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ABSTRACT

A recently developed formalism is employed to study modes of pulsation of relativistic accretion disks
around Kerr black holes. In the present study the disk’s self-gravity is neglected, and attention is focused on
the existence of modes with very low frequencies and their possible connection with the QPO phenomena
exhibited by certain black hole candidates. A by-product is the first available comparison of relativistic and
pseudo-Newtonian results. The analyses reveal that in many cases thin relativistic disks exhibit warped tilt/
precession modes with frequencies of the order of those associated with QPO phenomena. In the limit of a
nonrotating black hole, the modes are all retrograde relative to the disk, with the relativistic frequencies
smaller than the corresponding pseudo-Newtonian frequencies by about a factor of 2, due to redshift effects.
This correspondence breaks down completely, however, as the black hole is spun up in the direction of disk
rotation, due to effects associated with the relativistic phenomenon of the dragging of inertial frames. As the
black hole is spun up, frame dragging influences the modes to an unprecedented degree, successively pulling
modes through zero frequency so that they become prograde. For disk temperatures appropriate to X-ray
emission, frame-dragging effects are dominant even for very small amounts of rotation. These effects allow an
explanation in terms of a common mechanism for the full range of observed QPO frequencies (~0.01-10 Hz).

Subject headings: accretion, accretion disks — black hole physics — relativity

1. INTRODUCTION

An astrophysical problem of considerable interest focuses on
the origin of the low frequency quasi-periodic oscillations
(QPOs) associated with certain low-mass X-ray binaries and
black hole—candidate systems (see, for example, the reviews by
Lewin & Tanaka 1994 and by van der Kliss 1989, 1994). In
systems containing a black hole, the absence of a magnetic field
around the black hole precludes an explanation of the QPO
phenomenon in terms of the beat frequency model (Alpar &
Shaham 198S5). This is partly responsible for a surge of interest
in the possibility that, at least in black hole systems, the QPOs
are associated with modes of oscillation of an accretion disk.

In an attempt to interpret long-timescale X-ray variability of
certain sytems along these lines, several studies have examined
the possibility that the QPOs of black hole systems are associ-
ated with low-frequency modes trapped in the inner regions of
thin accretion disks surrounding the black holes (Kato 1989;
Kato & Honma 1991; Ipser 1994). The first two studies worked
in the approximation that the disk is vertically isothermal and
oscillates without disturbing its temperature distribution. The
third study employed a formalism that enables one to treat the
general adiabatic perturbations of rotating fluid configurations
(Ipser & Lindblom 1991). That study was able to allow for
nonadiabatic temperature gradients in the equilibrium disk
structure, and it showed that nonadiabatic gradients are unim-
portant for the low-frequency modes of interest.

The above studies demonstrated that a variety of thin disk
models, with sufficiently large pressure gradients in their inner
regions, do exhibit low-frequency nonaxisymmetric modes that
are trapped in the inner disk regions where the accretion
binding energy is liberated. This leads to the suggestion of an
association with the QPO phenomenon.

One problem with all of these studies is that they adopt the
pseudo-Newtonian approximation, involving of the Newto-
nian gravitational potential in order to simulate certain
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general relativistic effects, especially the instability of circular
orbits at sufficiently small radii. The purpose of the present
paper is to present a general relativistic treatment of the
problem under consideration. Such a treatment is now possible
because of the development of a formalism for analyzing adia-
batic pulsations of rotating relativistic fluids (Ipser & Lind-
blom 1992; henceforth Paper I). It will be shown that
relativistic effects, especially those associated with the dragging
of inertial frames in rotating systems, can have profound effects
on observable features of the modes, and may in fact help to
explain the wide range of frequencies that have been associated
with QPOs in black hole—candidate systems.

2. EQUILIBRIUM DISK

The underlying equilibrium structure is that of a geometri-
cally thin axisymmetric disk, composed of perfect fluid that
rotates in the axisymmetric gravitational field of a central
compact object. The disk is assumed to lie in the equatorial
plane. The disk fluid is described by a stress-energy tensor
(G = ¢ = I throughout)

Tab = puaub + pqab , (1)
where p is the energy density, p is the pressure and u® is the

fluid unit four-velocity. Also, the projection operator g is
given by

qab — gab + uaub , (2)

where g* is the inverse of the metric g,. The fluid four-velocity
is taken to be of the form

uw = y(* + QoY) , 3

where t* and ¢° are the Killing vectors associated with the
stationary and rotational symmetries of the spacetime. The
scalar y is a redshift factor and Q is the fluid angular velocity.
In the Cowling approximation, which is adopted here, the
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gravitational field is completely determined by the central
compact axisymmetric object. The contribution of the disk is
neglected, even when it pulsates. Further, in a first approx-
imation, the radial component of the equilibrium velocity,
turbulence, and magnetic fields are all neglected.

The gravitational field of the central axisymmetric object is
conveniently written in the Bardeen-Wagoner (1971) form

ds? = g, dx°dx®
= —e®dt® + B’e  2w*}(do — adt)? + e*¢V(dw® + dz?) .

@

Here the metric functions v, B, o, { are functions of the cylin-
drical coordinates @ and z, and ¢t and ¢ are the time and
angular coordinates associated with the Killing vectors.

The assumption of a thin disk allows one to expand equa-
tions in powers of z/w and keep only the lowest order terms. As
a result, it becomes convenient to work with the Kepler
angular velocity Qx(w) of a geodesic circular orbit in the equa-
torial plane of the central object. This quantity satisfies the
equation

9,0 + 2gup,mQK + g(p(p.wQIZ( =0 ()

evaluated at z = 0. Throughout this paper a comma denotes a
partial derivative, while V, denotes the covariant derivative. In
terms of Qy, the radial component of the equilibrium Euler
equation q,,V, T* = 0 takes the form

Pw _ _ Puw
p+p cp+p
1 y2

= 2 L} ~ Qg0+ 20— D], (60

while the axial component is

p.z p,Z y
=" N A2 (gtt.z + zgg!tp,z + sz.z)

p+p cHp+p) 2

9
= —y2?t 2z,

s

(6b)

The quantity Q, is the angular velocity of vertical oscillations,
perpendicular to the disk plane, exhibited by a particle per-
turbed vertically from a geodesic circular orbit. When the
central object is spherically symmetric, Q, = Qk, but frame-
dragging effects break this symmetry in the rotating case,
where Q, < Q. It will become evident that this symmetry
breaking plays a key role in determining the frequencies of the
pulsation modes that are studied in this paper. The angular
velocity Q, and the other coefficients in equation (6) are evalu-
ated at z = 0 in the thin-disk approximation. The above equa-
tions determine the equilibrium structure once the
pressure-density relation and the angular velocity Q are speci-
fied. In this connection, the integrability condition for equation
(6) is that Q = Q(yu, ¢).

3. ADIABATIC PULSATIONS OF THE DISK

We employ the formalism of Paper I, which provides the
tools needed for analyzing the general adiabatic modes of pul-

sation of rotating relativistic fluids in the Cowling approx-
imation. In this first application we shall confine attention to
barotropic configurations, in which the pressure and energy
density are unique functions of one another. This considerably
reduces the complexity of the equations.

3.1. Covariant Form of the Eigenequation

The formalism is applicable to normal mode pulsations with
time and angular dependences of the form e**™¢ where  is
the angular frequency of oscillation and m is the azimuthal
angular index. The formalism reveals that the hydrodynamical
degrees of freedom of adiabatic pulsations of relativistic fluids
are described by a single scalar potential that satisfies an eigen-
equation with w as eigenvalue. In the barotropic case, where
p = p(p), the vector A° defined by Paper I, equation (18), van-
ishes. As a result, the pulsation equation (Paper I, eq. [39])
reduces to

1 a*A
o DH[W (p + p)o?y?*h® — 20°Q°)D, 5VJ

+oy®oV =0. (7)

Here h® is the inverse of h,,, the metric on the w — z plane, and
D, is the associated covariant derivative. The rotating-frame
angular velocity ¢ = o + mQ, and w*? = q,, ¢*¢’/y* = (wB)?
in Bardeen-Wagoner coordinates. The vorticity w® and the
angular velocity vector Q° satisfy (see Paper I, egs. [22] and

[23))
0 = 20° + €*y*w*D, Q
ab

= —— [Dy(yu. ¢°) — (yu, 9°)D, Q1 , @®)
7w

where the antisymmetric tensor € is the volume element on
the w — z two-surface. These quantities determine A through
the relation A = 0%y2/(6%y? — 20°Q,). Further, @ is defined by
(see Paper 1, eqgs. [31], [41], [42])

1
(p+p)+ HD,p — o D,[w*(p + p)H"]

ay
o=
¢

1 o* b
+ ; Da 0'2))2 (P + p)H Db(a)))

_AMp+p)

s (m + oyu, 0%, ©

where c, = (dp/dp)*/?, the speed of sound, and

Hab =

(UZ,yZhab _ 2waQb) ,

NS
2A
H = p (m + oyu, @%)e™Q, . (10)

The eigenfunction ¥ in equation (7) is defined by

op

= 11
v ay(p + p) an

where Jp is the Eulerian perturbation of the pressure.
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3.2. An Approximate Eigenequation in Bardeen-W agoner
Coordinates

We are interested here in the modes of thin disks for which
c2 ~ (z/mw)* < 1. Hence it is appropriate to expand the eigen-
equation formally in powers of cZ and to keep only the lowest
order, dominant terms. Recalling that Q = Q(yu, ¢%), we first
introduce new orthogonal coordinates z, @ such that

@ =f(yu, ¢°) = o[ 1 + 0(z*/w?)] ,
Z=z[1+ 0], (12)

and hence such that Q = Q(@) and w® = Q% = 0. In terms of
the barred coordinates, the eigenequation (7) becomes

1 0 - 1 0
* /2 zZz ~
o /g 2 [o*/%ap + P)g™ V] + oo 06

y a*/*g(p + p)a*y*g®®
(6292 — 20%Q),)

51{,,_,] +oy®sV =0. (13)

We next expand formally in powers of ¢2. Using the equi-
librium equation (6), we then obtain, at lowest order in cZ,

) aov + a2 i( 65V)
z\" o )T —x)ow\’ oo
2,2 F
+{e2(;_v)0' V2P+|:GYJ’ +A(J))),m:|p‘m}5Vz0 (14)
wB oy

s
In this equation, it is consistent to neglect the z-dependence of
all coefficients once the derivatives of p have been evaluated by
using equation (6). Hence the barred coordinates have been
replaced by the Bardeen-Wagoner coordinates. Further

A(m + o8)
o*y’wB

T

[S.0—5°Q, — 0wBY’Q,], (19

20°Q, = k*y?

e 2 2 2 —2¢-v) 2
= B 845—5Q,)" —e (S0 — $°Q)Q,,

(16)
where
e YB2o3(Q — a)
= = 7
S=w,=1_ e B} Q — a)*’ {17)
and
y=e*[1 +(Q—a)S]'?. (18)

The quantity « is the relativistic epicyclic frequency associated
with radial perturbations of geodesic circular orbits in the
equatorial plane.

3.3. An Approximate Dispersion Relation

Equation (14) admits an approximation relativistic disper-
sion relation that can be compared with its nonrelativistic
analogs (see, e.g. Kato 1989; Ipser 1994). Equation (6b) sug-
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gests that the effective wave number in the z direction is ~
7€ 7°Q, /c,. If &k, denotes the effective radial wave number,
then equation (14) implies the local dispersion relation

(0> —K?)No? = QF +f) = a2 kL /y? (19)

where fis a multiple of the coefficient of p , 6V in equation
(14). This dispersion relation suggests that when |Qg — Q,| ~
|1Qx — Q| < Q, low-frequency (0 < Qm = 1 modes exist and
satisfy '

Q —Q)Q+9Q) + Q — Q@+ Q)

2Q 20

f N Qc2 k2

20 2(Q? — kHy?’
This expression suggests that any increase in (Qx — Q,) due to

frame dragging will lead to a decrease in w. We will return to
this possibility later.

~

(20)

4. WARPED PRECESSION MODES OF RELATIVISTIC DISKS

4.1. The Radial Eigenequation and Its Boundary Condition

As in the pseudo-Newtonian problem, we shall research for
low-frequency modes with m = 1 and with eigenfunctions of
the form

oV(z, w) ~ zF(w) . (21)

These modes describe situations in which a disk tilts, warps,
and precesses about the rotation axis. In these cases, equations
(6b) and (14) yield the radial eigenequation

d ([ dF\  (6®—«?
do (p dm) t

2p* F  A(oy)
26—V 2 _ QZ Y P oy V), w * ~ b
{e (o ) 22 +|:wB + oy p*,tF=0, (22
where
p=p*we ™, z*=z/H,, H,=e “Ic/Q,).

(23)

We are interested in modes that are trapped, or confined,
within the inner regions of the disk. Hence we impose the outer
boundary condition that physical perturbation quantities, such
as the local energy density of pulsation, die out in the outer
regions of the disk. Since the local energy density of pulsation
is roughly proportional to pF2, it is convenient to make a
change of dependent variable in equation (22) to p*!/2F, which
also has the effect of eliminating the first-derivative term. We
can then impose the outer boundary condition by demanding
that p*!/2F dies out, approximately exponentially it turns out,
at large w. We impose the inner boundary condition that
F = 0 at the inner edge of the disk, which we take to lie at the
last stable circular orbit. This is generally required in order to
guarantee that the Lagrangian perturbation of the pressure
vanishes at the inner edge of the disk for our choices of the
angular velocity Q(w).

4.2. Application to the Kerr Geometry

In the remainder of this paper we focus on disks around
Kerr black holes. In the usual Boyer-Lindquist coordinates the
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Kerr geometry is (Chandrasekhar 1983)

ds? = — —— dt* + 2—2 sin? O(d —
R @

= 2aMry, dt>2

22
2

R
+— drjy + R?d6?,

X (24

where M 1is the black hole mass, a is the usual Kerr
parameter = (angular momentum)/mass, and where

A=r3 —2Mry +a*, R>=rd +a’cos? 0,
2?2 =(raL + a»)? — a*Asin? 0. (25)

The connection between the Boyer-Lindquist radial coordi-
nate rg; and the Bardeen-Wagoner coordinates is given by
rer = [2r + M)?2 —a?}/4r, r=@@> +zH)Y2. (26)

It is easily verified that the Bardeen-Wagoner metric functions
for the Kerr geometry take the forms

e?’ = R2A/2?, B?=A/®@* +z?),
o = 2aMrg /2%, e*¢™V = R¥/(w® + z?). 27

Further, the radius ryp ,;, of the last stable circular orbit,
where the inner edges of our disks lie, satisfies the equation
(Chandrasekhar 1983)

2 1/2 2
TBL,min — O7BL,min + 8478 min — 3a° = 0.

(28)

5. RESULTS AND DISCUSSION

In this paper we study relativistic disks with constant thick-
ness H, (eq. [23]) and with rotation laws of the form

Q= Qﬁ[l - z_j\ﬂlz (8L — TBL,min)'BL — Vz)(rBL/"z)%] >

(29)

where f and r, are constants. This form is the relativistic ana-
logue of the form used in earlier pseudo-Newtonian calcu-
lations. This permits study of the extent to which properties of
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pseudo-Newtonian disks can mimic those of relativistic disks.
When using the rotation law (29), one should guarantee that f
is large compared with c2. Otherwise the expansion in powers
of ¢? that leads to equation (14) will break down. We will
confine attention to disks with f/c2 = 10. Fortunately, it is
precisely the larger values of  that do admit trapped modes of
the kind sought.

A first comparison of relativistic and pseudo-Newtonian
disks is provided by Table 1, which exhibits the frequencies of
certain pseudo-Newtonian trapped modes and of the corre-
sponding relativistic modes in the spherical black hole limit
(a = 0) for ¢, = 1073 at the inner edge of the accretion disk.
The first two columns define the rotation law (29). The column
label N denotes the number of nodes in the radial eigen-
function F. The label rg/2M denotes the approximate radius,
or value of w in the equatorial plane, at which a mode begins to
die out exponentially. The unit 2M is twice the mass of the
central black hole. The last two columns exhibit the fre-
quencies f = w/2x of relativistic modes for a nonrotating black
hole and of the corresponding pseudo-Newtonian modes. The
frequencies in these cases are all positive, corresponding to
modes that are retrograde (points with a given magnitude of
displacement, say, rotate in the direction opposite to the direc-
tion of disk rotation). Further, it is evident that in the limit of a
nonrotating central source, the relativistic frequencies of these
warped precession modes are consistently smaller than their
pseudo-Newtonian counterparts by about a factor of 2. This
difference can be attributed to redshift effects, which are
neglected in the pseudo-Newtonian approximation. In most
other ways, the pseudo-Newtonian results mimic fairly well the
relativistic results for nonrotating holes.

This correspondence in the nonrotating limit is somewhat
misleading, however. Significant differences, associated with
the dragging of inertial frames, emerge when the central black
hole is allowed to rotate. Evidence that frame-dragging effects
can strongly affect the frequencies of the modes under con-
sideration is provided by the form (eq. [20]) of the dispersion
relation derived earlier. When the central black hole rotates in
the same direction as the disk, as is assumed here, one finds
that the quantity (Qg — Q,)/Q increases as the Kerr param-
eter increases. This is because the perpendicular oscillation
frequency Q, of an orbiting particle is given roughly by the
rotation rate as sensed locally; and, due to frame-dragging
effects, that local rate becomes progressively less than the rate

TABLE 1
CORRESPONDING FREQUENCIES OF PSEUDO-NEWTONIAN AND RELATIVISTIC MODES
(a=0)
f(M/M ) (Hz)

r,2M Blci N rg/2M Relativistic (a = 0) Pseudo-Newtonian
35...... 100 1 4 0.46 0.92
35...... 100 2 45 0.94 1.9
35...... 10 No trapped mode
45...... 100 1 5 0.96 1.8
45...... 100 2 5 1.8 3.6
45...... 10 1 5.5 0.086 0.18
45...... 10 2 6 0.18 0.34
50...... 100 1 5.5 1.3 2.5

NoTE.—The column labels are defined in the text. The speed of sound has the value

C

s,in

= 1073 at the inner edge of the disk. The central black hole is nonrotating.
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Q seen at infinity, as the hole spins up. Hence, from equation
(20), one expects that frame-dragging should decrease w below
its nonrotating-limit value by an amount éw satisfying

o M —2aM M/M,
2n Mg r? 2n

According to equation (30), frame-dragging effects, even for
small amounts of rotation, can decrease mode frequencies by
large percentages, and can even drag modes through zero fre-
quency so that they become prograde. Figure 1 shows that this
is exactly what happens for the value ¢, ;, = 1073, where ¢, ;, is
the value of the speed of sound at the inner edge of the accre-
tion disk. Figure 1 exhibits the lowest three modes associated
with the rotation law parameters r,/2M = 3.5, B/cZ; = 10
These modes have one, two, and three nodes, respectively. We
note, in this connection, that we did not find any trapped
modes with zero nodes. Figure 1 reveals that the lowest mode
is dragged through zero frequency, and becomes prograde, at
a/M =~ 0.005, which is in good agreement with the order-of-
magnitude estimate provided by equation (30). Figure 1 also
indicates that another mode is dragged through zero frequency
for each increase of a/M by an amount ~0.005. Indeed one
finds that for disk temperatures appropriate to X-ray emission,
typically more than a hundred modes are dragged from retro-
grade to prograde, and all existing modes are prograde for
a/M 2 06. For the case c;;,=10"3, r,/2M =3.5 and
B/ctin = 10%, this is demonstrated in Figure 2, which exhibits
the frequency of the highest existing mode (modes with largest
number of nodes and largest frequency, including sign). The
highest mode becomes prograde at a/M ~ 0.55. Hence for all
smaller values of a/M there is a mode quite close to zero fre-
quency.

The values of a/M at which the lowest modes pass through
zero frequency can be pushed to somewhat larger values by
increasing B/cZ;, and/or c¢2,,. This is evident from Figure 3,
which exhibits the frequencies of the lowest three modes in a
very hot disk with ¢, ;, = 1072, r,/2M = 3.5, B/c2,, = 3 x 102,
In this case the lowest three modes pass through zero fre-
quency at a/M = 0.3, 0.4, and 0.5, respectively.

The above results provide evidence that relativistic accretion
disks around black holes can support warped precession

~ — 10?2 % Hz.  (30)

FREQUENCY (Hz)

4 1 1 L
0 0.005 0.010 0.015 0.020

aM

F1G6. 1.—The lowest three modes of a disk with c; ;, = 10~3 (value of speed
of sound at inner edge of disk) and with parameter values r,/2M = 3.5,
B/c2;, = 10% in eq. (29). The vertical scale is the frequency in Hz multiplied by
the black hole mass in units of a solar mass.
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FREQUENCY (Hz)

10 1 1 ]
0 0.2 04 0.6 0.8

aM

FI1G. 2—The mode with the largest frequency, including sign, for the disk of
Figure 1. The vertical scale is the frequency in Hz multiplied by the black hole
mass in units of a solar mass.

modes with very low frequencies. For black holes of the order
of a solar mass with disk temperature of the order of 107 K, the
frequencies range from the order of 10Hz down to 0. The
frequencies scale like the inverse of the black hole mass and are
approximately proportional to the square of the speed of
sound and to the temperature. Frequencies arbitrarily close to
zero can be obtained in principle, due to effects associated with
the dragging of inertial frames. Hence whether the frequencies
are relatively high, as in the case of the 6 Hz QPOs observed in
the power spectra of GX 339 —4 (Miyamoto, Kimura, & Kita-
moto 1991), or low, as in the case of the 0.04 Hz QPOs
observed in Cyg X —1 (Vikhlinin et al. 1994) and in the case of
GRO J0422 + 32 (Pietsch et al. 1993), the presence of frame
dragging allows an explanation in terms of a common mecha-
nism.

If one is unconcerned with the number of nodes of a mode,
the problem of constructuring a model with a mode frequency
arbitrarily close to zero is not a fine-tuning problem. This is
because slight adjustments of the rotation law will yield a zero-
frequency mode for any value of a/M < 0.6 in the case of an
X-ray-emitting disk. However, if the modes with at most a few
nodes are preferentially selected for excitation, then, unless the

400 : :

g

FREQUENCY (Hz)
o

-200

-400 L 1
0 0.2 0.4 0.6

aM
FIG. 3—The lowest three modes of a disk with ¢, ;, = 1072, r,/2M = 3.5,

B/ct., = 3 x 102 The vertical scale is the frequency in Hz multiplied by the
black hole mass in units of a solar mass.
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black hole mass is rather large, excited modes can be expected
to exhibit frequencies as small as a fraction of Hz only for
a/M < 0.1. In such a case the QPO phenomenon would prob-
ably not be associated with rapidly rotating black holes.

In any event, our results lend some support to the interesting
possibility that warped precession modes of relativistic accre-
tion disks provide the source of the QPO phenomena associ-
ated with presumed black holes. This possibility is especially
exciting for the relativist, since it involves a phenomenon in
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which the dragging of inertial frames can play a strong and
vital role. It will be important, in this context, to investigate in
detail the way in which warped precession modes can modu-
late disk emissions and the extent to which they are affected by
the accretion process, viscous effects, and the disk’s self-gravity.

It is a pleasure to thank Lee Lindblom for crucial and illumi-
nating suggestions. This work was supported in part by NSF
grant PHY-9408910.
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