of the WCZ model are presented. The conse-
quences of the wind acceleration for the rotational distor-
tion of the wind are examined in § 3. In § 4 we compute the
wind structure for a WNS star, a B[e] star, an AGB star,
and a nova white dwarf, and the results are discussed for
each individual object. A summary is given in § 5. Appen-
dices A and B detail derivations of the WCZ streamline
trajectories and the wind density distribution, respectively.

2. THE WIND-COMPRESSED ZONE MODEL

We divide this section into three parts. In the first part,
the rotating wind model is introduced, wherein the model
assumptions are described and the model parameters are
defined. In the second part, the streamline trajectories for
the wind flow are discussed, and in the last segment, the
wind density structure is developed.

2.1. The Rotating Wind Model

In a steady state rotating isothermal stellar wind with a
density, p, and velocity, », the conservation of momentum
can be expressed as

plo - Vo = —v3Vp + pof, (1)

where v, is the isothermal speed of sound and f'is the net
external force per unit mass, including gravitation and radi-
ative acceleration. BC consider the supersonic portion of
this wind and argue that the gas pressure gradient force will
be negligible if the stellar rotation and wind terminal speed
are larger than the isothermal speed of sound. After drop-
ping the pressure gradient force, the remaining forces are
central forces that do not exert torques on the flow, so the
total angular momentum is conserved along streamlines.
An analytic solution for the wind structure follows because
the motion of individual fluid elements will be confined to a
plane.

Figure 1 illustrates three trajectories that a fluid element
of the supersonic wind might follow. Consider a fluid
element that is injected into the supersonic wind at a release
point, r,, near the surface of the rotating star at an initial
co-latitude, 0,. Because the forces are radial, this fluid
element travels in a plane that passes through the center of
the star (designated as the “orbital plane ™) and is inclined
with respect to the equatorial plane. For case (a), the
outward radial forces are so large as to cause the flow to
quickly develop a nearly radial trajectory. Case (a) rep-
resents the outflow in most rotating O star winds. For case
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F1G. 1.—Trajectories in the orbital plane for a streamline originating at
polar angle 6,. The trajectory labeled (a) is for a slow rotator and/or a large
wind acceleration. There is little tendency for the flow to form a significant
equatorial wind compression in this case. The trajectory labeled (b) is one
that would occur in a star with a moderate rotation rate and a slowly
accelerating wind. Conditions that lead to a preponderance of this type of
streamline also lead to a significant equatorial compression of the wind.
The trajectory labeled (c) results for a rapidly rotating star and a large wind
acceleration or for a star with a more moderate stellar rotation and a small
wind acceleration. In this case, a dense shock-bounded disk forms in the
equatorial region.

(c), the force of gravity dominates the flow in the region
close to the star, so the trajectory tends to bend around the
star, and material orbits downward to the equator. If the
trajectory crosses the equatorial plane, a WCD forms. Case
(c) thus represents the flow occurring in Be star winds. Case
(b) is an intermediate case in which a streamline experiences
some deflection toward the equator, but a WCD does not
develop. Nevertheless, the wind becomes aspherical, having
a significant equatorial density enhancement (i.e., a WCZ).
The development of case (b) is of primary interest in this
paper.

To obtain a quantitative description of the equatorial
wind compression, BC adopted functions for the velocity
distribution that fit the numerical solution of Friend &
Abbott (1986) for the one-dimensional equatorial wind
problem. These fitted velocity functions were extended to
two dimensions, providing a kinematical description of the
fluid element motions in the orbital plane. We present a
modified set of kinematical relations from which we derive a
new wind model. The four equations governing the wind
flow of our model are

B
U;.(r’, 00) =0y + [voo(oo) - vO]( - %) > (2)

Y
voo(BO) = Cvesc<1 — sin 00 h) s (3)
crit,
e . To
v¢(r > 90) = Uy SIN 00(7) 5 (4)
M("o, bo) = Mo . )
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The primes denote quantities measured in the orbital
plane (using spherical coordinates). Equation (2) is the f-
velocity law that we use to describe the radial component of
the wind flow velocity, v;. The radius r, is the release point
(i.e., the location beyond which the pressure gradient forces
may be ignored), and v, is the radial speed at that point. We
take r, to be the sonic radius, r,, which, except for our nova
model, we assume is near the stellar surface (assumed to be
spherical with radius R,). Since r, is set equal to the sonic
point radius, we have v, = v,. The velocity exponent, f,
controls the radial extent of the wind acceleration, with
larger values of f producing shallower velocity laws at the
base of the wind. Thus, dv,/dr decreases as f increases. The
latitudinal dependence of the radial velocity enters through
the terminal speed. As is seen in equation (3), the wind
terminal is assumed to scale as the stellar escape speed, v,,
times a constant of proportionality, {. The escape speed is
Vese = [2GM (1 — T)/R,]"?, where T is the ratio of radi-
ative to gravitational acceleration. The exponent y deter-
mines the ratio of the equatorial to polar wind terminal
speeds. Larger values of y imply a greater sensitivity of the
terminal speed to the rotation speed. Based on the results of
Friend & Abbott (1986), BC used a value of y = 0.35. The
azimuthal component of the velocity in the orbital plane, v},
is determined by conservation of angular momentum and is
given in equation (4). Appearing in equation (5) is the mass-
loss distribution at the lower boundary, which we assume to
be spherically symmetric and constant.

The expressions (2)—(5) differ somewhat from those of BC
(their eq. [15]). BC used a B-velocity law of the form v, =
vo(0o)1 — R,/r')?, for which the velocity is zero at the
stellar surface. When calculating the streamline deflection,
¢’, they chose the release point at r, = R, since the sonic
radius was so close to R, (with r,~ 1.01R,). However,
Owocki et al. (1994) pointed out that since BC started their
integration of the ¢’ deflection at v, = 0 instead of v, = v,,
BC overestimated the ¢’ deflection. To obtain adequate
agreement between the analytical and numerical results,
Owocki et al. found that it was essential to chose the release
point at v, = v,, the location at which the gas pressure
support becomes negligible.

It is generally assumed that the gas pressure support is
lost when each component of the flow velocity attains a
value of order the sound speed. For O and B star winds, the
transonic zone is typically narrow, so choosing r, = r, pro-
duces excellent agreement with the results of Owocki et al.
However, when the transonic zone becomes radially
extended (as will be the case for large B-values), it becomes
less clear where the release point actually occurs because
the gas pressure support is only gradually lost with increas-
ing radius. Since gas pressure gradients in the 0-direction
will tend to resist the equatorial compression, one might
expect that choosing r, = r, will tend to overestimate the
wind distortion. Yet, the gradual loss of gas pressure
support also suggests that some equatorial compression will
occur prior to the sonic point; therefore, lacking a detailed
hydrodynamical calculation, we expect that on average the
sonic point is the best estimate for the release point.

Large f-values may also have implications for the sub-
sonic zone. Setting r, = R, implies that the subsonic flow is
characterized by a small pressure scale height. However, as
B increases, the transonic region becomes extended, and the
pressure scale height in the vicinity of r; becomes large,
implying that the subsonic region might also be radially
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extended. Whether or not the subsonic region is extended
will depend on the wind-driving mechanism, but an
extended subsonic region can have dramatic effects on the
equatorial compression (see § 4.4 on nova winds). Conse-
quently, our model results for g > 1 are likely to be qualit-
atively correct, but accurate quantitative results at large
are likely to change once radiative hydrodynamical simula-
tions become available.

Another difference between our wind description and
that of BC is that we choose the mass-loss rate to be spher-
ically symmetric at the stellar surface, whereas the mass-loss
rate used by BC is a function of 6, at the stellar surface.
The mass-loss rate of BC has a minimum at the poles and
increases toward the equator owing to the reduction in the
equatorial surface gravity of rapidly rotating stars. We
choose the simpler approximation because our applications
here include several classes of stars for which the initial
distribution of mass loss is not well known. We also prefer
not to introduce a poorly known parameter to describe the
mass-loss rate. Nevertheless, it is clear that the mass-loss
distribution of BC (with mass loss increasing toward the
equator) tends to increase the equatorial density relative to
the spherical case, so in this regard our results for the
equator to pole wind density contrast will be lower limits.

2.2. The WCZ Wind Structure

For our kinematic model, the wind structure is deter-
mined by the streamline locations. The streamlines are
derived from the velocity equations by taking the ratio of v,
to v, from equations (4) and (2). This ratio yields a first-
order differential equation for the trajectory of a fluid
element in the orbital plane. An expression describing this
trajectory is derived in Appendix A, from which we take the
result that the deflection (in the orbital plane) of a stream-
line from the radial direction is given by

0, Sin 0, v, (1 1
o, [vw(eo)—vs] By(ﬂ’“ﬂ)‘ ©

The function B, is the incomplete Beta function (see Abra-
mowicz & Stegun 1972) defined by an integral with a lower
limit of zero and an upper limit of y = 1 — v,/v, (see Appen-
dix A).

At large radii, ¢’ will approach an asymptotic value, ¢.,,,,
that is the maximal deflection experienced by a streamline
originating at 6,. Referring to Figure 1, we make the follow-
ing associations: if ¢,,,(0,) is small, the fluid element will
deviate little from a radial trajectory, so that the wind is
essentially spherical (trajectory [a]). As @p..(00) 1is
increased, say because the star is rotating more rapidly, the
flow will orbit toward the equator, and a greater density
compression results (trajectory [b]). If ¢....(0,) becomes
greater than 7/2, the fluid element will attempt to cross the
equatorial plane (trajectory [c]), which causes the material
to enter a shock-bounded disk.

¢/(r: 00) =

2.3. The Wind Density Structure

In addition to the flow geometry, the streamlines also
determine the wind density distribution. To derive the wind
density, p, it is convenient to consider streamtubes, which
are funnels whose walls are determined by the streamlines.
Since the streamlines cannot cross, material in a given
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streamtube will remain in that streamtube throughout the
wind. The separation of the streamlines determines the
cross-sectional area of a streamtube. For a spherical wind,
the streamtube area varies with radius as dS,, = dS, r*/RZ,
where dS, is the streamtube cross section at the stellar
surface. For our rotating wind model, the streamtube cross
section dS is related to the spherical case by

d
ds = dssph<£> , )

0

where u = cos 0, u, = cos 6,, and du/dp, is the wind com-
pression factor which describes the expansion or contrac-
tion of the streamtube area as a function of latitude and
radius. The complete expression for du/du, is derived in
Appendix B. If the differential cross section of the stream-
tube grows with radial distance more gradually than r2, the
density in the tube will be enhanced relative to a spherical
flow, and vice versa.

The wind density is derived from the conservation of
mass within a streamtube. Beginning with the equation of
mass continuity, V * (pv) = 0, a surface integral over the
streamtube can be obtained by an application of the diver-
gence theorem. Using equation (7) and the condition of
confinement of material in a streamtube, we find that

_L ﬂ - (8)
P = aror, 00) \dno)

Now let us compare the wind density from a rotating star
to that of a spherical flow. For a spherical wind, the mass
continuity equation gives

M,
4nr?og(r)

p. sph — (9)
The wind speed in the spherical case, v, is equal to the
polar wind speed, v, of the rotating case, because the radial
flow speed at the pole is unaffected by the stellar rotation.
Combining equations (8) and (9), the density of a wind from
a rotating star can be expressed as

) ()"
pir 0 =20 () S )

Let us consider the limits of equation (10) at the pole (6, =

0) and the equator (6, = 7/2). At the pole the wind compres-
sion factor, du/du,, reduces to 1 + [¢'(r, 0)/x,]? where
xo =sin 0, (Cranmer & Owocki 1995). Note that
lim, o ¢'(r, 0)/x, is finite and that the polar density is
smaller in a rotating wind than a spherical wind. At the
equator, du/du, = cos ¢'(r, n/2), which is less than 1 for
¢’ < m/2, so the equatorial wind density of a rotating star is
larger than that of the nonrotating case by the factor,
(v,/veg)dp/dpo)~ ", where v, = v,(r, 7/2). Thus, the conse-
quence of stellar rotation is to deplete the polar region of
wind material by redirecting it toward the equator. If
¢'(r, n/2) approaches the value of n/2, the density will
become infinite at the equatorial plane because du/du, — 0,
so the WCZ model breaks down as streamlines attempt to
cross over from one hemisphere to the other. In this limit, a
WCD and its associated shocks will form.

To quantify the wind compression, we introduce the
equatorial to polar density ratio, #,, that is valid for stellar
rotation rates below the disk threshold. Using densities at
the pole and equator as discussed in regard to equation
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(10), the density contrast is

_ Peq_ Vp [1+[9'(r, 0)/x0]°
ndr) =" = ;L { cos ¢'(r, m/2) } ’ (D)

If a disk does form, a density contrast of order 102-103 is
produced by shocks. The parameter 7, provides an indica-
tion of how much wind material is redistributed in latitude
for the wind from a rotating star.

To summarize, we have assumed a kinematic description
of the wind velocity structure and have derived expressions
for the two-dimensional density distribution in the rotating
wind. An equatorial density enhancement results from three
effects. First, the rotation leads to a slower equatorial
outflow which increases the density in proportion to
Vspn/Veq- S€cONd, rotation affects the cross section of stream-
tubes through the wind and, consequently, the density of
material in these streamtubes. Since the streamlines are
deflected toward the equator, the wind density is decreased
in the polar regions and increased near the equator. Third,
the rotation will likely lead to an equatorially enhanced
mass loss from the stellar surface. By adopting an initial
mass-loss rate with a spherical distribution, our model
results tend to give lower limits of the wind density contrast,
to the extent that our assumptions regarding the release
point location are correct.

p €q

3. INFLUENCE OF THE WIND ACCELERATION ON THE
WIND COMPRESSION

It was demonstrated by BC that for a given radial wind
acceleration (i.e., a fixed value of ), the deflection is sensi-
tive to the scale of the terminal speed, { (eq. [3]). Although
BC pointed out that larger values of § will result in increas-
ingly greater wind compressions, they did not study how
changes in # will affect the wind flow and density structure.
Here we find that the slope of the velocity law has a dra-
matic influence on deflecting the streamlines away from
radial trajectories.

In Figure 2 the radial velocity distribution is plotted as a
function of R,/r for different values of the velocity expo-
nent, B. The velocity is normalized to the terminal speed,
and the sound speed is v; = 0.01v,. The stellar surface is at
the left in this figure, so the flow travels from left to right (as
indicated by the arrows). Velocity laws with < 1 are steep
velocity laws that have large wind accelerations at radii
near the star and rise quickly to terminal speed. In contrast,
velocity laws that are shallow have large f-values, corre-
sponding to small wind accelerations in the vicinity of the
star. For a shallow law, the outward velocity remains rela-
tively small over an extended region. This also implies that
the transonic region is extended.

The f = 1 curve in Figure 2 represents a transition in the
concavity of the velocity distributions. This change in con-
cavity is attributable to a change in the velocity gradient at
the base of the wind. The velocity gradient, dv,/dr, is pro-
portional to (1 — R,/r)*~'. For f =1, dv,/dr is finite and
nonzero at the stellar surface, and the radial velocity dis-
tribution is linear in R, /r. For B > 1, the velocity gradient is
zero at the stellar surface, and the velocity distribution has
positive concavity. In contrast, the velocity distribution has
negative concavity for § < 1 because dv,/dr is infinite at the
stellar surface. Note that the Sobolev optical depth is pro-
portional to (dv,/dr)™!, so in terms of the Sobolev optical
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F1G. 2—p-velocity laws normalized to the terminal speed (with v, =
0.01v,) and plotted as a function of R,/r. Seven curves are shown, each
corresponding to a different S-value (as labeled). Arrows indicate that the
wind flow is from left to right. The f = 1 velocity law represents a tran-
sition in the velocity gradient at r = R,. Shallow velocity laws (f > 1) have
dv,/dr = 0 at R, /r = 1, and steep velocity laws (8 < 1) have dv,/dr — oo at
R,/r = 1. Note that the velocity laws with large f-values have low radial
speeds of order v, over an extended region near the star.

depth at the base of the wind, velocity laws with § > 1 will
generally have a large number of optically thick absorption
lines, whereas those with f < 1 will have a large number of
optically thin ones. We speculate that optically thick winds
will have f > 1 and will tend to be more sensitive to rota-
tionally induced distortions.

To understand how the slope of the velocity law affects
the wind compression, we consider two asymptotic cases: a
very steep velocity law (i.e., large wind acceleration) and a
very shallow velocity law (ie., small wind acceleration).
These two extremes yield the maximal and minimal stellar
rotation rates required to achieve disk formation for given
stellar and wind parameters.

3.1. The Limit of Very Steep Velocity Laws

Mathematically, the steepest velocity law corresponds to
the case of g = 0. Inspection of equation (2) shows that the
radial velocity becomes v, = v,,(0,) for r > R, (see Fig. 2).
At this limit the acceleration to terminal speed is so large
that the zone of wind acceleration is of negligible extent.
Using v, = v, the equation of motion in equation (A1) can
be integrated to obtain the deflection

¢/ — Urot Sin 00 <1 _ _R_*_‘> . (12)

(258 r

The deflection scales as v,,,/v,; however, from equation (3),
the terminal speed also depends on the rotation speed. Con-
sider the equatorial plane, where the deflection is maxi-
mized with respect to latitude. From equation (2) for v, and
equation (12) for ¢’, the maximum possible deflection is
found to be

(0]

L S
¢max - \/EC (1 _ Cl))y > (13)
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where w = v,,/v.;, and { is the ratio of v (6y = 0)/v..
Observed values of { are about 3 for O star winds (Prinja,
Barlow, & Howarth 1990), as low as 1 for some B star winds
(Bjorkman 1989), and 1 or less for late-type giants and
supergiants (Dupree 1986). In O star winds, we expect disks
to form (i.e., ¢, > 7/2) only for stars with rapid stellar
rotations because the value of { is large. In contrast, for
B star winds { is considerably smaller, so disk formation
will occur at lower rotation rates. A similar result is antici-
pated for the winds of late-type giant and supergiant stars
where, again, ( is small.

3.2. The Limit of Very Shallow Velocity Laws

Shallow velocity laws are characterized by large values of
B. So as an extreme case, again consider the equation of
motion (Al) and allow f — co. In this limit, the wind
expands at a constant velocity given by the sound speed
(ie., v, = v,; see Fig. 2). The wind experiences a negligible
net acceleration until the flow reaches large radii. Integra-
tion of the equation of motion gives

g = Voo SN 6, <1_&)' 14)

U r

For large values of B, the maximal deflection obtained at
large radii and with 8, = /2 is

Vo =5 ("U—> : (15)

In contrast with equation (13), the deflection scales as v,./v,
instead of { ™! = v, /v,,(0, = 0), as was the case for § = 0.
Since v,,./v, is typically much larger than v, /v, disk for-
mation will occur at lower rotation speeds for stellar winds
where f is large or, by extension, for any velocity law that is
shallow near the base of the supersonic wind. The main
effect of a shallow velocity law is to maintain a slow radial
wind speed where the wind is most affected by the stellar
rotation.

Although tremendously large values of the velocity expo-
nent are not expected in stellar winds, our models indicate
that the results of the large-f limit are nearly achieved even
for B-values around 3 or 4. To illustrate, let us chose f to be
sufficiently large that the radial velocity distribution is rela-
tively flat from the stellar surface out to r = 2R,,. Let us
assume further that at r = 2R, the deflection obtains 90%
of ¢, (corresponding to some specified density contrast in
the wind). If B is increased further, the radial velocity dis-
tribution becomes only slightly more flattened in the vicin-
ity of r = 2R,,. In this case, 90% of the maximum deflection
will still occur near r = 2R, because the radial velocity dis-
tribution is only slightly changed interior to r = 2R,
(although it can significantly alter the radial velocity dis-
tribution for r > 2R,). So, once B is large enough that ¢p,,,
is nearly attained in the region where the wind velocity
distribution is relatively flat, a further increase of § will not
significantly reduce the rotational threshold required to
obtain a given wind density contrast.

Shallow velocity laws with > 1 may be present in
several different classes of stellar objects. Cassinelli (1991)
pointed out that slowly accelerating winds may occur when
the effects of multiple scattering are important. One
example may be the Wolf-Rayet stars (Auer & Koenigsber-
ger 1994; Springmann 1994; Gayley, Owocki, & Cranmer
1995; Schmutz 1995), which have massive winds. The LBV
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stars, which have a close evolutionary link to the Wolf-
Rayet stars (see Langer et al. 1994), may be another
example. Moreover, the LBV stars are often located near
the Humphreys-Davidson limit, so the radiation pressure
gradient greatly reduces the effective gravity of these stars,
hence they may be highly susceptible to rotation, even
rather slow rotation speeds. Similarly, some B supergiant
stars might have slowly accelerating winds. In a spectral line
profile analysis of the rapidly rotating B0.5 Ib star HD
64760, Massa, Prinja, & Fullerton (1995) find thata f =1
velocity law produces too much scattered light at low
velocities. As one possible solution, the authors suggest that
the wind may be gradually accelerated at low velocities (an
increase of B leads to an increase of the Sobolev optical
depth and line absorption at low velocities).

3.3. The Radial Extent of the Deflection Region

There is one feature common to both cases of steep and
shallow wind velocity laws. Equations (12) and (14) for ¢’
show that the deflection nearly reaches asymptotic values
close to the star. This tendency is observed in Figure 1,
which shows trajectories from model calculations. For each
trajectory, most of the deflection occurs near the star, after
which there is little further equatorward drift. The tran-
sition from a strong latitudinal deflection to a predomi-
nantly outward flow results from the combination of two
effects. As the wind expands, the effects of rotation decrease
as r !, as a result of angular momentum conservation. At
the same time, the radial flow is accelerating. If the radial
acceleration is large, a fluid element obtains large radii on a
short timescale, so there is little equatorward deflection of
the flow. Conversely, if the wind acceleration is small, the
wind remains in the vicinity of the star for a relatively long
time; hence, even for moderate rotation, there is ample time
for an equatorial compression to form.

Since we have considered the two limiting cases of the
wind acceleration, one concludes that, irrespective of the
value of the velocity exponent, the wind distortion will
likely take place within a few stellar radii. At larger radial
distances, the wind compression is already effectively
“frozen-in.” This conclusion is confirmed by our model cal-
culations, which we discuss in detail in the next section.

4. APPLICATION TO WINDS OF DIFFERENT
CLASSES OF STARS

We now investigate applications of the WCZ model to
members of four stellar classes: a Wolf-Rayet star, a B[e]
star, an AGB star, and a white dwarf in a postnova outburst
phase. These four objects were chosen because (1) they
loosely span the H-R diagram in regards to escape speed
and temperature, (2) there is evidence of aspherical mass
loss for each of the four classes, (3) the wind acceleration in
some of these objects might be small, and (4) rotation is a
good candidate for producing wind distortions in all of
these objects.

4.1. Wolf-Rayet Stars

The Wolf-Rayet (W-R) stars are massive stars with dense,
fast winds, and they are generally thought to be near the
terminal phase of massive star evolution prior to supernova
explosion (Lamers et al. 1991). The W-R winds are most
notable for the fact that the momentum of the winds
exceeds that in the radiation field that is supposedly
responsible for the outflow (Barlow, Smith, & Willis 1981;
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Hamann, Koesterke, & Wessolowski 1993). Because of this
paradox, the W-R stars have been of special interest to
stellar wind theorists, and possible solutions have been dis-
cussed by Cassinelli (1991), Lucy & Abbott (1993), dos
Santos, Jatenco-Pereira, & Opher (1993), Springmann
(1994), and Gayley et al. (1995).

Besides having strong winds, some of the W-R stars show
spectropolarimetric evidence for asymmetrical density dis-
tributions. Consequently, rotating wind models have been
considered as a mechanism for producing aspherical W-R
winds. Poe et al. (1989) developed a model that combined
rotation, magnetic, and radiation driving forces; however,
they found that rotation rates in excess of 80% critical were
necessary to satisfy the density constraints imposed by
radio and UV line observations. Although not in direct
conflict with observations, such a high rotation rate is con-
sidered excessive and implausible from the standpoint of
evolutionary considerations (Maheswaran & Cassinelli
1994).

In contrast to the equatorial expulsion model of Poe et al.
(1989), the main effect of rotation in the two-dimensional
WCZ model is to redirect the high-latitude wind flow
toward the equatorial plane. This can lead to significant
equatorial density enhancements at smaller rotation rates,
especially if the wind acceleration is a gradual function of
radius. We have computed the streamline geometry and the
density structure expected for a typical WNS star using the
stellar parameters listed in Table 1. Although BC chose to
use y = 0.35 for their Be star wind models, we are using a
value of y = 0.5 for our W-R model because the higher
value agrees better with the results of Poe’s (1987) two-
dimensional rotating wind model for O stars. For the other
three classes of stars in this study, we use the y = 0.35 value
of BC.

The leftmost panel in Figure 3 shows W-R model results
for the rotation needed to produce wind compression
effects. The solid line shows, as a function of 8, the threshold
rotation rate to form a disk, wp, and the dashed lines show
the rates needed to form equator to pole density contrasts
by the factors indicated in the figure. As expected, the
threshold rotation rate decreases as the velocity law

TABLE 1
WCZ MoODEL PARAMETERS

Parameter WNS5? Ble]® AGB° Nova®
T oo 66400 20100 2800 300000
R /Ry ... 37 86 510 0.01
M/ /Mg ........ 10 37 5 1
log L,/Ls...... 5.09 6.01 4.14 4.00
Vp ovvnnnnnnnnns 1775 810 30 560, 5560
Do e 930 270 60 5560
Covnneiean, 19 30 0.5 0.1, 1.0
Dagig e eeeeeenens 660 190 40 3930
oo, 1.30 0.86 1.30 0.94
o ooeeeneenns 2,07 1.48 .. 1.65
P e 0.5 035 0.35 0.35

2 Stellar parameters are from Hamann et al. 1993; mean
molecular weights are calculated using abundances from Nugis
1990 and ionization fractions from van der Hucht, Cassinelli, &
Williams 1986.

b Stellar and wind parameters are from Cassinelli et al. 1989.

¢ Stellar parameters are from Livio 1994; abundances are
discussed in the text.

4 Typical white dwarf stellar parameters are assumed; abun-
dances taken from Kato & Hachisu 1994.
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becomes shallower with increasing B. Since emission pro-
cesses often are proportional to p2, an enhancement by a
factor of 5, =~ 3 is sufficient to increase the emission by
about an order of magnitude. For a velocity law with g = 3,
this large increase in emission occurs if the rotation rate is
about 11% critical. Below the #, = 2 threshold, the winds
are essentially spherical, so we define a WCZ as a stellar
wind that has an equatorial compression with 7, >3
formed by a star rotating slower than the WCD threshold.
Figure 4 shows specific examples of the effects of steep
versus shallow velocity laws. Results for a WN5 wind with
B =1 (steep) and B = 3 (shallow) are shown in the leftward
two columns. The compression of material toward the
equator is illustrated in Figure 4 for three values of w/wp.
The streamlines originate from an evenly spaced grid in
latitude with 10° intervals. The density of streamlines is an
indication of the wind density. Near the star, the wind
density decreases slower than r~2 for converging stream-
lines and faster than r ~ 2 for diverging streamlines. Beyond a
few stellar radii, the deflection of streamlines ceases, and the
aspherical wind expands along radial trajectories. Figure 4a
best represents the case for the O stars, which have high-
speed winds and a fast acceleration to terminal speed. The
wind in this case is little distorted from spherical. Figure 4c
is the best representation of the Be stars, which have slower
winds. Note that the flow lines terminate as they enter the
equatorial plane; equator-crossing streamlines signal the
formation of a dense disk in the WCD model of Be stars.
Figure 4e represents a WCZ model for W-R winds. The
wind acceleration law is slow, and even though a disk does
not form, there is a significant compression near the equato-
rial plane at a rotation rate of only 16% critical. The results
of these model calculations are summarized in Table 2.
Figure 5 shows the major increase in the density contrast
as the rotation rate increases from 9% critical to 20% criti-
cal for a f =3 velocity law (left column). Note from the
second panel that even at a rotation rate of 16% critical,

TABLE 2
WCZ REesULTS: THE WIND PROPERTIES

TYPe C B Wp @ (D/CUD peq/ppa veq/vpa Meq/Mpa
WNS....... 1.9 1.0 064 032 05 1.9 0.82 1.6
0.58 0.9 11.5 0.65 7.5
30 018 009 05 23 0.95 22
0.16 09 18.5 0.92 17.0
B[e]........ 30 1.0 09 045 0.5 1.7 0.81 1.4
081 09 7.6 0.56 43
30 036 018 05 23 0.93 2.1
032 09 15.3 0.87 133
AGB ....... 05 05 055 028 05 1.9 0.89 1.7
050 09 9.3 0.78 7.3
30 026 013 05 20 0.95 1.9
023 09 14.7 0.91 135
Nova®...... 01 1.0 017 009 05 2.1 0.98 2.1
016 0.9 12.8 0.97 124
30 010 005 0.5 23 0.99 23
009 09 10.5 0.98 103
10 1.0 078 040 05 21 0.91 20
071 09 143 0.83 11.7
30 021 010 0S5 24 0.98 23

019 09 187 096 180

* For each model the results are tabulated for wind properties at a
radius of 10r,,.
® Wind properties are computed for the case of r, = 3R,
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Fi6. 3.—Rotation rate w required for wind compression vs. the velocity law exponent B. The left panel is for a WN5 star, the middle panel is for a B[e]
star, and the right panel is for an AGB star. The upper curve in each panel (solid line) corresponds to w,, (the threshold value for forming a WCD). Along the
lower curves (dashed lines), rotation will produce a density contrast between the equator and pole, 1, = p../p,, as indicated. These density contrasts are
asymptotic values that occur at large radii. The intercept at § = 0 for each curve is controlled by the {-parameter and decreases as { becomes smaller. The

ratio v, /v, controls the right intercept, which decreases as v, /v, becomes larger.

there will be a density contrast of almost 20. Note also that
the density contrast increases rapidly in going from a rather
slow rotation rate of 9% critical to a model that will have a
disk at 20% critical. This result shows that very interesting
equatorial enhancements can be attained at relatively low
rotation rates.

Not all the W-R stars show intrinsic polarization, and
this has been taken to indicate that rotation cannot be a
major contributor to the W-R mass-loss process. However,
even if that is the case, it is important to understand why
some W-R stars show effects of rotation and others do not.
Our models provide a plausible explanation for this. If we
use the threshold values from our models, and if we assume
that the rotation rates of W-R stars follow a distribution
function such that some fraction have rotation rates larger
than our WCZ threshold of about 11% critical, then the
more rapidly rotating W-R stars will have a WCZ wind
structure, while those that rotate more slowly will not.

In addition to the occurrence of polarization among the
W-R stars, this hypothesized distribution function may
have relevance for another observational conundrum
among the W-R stars. It is known that only some WC8
stars show evidence for dust in their winds, whereas nearly
all the cooler WC9 stars have dust (Williams 1995). In the
context of the idea that there exists a distribution of WR
rotation speeds, perhaps dust formation in the WC8 winds
can begin at the equator for some minimum equatorial

density enhancement corresponding to a particular rotation
threshold. The cooler WC9 stars, on the other hand, do not
require any density enhancement for dust condensation to
occur.

4.2. B[e] Stars

The B[e] stars are another class of hot stars that exhibit
aspherical mass loss, as inferred from spectroscopic observ-
ations (Zickgraf et al. 1985, 1986). They differ from the clas-
sical Be stars treated in BC in that Be stars are of luminosity
classes V to III, while the B[e] stars are supergiants. The
B[e] stars show strong (often P Cygni) Balmer emission
lines as well as low ionization state permitted and forbidden
emission lines (e.g., [O 1] and [Fe 11]). The B[e] stars also
exhibit IR excesses from the reprocessing of stellar radiation
by circumstellar dust (Allen & Glass 1976).

Zickgraf et al. (1985, 1986) have advocated a wind model
with an equatorially enhanced density to explain the
various features observed in the spectra of B[e] stars. They
suggest that the equatorial wind enhancement is produced
by an expulsion of material owing to rapid stellar rotation.
Although the occurrence of rapid rotation among evolved
supergiants may seem unlikely, the B[e] stars are located
close to the Humphreys-Davidson limit in the H-R
diagram, so the surface gravity at the star should be greatly
diminished by the radiation pressure, and the critical rota-
tion speed will also be significantly reduced (Cassinelli et al.
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FiG. 4—Streamlines for various values of the rotation rate @ = v,,,/v.,;, in @ WNS stellar wind, a B[e] wind, and an AGB wind. The coordinates z and x
are cylindrical coordinates, where z is the height above the equatorial plane and x is the polar radial coordinate measured perpendicular to the z-axis. The
streamlines originate at 10° increments in latitude, and the separation between the streamlines is an indication of the density in the wind. The leftmost column
shows results for a steep velocity law (8 = 1) in a WNS stellar wind. From left to right, the remaining three columns are results for a shallow velocity law
(B = 3)in a WNS5 wind, a B[e] wind, and an AGB wind, respectively. On each plot we list the rotation rate, both as a fraction of the disk formation threshold,
wp, and as a fraction of the critical rotation speed. From top to bottom, the wind structure becomes progressively more equatorially compressed as the stellar
rotation speed is increased. Moving from left to right, notice how the wind structure remains relatively constant independent of stellar type and f-value as
long as w/w, is held constant. Note also that significant wind distortions are achieved at much lower stellar rotation rates for = 3 than for f = 1.

1989). For the B[e] stars, the breakup speed of rotation is
only about 200 km s~ 1. Several rotational models have
already been developed for B[e] stars (Lamers & Pauldrach
1991; Cassinelli et al. 1989). These models require rotation
rates rather near the critical speed. As was the case for the
W-R stars, we find that by accounting for wind compres-
sion, large density enhancements can occur at much smaller
rotation rates.

We have calculated wind compression models for B[e]
stars using the stellar and wind parameters listed in Table 1.
A plot of the WCD threshold rotation rates and the rates
needed for a range of density enhancements is shown in the
middle panel of Figure 3. Comparing the results for the
B[e] star to that shown for the WNS5 star, we find that the
WCD and WCZ threshold curves are similar in shape as a
function of f; however, the thresholds are significantly
larger at all § for the B[e] star than for the WNS star. This
is because ( is larger and v, /v, is smaller in the B[e] winds,
and these two parameters set the scale of the rotation
thresholds (eqs. [13] and [15]).

Results of our model simulations for f =1 and § = 3 are
given in Table 2. For ff = 1, a rapid rotation in excess of
90% critical is required for disk formation, but a rotation of
60% critical will result in a WCZ. These rotation rates cor-

respond to speeds of about 170 and 110 km s~ !, respec-

tively. Note that if the star rotates as rapid as 90% critical,
the bi-stability mechanism (Lamers & Pauldrach 1991) or
magnetic forces (Cassinelli et al. 1989) can further enhance
the stellar mass loss in the equatorial region.

Although B = 1 is normally assumed, Massa et al. (1995)
find that a shallower wind velocity law may be realized in
some B supergiant winds, so WCZ results for large f-values
may be relevant to evolved B stars. Examples of the wind
flow structure and density distribution for the B[e] star in
the case of B = 3 are shown in panels Figures 4g—-4i and
5d-5f. Note the similarity of the asymptotic wind properties
at a fixed value of the ratio w/wp. With = 3, the rotation
threshold for a WCD and WCZ are around 40% and 20%
critical, which are reduced relative to the f = 1 thresholds
by more than a factor of 2. In this case, the stellar rotation is
small enough that other mechanisms for producing addi-
tional mass loss from the equator are probably not effective.

The widths of the emission lines from the B[e] winds
provide an important constraint to the wind models. The
observations suggest that the pole to equator terminal
speed ratio, v,/v.,, is of order 10. From Table 2, none of the
WCZ wind models for B[e] stars are able to reproduce a
ratio v,/v,, of this magnitude. However, a v,/v,, ratio of the
correct order is attainable in a WCD (see Owocki et al.
1994) or in a bi-stable wind (see Lamers & Pauldrach 1991).
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F1G. 5—Ratio of the density in wind-compressed models to that of nonrotating models as a function of distance from the star for the streamlines shown in
Fig. 4. For each star the wind density is computed at three different stellar rotation speeds, each of which is listed in terms of the disk-forming rotation, w,
and in terms of the critical rotation speed. A shallow velocity law with § = 3 is used for all these models. In the lower panel, dots mark the termination of
streamlines entering the disk, where the density may increase by ~ 2 orders of magnitude (not shown).

If the B[e] phenomenon is to be explained by rotational
effects, these stars must rotate fairly rapidly (greater than
40%-50% critical for most reasonable B-values) to repro-
duce v,/v., = 10. On the other hand, if y is greater than 0.35
for B[e] stars, the wind terminal speed at the equator will be
more sensitive to w. To obtain v,/v.,, ~ 10 at a rotation
below the disk threshold, we find that y must increase by
nearly 2 orders of magnitude, which is unrealistically high,
suggesting that rapid stellar rotation is likely required to
explain the spectral observations of B[e] winds.

4.3. Asymptotic Giant Branch Stars

Stars destined to become white dwarfs will first pass
through an AGB phase and then a PN phase. Observations
show that PNe form a rich morphological sequence,
ranging from spherical, to elliptical, to strongly bipolar
(Balick 1987). To explain the aspherical nebular morphol-
ogies, Kahn & West (1985) and Icke (1988) developed sim-
plified analytical models that describe a wind bubble
formed by a fast, spherical wind from the central star of a
PN that has been injected into a slow, dense axisymmetric
wind from a precursor phase. More recently, Frank &
Mellema (1994) considered numerical gasdynamical simula-
tions of interacting winds in PNe. Allowing for a variety of
density contrasts and viewing angles, they were able to
reproduce most of the observed morphologies and radial

velocity maps from their models. They conjecture that the
nonspherical distribution of material from the PN progeni-
tor must result from the superwind during the AGB phase.
Thus, there appears to be a need for forming equatorially
enhanced winds from AGB stars, and here we investigate
conditions under which the WCZ models could provide
sufficient equatorial compression.

The AGB winds are the first example of a stellar wind in
our study that is not principally line driven. Instead, the
AGRB stars have dust-driven winds. The winds are massive
because stellar pulsations create an extended atmosphere
that greatly increases the gas density near the dust conden-
sation radius (Bowen 1988). To the extent that the WCZ
model assumptions are satisfied (i.e., central forces, radial
flow through the subsonic region, and a f-velocity law for
the supersonic flow; see § 2.1), the AGB stars are candidates
for having a rotationally induced wind distortion. A series
of WCZ models has been calculated using AGB stellar and
wind parameters listed in Table 1. An AGB star with a
main-sequence mass of 5 M, is chosen, and it is assumed
that the star has retained all its main-sequence mass up to
the AGB phase. For the mean molecular weight, u, we
assume a wind that is composed of 90% H, 9% He, and 1%
metals (by number), and we assume that hydrogen and
helium are neutral. Since the electron scattering opacity is
expected to be negligible in the AGB winds, an entry for the
mean molecular weight per free electron, y,, is not given in
the table.
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The rightmost panel of Figure 3 shows the disk formation
threshold, wp, as a function of . In comparison with the
WNS star, wp, is smaller for the AGB wind by a factor of 0.7
at low f, but it is larger by a factor of nearly 2 at high . The
former is a consequence of smaller {-values for AGB winds
than for WNS5 winds. At high g, the ratio v, /v, is smaller in
the AGB winds than the WNS5 winds, so wp, is higher, and
the AGB star must rotate at a greater fraction of v, to
form a disk than does a WNS5 star. In comparison to the
B[e] star, w,, is smaller for the AGB wind at low S, but for
large B, both stars have nearly equal disk thresholds owing
to the fact that v, /v, is comparable between the two stars.

The density and flow structure of a rotating AGB star
have been computed for § = 0.5 and B = 3, and the results
are given in Table 2. From this table, a wind density con-
trast of about 2 (sufficient to account for many PN shapes)
is achieved with a stellar rotation of 28% critical for
p =05, but only 13% critical at f = 3. Disk formation
occurs at 55% critical for f = 0.5 and only 26% critical for
p=3.

The wind flow structure for the § = 3 case is shown in
Figures 4j—4l at three different stellar rotations. Once again,
we point out the large degree of symmetry exhibited in the
asymptotic wind structure between the different stars.
Figure 5 shows the corresponding density structure for the
AGB wind models of Figure 4. As compared with the WN5
and B[e] stars, the distorted density structure of the AGB
star appears to be more “extended.” Whereas the other
stellar winds obtain their asymptotic structure within a
stellar radius, the distortion of the AGB wind takes place
over a span of three to four stellar radii. This is due to the
radically different length and speed scales between the three
stars. Even with these differences, we note that the asymp-
totic wind structure (i.e., density contrast and streamline
positions) is comparable at fixed values of w/wj, for these
stars with very dissimilar wind properties.

The wind structures relevant for the AGB winds are those
that achieve a density contrast of 2 or more. Qur models
require a stellar rotation rate that is only of order 10%
critical (f = 3) to obtain 5, = 2. With this rotation rate, the
wind-wind interaction between the central star of the PN
and the AGB star will likely produce an axisymmetric
bubble that is significantly ellipsoidal, with the greatest
extension along the axis of rotation. For more rapidly rotat-
ing AGB stars, the equatorial compression will be stronger,
so the PN bubble will have a greater extension along the
symmetry axis (i.e., the bubble will have a greater degree of
bipolarity). However, even the low stellar rotation rate of
10% critical is higher than one would expect for a single
AGB star, with likely values of w ranging from 0.01%—0.1%
critical (Livio 1994).

This problem of insufficient angular momentum may be
solved if the AGB star has a binary companion. Livio &
Soker (1988) have shown that the outer layers of the AGB
stellar atmosphere can be “spun-up” during a common
envelope phase. In some cases a massive Jupiter-like planet
(M ~ 10M,,,) may be sufficient to spin-up an AGB star in
excess of 35% critical (Soker 1994; Livio 1994). The idea
that a massive planet could increase the rotation rate of an
AGB star is attractive, since the formation of planets may
be a common occurrence among stars (Beckwith et al. 1990;
O’Dell, Wen, & Hu 1993).

To summarize, it is unlikely that stellar rotation could
induce an aspherical distortion in the winds of single AGB

WIND COMPRESSION EFFECTS ACROSS H-R DIAGRAM 681

stars. However, in a binary system, an AGB star could be
spun-up by a companion object. The degree of ellipticity or
bipolarity in the PN is subject to how much the AGB star is
spun-up, which in turn depends on the details of the binary
system, such as the dimensions and separation of the two
objects and their masses (Livio 1994). The combination of
a spin-up by a low-mass binary companion and wind-
compressional effects may explain the source of AGB wind
asphericities inferred by the observations of PN morpho-
logies.

At this point, we interject a cautionary note regarding
our results for the AGB stars. The effects of dust are impor-
tant in driving the AGB winds, and two-fluid hydrody-
namic models for both the dust and gas of AGB winds
indicate that (1) the sonic point may occur beyond the
stellar surface, and (2) the supersonic flow may not be
described by a shallow wind acceleration (Netzer & Elitzur
1993; Habing, Tignon, & Tielens 1994). To truly investigate
wind compression effects in these stars requires a model of
the transonic wind flow. We note, however, that for C-rich
AGB stars, the base of the wind is sometimes observed to
occur near the stellar surface (Lucy 1976).

4.4. Novae

Classical novae occur in close binary systems consisting
of a white dwarf and a nondegenerate companion
(Gallagher & Starrfield 1978). Mass transfer from the com-
panion star to the white dwarf leads to an accretion disk
and the production of a hydrogen-rich envelope on the
white dwarf. A thermonuclear runaway in the hydrogen-
rich envelope rapidly ejects a shell of gas (Starrfield, Truran,
& Sparks 1978) that can obtain speeds up to a few thousand
km s~ ! with a total mass of 107> to 10~* M. However,
not all the accreted material will be ejected in the outburst.
Some material will remain and develop an extended
envelope with a radiation pressure—driven wind (Bath &
Shaviv 1978; Ruggles & Bath 1979; Kato 1983). Although
most theoretical models of nova outbursts assume spherical
symmetry, many novae are observed to be aspherical, such
as GK Per (Duerbeck & Seitter 1987) and Nova Cyg 1992
(Bjorkman et al. 1994; Paresce 1994). The possibility that
magnetic fields could play a role in the nova phenomenon
was considered by Collins & Foltz (1977) and Orio, Truss-
oni, & Ogelman (1992). Collins & Foltz suggest a mecha-
nism whereby magnetic effects will induce a polar ejection
for almost any nova-like system, but the mechanism
requires that the white dwarf mass be close to the Chandra-
sekhar limit. The results of Orio et al. are most applicable to
AM Herculis types and intermediate polars which typically
have strong surface magnetic fields. Nova white dwarfs that
do not have large magnetic fields and whose masses are not
close to the Chandrasekhar limit may still rotate at moder-
ate rates, perhaps in excess of 20% critical (Sion et al. 1995).
So, we investigate whether the observed asymmetries in
novae may be induced by rotational wind compression
effects alone.

The nova outburst is significantly different from other
stars that we have considered in that the nova wind can
have an extended subsonic zone whose properties evolve
with time. In considering wind compression effects for
novae, we make the following assumptions. First, we
compute wind models for a sequence of release point radii,
because the sonic radius moves as the nova evolves. Since
we are mainly interested in limits on the rotation rate of the
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white dwarf, we require an angular momentum distribution
for the subsonic zone, which we assume to be angular
momentum conserving. In this case, v,,, oc r~*, and because
U ¢ 7~ 12, the rotation rate at the sonic point can be
related to the white dwarf rotation rate by wp(R,) =
(ry/R ) eopfr,).

Second, we assume that { = v /v, is a constant, where
Vs 18 the local escape speed at the sonic point. Consequent-
ly, although ( is held constant in our wind models, the
terminal speed decreases with increasing sonic point radius.
Since we do not know the value of { as a function of the
sonic point radius, we compute two sets of models: the first
with a small value of { = 0.1 and the second with a larger
value of { = 1.0. )

Finally, Kato & Hachisu (1994) have published new theo-
retical models for spherical optically thick winds from
novae. In their picture, the wind is accelerated by a locally
super-Eddington luminosity that occurs in a region in
which the opacity experiences a large increase because of
iron lines (see Iglesias & Rogers 1991). Since the iron line
opacity occurs at a temperature of 3 x 10° K, we use this
temperature for computing the sound speed in all our
models.

Adopting stellar parameters for a typical white dwarf star
and a luminosity for a typical nova (see Table 1), we have
computed wind compression models for a range of sonic
point radii from r; = R, up to 20R,. Note that the T
listed in Table 1 is the temperature at the sonic point, and
the terminal speed of the wind is given for the two values of
¢, 0.1 and 1.0. Figure 6 shows the threshold rotation rate at
the white dwarf surface, o(R,), for a WCD and a WCZ
plotted as a function of the sonic point radius, r,. The upper
panel corresponds to { = 0.1, while the lower is for { = 1.0.
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F1G. 6.—The rotation rate of the nova white dwarf plotted as a function
of the sonic point radius, r,. Top: { = v,/v. = 0.1; bottom: { = 1.0. As
indicated, the different line types are for the WCD and WCZ threshold
rotation rates with = 1 or 3. For r,/R, > 1, the white dwarf must rotate
at near-critical speeds for wind compression effects to be significant, and
this is independent of the value of either { or f. The lowest thresholds occur
when the sonic point is close to the stellar surface, the terminal speed is
low, and B is large.
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In each of these panels, two cases are shown: one for f =1
and the other for g = 3. Figure 6 indicates that as the sonic
point moves outward to large radii, the white dwarf must
rotate faster (approaching near-critical speeds) to form a
significant equatorial compression, independent of either {
or . Significant wind distortions are thus more likely to
occur for sonic point radii that are closer to the white dwarf.
Moreover, the threshold rotation rates are minimized for
small terminal speeds and large velocity exponents.

Results of the wind compression models are listed in
Table 2 for r, = 3R,. We find that for { = 0.1, disk forma-
tion occurs at 17% and 10% critical for § = 1 and 3, respec-
tively. If { = 1, the white dwarf must rotate at 78% critical
to form a WCD for the case of 8 = 1 but only 21% critical if
B = 3. So, interesting equatorial compressions are achiev-
able at rotation rates of 10%-20% critical for small sonic
point radii. Since low wind terminal speeds decrease the
threshold rotation rate, our wind compression models may
have greatest applicability for “slow” novae, which lose
mass primarily via sustained winds that have small terminal
speeds with v, < 500 km s~ !. DQ Her and HR Del are
examples of slow novae that both have highly asymmetric
shells (Mustel & Boyarchyk 1970; Solf 1983).

Further investigations of the rotational effects in nova
winds must account for two effects that we have ignored.
First, if a significant equatorial compression does form in
the optically thick nova envelope, a latitudinal torque will
develop owing to asymmetries in the radiation pressure
force. Such a torque will tend to resist the wind compression
itself. A poleward radiative torque is known to reduce the
equatorial compression in the case of stellar oblateness
(Cranmer & Owocki 1995), consistent with our expectations
for the optically thick case.

Second, the extended transonic flow should be properly
modeled. Figure 6 shows the large sensitivity of our quanti-
tative results for the rotation thresholds to the location of
the sonic point (or equivalently, the release point r,). Since,
for large values of B, the transonic zone is extended for WR,
B[e], and AGB stars, this figure also illustrates the sensi-
tivity of our rotation thresholds to the location of the
release point for these stars as well.

Finally, it is interesting to note that the optically thick
wind models of Kato & Hachisu (1994) exhibit extremely
shallow velocity laws in an extended subsonic zone. With
our supersonic wind model, we have demonstrated that
shallow velocity laws tend to increase the sensitivity of the
wind to rotational distortion. If this trend should also hold
for the subsonic flow, equatorial compressions might begin
to form in the subsonic zone prior to the point of release
into the supersonic flow.

5. SUMMARY

The purpose of this paper has been to assess whether
rotational wind effects might be important for widely differ-
ing stellar conditions across the H-R diagram. We have
used the kinematic, two-dimensional WCD model to inves-
tigate how the wind distortion is affected by the wind accel-
eration. The model results are applied to a Wolf-Rayet star,
a B[e] star, an AGB star, and a nova white dwarf. Some
stars in each of these classes exhibit aspherical mass loss,
but the observations do not necessarily indicate the pres-
ence of an extremely dense circumstellar disk. Consequent-
ly, we have also chosen to study wind models that result in
significant (2 3) equatorial to polar density contrasts (WCZ
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models) without the formation of a WCD. Three main con-
clusions have been reached.

1. The rotation threshold for disk formation is set by
three fundamental parameters: v, v, and . If the wind
acceleration is large, significant wind distortions can result
only if the star is rapidly rotating. However, wind distor-
tions will also occur for slow to moderate stellar rotation
rates if the wind acceleration is small. In the context of a
B-velocity law, small wind accelerations result in two ways:
(1) The wind acceleration scales as v, so if v, is small, the
wind acceleration is small or (2) even if v, is large, a high
value of § will result in a small wind acceleration near the
star (i.e., a shallow velocity law). In both cases, the outward
flow speed of the wind in the vicinity of the stellar surface is
small compared to the critical speed of rotation, so there
can be a significant deflection of the wind toward the
equator, leading to an equatorial density enhancement.
Note that for f > 1, the sound speed, v,, becomes crucial in
determining the equatorial compression because the veloc-
ity law becomes quite shallow near the sonic point. Greater
density contrasts are achieved for smaller values of v;.

2. The WCZ model was applied to several different cases,
the results of which are recapitulated here.

W NS5 stars—If the wind velocity is described by a f = 3
law, we find that a substantial equatorial wind compression
(n. ~ 20) can form at a rotation rate of only 16% critical.
Not only do significant density contrasts result for relatively
small rotation rates, but the wind compression is also sensi-
tive to small changes in . This sensitivity to the rotation
rate may explain why only a fraction of W-R stars are
intrinsically polarized. We suggest that there is a distribu-
tion function representing the number of W-R stars with a
given , for which most W-R stars are slow rotators with
effectively spherical winds. A few W-R stars, however, rotate
fast enough to induce an aspherical wind that can be
observed polarimetrically and can influence the formation
of dust grains among the WCS stars.

B[e] stars—The spectrum of a B[e] star displays broad
Balmer emission lines and narrower low ionization emis-
sion lines. If these observations are to be explained by a
wind geometry containing a fast polar wind and a slow,
dense equatorial disk, the pole to equator terminal speed
ratio, v,/v.,, must be of order 10. To produce such a large
terminal speed ratio with our wind compression model will
likely require a WCD. If the B[e] winds are represented by
a B =1 velocity law, a rotation rate of 90% critical (i.e.,
U, & 170 km s~ !) is needed to form a WCD. For this near-
critical rotation rate, other effects will contribute to the
equatorial density enhancement, such as the bi-stability
mechanism or magnetic effects (Lamers & Pauldrach 1991;
Cassinelli et al. 1989). On the other hand, if § = 3, the disk
formation threshold drops to 36% critical, for which v,,, is
only 70kms ™!, ,

AGB stars—In the interacting winds scenario for PN
formation, a density contrast of 2 or 3 is sufficient to repro-
duce the wide variety of elliptical and bipolar morphologies.
We find that density contrasts of 2-3 can result from rota-
tions of order 15% critical if the wind acceleration is
described by a f = 3 law. Even if the AGB winds have steep
velocity laws, these density contrasts can be obtained with
stellar rotations of order 30% critical. Although a rotation
of 15% critical is too rapid to occur in single AGB stars,
Livio (1994) has demonstrated that an AGB star may be
“spun-up” to w = 35% critical by a low-mass companion
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(perhaps as small as a massive planet) during a common
envelope phase. At a rotation rate of 35% critical, wind-
compressional effects should be significant. Since our
current model does not properly account for the extended
subsonic regions that may exist in AGB winds, our conclu-
sions about rotation rates are only qualitative. More
detailed calculations are required to incorporate the sub-
sonic structure.

Novae—Following a nova outburst, a white dwarf star
can retain an extended envelope with a radiation driven
wind. However, the nova winds are significantly different
from the other objects considered in this investigation in
that the wind properties (terminal speed, sonic point radius,
mass-loss rate) evolve with time. To determine whether
wind compression effects have relevance for novae, we have
computed WCZ models for a range of sonic point radii. We
find that significant equatorial compressions may result for
stellar rotation rates w < 20% critical if (1) the sonic point
is close to the white dwarf surface, (2) the wind terminal
speed is small, or (3) the velocity exponent, f, is large. In
particular, the wind compression model may have relevance
for slow novae, which tend to maintain winds with low
terminal speeds (a few hundred km s~ !) throughout their
outburst.

3. An unexpected result of our calculations is that for a
fixed value of w/wp, WCZ models with different stellar
parameters and different velocity exponents show strikingly
similar asymptotic wind properties (flow pattern and
density contrast). This similarity property could be useful in
simplifying and generalizing the application of the WCZ
model to a wide variety of stars. An implication of this
property is that one could compute a series of rotating wind
models for a sequence in w/wy, and the results would be
applicable to any star (to zero order). In a subsequent
paper, we will present approximations to the WCZ model
that allow for a rapid and accurate computation of the
rotating wind structure, and this similarity property will be
discussed in more detail.

In conclusion, rotationally induced wind distortions,
either alone or in conjunction with other mass-loss mecha-
nisms, appear to have broad application to stars through-
out the H-R diagram. Wind compression effects can be
significant, even if a disk does not form.

However, one problem with our current model is that it
does not account for either an extended subsonic or trans-
onic region of the flow. The hydrodynamical models of
Owocki et al. (1994) have demonstrated that the subsonic
region is effectively corotating and that the deflection of
streamlines should be computed from the sonic point, but in
their models the subsonic and transonic zones were narrow.
If the subsonic or transonic zones are extended with scale
heights of order a stellar radius, the WCD and WCZ thresh-
old rotation rates presented here will likely have to be
altered, but to what extent will depend on the angular
momentum transport and the deflection of streamlines as
gas pressure support is lost through these region (see our
nova case, which illustrates the sensitivity to the location of
the release point). The threshold rotation rates predicted by
the current model are probably accurate for small S-values
but less accurate for the high-f cases. A solution to the
subsonic and transonic wind structure would complete our
wind model and allow for better estimates of the threshold
rotation rates at which wind-compressional effects become
important.
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APPENDIX A

DERIVATION OF THE STREAMLINE TRAJECTORIES

Here we derive the equation describing streamline trajectories in the orbital plane. The differential equation governing
the fluid motion in the orbital plane is found from taking the ratio of v}, to v, (eqs. [4] and [2]). Letting ' = r and setting
Uy = Uo(00), the equation of motion is

¢’ r, Vroc SIN 6

dr T P v+ (v — vl — 1o/’ @y

where ¢’ is the azimuthal coordinate in the orbital plane and is referred to as the “ deflection.”
To integrate expression (A1), we make a change of variable from the spatial coordinate, r, to the velocity, v,. Recall that
v, =g + (vao - UO)(I - rO/r)ﬁa SO

dv, = B3 (0, = 09) (0., — vo)' ~Hdr (A2)
Rewriting equation (A1) in terms of v, and integrating over dv,, we find that
Vyor SIN 6 _ o _
¢/ = _t[;——g (Uoo - DO) 1k J‘ v, l(vr - UO)I/ﬁ ! dvr ’ (A3)
vo

where ¢'(r = r,) has been set to zero.
Denoting the integral appearing in equation (A3) as I, the integrand can be rearranged such that

I= j " OMB=2(1 — /o) P dy, . (A%)
vo
Making a change of variable, t = 1 — vy/v,, this integral becomes
1 —vo/vr
I= f DT Al § I W I (AS)
0

which is the incomplete beta function, B(1/f, 1 — 1/f), multiplied by the constant, vy/* !, where the upper limit y =
1 — vy/v,. Combining equations (A3) and (AS5) and setting v, = v, (the sound speed) and r, = R, (the stellar radius), the

azimuthal deflection is seen to be
Uyor SN O v, V2 (1 1
/ = B - 1 —_— 1. A6
¢ ﬁvs (vco - Us) Y ﬁ ﬁ ( )

APPENDIX B

DERIVATION OF THE WIND DENSITY DISTRIBUTION

From the consideration of a streamtube and the equation of mass continuity, the expression for the wind density is (see eq.

8)
__ My  (du\!
P = daror, 00) <duo> ’ B1)

where p = cos 6 and u, = cos 0,. Following BC, the wind compression factor, du/du,, is derived from the coordinate
transformation between the orbital coordinates and the stellar coordinates:

K=o cos ¢’ . (B2)
Differentiating equation (B2) yields

W cos ¢ + & sin ¢I<1 = "‘2’> din ¢ (B3)

duo xz Jdnx,’

where x, = sin 0, = (1 — u3)'/>. The derivative appearing in the second term of equation (B3) can be evaluated by differenti-
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ating ¢’ in equation (A6), giving
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, _1)V8
ding’ _ 1 _dlnvg Uy 1 1 (@h-1 . (B4)
dinx, dinxg \v, B B, v,/v,
From equation (25) of BC, the factor dIn v /dIn x, is
dlnv, —ywx, (B5)

dinx, 1—awx,

Back-substitution of equations (B3)—(B5) into equation (B1) will yield the full expression for the wind density as a function

of r, 84, and v,(r, 6).
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