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MAGNETIC EFFECTS ON OSCILLATIONS IN roAp STARS
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ABSTRACT

We calculate the effect of a simple dipole magnetic field on high-order p-mode oscillations. The stellar
models, oscillation modes, and range of field intensity were selected to correspond to the data on roAp stars.
We did not account for the field in the static models. Some of the modes we calculate exhibit a strong driving
due to the x-mechanism acting in the hydrogen ionization zone. This driving is only somewhat smaller than
the radiative damping occurring beneath. We argue that the situation is likely to reverse after needed
improvements are made in model calculations.

The effect of the field is very significant. At KG photospheric intensity, the mode frequencies are shifted by
about 10-20 puHz from their nonmagnetic values. Such shifts are comparable to the small separations.
Damping rates due to Alfvénic wave losses are in the 2-10 yHz range and are comparable to nonadiabatic
damping rates.

Surface amplitudes significantly depart from pure, single spherical harmonic dependence, which severely
complicates mode identification and observational determination of large separations. Thus, taking into
account the effects of the magnetic field is a prerequisite to any meaningful roAp star asteroseismology and to

understanding mode selection in these objects.

Subject headings: stars: magnetic fields — stars: oscillations — stars: peculiar

1. INTRODUCTION

The unexpected discovery of high-order p modes in Ap stars
by Kurtz (1982) has provoked considerable interest. Several
theoretical papers have been devoted to explaining his dis-
covery. However, they left unanswered the most basic ques-
tions: the nature of the driving mechanism and the connection
between the oscillations and the magnetic field. In the latter
case, observational evidence leaves no doubt that such a link
exists. First, the type of mode observed in roAp stars is unique
to these objects. We stress that there are significant differences
between these oscillations and the high-order p-modes excited
in the Sun. In particular, the roAp star oscillations are charac-
terized by much larger amplitudes and much greater mode
stability. Second, in roAp stars the pulsations have the same
symmetry as the magnetic field.

It is fair to say that essentially all of our knowledge of roAp
stars reflects only direct inference from observation. The
number of roAp objects discovered has expanded considerably
since Kurtz’s original discovery. There are now 27 such objects
known (Kurtz & Martinez 1994). Further, we have learned
during this time that the modes cannot be represented by a
single Legendre polynomial (Kurtz 1992), and that there is
evidence for cyclic changes in oscillation periods which have a
timescale of years (Kurtz et al. 1994). These are new observ-
ational facts which require interpretation.

Our first goal is to explain the role of the magnetic field in
the excitation of these oscillations and its part in mode selec-
tion. Our observational clues here are that only a few modes
are observed in individual objects, and all of these modes are
symmetric about the magnetic axis. The role of the magnetic
field may be indirect, for instance, through its effect on elemen-
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tal diffusion. Or, it may be direct as in Alfvénic wave losses as
first noted by Roberts & Soward (1983). The effect of such
losses was investigated by Spruit & Bogdan (1992) in the
context of p-mode absorption by sunspots. We will assess the
significance of these Alfvénic losses in roAp stars by comparing
them with the nonadiabatic damping rates.

Our second goal is to examine the effect of the magnetic field
on mode frequencies and the angular structure of the surface
amplitudes. Understanding these, in our view, is a prerequisite
to asteroseismic use of roAp star data.

2. MODELS

We do not have good models of roAp stars. Even if we
neglect the dynamical effect of the magnetic field, we should
account for the stratification of the chemical elements. All of
these stars are chemically peculiar which is generally con-
sidered to be evidence for the action of elemental diffusion and
in particular, gravitational settling of helium. Diffusion is not
taken into account in the stellar evolution code that we use.
Thus our models have chemically homogenous envelopes. For
the two models we consider, we adopt the standard Population
I composition (X = 0.7 and Z = 0.02). Parameters of the two
models are given in Table 1. These model surface parameters
are well within the range of those for roAp stars (Kurtz 1990).

One purpose in selecting these two models was to illuminate
the possible driving mechanism. The form of the pulsation (size
and stability of amplitudes) is similar to that in opacity-driven
pulsators in the main-sequence band. Thus the opacity mecha-
nism seems to be the most likely cause. Our nonadiabatic pul-
sation calculations support this conjuncture. We noted that, in
the two selected models as well as in other standard models of
main-sequence stars with similar effective temperatures, it is
only the H ionization zone which exerts a significant driving
effect for the high-order (n > 20) p-modes detected in roAp
stars. The detected modes have periods in the 6-12 minute
range. An example of such a mode (n = 24) from model 2 is
given in Figure 1. For this mode, we emphasize that there is no
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TABLE 1
roAp MODEL PARAMETERS

Model M/M R/Rg log T,y  log L/Lg X,
1...... 1.8 1.529 3.9235 1.014 0.70
2., 20 2.138 3.9240 1.307 0.38

driving in the He 1 ionization zone. Rather, all the driving
comes from the hydrogen ionization zone. The figure also
shows that the driving is not quite strong enough to compen-
sate for the damping which ultimately renders the mode stable.
This is in sharp contrast to the situation of the lower frequency
mode (n = 7) shown in Figure 1 for which the hydrogen ioniza-
tion zone plays a negligible role in the mode’s stability, while
the He 11 ionization zone provides all of the driving. This mode
is unstable, and it has a frequency like those detected in § Scuti
stars. This sharp contrast between the work integrals in these
two modes has two causes. The lack of any significant driving
in the hydrogen ionization zone for the n = 7 mode is due to
the fact that the mode period is much longer than the thermal
timescale. On the other hand, for the n = 24 mode, the lack of
driving in the He 11 ionization zone is related to the oscillatory
behavior of the eigenfunction in that zone which implies a
dominance of the radiative losses over the opacity effect
driving.

One can easily imagine that if He settles in roAp stars, as is
plausible, then the mode owing its driving to the H ionization
zone becomes unstable while the one owing to the He ioniza-
tion zone becomes stable. If this were true, then there is an
indirect role for the field. That is, the field slows rotation and
thereby renders meridional circulation insignificant which in
turn enables gravitational settling to occur.

D. Kurtz & J. Matthews (1995, private communication)
raised an objection to this proposal pointing out to us that
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invoking a similar argument coupling slow rotation and set-
tling, we should expect excitation of high-order p-modes in Am
stars, which are nonmagnetic, slowly rotating chemically pecu-
liar stars, at corresponding T, values. However, short-period
oscillations in Am stars have not been detected. This objection
must be kept in mind, but we would like to stress that these
stars would not be the first ones in which oscillations predicted
by linear stability calculations have not been detected. Thus,
we regard the opacity mechanism acting in the H ionization
zone as the most plausible cause of roAp star oscillations.

The driving by the hydrogen ionization zone begins to be
appreciable in model 2 at n ~ 20 for low ! modes. Of course,
our interest in modes of low degree is motivated by the observ-
ational data. Also in model 1, we begin to see the driving effect
of the hydrogen ionization zone at similar n values. However,
in this latter model, the maximal driving occurs above the
acoustic cut-off frequency. Because of uncertainties in modes
close to the critical cutoff, we avoided approaching them. In
fact, the maximal driving occurs for the untrapped modes
(modes with frequency above the acoustic cutoff). But there, we
find large damping due to the acoustic losses.

Our models were calculated with the use of the Eddington
approximation for radiative transfer which is inadequate in the
atmosphere and, in particular, results in an underestimate of
the minimum temperature and, consequently, the critical
acoustic frequency (Weiss 1986). We leave for future work both
a proper accounting of the effect of diffusion and an improve-
ment in the treatment of atmospheric layers in our models.

The behavior of the work integral for the n =24 mode
demonstrates that the nonadiabatic effect on the mode is
important in the very outermost regions. More or less in the
same layers, magnetic effects are important as is clear from
Figure 1b. In detail, Figure 1b shows that the layer in which the
magnetic field is strongly coupled to the oscillations (f ~ 1)
encompasses only about the outer 1% of the star by radius.
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F1G. 1.—(left) Cumulative work integral (in arbitrary units), calculated from the center to the surface, for selected p-modes in Ap star model 2. A local decrease of
the work integral implies local dissipation and an increase implies local driving. The total integral determines the mode stability where values greater than zero imply
mode instability. (right) The (B)'/? is the ratio of the Alfvén speed to the adiabatic speed of sound. v/v,. is the ratio of the frequency to the acoustic cut-off frequency for
an isothermal atmosphere. Thus acoustic propagation occurs if v 2 v,.. The magnetic field decouples from acoustic oscillations if # < 1.
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Although it should be expected that both magnetic and non-
adiabatic effects are globally small, they are locally large and
cannot be treated by standard perturbation techniques. It is
known, for instance, that the application of the so-called quasi-
adiabatic treatment of the nonadiabatic effect leads to com-
pletely unreliable results. In spite of these caveats, we will
adopt an unjustified superposition approach so that we separa-
tely treat magnetic and nonadiabatic effects and compare
them. We think that this separation will nonetheless allow us
to assess the role of the two effects. In this first work, we deal
with the magnetic field in an adiabatic approximation which is
difficult enough.

Even in the layers where f is very small, care must be taken
because of the singular nature of the perturbation. No matter
how weak the field is, it introduces Alfvénic waves. As first
noted by Roberts & Soward (1983), these modes introduce a
new means of energy dissipation, and therefore are important
in mode stability considerations.

3. FORMALISM

We assume that the magnetic field is curl-free and purely
dipolar in nature,

R\3 i
B= BI,(;) (cos Oe, + E;_Q e0> , (1)

where e and e, are unit vectors in the spherical coordinate
system. We consider only the case of adiabatic oscillations that
are symmetric about the magnetic axis. Thus, the displacement
for an oscillation may be represented in the following form:

¢ =r[y(r, O)e, + z(r, O)e,] exp (iwt) . @

Our aim is to determine eigenfrequencies, w, as well as corre-
sponding eigenfunctions y and z. Below we outline how we do
it. Some additional details are given in the Appendix.

Magnetic corrections to p-mode frequencies in an Ap star
model have already been calculated by Shibahashi & Takata
(1993). We believe, however, that the approximation they
adopt cannot be justified and introduces an uncertainty which
is impossible to assess. The authors acknowledge the uncer-
tainty in their treatment. They applied a standard perturbation
treatment, ignoring the fact that the magnetic perturbation
cannot be treated as small in the outer layers and that the
perturbation is singular (raising the differential order of the
system of equations).

In our treatment of the magnetic boundary layer, we use a
local plane-parallel approximation at each latitude, ignoring
all angular derivatives of the perturbed quantities. The latter
approximation is a consequence of focusing our interest on
modes of low angular degree. The bottom of this layer, r = rg,
was determined by the condition f < 1, for which the typical
re ranged from 0.98 to 0.99. At r <rg, a full decoupling
between Alfvénic and acoustic oscillations was assumed,

§=¢+¢&. €)

The Alfvénic modes are described by the WKB approximation,
and following the suggestion of Roberts & Soward (1983), an
ingoing wave solution was adopted. The ingoing Alfvénic
waves are assumed to be dissipated well before they would
have reached r = 0. The &, obey the ordinary, nonmagnetic
equations of stellar pulsation. The boundary layer solution, at
r = 1y, yields for each trial w, the complex function &, where

op
— = Z 4
< » >,, )y, » @
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where dp denotes a Lagrangian pressure perturbation, which
with use of the continuity equation and the adiabaticity condi-
tion (eqgs. [A2] and [A3] of the Appendix) may be expressed in
terms of y and z. The determination of the boundary layer
solution for the % (0) is presented in detail in the Appendix.
Equation (4) may be regarded as an outer boundary condition
imposed on the solution of the oscillation equations satisfying
the inner boundary conditions. Additional boundary condi-
tions imposed on the solutions at r =rg, follow from the
requirement that the perturbed gravitational potential is
described by a decreasing solution of the Laplace equation,
which is a consequence of negligible mass of the magnetic
layer.

Since # depends on 6, the solution cannot be described by a
lone Legendre polynomial. We consider instead a truncated
expansion

Yp = ; Dy y, «(r)Py(cos 0) , )

of consecutive Legendre polynomials of the same parity, where
the y,, are solutions for degree k of the equation for oscil-
lations satisfying the inner boundary condition at r = 0. The
parity selection arises because Z(0) is symmetric about the
equator. We note that Kurtz (1992) finds that in the case of HR
3831 the data require expansion of the surface amplitude in
terms of both odd and even Legendre polynomials. The impli-
cation of his finding is that the magnetic field cannot be a pure
dipole.

Using this expansion and the corresponding one for dp/p in
equation (4), we obtain the following homogeneous system of
equations for the D’s with w being a complex eigenvalue,

op
> [5“‘(;) + Fi yp,k:|Dk =0, ©)
p.k

k

where
n/2

1 .
=— F P, si . 7
Fi 21+1L P, Z P, sin 6d6 W)

The frequency w occurring implicitly in &, y, and dp/p is the
eigenvalue. Although the system is adiabatic, it is, nonetheless,
complex because of the wave losses. The imaginary part of the
eigenfrequency, 3(w), yields the amplitude damping rate.

In most of the cases considered, an accuracy of 0.01 uHz was
achieved with five to nine terms included. However, in some
cases of interest close resonances cause problems. We will
discuss such a case in the next section.

For the remainder of the paper, we use cyclic frequencies, v,
instead of angular frequencies, w, since the former are favored
by observers.

4. SOLUTIONS

In model 2, we considered modes for which the nonmagnetic
mode identifiers are in the ranges [ =0-3 and n = 21-24.
These are the modes which exhibit a significant driving effect
from the hydrogen ionization zone. We varied B, from 0.5 to 1
KG—a typical range for roAp stars. Figures 2 and 4 show the
real frequency shifts due to such fields for four selected modes.
The changes of these shifts with increasing field are compli-
cated and strongly affected by an interaction with adjacent
modes of the same parity. One may see that the size of the
magnetic shifts is comparable to the frequency separation in
the nonmagnetic limit. To measure the degree of the inter-
action, we calculated contributions to the total kinetic energy
of the mode from various terms of the expansion in equation
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FiG. 2—The real [#(v)] and imaginary [3(v)] parts of oscillation fre-
quencies (in uHz) in the presence of the dipole magnetic field having B, =
0.5-1.0 KG for the modes which in the nonmagnetic limit are | = 1, n = 22 and
I = 3, n = 21. The nonmagnetic frequencies for = 1, 3, and 7 mode are shown.
Frequencies of the I = 5 and 9 are outside the range.

(5). These contributions denoted E,, for the four modes selected
are shown in Figures 3 and 5.

For the case of the odd parity modes illustrated in Figures 2
and 3, we observe a strong interaction between modes begin-
ning with B, = 0.65 KG. The [ = 1 mode has a strong k = 7
component, which is a consequence of a near-resonance. At a
somewhat stronger field, modes of /=1 and 3 undergo an
avoided crossing. In spite of a significant contamination from
the higher degree components, the truncation works quite well
in the range of field intensity we consider.

Turning now to the case of even parity modes illustrated in
Figures 4 and 5, we call attention to a complicated situation
arising for the case of the [ = 2 mode. The complications orig-
inate because of the proximity of modes with [ = 8, 12, and 16.
We had to terminate the calculations at B, = 0.8 KG because
in extending the series in equation (5) up to k = 28, we could

F1G. 4—The same as Fig. 2, but for modes which are, in their nonmagnetic
limit,/ = 0,n = 22 and | = 2, n = 21. Positions of nearly resonant modes of the
same parity are shown in the nonmagnetic limit. The calculation for / = 2 was
terminated at B, = 0.8 KG because the truncation failed.

not achieve the requisite stability in the calculated eigen-
frequencies. It is important to realize that one cannot continue
the expansion to too large a k-value because in our treatment
of the magnetic layer, we assume that the derivatives of the
perturbed quantities with respect to 6 may be ignored. This
approximation is not valid if the expansion involves Legendre
polynomials of high degree.

The situation for other modes in the n = 21-24 range in
model 2 is very similar to that shown in Figures 2-5, except
that the problem concerning the I = 2 mode appears at a some-
what weaker field for the higher n’s. In model 1, we also con-
sidered modes with [/ =0-3 and obtained similar results,
although we did not encounter the aforementioned difficulties
with | = 2 modes. In Figure 6, we plot frequency shifts due to a
1 KG field for model 2 modes with [ = 0-1 in a wide frequency
range. Through most of this range, until about 2300 uHz, the

05 06 07 08 09 10 05 06 07 08 09 1.0
B(KG) B (KG)

F1G. 3.—The contribution to mode energy from the components of various Legendre polynomial degrees, k, for the same two modes presented in Fig. 2. The
expansion given in eq. (5) was truncated at k = 19 and the total energy was normalized to unity. The components are shown as a function of magnetic field strength.
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B(KG)

energy of these modes is clearly dominated by the component
due to the nominal / value. Evidently, the real mode mixing
occurs relatively close to the acoustic cut-off frequency, which
in model 1 is about 1500 yHz and in model 2 is about 2700
uHz.

It is not surprising that the effect of the magnetic field
increases with mode frequency. To understand it, let us go
back to Figure 1 and observe in the right panel that for n = 24,
the magnetic layer (8 2 1) encompasses a part of the acoustic
propagation zone (v 2 v,.). For lower frequency modes, this
common part shrinks and it disappears at a frequency about
half that of the n = 24 mode. Only perturbations occurring in

250 T T T T T 1

L N 1 n A " PR
1200 1400 1600 1800 2000 2200 2400
Yo

.0

B (KG)

FiG. 5—Counterpart of Fig. 3 for the modes considered in Fig. 4. The expansion given in eq. (5) was truncated at k = 28. For the [ = 2 case, there are
exceptionally large contributions from k values of 12 and 16.

the propagation zone change the frequency in a significant
way. Perturbation of the outer boundary condition imposed in
the evanescent zone has only a very small effect on the fre-
quencies. The modes detected in roAp stars are of high order
and are among those most strongly affected by KG magnetic
fields. Furthermore, it is only for these modes that we see any
significant driving in the hydrogen ionization zone.

One should note in Figure 6 that there is a smooth change
in the frequency shift with v, demonstrating that we should
not expect appreciable changes in the large separations
(Vi,n — V1,,—1) due to the magnetic field. We should emphasize,
however, that even for relatively weak fields, the flux variations

o. L " 1 N 1 " 1 al " 1 P
qZOO 1400 1600 1800 2000 2200 2400
Yo

FiG. 6.—Real and imaginary frequency shifts, from their unperturbed values, due to a B, = 1 KG. These shifts are plotted against the unperturbed frequency, v,.
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over the surface are not described by a single spherical harmo-
nic. This leads to the real possibility of confusing the large
separations. We will discuss this point further in § 6.

5. SMALL SEPARATIONS

In the absence of magnetic fields, the so-called small separa-
tions probe the deep interior (Christensen-Dalsgaard 1988;
Ulrich 1988). The most commonly used definition of the small
separations is

Sin=Vint1 = Viton - @)

In the asymptotic limit (v —» o0), there are simple relations
between the S, , and the S, ,. Here it is useful to consider them
separately, as well as considering one additional small splitting,

VontV
sy= ®)

Figure 7 shows that even for a weak magnetic field the small
separations are significantly perturbed. Therefore, in roAp
stars the small separations certainly cannot be regarded as a
probe of the internal structure.

This conclusion may sound disappointing. On the other
hand, our results point out the possibility of probing the struc-
ture of subsurface magnetic fields in Ap stars, which is very
important. For the sake of simplicity we assumed that the field
is purely dipolar. Therefore, its vital radial structure was pre-
scribed. Here we emphasize that the assumption lacks theoreti-
cal justification and that it should be observationally tested.

6. SURFACE AMPLITUDES OF THE MODES

Oscillations of roAp stars are observed as fluctuations in
intensity. It may not be too inaccurate to assume that the
bolometric intensity has the same angular dependence as the
relative pressure amplitude. This assumption would certainly
be true in the case of high-order p modes in the nonmagnetic
limit. The pressure amplitude is directly obtained from our

1 M 1 v 1
SMALL SEPARATIONS (uHz)
20 | .
15 | .
10 | .
5 - -
MODEL 1
1 " 1 " 1
0.0 0.5 1.0

B (kG)
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solution of the oscillation equations. In Figure 8 (top), these
amplitudes are shown for the modes previously considered for
model 2. The values refer to the lowest field considered (0.5
KG) for which all of these modes maintain their nonmagnetic
identity insofar as the contribution to mode energy is con-
cerned. For the | = 2, n = 21 mode, the dominant contaminant
is from the P,, component.

Our models are not sophisticated enough to allow us to
make detailed comparisons with observations like those of
Kurtz (1992). We have, however, demonstrated that one must
expect a strong contamination of the surface amplitudes from
high-order modes. This contamination may well be the critical
clue needed to explain the sizable harmonic amplitudes found
in Ap stars at relatively low amplitudes of the fundamental
frequency implying that the pulsations are more nonlinear
than their observed amplitudes may suggest.

In Figure 8, we also show the contribution to the luminosity
after averaging over the disk. Naturally only low-k com-
ponents survive. Still, the contributions are not pure. Note, for
instance, that the [ = 3 case shown may be observed as a dipole
mode. Other calculations reveal that modes with higher
nominal / may contain sizable contamination from / = 0 or 1
components. Therefore, they may be detectable. Imagine, for
instance, a mode with a nominal / value of 7 which has a
10%-20% contamination by [ = 1—which would not be
uncommon for the magnetic fields and modes we have been
discussing. Such a mode would be identified by observers as
I =1 because the amplitude reduction of P,(cos ) is about
3 x 1073, while for P,(cos ) it is 0.7. This misidentification
could lead to real problems in determining large splittings.

7. THE ROLE OF THE MAGNETIC FIELD IN DAMPING
OSCILLATIONS
How significant is the effect of the magnetic field on mode

stability ? This could be assessed by comparing the imaginary
parts of the v values arising from the field to those arising from

I 1 T
| -1 20
® S22
© Sy
- *osy 415
| 410
_ /\ 15
MODEL 2
1 1 i L
0.0 0.5 1.0
B (kG)

F1G. 7.—The small separations defined in eqs. (7) and (8) are shown in the absence of a magnetic field and at two finite values of the field. For model 2, the higher
value of the field is 0.8 KG which was selected because of the problems at 1 KG for the / = 2 modes.
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s 1=2,n=21 8. CONCLUSIONS
g | We have shown that magnetic fields of kilogauss intensity,
= typical for roAp stars, significantly affect the properties of
32 I=1,n=22 . . . . S
2 p-mode oscillations. The typical change in frequencies induced
*g by such fields range up to 20 puHz. Alfvénic wave dissipation
o implies damping rates in the range of 2-10 uHz, and as such
1=0, n=22 are comparable to damping rates due to nonadiabatic effects.
We have also seen that the intensity distribution of individual
| eigenmodes over the surface can no longer be described by a
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k

FiG. 8.—top) Legendre polynomial expansion for the relative pressure
amplitude at the photosphere for four modes of model 2 at B,=05 KG.
(bottom) Contribution to bolometric amplitude variation calculated under the
assumption that the bolometric intensity follows the angular dependence of the
relative pressure amplitude. The results are averaged over random orientations
of the axis of the magnetic field.

o1 2 3 4

the interaction with the radiative field obtained from a stan-
dard nonadiabatic oscillation code. As we have pointed out in
§ 2, though such calculations reveal significant hydrogen ion-
ization zone driving in some high-frequency modes, they do
not show net extinction [J(v) < 0]. The driving effect, there-
fore, manifests itself only in a depression of the value in Figure
9. Actually, the maximum driving effect occurs somewhat
above the upper value of the range of frequencies in the figure
and there the minimum value of J(v) is about 0.8 uHz. These
values are compared to those due to the magnetic field effect at
B, = 0.5 and 0.8 KG. We should look with some reservation at
this comparison because nonadiabatic and magnetic effects
should be treated simultaneously. Two observations, however,
can be made from these results. First, the damping due to
Alfvén losses is very significant. And in contrast to the
damping due to nonadiabatic effects, those due to Alfvén losses
are strongly [ dependent. This implies that we should expect
value of I to be important in the selection of unstable modes.
We see that [ = 0 modes are the least affected by the Alfvénic
losses. We can see in Figure 9 that this difference is quite
robust. This seems to be in sharp contrast to the observational
finding that the [ = 1 modes dominate in roAp starlight varia-
tions. We should point out, however, that in model 1 we found
the [ = 3, 5, and 7 modes to be less damped than those with
I'=0, and that for these modes the surface luminosity ampli-
tude variation is dominated by the | = 1 component.

single  spherical harmonic. The departures from mode purity
are quite large even for situations in which mode energies differ
little from their pure p-mode antecedents in the nonmagnetic
limit.

We have argued that the most probable driving mechanism
of roAp oscillations is the x mechanism operating the hydro-
gen ionization zone. In standard stellar models, we did not find
modes which are actually unstable, but we have ones that are
very close to instability. That is, driving in the hydrogen ion-
ization zone nearly compensates the radiative damping
beneath. We argued that departures from simple, standard
models such as gravitational settling of helium or improved
treatment of atmospheric layers could easily render some
modes unstable. Enhancement of the driving effect must also
be large enough to compensate the aforementioned Alfvénic
wave losses.

In spite of improvements in models, our treatment of the
stellar oscillations is still too crude to enable us to compare
model predictions with observational data. What we have
actually demonstrated is the need to account for magnetic field
effects in the description of roAp star oscillations. In fact, we
regard this as a prerequisite to any meaningful effort in the
asteroseismology of these stars. The crucial improvement in
treating oscillations is our inclusion of nonadiabatic and mag-
netic effects. However, our simple Eddington description of
radiative transfer in the outer layers is certainly inadequate.
Furthermore, to understand the alignment of the modes with
the field, we need to consider modes which are not symmetric
about the magnetic axis.
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APPENDIX
BOUNDARY LAYER APPROXIMATION

Our treatment of the magnetic boundary layer may be regarded as a special case of that due to Campbell and Papaloizou (1986).
Our specialization is for low-degree oscillations symmetric about the magnetic axis. Thus, the system of equations we solve is
reduced to fourth order in r. Terms involving the horizontal wave vector are absent. The only important difference concerns the
outer boundary for which they used a polytropic model. We, on the other hand, use an infinite isothermal atmosphere. The main
advantage of our approach, however, lies in a rigorous treatment of the eigenvalue problem for the whole model as it has been
described in § 3. We feel that the method of Campbell & Papaloizou, consisting of solving separate eigenvalue problems at each 6,
does not provide a useful approximation for roAp star models.

We present here an outline of the method leading to the determination of #(6) given in equation (4) which is our crucial equation
in determining the eigenfrequencies. We begin with the equations for linear, adiabatic oscillations in the presence of a curl-free
magnetic field,

P1+BX(VXB1)

W == Vp, +ge, 2 (A1)
p p 4np
op=—pV-¢, (A2)
dp = c2p (A3)
where ¢2 = I'p/p and T is the adiabatic exponent and
B, =Vx(&xB), (A4)

where B and & are given by equations (1) and (2). The subscript “ 1 ” denotes an Eulerian perturbation of the respective quantity, “6”
denotes a Lagrangian perturbation, and g is the gravitational acceleration.

In our boundary layer approximation, we ignore derivatives with respect to 6, assume r = R, and | (r/a)(da)/(dr)| > 1, where a is y,
z, or a thermodynamical parameter in the unperturbed model. With these approximations, we get from equation (A4)

BZ  d*h sin 0
BX(VXB‘)—RsindeZ (— 5 & + cos Oeo), (A5)
where
hzgsinz()—zsinb?cose, (A6)

and x = r/R. Except for the special cases of the pole and the equator which will be considered below, equations (A1)—(A6) lead to

£ () ()
and
g—%<%>2ta;02=0, (A8)
where
_ 5}% , (A9)

and V = grp/p. At the magnetic pole (§ = 0), the oscillations are decoupled from the magnetic field, énd we use equation (A7) with
z = 0. At the equator (9 = =/2), we have h = y/2 and the system again reduces to a second-order equation,

d?y 4 dinT dy [or\?

— 4+ — —V)—=+{— =0.

2ty B [( dx ) axt\¢)? 0 (A10)
We apply the outer boundary condition in the atmosphere at very low optical depths where we may crudely regard the atmosphere

as being isothermal. We require there that § > 1. The solution for & should be such that it can be continuously fitted to the vacuum
solution, which implies that

dh _
dx

The exact form of the boundary condition does not matter as long as | dh/dx| < V. Equation (A7) with V and I being constant and

(A11)
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h = 0 has an exponential solution which yields
dy
—=1ly, A
il (A12)
where
14 w? tan® 6
=—l1_ _ A13
y) 2[1 \/1 wfc<1+ 2 )] (A13)

and w,. = V¢/2r. The choice of the branch of the square root is such that for real values, the solution describes trapped modes and
for imaginary values it describes outgoing waves. Note that near the equator, trapping never occurs because of the behavior of the
tangent.

In the opposite limit (f < 1), an asymptotic decomposition of the system occurs beneath r = ry,,, as already discussed in the papers
of Roberts and Soward (1983) and Campbell & Papaloizou (1986). One solution is the one describing p-modes in the absence of the
magnetic field. It corresponds to the choice z — 0. Then, from equation (A6) we have

h, =121Z sin® 6 . (A14)

The other solution is rapidly oscillating and it describes Alfvénic wave. Equation (A8), where we may neglect y, yields

hy oc exp (i®,) , (A15)
with
dd,, _ wr (A16)
dx ¢ /P cos 6

Following Roberts & Soward’s suggestion we selected the branch describing the ingoing wave. For this solution equation (A7)
yields

Ya = g ha . (A17)

For intermediate values of 6, we have two sets of solutions for y and h satisfying the outer boundary condition. Thus, at r = rg,
write

Ciyi+Cry, = _‘g'hA +Yp (A18)
and
2 0
Cihy + Cyhy = hy + -S-‘—’—’z—— . (A19)

There are obvious analogous equations for the derivatives of y and h. The resulting system of four equations involves five unknown
quantities, Cy, Cy, y,, V5, ha. It allows us to express, in particular, y, in terms of y, for each 0 and trial eigenvalue. From the relation
op/p = —T'dy/dx, we then obtain #(0) in equation (4).

The system of equations (A6)—(A8) was solved by the Runga-Kutta method with an adjustable step. Note that near the equator,
oscillatory behavior occurs much earlier than near the pole. The step size is adjusted so that % (0) behaves smoothly. In standard
calculations, we used 64 gridpoints for the colatitude, but the results were insensitive to this choice as long as more than 20 steps
were employed.
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