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ABSTRACT

We show that the standard scenario of a highly tangled magnetic field in cluster cooling flows is con-
sistent with observations and theory only under very restrictive nonrealistic conditions. This result
implies that plasma instabilities (wave pitch angle scattering) are the most likely cause of heat flux inhibi-

tion in cluster cooling flows.

Subject headings: cooling flows — intergalactic medium — magnetic fields — plasmas

1. INTRODUCTION

The existence of cooling flows is inferred from X-ray
observations of a significant fraction of clusters of galaxies.
It already has been argued in the first theoretical dis-
cussions of the observed phenomena that the presence of
cool gas in the middle of the very hot intracluster medium
implies that classical (a la Spitzer) heat conduction cannot
play a significant role in the central parts of galaxy clusters
(Binney & Cowie 1981). Binney & Cowie (1981) proposed
two mechanisms that can, in principle, suppress the trans-
port properties in the intracluster gas. The first mechanism
involves the large-scale geometry of the magnetic field.
Binney & Cowie conjectured, for example, that a magnetic
field isolates M87 from the surrounding Virgo cluster and
prevents the flow of heat from the cluster gas into the
galaxy. The second mechanism involves the topology of the
magnetic field on scales smaller than the mean free path of
the electron. Binney & Cowie suggested that the field is
tangled on distance scales that are about 100 times smaller
than the typical mean free path of the electrons. The exis-
tence of a tangled magnetic field was ruled out by the above
authors on the grounds that it requires unlikely values of
the magnetic field. Regardless of Binney & Cowie’s evalu-
ation, this idea serves as the standard explanation for the
suppression of conduction in cluster cooling flows (see, e.g.,
Fabian, Nulsen, & Canizares 1991; Fabian 1994).

The mechanism for suppression of thermal conduction by
tangled fields is based on the reduction of transport pro-
cesses in the direction perpendicular to magnetic field lines.
It is known (Spitzer 1962) that, in the case of transport
perpendicular to field lines, the particle gyroradius replaces
the mean free path as the basic physical length scale that
determines the transport. By analogy, one could assume
that if the field is tangled and the coherence length of the
field is smaller than the mean free path, then the coherence
length might assume the role of the particle mean free path
and hence be the factor in determining the suppression of
the conduction. This would lead to isotropic suppression of
conduction, provided the tangling is isotropic. Intuitively,
under these assumptions, the ratio of the field coherence
length to the particle mean free path yields the required
suppression factor of the classical Spitzer value for the heat
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flux (Sarazin 1986). There has been some controversy with
regard to the assumption that the magnetic field is both
dynamically unimportant and able to suppress conduction
at the very same time.

We note in passing that a field that consists of discon-
nected loops, the radius of which is smaller than the mean
free path, is also a plausible solution for the required sup-
pression of the transport. In this case, the mean thermal
conduction along the temperature gradient may be sup-
pressed to a value of the order of the heat conduction per-
pendicular to the magnetic field. A loop structure of the
field complies with the underlying assumptions of the homo-
geneous cooling flow model. However, the observations
require a multiphase model (Fabian et al. 1991; Fabian
1994). A transition from a homogeneous to a multiphased
cooling flow induced by spontaneous weak fluctuations is
very restricted (Mathews & Bregman 1978; Nulsen 1986;
Malagoli, Rosner, & Bodo 1987; Balbus & Soker 1989;
Loewenstein 1990; Balbus 1991). In this case, a nonlinear
instability to a finite-size perturbation is required to provide
the transition mechanism to the observed multiphased
cooling flow.

Rosner & Tucker (1989) tried to set limits on the field
strength and structure required to suppress conduction by a
simply connected strongly fluctuating magnetic field. They
concluded that, for this subset of tangled magnetic fields,
the field cannot be dynamically -unimportant and suppress
conduction at the same time. In other words, they found
that fields with these geometries can suppress conduction
only when the magnetic field is in equipartition with the
thermal gas pressure. In doing so, they verified the results of
Binney & Cowie (1981).

In recent years it became clearer that the magnetic field in
noncooling flow clusters of galaxies must indeed be some-
what tangled. The lack of inverse Compton X-ray emission
from clusters of galaxies with radio halos allows one to set a
lower limit on the strength of the intracluster magnetic field.
The lower limit so found is typically B 2 0.1 uG (Gursky &
Schwarz 1977; Rephaeli & Gruber 1988). On the other
hand, the Faraday rotation measure (FRM) of background
radio sources caused by the general intracluster medium is
not very large. Since the X-ray observations of clusters
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furnish values for the electron density of the thermal plasma
in the cluster, the FRMs provide upper limits to the average
component of the magnetic field along the line of sight. In
general, these upper limits are incompatible with a rela-
tively uniform field at the lowest limiting value set by the
inverse Compton measurements. The upper limit due to
FRM and the lower limit due to X-ray observations can
only be reconciled if the field is tangled on a length scale
that is much smaller than the path length through the
cluster. Lawler & Dennison (1982) investigated the FRM in
clusters of galaxies and concluded that the inferred field
coherence length is about 10 kpc. More recently, Kim et al.
(1990) reached similar conclusions on the basis of a larger
sample of data. .

The work of Kim et al. (1990) dealt mainly with non-
cooling flow clusters. Recently, Owen, Eilek, & Keel (1990),
Ge (1991), Perley & Taylor (1991), and Ge & Owen (1993)
performed FRMs in cooling flows. Their results have been
collected by Godon et al. (1994). These FRMs are associ-
ated with the cooling flow region directly. The FRMs found
in cooling flows are, in the most modest cases, about 2
orders of magnitude larger than those found by Kim et al.
(1990) in noncooling flow clusters. The measured coherence
length in clusters with cooling flows is of the order of 1-10
kpc, a value similar to the inferred scale in noncooling flow
clusters (10 kpc). A 10 kpc value for the coherence length
derived from the spatial variation of the FRM, combined
with the value of the FRM, implies a magnetic field that is
relatively ordered and nearly in equipartition with the gas.
Hence, tangled magnetic fields (including closed loops)
cannot be the factor responsible for the suppression of the
conductivity inside the core of the cooling flow domain.
Other interpretations of the same observational results dis-
cussed at the beginning of this paragraph were suggested by
Bicknell, Cameron, & Gingold (1990) and Zuabi, Soker, &
Regev (1995). These authors reach similar conclusions
about the value of the coherence length and the magnitude
of the field.

Another question in this context is: to what extent can a
tangled magnetic field (simply connected) suppress the con-
duction in the outskirts of the cooling flow domain? We
discuss this point and base our arguments in this paper only
on the observational constraint set by the lack of a hard
nonthermal X-ray tail. In other words, the magnetic field
strength must be larger than 0.1 uG (Gursky & Schwarz
1977).

The next issue is whether there are any observational
constraints on the field coherence length in noncooling flow
clusters. The direct interpretation of the observations of
Kim et al. (1990) implies that the coherence length in non-
cooling flow clusters is of the order of 10 kpc, i.e., is very
similar to the value found in cooling flow clusters. If so, the
following problem arises: why do the two different types of
clusters possess approximately the same parameters?

The reply to this question can be given along one of the
following three lines:

The cooling flow can be a transient phenomenon sup-
pressed by temporal events (mergers, etc.) (Briel et al. 1991;
Henry, Briel, & Nulsen 1993; Schindler & Bohringer 1993;
Schindler & Miiller 1993).

The appearance of cooling flow depends on other param-
eters than those discussed here, e.g., different metallicity
(White et al. 1994; Fabian 1994; Fukazawa et al. 1994).
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The similarity drawn between the coherence lengths mea-
sured in the two types of clusters is false.

In § 2 we show that the third possibility is viable yet
unlikely.

In this work we address only tangled fields that do not
contain loops. However, we point out that a pure loop
structure inside the core of the cooling flow region (r < 30
kpc) is ruled out by the observations. Some comments
about the effects of loops will, however, be made when such
inferences are simple. We obtain a solution to the Bolt-
zmann equation under the standard assumptions made
about the structure of the field and the gas state. We then
use the solution to show that the suppression of the conduc-
tion inferred from the measured FRM is insufficient (as can
be inferred intuitively) to reconcile the theory and observ-
ations.

The structure of this paper is as follows: We show in § 2
that the FRM observations rule out the possibility of small-
loop structure inside the cooling flow region. We further
demonstrate that, although the observations do not rule out
the tangling mechanism completely, it could occur only
under very restrictive conditions. We then resort to theory,
and in § 3 we solve the Boltzmann equation under the stan-
dard conjectures, which are supposed to provide the sup-
pression of conduction. In § 4 we consider nonlocal
transport effects and show again that the extreme tangling
limit as traditionally envisioned is ruled out by the observ-
ations, as can be implied from Owen, Eilek, & Keel (1990),
Ge (1991), Perley & Taylor (1991), and Ge & Owen (1993).
In § 5 we provide a short discussion on possible cooling flow
models.

2. FARADAY ROTATION OBSERVATIONS

Let us first discuss the assumptions made during the
reduction of the FRM observations. Consider a cluster with
a stochastic magnetic field. A common definition of the field
coherence length [, (Sarazin 1986) is that it is the length over
which the field changes its direction by 90°. If this length
scale is sufficiently smaller than the mean free path, heat
conduction is suppressed (but see Tribble 1989, who does
not require this restrictive condition). It is widely accepted
(Sarazin 1986; Fabian et al. 1991) that this length scale can
be obtained directly from measurements of the FRM.
Crusius-Witzel et al. (1990) and Tribble (1992) considered
the interpretation of the FRM in clusters of galaxies. We
follow Tribble (1992) and discuss the length scale that is
obtained from the FRM in stochastic magnetic fields and
show that it differs from the coherence length. To this end
we assume that the ordered component of the magnetic field
vanishes identically everywhere; hence,

(B)=0, 1

where the angle brackets denote an ensemble average. In
this case, the ordered Faraday component of the FRM van-
ishes identically leaving only the contribution (B) =0 of
the stochastic component. Following Tribble (1992), we
define the autocorrelation function of the FRM as

(18i02)4 <jj dz dz'n (2)n(z')B,(x, z)B,(x + s, z’)> ,

@

where n, is the electron number density in cgs units, dz is

&(s) =
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measured in kiloparsecs, the field is measured in micro-
gauss, and z is the cluster redshift. The quantity s is the
projected distance. As noted by Tribble (1992), the ensemble
average can be moved into the integral to yield the integral
over the correlation function of the field. Assuming {(B) = 0
and V - B = 0, one obtains (Batchelor 1953)

(B* [ 5 dW}

R,, = (B,(x, 2)B,(x + 5, Z')) = 3 W(or) + —

26r d(or)
©)

where

s = /(6r)* — (02 = J(61)? — (z — 2)*, @)

and where W is the isotropic autocorrelation function. This
function is unknown a priori and must be found from
observations (or theory). The observations carried out by
Kim et al. (1990), and previously by Lawler & Dennison
(1982), correspond to s = 0 since the measurements were
carried out only for a point source behind the cluster. The
value of the correlation function &(s = 0) can be written as

810 <323(z)> w

(s=0)= i+ :) i f f dz'n(2')dzn(z) ———

(z—12).
®)

We can write n(z)n(z') = n,(z' + 6z)n.(z') and obtain
810
1+ 2)*

£0) =2 J:[ d(0z)dz % nZ(z)X B¥(z))W(dz)

x[l+&dnze@52]. (6)

The density scale height is given by I, ' = dInn,z)/dz;
hence, the term in brackets is 1 + oz/l,. Since 6z < 1,, the
second term can be neglected.

The integration should be carried out over the line of
sight; thus,

2 8102
€0 =3 a + z)*

J dzni(z)X B(2)) J W(oz)d(dz) , (7)
A 0

where A is the total depth of the cluster and we assume that
W(0z) decays to zero sufficiently fast (but A > Ly, where L,
is defined in the next paragraph) for large 8z, so that the
integral can formally be extended to infinity.

The correlation length Ly can be defined as (Batchelor
1953)

Lg= wa(éz)d(éz) , tJ]
0

whereas the coherence length can be shown to be (Batchelor
1953)

dw(y)
b= ©®
’ dy  lwwr=172
The simplest function W is a step function:
1 fory<l1.
= = 10
W = /L) {0 for o 1. (10)

In this case Ly = I,. For a Gaussian function of the form
W = x/l,) = exp (—¥?) one finds Ly = n'/?/2l, (Tribble
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1992). Of special interest are functions of the form

W) =1+y) ' "“e>0, (11)
for which we find
1
Lg= < I . (12)

Hence, unless € < 1, which is a special case, Ly = I,. The
requirement to suppress heat conduction by a stochastic
magnetic field when the measured value of Ly is 10 kpc
requires I, to be 2 orders of magnitude smaller than L for a
homogeneous cooling flow (Cowie & Binney 1981; Fabian
1994) and 4 orders of magnitude smaller for the transition
to a multiphase cooling flow (Balbus 1991), i.e., € &~ 107 2-
10~ 4. In summary, (1) either the stochastic magnetic field
has a fast decaying isotropic autocorrelation function W
and Ly ~ I, so that practically the field does not suppress
the heat conduction; or (2) the stochastic magnetic field has
a slowly decaying isotropic autocorrelation function and
A > Lg > I, in which case a suppression of the heat con-
duction is possible.

We are unable to rule out the second possibility only on
the basis of the FRM observations in noncooling flow clus-
ters. The situation is different in cooling flow clusters since
here there is observational information for s # 0. The
observations for s # 0 provide a direct measurement of the
coherence length, which is found to be of the order of 1-10
kpc (Owen, Eilek, & Keel 1990; Ge 1991; Perley & Taylor
1991; Ge & Owen 1993). Here we note that since this
method of interpretation does not depend on the topology
of the field, a loop structure in which the radius of the loop
is smaller than the mean free path is not possible in the core
of the cooling flow. However, if, as predicted by Soker &
Sarazin (1990) in the standard cooling flow model, the field
is dragged in from the cluster to the cooling flow region, it is
expected to be in equipartition with the gas in this domain;
hence, the loops would reconnect. The loops would have a
general tendency to reconnect for the following reason: con-
sider a circular loop that is dragged into the cooling flow
from the cooling radius. As the loop is dragged in, it
becomes, according to Soker & Sarazin’s (1990) solutions,
more and more elliptic, with the major axis pointing toward
the center of the cooling flow. Once the ellipticity exceeds
some critical value, the loop annihilates or is broken into
smaller loops. Thus, the observational results, which unfor-
tunately are available only in the cores of the cooling flows
and not far away, cannot rule out the suppression of con-
duction by a highly tangled magnetic field or a closed loop
structure. In the next sections we turn to theory and con-
sider the effects of a simply connected field structure.

We stress that the FRM observations in cooling flow and
noncooling flow clusters do not contradict Tribble’s (1989)
conclusion that the heat flux could be significantly reduced
by a mildly tangled field. As a matter of fact, FRM observ-
ations support the idea of suppression by this mechanism.
However, Tribble’s (1989) model differs from the cooling
flow model in that it is a priori multiphased. To the best of
our knowledge, the details of this model have not yet been
worked out. Furthermore, it should be noted that in the
situation envisioned by Tribble (1989) the scales involved in
the problem are just the spatial temperature scale height
and the field correlation length. Under such conditions,
heuristic arguments (Sarazin 1986) suggest that the conduc-
tivity should be reduced by only a factor of 3.
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We note that other models interpreting the FRM in
cooling flow clusters exist. These models (Bicknell et al.
1990; Zuabi et al. 1995) invoke magnetic lifting or mixing
due to the Kelvin-Helmholtz instability to explain the FRM
observations. In both types of models the typical length
scale of the magnetic field is similar to that resulting from
the Owen, Eilek, & Keel (1990), Ge (1991), Perley & Taylor
(1991), and Ge & Owen (1993) interpretation. Hence, the
coherence length of the field in this domain is larger than
the mean free path; thus, the field geometry in this region
does not allow for heat flux inhibition. In short, neither of
the interpretations solves the problem of the transport coef-
ficient.

3. SOLUTION OF THE BOLTZMANN DRIFT
KINETIC EQUATION

The transport coefficients are obtained from an approx-
imate solution of the Boltzmann equation. The hydrody-
namic equations with classical transport a4 la Spitzer
constitute such an approximate solution. Thus, to derive
the effective transport coefficients which are due to a
tangled magnetic field we need to solve the Boltzmann
equation. Here we solve the steady state Boltzmann equa-
tion. The Boltzmann equation considered in this section is
written in the drift approximation, and its validity to the
ICM environment is discussed in Appendix A. Under the
assumption of steady state, equation (A9) reduces to

s (52

.
x ua—f=C<f,f>. (13)

The meanmg and the physical interpretation of various
terms is provided in Appendix A. Here we note that f is the
guiding center distribution function, v is the particle veloc-
ity parallel to the field lines, and b is a unit vector in the
direction of the magnetic field. The other terms on the left-
hand side are associated with the deviation which is due to
various drift effects from motion parallel to the field. lines.
Note that the term C(f, /)~ O[A? = (r /l,)?] was
neglected.

The terms that describe the deviation from the motion
parallel to the field lines contain the self-consistent DC elec-
tric field E; =y, bb - VT, where y, is the thermoelectric
constant parallel to field lines. The field E is given by the
condition that the current vanishes along field lines and
does not contribute to the drift. The thermoelectric constant
perpendicular to field lines is of the order of the thermal
conduction perpendicular the field and hence may be
neglected. Thus, drift which is due to the self-consistent DC
electric field is negligible, and we may set E = 0 in the drift
terms. Collective plasma instabilities that might enhance
the role of the electric drift are beyond the scope of this
paper. However, collective plasma oscillations leave y >y,
but require T, > T; (Tsytovich 1972).

Let us now make the standard assumptions of the cooling
flow model, namely, that the magnetic field is arbitrary and
dynamically unimportant, while the density and tem-
perature depend on the radial distance only. Consider the
order of various terms in equation (13) assuming that Vf is a
slowly varying function in space. The order of the respective
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terms is

<2¢£,vm"L,Um"L>,’-’th"L,ﬂll (14)

g e 22,

where vy, = (2kT/m)'/? and 1}, is the shortest sccle helght
along the magnetic field lines, namely, Uy =min {1}, 1}, 11}.
In the previous expression k is the Boltzmann constant and
T is the gas temperature. The above relation with A = /I,
and ¢ = IJ}/l, is easily written in the following form:

I
1:Ac:Ac:Ao: ;—H (15)
The solutlon of equation (13) is very sensitive to the magni-
tude of IJj. This quantity is first estimated on physical
grounds and is later checked for consistency.

Previous discussions of the suppression of heat conduc-
tion by magnetic fields (Sarazin 1986; Fabian et al. 1991)
assumed that the distance scale for changes in the direction
of the field replaces the role of a mean free path. This
assumption was supposed to lead to a situation in which
transport in space is determined by I2/A,, provided that
/A, ~ 107% < 1. This situation is realized once I} = I,
namely, ¢ = 1. Thus, the curvature of the field lines acts as
an effective scatterer of the electrons (as a result of a change
in the direction of the field). This case is considered in
Appendix B, in which it is shown that under these condi-
tions the distribution function deviates from the thermal
(Maxwellian) one and the saturated heat flux is much larger
than the Spitzer heat flux (see § 4). From the above estimates
of the magnitude of the various terms in the drift kinetic
equation and an estimate based on the solution found in
Appendix B, it is clearly seen that the coherence length of the
field does not replace the role of the mean free path, even if it
is considerably smaller than the mean free path. This conclu-
sion is also apphcable for (steady state) particle trapping
since in this case 1}y is just the size of the trap (Stix 1992).

The most conservative assumption, which is also mathe-
matically more justified, is that the magnitude of I}} is I} =
I3 /cos «, where cos o = b * F, F is the unit vector in the rad1a1
direction, and I3 is the shortest scale height variation in
space. If cos « = 0, then Ij/A, > co and the Chapman-
Enskog solution of the drift kinetic equation is valid. If
cos a = 1, then I}/, = I5/A, = K, !, where K, is defined as

“the Knudsen number in space.” The Chapman-Enskog
expansion is valid if and only if K, < 10”2 (Max 1981) and
not, as is often thought, if K, < 1. The requirement on K, is
a result of the fact that the collisional mean free path
depends on the inverse square of the electron velocity.

In a cooling flow environment the Knudsen number at
the outer parts is somewhat larger than that required for the
validity of the Chapman-Enskog expansion. As a first-order
approximation we consider a situation in which 4./l <
2/ = K, < 107% < 1. This allows the Chapman-Enskog
expansion along a single coordinate. This coordinate is the
affine field length [ and is obtained from the definition
0/0l, = B - V/B. The Spitzer-Hiarm expression for the con-
ductivity along the field lines is obtained under these condi-
tions (Hinton & Hazeltine 1976). This justifies the
underlying physical assumptions made by Tribble (1989).

Tribble (1989) derived his effective transport formula by
assuming that each field line has a different temperature,
namely, an implicit flux-tube structure. Thus, as noted by
Tribble (1989), one can implement the results of the thermal
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evaporation theory to study whether a flux tube with an
arbitrary structure can cool. In order to obtain a flux tube
in which one of its sides is colder than the other, its length
must be larger than the Field (1965) length. The Field length
in the cluster environment is Az & 1 Mpc. Winding a 1 Mpc
flux tube inside a volume of 100-200 kpc® does not present
a real difficulty, and the coherence length of the tube can
easily be 10 kpc. Thus, such tubes can in principle account
for the X-ray observations with an a priori multiphased
model. Such a model has not yet been developed in detail
(Fabian 1994) and is beyond the scope of this paper. We,
however, note that recently Tao (1995) has addressed the
same problem as did Tribble and included the effect of the
magnetic fields on the dynamics in a self-consistent manner.
The results of Tao for the suppression factor differ from
those of Tribble, yet the magnitude of the suppression factor
is not sufficient to explain the observations.

According to the expected field structure in cooling flows
(Soker & Sarazin 1990; Pistinner & Shaviv 1995a), the com-
ponent of the Gaussian curvature in the radial direction,
Kk *F = (F x b) * (V x b), is proportional to the density scale
height and depends on the variation of the tangential com-
ponent in the azimuthal and poloidal angles. Even if the
temperature is a function of the angles, the suppression is
not enough unless the field is dynamically important. This is
easily seen if we average the heat flux vector over the surface
of an arbitrary sphere, the center of which is at the center of
the cooling flow. This argument shows that the suppression
of the conductivity only in the direction perpendicular to
the field is not sufficient to yield the observed macroscopic
suppression. In other words, suppression along the field lines
is also required. We note again that for a simply connected
field structure, suppression resulting from magnetic field
effects is not expected to be more than a factor of 3 if
B>~ 4,

Consider now the case Iz > 4,. To find the degree of sup-
pression in this case, one has to average the heat flux over
space. Let

0= ko b 5= Kbl V) 16
be the heat flux vector along field lines. Here gy is the
Spitzer-Harm conductivity. Let b = (b) + b, with the
obvious meaning. We now average the heat flux vector on a
scale that is much larger than [,. This presents no difficulty
since we can take the limits of the averaging volume to
infinity effectively. The result is

(q> = Ksu(<BY<BY - V(T + (8b5}b - VT
+ <b> + (ObVT) + L(6bdb)) - KVT?))

= ksu(KbY<b) * VT + {(6bob)) - {VT?)).
(17)

The heat flux depends now on two terms: the first depends
only on the mean field, and the second on the fluctuations.
For suppression of the heat flux the two terms must be
suppressed. Rosner & Tucker (1989) considered the special
case in which the first term is very small and found that in
this case the field in not dynamically unimportant.

We now discuss the second term. Assume a turbulent
isotopic magnetic field so that one can write {(g) =
Ksu/3W(A,)X0T/0r). The mean free path, at least at the edge
of the cooling radius, is 4, <20 kpc~ 2 x [, ® 2 x Lg.
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Hence, if W(i/l,) =~ W(2) <1, one could reduce {gq).
However, the assumption of an isotropic turbulent mag-
netic field is inconsistent with the finding of Soker &
Sarazin (1990) for the magnetic field, namely, a solution that
varies slowly in the radial direction.

While this paper was being refereed, it was brought to
our attention that Tao (1995) approached the heat flux inhi-
bition problem differently. Assuming Spitzer transport
along field lines and using a self-consistent MHD model,
Tao (1995) sets an upper limit on the maximal stretching of
magnetic field lines that are embedded in a fully turbulent
incompressible flow. His final conclusion for the ICM is
that a modest upper limit on the amount of conduction
suppression is about 100. Naturally, in such a flow the solu-
tion obtained by Soker & Sarazin (1990) is not valid.

4. NONLOCAL TRANSPORT ALONG FIELD LINES

We turn now to study a situation that is more applicable
to clusters of galaxies, namely, a situation in which K, >
1072,

Let us introduce a new variable { = v /v, the pitch angle
of the gyrating particle, where v = (vf + v})"/?. The electron
drift kinetic equation now reads

R (o A e |

Q B
ud=cip. a9
u
Next, we write the collision integral in this new set of coor-
dinates. The electron-electron collision term does not
present a problem since it depends only on v. The electron-
ion collision integral depends on {. The explicit dependence
can be found in Hinton & Hazeltine (1976) and in Stix
(1992). If we further assume that the Mach number for the
case under consideration is <1072, the drift kinetic equa-
tion becomes

(b + vgp + vgp) - Vf + {(Cgl;B)b V[Q’—b—'—(v—x—l’)]}ﬂ g

L B ou
D, o af D.of Dja1yf
==—(1- = === q
36(: C) w2 v v dvovdv’ (19)
where
v vs
Dl=i§ D||=i- (20)

We expand in the small parameter A and ignore terms of
O(A?) in this approximation since the drift kinetic equation
is correct to only that order. The first two equations in the
hierarchy read

f_ﬂ_ _zaf" D,of* Dy o1
i aly ( Ot v? o -l-v2 ovv ov’ 21)
and
6'1
v aJ; + (vep + v5p) * Vf°
Il
{vB (b (Vx b of°
+{<QL>b V[ B ]}# ou
D0\ i DL D21
=~3—3_C(1—(:2) v2 o v:Povv ov (22)
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Consider the first equation of this hierarchy. This equation
is just the steady state Boltzmann equation in one dimen-
sion, with the cosine of the pitch angle { replacing the cosine
angle between the observer and the electron beam.

A theory of nonlocal solutions to equation (21) has been
developed by Luciani & Mora (1985). Its main advantage is
the fact that it reproduces very well the results of numerical
computations and laboratory experiments (Luciani, Mora,
& Pellet 1985). We apply this theory to our case.

The distribution function found by Luciani & Mora
(1985) is given by

_ © v- 3 v- 3 _r

7= a2 e (- 0y

—© 2]'eff . eff

where A = 324,. The value of A ¢ is somewhat ambiguous
since different theoretical approximations provide different
results. However, the results do not differ by a large numeri-
cal factor. The heat flux vector parallel to field lines
resulting from this theory is

© 1 [1, = 1|
4|[=J_ dl“2—%exp<—”l—;">qf|“, (24)

where qS”“ is the Spitzer-Harm heat flux parallel to field lines
and 4, is a delocalization length obtained from a numerical
fit to the exact expression. The result is 4, =~ 5.5-324,,
depending on the physical system. It is readily verified that
the exponent appearing in the integrand can be approx-
imated with a delta function if the path length of the field is
much larger than the effective mean free path. Thus, a
tangled field leads to a situation in which the heat flux
vector is the Spitzer vector along field lines, in agreement
with Tribble’s (1989) underlying physical assumption.

If one makes now the unfit assumption that the coherence
length replaces the role of the mean free path, then the
theory yields a saturated heat flux expression and a non-
Maxwellian distribution function. However, it is unlikely
that under normal cluster conditions (a moderately tangled
magnetic field) this nonlocal distribution would affect the
energy distribution significantly. Furthermore, it will most
likely become unstable (Levinson & Eichler 1992).

One may suspect that the modification of the heat flux
affects the energy balance significantly. The integral nature
of this formula requires that we take the derivative of the
heat flux prior to the calculation of its contribution to the
total energy balance. Toward that goal, we note that (i)
because of the divergence-free condition of the magnetic
field and (ii) since the conduction perpendicular to field line
can be practically ignored, we have

g—?“— ~V-q. (25)
It

Substituting now equation (24) in equation (25) and taking
the exponent in the limit of strong tangling, namely,
(I — I})/43— 0, so that the exponent is equal to unity, one
verifies after some algebra that

oq AT (L;\* o AT
g 22 o (22 1 22 26
o, ¥ i, (A) S 26)

where L is the radial temperature scale height and AT the
temperature difference between two points in space along
the radial distance. The suppression factor in the divergence
of the heat flux is in this case the inverse of the effective
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Knudsen number. Thus, the effect of conduction on the
energy balance is not suppressed; on the contrary, it is
enhanced. One can estimate the Knudsen number from
existing steady state cooling flow models that neglect con-
duction (White & Sarazin 1987) and find that it is always
larger than or equal to unity. Therefore, the assumption
that the coherence length replaces the role of the mean free
path leads to an enhancement of the effect of heat conduc-
tion on the energy balance. This conclusion is valid as long
as the modified distribution does not change the rate of
cooling dramatically.

5. DISCUSSION

We have shown that the coherence length does not
replace the role of the mean free path in determining the
transport coefficients. We have also shown that the stan-
dard assumption of a radially slowly varying temperature
gradient and a simply connected tangled magnetic field with
a coherence length much shorter than the mean free path is
not sufficient to provide the suppression of conduction in
cluster cooling flows needed to reconcile theory and observ-
ation.

Using recent observations, we have been able to rule out
the suppression of conduction by small-scale loops in the
core of the cooling flow. Such a structure would very
quickly become unstable and lead to reconnection in a
spherical symmetric model. As pointed out previously, the
crucial region where the suppression of heat conduction is
required is the outskirts of the cooling flow domain. The
dragged-in field lines are expected to straighten out (Soker
& Sarazin 1990), and the field to be amplified, provided the
field’s own turbulence does not react back on the flow.
These observations cannot rule out the possibility that a
field with a closed-loop structure suppresses conduction in
the outer regions of the cooling flow. However, it is difficult
in this case to explain the transition to a multiphase flow by
weak fluctuations.

This situation allows for conduction to be suppressed by
small-scale loops. These loops would isolate the cooling
flow region from the rest of the cluster, and once dragged in,
would reconnect to give rise to the structure that is
observed by the direct FRMs in cooling flows. This very
special situation appears to us implausible.

There is a theoretical possibility to model the cluster by
assuming that the entire cluster is dominated by the flux-
tube structure. Such a model does not violate the FRM
observational constraints and seems to account qualit-
atively for the X-ray observation. However, further study is
required to explore the dynamic stability of such a struc-
ture.

The possibility that nonlocal kinematic factors may have
significant effects is considered by Pistinner & Shaviv
(1995b). Collective plasma oscillations are considered by
Pistinner et al. (1995). Further study is needed to distinguish
whether the nonlocal effects and the collective effects play a
role in the cluster environment. Here we note that the
answer to this question depends on the relative magnitude
of the effective mean free path.

It has become unequivocally clear that the magnetic field
is an inherent part even in the standard spherical symmetri-
cal cooling flow model and induces the transition from a
homogeneous cooling flow or a static configuration to a
multiphased cooling flow (Loewenstein 1990; Balbus 1991;
Pistinner & Shaviv 1995b). However, the results of Soker &
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Sarazin (1990) and Pistinner & Shaviv (1995a) show that
once an homogeneous flow is activated, the entire cooling
flow region will most likely become turbulent, although
Soker & Sarazin (1990) provide an argument why this back-
reaction is not expected to be significant. Turbulence fails to
react back on the flow if the turbulent component of the
velocity and the field are parallel.

The recent FRMs and the results of X-ray observation
clearly imply that the standard Chapman-Enskog transport
is not valid in the cluster environment in general and in the
outskirts of cooling flows in particular. The Chapman-
Enskog expansion becomes valid within the cooling flow,
implying that the Spitzer conductivity should be used,
unless plasma turbulence becomes important.
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All discussions on the suppression of conduction in the
cluster environment considered hitherto consider the sup-
pression by a single factor alone. However, we should not
ignore the possibility of a combined effect from several
factors playing together.
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APPENDIX A
THE BOLTZMANN DRIFT KINETIC EQUATION

In this appendix we discuss the applicability of the drift kinetic equation to describe the ICM. We start with the Boltzmann
equation, the standard form of which reads

6—f+v-6—f+l<f+ﬂvxB)-6—f=C(f,f), (A1)
ot or m c ov
where f is the single-particle distribution function, g is its charge, and m is its mass. The external force is given by
F = qE + mg, where E is the external electric field and g is the gravity acceleration vector; the external magnetic field is
denoted by B; and t, r, and v represent the time and the phase space coordinates, respectively. Finally, C(f, f) is the binary
collision operator written in some form under the Stosszahlansatz assumption.

We assume that the magnetic field is a simply connected vector field; in other words, there are no loops in the field. Under
this assumption, the Boltzmann equation can be written in a different set of coordinates. Let b be a unit vector in the direction
of the magnetic field. We define a set of unit vectors e; by means of the following relations:

b=—; b=e, xe;; e,=ey;xb; e;=bxe,. (A2)
These equations define a new basis in the configuration space. This is just a formal procedure since the vectors e, and e; will
not appear in the final expressions. The corresponding velocity coordinates are decomposed according to

v=v,+v, =vb+uvecos{—eysin¢), (A3)
where
= —tan~! (v i e2> . (A4)
v . e3

An extensive review of the subject can be found in Hinton & Hazeltine (1976). For purposes of convenience we have changed
the notation slightly. Since we are dealing with a case in which gravity is important, the local gravitational acceleration is
included. The expressions derived by Hinton & Hazeltine (1976) can be recovered from those given by us by replacing & with
qE (which is equivalent to setting g = 0). To verify that no overlooked subtle points are involved, we repeated their derivation
and found this transformation rule justified. The derivation is straightforward but laborious.

It is more convenient to change the independent phase space variables again and use the angle & (eq. [A4]), the total energy
of the particle €, and the approximate adiabatic invariant u. These quantities are given by

= 1 2 2 _q_ E l G _ l 2 l tot _ U_i_
6_2(U|l+vl)+m¢ +m¢ —2U +m¢ > #_2B’ (AS)
where
G E 04
—V¢® =mg, —-V¢ =E+-5t-, A=V xB. (A6)
In this set of coordinates the Boltzmann equation reads
of of du Of de  Of d¢
P ‘Vf+——+ -+ = , A7
a T Ve Y e toea = U (A7)

where d/dt = 0/0t + v - V.
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The expressions for the temporal derivatives of y, £ and € are readily obtained from the particle equation of motion. In the

£ next step we note that dé/dt ~ Q; + O(A = r/l,), where Q; = gqB/mc is the gyrofrequency and r, is the gyroradius. The lack of

' the hard X-ray tail combined with FRM in clusters of galaxies implies that Iz > r, = A < 1. This is a necessary and sufficient
. condition for averaging the Boltzmann equation over the gyroangle (for more details, see Hazeltine 1973). The averaging
procedure is performed with respect to the quantity £, which is the fastest varying quantity in the problem. Let

~ 1 (% -
f=-2—7;£ af;  J=1-71. (A8)

With this definition Hazeltine (1973) obtains

D 4 (o) + vgp + v5p) - Vit {—”—V (a” b> (2 a—A>b (be)+<—g—B>b-V[—“—U ”'wa}}ya@—i

ot Q ot B ot L B
ov oA of S
- |:l7|| Ft”- (”(I + vgp + Vgp) * Bt] Pe Cf,H—-ChH, A9
where
cF xb b ob v?
'#0= "B +S_2:"(ﬂVB+vﬁ"+”u5); vw:ﬁib'(VXb)b; k=(b-V)b. (A10)

Note that x is the Gaussian curvature of the field lines. Other terms in the definition of vz, and vy, have a simple physical
interpretation. The first term in the equation for v, is the drift term resulting from the interaction of external forces with the
magnetic field. The terms in parentheses from right to left are the gradient drift term and the curvature drift. The last term and
the second term in parentheses comprise the acceleration drift term. The velocity vy, is the velocity along the field lines
resulting from the curvature of the field lines. All these terms emerge as a result of the distortion of the gyro-orbit. Thus, the
function f'is the phase space distribution function of the guiding centers.

APPENDIX B
FAST VARIATION OF QUANTITIES ALONG FIELD LINES

There are two known ways by which the suppression of conduction by a steady state magnetic field is thought to occur. The
first mechanism requires that two conditions be fulfilled :

1. The field lines are sufficiently long so that the path length along field lines is long enough.
2. The field lines are tangled so that the effective distance traveled by the particle in space is short.

This mechanism was considered in some detail in § 3. The suppression factor is clearly not [,/A, but a function of this variable.
The numerical value of [,/4, has to be determined from MHD considerations or observations.

In this appendix we discuss the second possibility, i.e., a mechanism by which the suppression of conduction and the closure
relation in deriving hydrodynamic equations are postulated to depend linearly on [,/4,, and the particles bounce as a result of
the change in the direction of the field lines. In this model it is generally assumed that the important length scale that the
determines the transport parallel to field lines is I, just as r, is the length scale in transport perpendicular to the field lines. We
further assume that r; <1, so that equation (13) holds. To check the validity of the assumption that the particles bounce
because of the magnetic field lines, we estimate the order of various terms in equation (13) as

Uh UnPL VmTL) UnPr Um
(l,,‘ . li) Z @
Thus,
PA=TE A AR (B2)
) lb le

The traditional mechanisms for the suppression of conduction in cooling flows require that I,/4, be of the order of 10~ 2 for the
homogeneous case (Cowie & Binney 1981) and of the order of 10~ * for the multiphase case (Balbus 1991).

The density, temperature, and magnetic field can be estimated from the observations and from them A, and r; can be
evaluated (to within an order of magnitude). The requirement for the suppression of the conductivity provides a constraint on
l,, namely, n = I;/4, < 10~ *(Balbus 1991). Hence, we can expand f'in the form

f=ro+nf* +n¥ 2+ (B3)

here f° is the solution for a collisionless plasma, which we will later assume to be a Maxwellian. We now substitute equation
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=

e . . . . .

:’f. (B3) into equation (13) and equate coefficients of 5. The first two equations of this expansion read

o o

& v V" =0, (B4)
) - - v, B vy b+ (Vxb aofe

g R (o A e E ISR (85)
0, L

i&: Note that if we now make the assumption (which, unlike the case of the Chapman Enskog expansion, cannot be rlgorously

justified here and, in fact, according to § 4 is not appropriate here) that f° is Maxwellian, then C(f°, °) = 0. We stress again
that the solution f of equation (13) is a function of the magnetic field geometry (special coordinates), the bulk velocity, the
phase space velocity, all thermodynamic variables, and the gravitational potential. In other words, f° = f(r, v, €, 1), where
€ = €(g) (see eq. [17]). The assumption that f (r, v, €, p) is Maxwellian means that the phase space dependence and the
dependence on the thermodynamlc variables is determined. In general, the thermodynamic variables and the gravitational
potential vary in space—in particular, along field lines. From equation (B4), we see that f° = constant along field lines,
namely, the thermodynamic variables and the gravitational potential vary along the field lines in such a way that the guiding
center velocity distribution is spatially invariant. In the case of hydrostatic equilibrium, this is possible only if the gas is
isothermal. If we allow the bulk velocities to vary along field lines, we obtain an average outflow instead of inflow. Since the
assumptions made in the derivation of the above equation (i.e., a fast variation along field lines and Maxwellian distribution
function) are inconsistent with the solution of the equation, we conclude that the assumptions are contradictory. Therefore, if
heat flux inhibition is caused by the tangled magnetic field, the degree of suppression depends on the correlation function of
the magnetic field and not ony = [,/4,.

The contribution of f! is at most of order #. This is essentially the same result that was obtained by Stix (1992), neglectmg
terms of order A in comparison to terms of order #. If we now use the solution f° = constant and assume that f° is a
Maxwellian, equation (B5) reduces to

- - m?cv, v? vy b (Vxb) -
v, V' +vgp-Vfo= —<ﬁq—l>b . V[—L;——)f“] =0. (B6)

The left-hand side of equation (B6) vanishes because it contains terms that are proportional to the current parallel to the field
lines. Let us see if f! can vary appreciably along field lines so that it could accumulate an appreciable contribution tof. In
order to perform this task, we introduce the following derivative:

0
—=b'V. B7
i (B7)
Using this relation and equation (A 10) in equation (B6), one readily obtains
[y b e [ b e[ :
ft= — (g x V) + *[(uVB + v} x) x Vf°] ~ [(uVB + v} k) x Vf°] . (B8)
) U“ QL o Q o Q

The second approximation holds, provided, as one expects, g and Vf° are parallel. Thus, the correction to f° is at most of the
order of r /A, ~ 107 '®. We conclude that the standard picture of conduction suppression, in which the coherence length of the
field is much smaller than the mean free path in a manner that allows fast variation of quantities along the field lines, does not
comply with the standard cooling flow model.
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