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ABSTRACT

We obtain analytic formulae for the null geodesics of Friedmann-Lemaitre-Robertson-Walker spacetimes
with scalar perturbations in the longitudinal gauge. From these we provide a rigorous derivation of the
cosmological lens equation and obtain an expression for the magnification of a bundle of light rays without
restriction to static or thin lens scenarios. We show how the usual magnification matrix naturally emerges in

the appropriate limits.

Subject headings: cosmology: theory — gravitation — gravitational lensing

1. INTRODUCTION

The bending of light by a single symmetric gravitational lens
in Euclidean space is shown in Figure 1. The symmetry guar-
antees that the lines of sight from the observer, o, to the lens, /,
and to both the lensed and unlensed images of the emitter, e,
are coplanar and can be related by the angles «, 8, and 6. D(o, I)
and D(o, e) are the distances from the observer to the lens and
emitter, respectively. We assume that the deflection angle, a, is
small. Then, locally about the line of sight to the emitter’s
image, we may approximate the two-spheres at distances D(o, [)
and D(o, e) from the observer as planes, called the lens plane
and source plane, respectively. D(], e) denotes the distance
between these two planes. The assumption of small deflection
angle also allows us to relate the lensing angles by
B = 6 — aD(l, e)/D(o, e). This is the simplest expression of the
gravitational lens equation (Refsdal 1964).

The generalization of this equation to more complicated lens
structures and non-Euclidean background spaces proceeds by
a number of steps. We continue to assume that the actual path
of the photon is well approximated by two segments joined at a
point of deflection, p, located near the lens. A general lens is not
symmetric so that the angles «, §, and 6 are not necessarily
coplanar. To handle this, consider a set of Cartesian axes with
origin at the observer. Choose the x-axis to coincide with the
line of sight to the image. Let o, where i runs over {2, 3}, be the
angle between the x-axis and the projection into the x'x-plane
of the line-of-sight vector from the deflection point, p, to the
emitter. Similarly, let ' be the angle between the projection
into the x'x-plane of the line-of-sight vector from the observer
to the lens and the projection into the x'x-plane of the line-of-
sight vector from the observer to the unlensed image. Also, let
' be the angle between the x-axis and the projection into the
x'x-plane of the line-of-sight vector from the observer to the
lens. To allow for non-Euclidean spatial geometries D(o, e) is
taken to be the angular-diameter distance in the background
geometry from the observer to the intersection of the x-axis
with the source plane, and D(, e) is taken to be the angular-
diameter distance in the background geometry between the
deflection point, p, and the intersection of the x-axis with the
source plane, p’. Then, again assuming small deflection angle,

D(l, e) (1)

ﬂl:OI_D(o,e)a'
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This is the standard cosmological gravitational lens equation
(e.g., Schneider, Ehlers, & Falco 1993, p. 31, eq. [2.15a]). An
important quantity associated with this formalism is the mag-
nification matrix M} = /06, which contains information on
the deformation of ray bundles connecting the observer and
emitter. For example, the inverse of the determinant of this
matrix is the magnification of an image relative to an unlensed
image.

The purpose of the current paper is to address a number of
subtle issues that arise when we attempt to justify mathemati-
cally the use of the lens equation (1) for calculations in our
universe, although most workers agree that the physical basis
for its use in observed lens systems is strong. First, there is the
question of the correct choice of distance factors There exists a
large literature addressing this question, primarily concerned
with the appropriateness of the so-called Dyer-Roeder dis-
tances (Dyer & Roeder 1972, 1973; Alcock & Anderson 1985,
1986; Ehlers & Schneider 1986; Futamase & Sasaki 1989;
Watanabe & Tomita 1990; Watanabe, Sasaki, & Tomita 1992;
Sasaki 1993; see also Gunn 1967a, b). Our work suggests that
within the framework of cosmological perturbation theory, the
natural distance factors to use are those of the background.
Hence, the choice of distance factors is equivalent to the choice
of cosmological model, in agreement with the recent results of
Sasaki (1993). The issue of the most appropriate choice of
cosmological model must be addressed in its own right.

The second concern in any mathematical investigation into
the lens equation is the accuracy of the approximation of an
actual photon path by two geodesics of the background which
join at a point near the lens: the deflection point, p. On physi-
cal grounds we expect this approximation to be good for
systems for which the photon-lens interaction is localized: the
thin-lens approximation. One purpose of our present work is
to quantify the error involved in using two geodesics of the
background, rather than the actual path, in deriving the lens
equation, (1).

Third, how are we to find the angles appearing in the lens
equation from physical data? Generally, the o are taken to be
those calculated in Einstein-de-Sitter spacetime, since the
overall curvature of space should not be important near p,
where the light ray interacts with the lensing object. For static,
thin lenses, the deflection angle is written as a superposition of
point mass deflection angles contributed by mass elements of
the lens projected onto the lens plane (Schneider et al. 1993).
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F1G. 1.—Gravitational lensing by a single symmetric lens. f is the angle at
the observer, o, between the image of the lens, /, and the unlensed image of the
emitter, e. 0 is the angle between the image of the lens and the light ray epo,
along which the emitter is observed. The point of deflection, p, lies in the lens
plane. The intersection of the line joining the observer to the point of deflection
with the source plane is labeled p'. o, the deflection angle, is the angle at p
between the image of the emitter, e, and p’. D(o, ]) is the distance between the
observer and the point of deflection, D(o, e) is the distance between the observ-
er and the source plane, D(], ¢) is the distance between the lens and source
planes.

For brevity we will term the resultant angle the “Einstein
angle.” Another purpose of the present work is to derive this
result from the full equations of light propagation under an
appropriate set of mathematical approximations. Succinctly,
the lens equation, for static, thin lenses, effectively assumes that
the light path is described by the Jacobi equation of the back-
ground spacetime subject to an impulsive wavevector deflec-
tion at the lens plane by an angle equal to the usual Einstein
bending angle. We wish to quantify the level of approximation
involved.

There have been two notable recent attempts to clarify the
validity of the cosmological lens equation by deriving it from
the optical scalar equations (Seitz, Schneider, & Ehlers 1994)
and the Jacobi equation (Sasaki 1993). However, a crucial dif-
ference between these papers and the present work is that they
treat the path of the light ray differently near to and far from
the lens. It is precisely this assumption that we must eliminate
if we hope to gain a more general lens equation able to quan-
tify the errors implicit in equation (1).

Our approach is to investigate the cosmological lens equa-
tion as it emerges from the geodesic equation. In this our work
is complementary to that of Seljak (1994), Durrer (1994), and
Kaiser (1992) who have used the geodesic equation to investi-
gate certain lensing questions for perturbed Einstein—de Sitter
spacetimes (for an approach to lensing questions in perturbed
Einstein—de Sitter spacetimes using Fermat’s principle see
Frieman, Harari, & Surpi 1994; Surpi, Harari, & Frieman
1995). Where our work overlaps that of these authors we are in
agreement. We will show, however, that it is possible to handle
the curved Friedmann-Robertson-Walker (FRW) spacetimes
by analogous calculations, though of somewhat more technical
difficulty. With theorists beginning to take the idea of spatially
curved models more seriously (Kamionkowski et al. 1994;
Kamionkowski, Spergel, & Sugiyama 1993; Spergel et al.
1993), we feel that this extension is of more than formal impor-
tance.

In this paper we make use of a method for constructing null
geodesics in perturbed spacetimes introduced in Pyne and Bir-
kinshaw (1993), hereafter PB. The method is the analog for
geodesic curves of familiar perturbation techniques for differ-
ential equations. The results presented here come from apply-

ing this method to FRW spacetimes with scalar perturbations
in the longitudinal gauge. Our principal results are:

(1) Analytic formulae (eqs. [13] and [14]) for light rays in
the spacetime (5);

(2) A general expression for the magnification undergone by
a bundle of light rays capable of handling nonstatic, geometri-
cally thick, lenses (eqs. [35], [36], and [38]);

(3) A demonstration that the usual lens equation (1) and
magnification matrix are recovered in the appropriate approx-
imations.

To our knowledge, this is the first rigorous derivation of the
cosmological lens equation for perturbed FRW spacetimes
with spatial curvature.

The outline of this paper is as follows. In § 2 we review the
perturbative geodesic expansion introduced in PB. In § 3 we
apply this formalism to the problem of constructing null geo-
desics of FRW spacetimes with scalar perturbations. With the
help of the equation of geodesic deviation for the FRW back-
ground, the solutions we find will enable us to understand the
role of the Einstein angle for light propagation in these space-
times. In § 4 we obtain an expression for the magnification of a
bundle of light rays in such spacetimes without restriction to
static, geometrically thin perturbations. We then discuss the
emergence of the usual cosmological lens equation, (1), in the
appropriate limits. In § 5 we illustrate the use of the magnifi-
cation equation by solving it for a point mass embedded in an
Einstein—de Sitter spacetime.

2. THE PERTURBATIVE GEODESIC EXPANSION

We work in geometrized units, G = ¢ = 1. We let Greek
indices g, v, ... run over {0, 1, 2, 3} and Roman indices i, j, ...
run over {1, 2, 3}. The spacetime metric is taken to have signa-
ture +2. Our Riemann and Ricci tensor conventions are given
by [V,, Vs]v* = R*, zv"and R4

In PB we showed that glven a null geodesrc of g, x©%(2),
with A an affine parameter, we could construct a set of four
functions, which we call the separation, x""(), transforming
as a vector under infinitesimal coordinate change, which were
sufficient to ensure that x®#(1) + x*(1) is an affinely param-
eterized null geodesic of g + h,,. In order to construct xV¥()
we need three quantities, two referring solely to the back-
ground metric and one referring to the perturbation. First, we
need the parallel propagator (Synge 1960) appropriate to
x@%(2)in '3 (in PB we called this the connector after DeFelice
and Clarke (1990, § 2.3), mostly to avoid confusion with the
Jacobi propagator below, but we prefer Synge’s term). We
remind the reader of one crucial property of the parallel propa-
gator: if v#(4,) is a vector at x‘¥%(1,) and v"(4,) is its parallel
translate along x'“%(J) to the point x“%(1,), then the parallel
propagator P(4,, 4,)*, obeys v*(1,) = P(4,, 4,)*, v"(4,). That is,
it parallelly propagates vectors along x(°)(2).

The second quantity we need, the Jacobi propagator, also
refers only to the background spacetime. Introduced in PB, it
is an 8 x 8 dimensional matrix which serves as a Green’s func-
tion for the Jacobi equation for g along x%4(A). Its explicit
construction makes use of the para]le] propagator, the curva-
ture tensor of g%, R©*, . and the tangent vector to x(V%(2),
the wavevector, k‘o"‘(i) dx‘o"‘(l)/d,l With eight dimensional
systems the usual tensor notation can be cumbersome so we
will use the matrix notation of PB. We let ()", denote the
4 x 4 matrix RO _kO"k®” evaluated at x(°(2) and write
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Py, W, R(A), P(A, A1), as P(iy, AR(A)P(, 1;). Then the
Jacobi propagator U(4,, 4,) is given by

A2 0 ld
U(4;, 4y) = 2 exp {Ll [p(,{l, NR(AP(A, Ay) O]dl} '
@

Here 1, is the 4 x 4 identity matrix and £ denotes the path-
ordering symbol.

The final quantity we need encodes the effects of the pertur-
bation itself. It is a vector field defined along x®*(1). We
denote the covariant derivative with respect to g{3 by a semi-
colon. Then the perturbation vector at affine parameter 4,
f*(A), s given by

£7 = Shy KOO _ p @08 3)

evaluated at x(©#(1).

It was shown in PB that the force vector, Jacobi propagator,
and parallel propagator allow us to solve for the separation,
xD4(2), In particular, we suppose that we desire to construct a
geodesic of g + h,, of the form x*(1) = x©¥(J) + xV*(1) and
that we know the appropriate boundary conditions at affine
parameter A,. Then x(** is given at arbitrary affine parameter,
'12a by

P(44, 'lz)xm('lz)
d
:1/1_2 [P(Ay, lz)xm(lz)]
xM(4y)

= Uy, 4y) {_d_ [P(A,, A)xu)(,l)]}

di

A=A

A2 0
2 /l B 4
* j v ”[P(zl, i)f(/l)]d @

where the integral in this equation is taken over the back-
ground path, x@#(2).

While the solution above looks complicated, in practice
background spacetimes are chosen specifically for their high
degree of symmetry and tractability and this often allows us to
construct the needed propagators explicitly. In these cases,
equation (4) reduces the work of finding null geodesics in the
perturbed spacetime to a simple problem of integration. We
will see below that the crucial FRW spacetimes belong to this
class.

The consistency criteria for our solution are precisely those
of all perturbative-type geodesic calculations; extremely heu-
ristically, the background and the constructed geodesic should
not be allowed to reach regions where their spatial or temporal
deviations are such that the geodesics effectively feel different
gravities at equal affine parameter, either due to the pertur-
bation or the curvature of the background itself. A simple a
priori estimate for the domain of validity was given in PB, but
in practice, the consistency may usually be checked easily after
a solution is obtained.’

3. THE DEFLECTION ANGLE
We will now employ the techniques reviewed above to inves-
tigate the theory of gravitational lenses in cosmology. Our

! We note that the condition €2 < k given in PB is not, in fact, necessary.
We thank Uros Seljak for pointing this out to us.
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starting point is a choice for the metric. We choose to work
with FRW spacetimes wth scalar perturbations written in the
longitudinal gauge,

d5* = a’[—(1 + 2¢)dn* + (1 — 2¢)y ~(dx? + dy* + dz?)],
©)

where y = 1 + kr?/4, k being the spatial curvature parameter
(£1 or 0) and r? = x? + y? + z2. Inhomogeneities are rep-
resented by the quasi-Newtonian potential, ¢. For the order
needed by us, the expansion factor, a(y), is unperturbed from its
Friedmann form (Jacobs, Linder, & Wagoner 1993). We
choose this form for the metric for a number of reasons. The
metric (5) is also used by Seitz et al. (1994) and Sasaki (1993), so
that direct comparison of results is possible, and work by Futa-
mase (1989) and Jacobs et al. (1993) has shown that structure of
galactic scale and greater in our universe can be well modeled
by metrics of this type. While results obtained with the metric
(5) are not appropriate for lensing by gravitational waves or
vector perturbations, these cases are easily handled in an ana-
logous manner.

Next we choose a particularly useful class of background
light rays with which to build our perturbed solutions; radial
null geodesics intersecting the observer at the spatial origin.
Because the Friedmann expansion, a, plays the role of a con-
formal factor it is simplest to work with the null geodesics of
ds?, defined by ds? = a®ds?. Light rays in these two metrics
coincide and their (affine) parameterizations are related by
k* = a~2k*. With the observer located at the spatial origin, the
radial null geodesics of ds®? (i.e., of that part of ds? indepen-
dent of ¢), may be written k‘9° = 1 and k9" = —ye', where ¢
are the direction cosines at the observer, so that ) ., (¢)? =1
(McVittie 1964). Note that we have chosen our affine param-
eter to coincide with conformal time. This is purely for conve-
nience. The explicit solutions for the comoving radius and for y
along such rays are given by

Ay — A
A=2t 2
r() anx( 2 >7

Ao — A
2 9

() = secg < :

(6)

where 4, is the affine parameter at the observer. The subscript
K on trigonometric function denotes a set of three functions:
for k = 1 the trigonometric function itself, for k = — 1 the cor-
responding hyperbolic function, and for k¥ = 0 the first term in
the series expansion of the function. The paths of the rays are
x00 — 2/ x(O0 — poi.

The equations of parallel transport along x'©%(4) are easy to
solve. Two vectors, v4 and v¥, at x‘“%(1,) and x‘“*(4,), respec-
tively, are related by parallel translation provided that v3 = v?
and that v = y(A,)v} /y(4,). We can, thus, read off the parallel
propagator for our class of geodesics,

1 0;
P(Ay, Ay =\ o v4) i |- @]
0 —=
74y

Next we will obtain the Jacobi propagator. The Riemann
tensor of ds‘®? is nonvanishing only when all indices are
spatial, when

ROy = — g9 — g%, 1, ®
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where ¢'9 is the metric ds®2. As a result we can write
RO%, KOk = —icJ*  where
0 0;
Jp= . ). 9
? (0' 5;—e‘ej> ©)

J is idempotent, J2 = J. This allows us easily to sum the series
defining the Jacobi propagator, (eq. [2]), in 4 x 4 subblocks.
The result is, returning fully to our matrix notation,

J cos, (A, — 4y) J sin, (4, — 4y)
—x Jsin, (4, — 4y) Jcos, (4, — 4y)

L= d) (- A)
+[ 0 (1.,—1)]' (10

We note that J may be interpreted as a projection operator
into the space transverse to the photon direction in the co-
moving spatial hypersurfaces. Thus the Jacobi propagator, U,
has split into a transverse rotation and a longitudinal shear.

Another crucial quantity we will need before we can con-
struct the perturbed light rays is the force vector f*. We note
that the force vector may be constructed not only from equa-
tion (3), but also from the equivalent

fr= _r‘(l)u k(O)ak(O)ﬁ , (11)

where I'V¥_; denotes that part of the Christoffel connection of
ds? which i 1s lmear in either the metric perturbation or its first
partial derivatives. Direct calculation yields

K©igy
S P

where a comma denotes an ordinary partial derivative.

It remains only to determine the appropriate initial condi-
tions for the separation before we can use equation (4) to gain
the null geodesics of ds?. We will choose the perturbed geodesic
and the background geodesic to coincide at the observer,
xW¥(1) = 0. As discussed in PB, we cannot take the wavevec-
tors of the two geodesics to coincide fully at the observer
because the geodesics must each be null in their respective,
different metrics. We will choose, for convenience, with
kWD = dx™M/dj, k'Y, ) = 0. The constraint that k@* 4 kM
be null in ds? at the observer then tells us that kV°(4,) = —2¢,
where we denote the value of ¢ at the observer by ¢,.

It is now simply a matter of assembling the necessary pieces
in equation (4) to gain the separation at arbitrary affine param-
eter A,, and thus the light rays of ds>. Some straightforward
labor yields

U('lz, )“1) = [

(12)

xWA) = =24, — A), + 2 JledW — Ak O" (2)  (13)

Ao

and

XDi(3) = — 2k J di( — z)@(z)

+ 2)(A) j “dising (A — A) —
Ao

Voo, (14)

(l
where V' = g'Omn(5i — ¢, €90, is the transverse gradient oper-
ator. We see that the spatial separation is naturally written as
the sum of a longitudinal and a transverse term. We remind the
reader that the above integrals are taken over the background
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geodesic x@#(1). Hence, if these solutions are used for geo-
metrically thick lenses, the error terms will become important
at some finite distance along the geodesic. In this case, it will in
general be necessary either to apply an iterative procedure,
incorporating a number of background paths, or to appeal to
statistical arguments to bound the errors. These approaches
are familiar from the usual multiple lens plane theory
(Schneider et al. 1993; see also Seljak 1994). A crucial differ-
ence, however, between the use of multiple background paths
in our formalism and in the multiple lens plane method is that
formulae (13) and (14), in principal, allow the photon path to
be approximated to arbitrary accuracy by successive modifi-
cations of x@#(4), in contrast with the multiple lens plane
theory where the continuum limit is not compatible with the
assumptions underlying the theory.

It is not too difficult to check by straightforward calculation
that the geodesic defined by equations (13) and (14) is, in fact,
null. This is to be expected in light of the general theorem
proved in PB that our constructed geodesic preserves its null
character. We point out, however, that our appeal, in that
paper, to the coordinate invariance of scalar quantities in order
to argue for the vanishing of the term involving the part1al
derivative of g‘o’ is invalid. The theorem is, nevertheless, true.?

We can gain more understanding of equations (13) and (14)
by considering their relation to the equation of geodesic devi-
ation. In Appendix A we show that the Jacobi equation of
ds®? subject to an arbitrary impulsive wavevector pertur-
bation Sk at some affine parameter u is solved by deviation
vector dx* with spatial components

4 .
y) — 22w =
~ @ )Ok' (u) ()(u Aokij(w)

where 6k, = (8% — e'e;)0k’ is the impulse in the tranverse direc-
tion, and okj; = ok’ — ok, is the longitudinal impulse.

A comparlson of equations (14) and (15) leads to the inter-
pretation of the spatial components of our solution for the
separation, x, as the result of a continuous sequence of
impulsive perturbations

14

ox'(A) = sin, (u — (15)

o

Ok = —2V, ) + 2k 2 (16)

The form of the impulse can also be gained directly from our
equations by differentiating the spatial separations with
respect to the affine parameter, and inserting a delta function
at /J, into the integrand which forces the integrand to vanish
except at the lens plane. This gives

09

KOM) = =2V, () + 2K 500, (1)

which is exactly the impulse found above.

At this point we need only do a little work to recover the
Einstein angle from our equations. Establish a set of Cartesian
axes at the observer and choose the unperturbed wavevector
k©O® = (1, —y, 0, 0). Consider a static, localized perturbation in
the xy-plane. Then the angle represented by the impulse per-

2 One way to patch it up, for instance, is to note that g{?) ) = 0 allows us to
replace the offending term by a sum of two terms lmear in the Christoffel
symbols of the background, each of which vanishes in the chosen coordinate
system of the second half of the proof.
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turbation found above (eq. [17], that is, the angle k®/(4)
+ k™Wi(1,) makes with k(¥(4,), is given by

oy —2AV 9y
== -2 .
'y(ll) y(ll)d),y

The factor of y(4,) is present only because our coordinates are
scaled in an unusual way at the lens plane. If we make the
coordinate change x = x'/y(4)) the metric on the lens plane
becomes Minkowskian and, locally near the deflector, y’ and 2’
serve as normal coordinates on the lens plane. In these coordi-
nates ¢ . on the lens plane takes on the usual Newtonian form
(with origin shifted from the lens, accounting for the unusual
minus sign). Since our lensing angle —2y(4,)¢ ,= —2¢ , the
integrated impulse lensing angle for a localized perturbation is
exactly the Einstein deflection angle. We emphasize that this is
the first time this has been shown rigorously for the curved
FRW spacetimes.

For completeness we note that the timelike component of
the separation can also be analyzed by comparison to the
Jacobi equation. The Jacobi equation of ds‘®? for an impulse
wavevector perturbation ok* at affine parameter u results in
a timelike component of the deviation vector 6x° =
—(u — 2)6k°(u). Comparison with our solution for the separa-
tion reveals that the time delay undergone by the light ray
relative to the fiducial background ray may be considered to
result from a sequence of impulses 6k° = —2k©™¢ . in addi-
tion to a boundary term.

(18)

4. THE MAGNIFICATION

We want to examine the magnification undergone by a
bundle of light rays. We define this after Schneider et al. (1993)
in the following way. Suppose a source of given physical size at
some redshift is observed to subtend solid angle dQ. An identi-
cal source observed at identical redshift placed in an FRW
spacetime would subtend solid angle dQ(®. The magnification
M is defined to be dQ/dQ©.

To gain the magnification we will construct an infinitesimal
bundle of light rays in ds? which emanate from a source and
converge at an observer, located at the spatial origin of coordi-
nates, by varying the direction cosines of the background ray,
¢', in equations (13) and (14). We will determine the solid angle,
dQ, subtended by the rays in the rest frame of an observer with
four-velocity u* = (1/a,)(1 — ¢,, vi). We will then ask what
local area transverse to its direction of propagation the bundle
sweeps out in a frame with four-velocity u* = (1/a, )1 — ¢,, v’),
dA, at a given redshift, z. We regard the peculiar velocities v}
and ! as first-order quantities so that u* and u” are properly
normalized to first order in d5*>. We suppose a source with
four-velocity u* intersects our bundle, that its redshift is z, that
its physical size is dA, and that its shape is such that it exactly
fills the beam; that is, our bundle is the light of a physical
source. In this way we will gain a relationship between dQ and
the redshift and proper size of the source and the four-velocity
of the observer. A similar relationship is easy to derive for an
identical source in the background spacetime. Comparison of
the two expressions will yield M. Figure 2 illustrates the con-
structions of this section.

We begin by choosing a set of null geodesics of the back-
ground with which to construct our congruence. We use the
two-parameter family of curves given by x©* = (4, re’) with r
as in equation (6), e’ = (1, d sin 6, d cos 0), d € (0, €) with €
infinitesimal, and 0 € (0, 2%]. We work to first order in €. To
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Xu
da

X(O)u
d

o dA(O)

F1G. 2—The lensing of a congruence of null geodesics. The actual con-
gruence, with central ray x*, joins the observer at o with the emitter at e and
has area dA at the emitter. It is constructed from a congruence of the back-
ground, with central geodesic x(®*, reaching between the observer and a point
q. The redshift in the background between the observer and q is equal to the
redshift in the perturbed spacetime between the observer and the emitter. The
background congruence has area dA® at q.

this order, this set of rays defines a null congruence of ds»2.
To each of the rays of this congruence is associated a null
ray of ds?, and hence of ds?, by equations (13) and (14) above,
x* (4; d, 0). In the rest space of the observer, these rays define a
cone. To see this, we note that the conical shape is clear for a
comoving observer. For an observer with some peculiar veloc-
ity the assertion then follows from a result of Sachs (1961) on
the geometry of null rays.

Next we will determine the two-dimensional projected area
of our bundle at a given redshift. In Appendix B it is proven
that, to first order in the perturbation, w* = x*(d =€, 0)
— x*(d = 0) is a one-parameter family of geodesic deviation
vectors of ds® along the central geodesic of the bundle,
x*(d = 0). From this point on, any wavevector or path per-
taining either to the perturbed or unperturbed spacetimes not
written with an explicit d-argument is intended to refer to the
appropriate central geodesic, d = 0. Taylor expansion writes

OxOr gy ) )
B o= - - in 06% + € cos 66%), (19
v [ et od :|¢i=(1,o,o)('e bz Te 3> (19
which we can write as
wh = wh€ sin 0 + wi;y€e cos 0, (20
with s
xll
wly = — 21)
D de’ i=(1,0,0) (
forj = 2, 3. It will also be useful to define, withj = 2, 3,
ax(o)u
O — - =ro¥, (22)
) e’ IR J
and N o
W= = , 23
W) e’ i=(1,0,0) ( )

so that wf;, = wiQ* + w{p*.

Suppose now that the central geodesic of our bundle inter-
sects the worldline of our hypothetical source at the point e.
The projection of w* into the two-dimensional subspace
orthogonal to both u% and to the projection of k* into this
subspace, i.e., to the direction of photon propagation, defines
an ellipse. We can determine the characteristics of this ellipse
explicitly. The relevant projection operator is given by
(Kristian & Sachs 1965)

le#k
H* = §* — y _ A
U w,c k? u,c ko ou,ck’

(24
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where we denote the d5? inner product by a dot, e.g., u, - k =
U3 Gup kP. We will use L to denote the result of acting on a given
vector with H* ,e.g., wi = H:w

Extremizing w, - w, with respect to 0 we find the major and
minor axes of the ellipse occur for

_2WJ_(2) *Wi@3) } + n_n (25)
Wiy  Wie)— Wi Wie)] 2

1
0=§tan‘1{

with n = 0, 1. In equation (25) the inner products are evalu-
ated at e. Denoting the argument of the inverse tangent by y,
the squared lengths of the two axes are given by, for 6 =
(3)tan"" x

2
€
W, "w, = —2{[WJ_(2) Wiyt Wisy WJ.(3)]\/ 1+ XZ
21+

=iy Wiey — Wig) Wi — 20W.0) WJ.(S)]} (26)

andfor 6 = /2 + (3) tan™' g

W, w, = \/— {[Wi(z) Wi+ Wis): WJ.(S)]\/

1+ %2
+[Wia) " Wie) — Wi@) Wie) — 2MWie) Wl(s)]}
(27)
which lead to the area of the ellipse, dA4, being

dA = 527"{[“&(2) : WL(Z)][WJ.O) Wil = Wi - wJ_(3)]2}1/2 .

(28)

At this point the underlying structure of our calculation is
becoming clear. We are involved in a realization of standard
ideas in the geometry of linear maps of the plane: by Jacobi
propagation followed by projection we have linearly mapped
the two-plane spanned by wf;, j = 2, 3, to the transverse two-
plane at the source. Much of this section is easier to under-
stand with this in mind.

We continue by breaking the projection operator up into
zeroth and first-order parts in the perturbation H*, = H®*,
+ HM* | 1t is then possible to show that to first order
H*,w'H ,,w* = HO* w*HQw* This relationship has a simple
geometrical interpretation. By a theorem of Sachs (1961), the
four-velocity of the emitter has no effect on the size and shape
of our ellipse so we take the emitter to have v’ = 0. In this case
H and H© project onto two planes inclined with respect to
each other by a small angle, the lens angle at the emitter. But
the projected areas in two such planes differ only by a factor of
cos a, o the angle of inclination. Since « is first order, the areas
are equal to first order. Therefore in the expression for the area,
equation (28) above, we are able to replace all H-projected
quantities by H®-projected quantities.

Next we use the explicit form of the projector to find H®*,
w* = (0, 0, w*, w®). Substituting back into equation (28) then
yields

2 y y
dA = e % (1 - 2¢,) Det [Wgz> Wf’]
Ve Wy W)
2.2

e (1 —2¢,) Det M, (29)

2
e

=en
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where the magnification matrix, M’; is given by
. 1 .
M= 14+~ Wiy, (30)

with i, j € {2, 3} and 1, the 2 x 2 identity matrix. In equation
(29) we have written r, for r(,) and y, for y(1,). M'; is a function
of the affine parameter and in both the above equations is
evaluated at A = A, corresponding to the point e along the
central perturbed geodesic. We may recognize the first of the
equalities in equation (29) as the transformation of area law for
infinitesimal linear mappings of the plane once we recognize
the factors in front of the determinant (aside from the factor of
n) as corresponding to the metric factors in the induced area
form for our image two-plane. Equivalently, this is the induced
area two-form on the yz-plane acting on H®w,, and HOw,,
(again up to the factor of r).

The above expression (eq. [30]) for the magnification matrix
is one of the key results of this section. We recall from equation
(23) that for i, j = 2, 3, w(})' is precisely the variation of the
transverse separation with the transverse direction cosine. The
factor of r~! in equation (30) turns the transverse separation
into the transverse angular deflection. Thus we are beginning
to see the usual structure of the magnification matrix emerge.
We notice, however, from equation (14), that while the time
variation of the potential does not contribute to the transverse
deflection of a single ray it will contribute to the gradient in
equation (23) (this will become clear below), so that nonstatic
potentials contribute to the magnification matrix. We note that
equation (30) may be used for vector and tensor perturbations
in addition to the scalar ones considered here, after a change in
the solution for the separation, hence w{}), which arises from a
change in the specific form of the force vector, f*.

We can use equation (29) to find dQ, the solid angle in the
rest frame of the observer defined by our bundle. To this end,
let 4, = 4, + A4, A4 small. We will use equation (29) to express
the projected area of our bundle at A, to order (AA)%. Noting
that y sin,. (4, — 4) = r, we have

dA(L, + A2) = ne2aX(AN(1 — 2¢,) . (31)

The proper spatial distance in the rest frame of u* in the metric
ds? corresponding to an affine distance Aw along k‘o"‘ AL, is
given by Ellis (1971) AL = |Aw| (u - k),. Since Aw = a2 AL we
can write the projected area of the bundle a unit spatial dis-
tance away from the observer as

dQ = dAAL = 1)

= mea; ? —((1’0_ i-f;';)

= ne?[1 + 20} kO4,)] , (32

where in the last equality we have used u* = (1/a,)(1 — ¢,, v})
and k* = a; 2%k + a, 2k{V* = g7 %(1 — 2¢>0, 1, 0, 0). In fact,
equation (32) is 51mply the Lorentz transformation law for
solid angle to linear order in vi. Were the observer comoving,
the solid angle would be given by me2. The expression (32)
comes from transforming to a frame in which the observer
moves with velocity v,

We can use this expression to replace €27 in equation (29),
yielding
2 2
dA = dQ[1 — Sole

20, kiO(3)] =7 (1 = 2¢) Det Mf2,) . (33)

e
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This is the desired expression relating the proper area of our
emitter and the solid angle that it is observed to subtend given
its affine distance, A, (which we will soon trade in for its
redshift). The equivalent expression for a congruence of the
background spacetime can be gained from equation (33) by
taking the perturbed quantities to vanish. This gives

aQ© yr , (34)

q

dA(O)

where g is some point along the central background geodesic,
xO% = (4, r,0,0)(see Fig. 2).

To proceed we must ensure that the points e and g corre-
spond to the same numerical source redshifts in their respective
spacetimes. Let the affine parameter correspondmg to the
point g be given by A,. We need to impose 1 +z‘°’(,l )=
1 + z(4,), where z(@ refers to the redshift to the source in the
background along the central background geodesic and z
refers to the redshift of the source in the perturbed spacetime
along the central perturbed geodesic. The redshift in the per-
turbed spacetime is given by 1+ z = (u, - k)4 )/(u, - k)A,).
1 + z® may be found from this expression simply by forcing
the perturbed quantities to vanish. If we write 4, = 4, + 94,
with 6, a first-order function of 4, the equal redshift con-
straint is solved by

64y = 21 {0, kO2) — 0} k(L) + [ — da™'xV° 4+ KV°J3)
q

(35)

Here a subscript g denotes evaluation at the point g, an
overdot denotes an exact conformal time derivative along the
comoving world lines, [ /]2 = f, — f,, and the separation and
its affine derivative are solved for along k‘“*, which intersects
both o and g by construction. We have also noted that, to first
order, ¢, = ¢,. We have not used the analogous formula for
the emitter’s peculiar velocity simply to emphasize that the
emitter can be moving, in principle, under many different types
of nongravitational forces and so the notion of a smoothly
varying peculiar velocity field may be inappropriate.>

Recalling the definition of the magnification, we now set
dA® in equation (34) equal to dA in equation (33) and expand
a,, ., and y, about their values at g. We also use the equiva-
lence of M'(4,) and M i {4, to first order. The end result is the
following formula for the magnification of a source observed at
redshift z©(4,);

[1 —2¢, + 20. kP(4,) — 2k™W°(4,)

~ (Det MY)(A,)

+ 2 cot, (4, — A)04, + K sin, (4, — A )e;xV¥(A)] . (36)

We emphasize that the source redshift in the actual perturb-
ed spacetime is given numerically by z(®(4,). We have chosen to
express 4, in terms of A, rather than the other way round
because this choice makes it simple to take the physical redshift
as the independent variable in the magnification formula,
equation (36), rather than 4,.

3 We have, however, considered v, and v, to contribute, in a numerical
sense, only at first order. For instance, the source and emitter four-velocities
are properly normalized only if v, are considered to be first-order quantities.
It is not difficult to relax this assumption.

Vol. 458

An explicit formula for the magnification matrix may be
found directly from equations (30), (23), and (14). We need to
take a partial derivative of equation (14) with respect to e,
i = 2, 3, while keeping A fixed. The only subtlety arises from the
implicit dependence of ¢ and its spacetime derivatives on é'
which arise because of the need to evaluate these quantities on
a particular unperturbed geodesic. This means

op 0¢p oxO=

e ox* de
_9%
T ax®

¢

=r % (37)

In prmc1p1e 7, and hence ¢'3), have a similar implicit depen-
dence on ¢, but in fact this dependence is vamshlng This is
easy to understand once it is realized that varying €' fori = 2, 3
with fixed 1 amounts to variation tangent to the two-sphere at
fixed coordinate radius r(4). Thus r, and so y and ¢\, are
stationary. Keeping the above in mind, we find an explicit
formula for the magnification matrix without restriction to
either static or thin perturbations (i.e., lenses). With i,j = 2, 3,

i _osi ___2 _ _d’
M =95+ sin. (A — ,1) J dMA — lq) (l)
2
— ——sin,( =7 ). d,t sin, (A — A,)y(4)

x [6;3 2o~ r(z)y-2(A)g<°’"‘a>¢,k,w] .69

While equation (38) is computationally quite useful, its
relationship to the usual form for the magnification matrix is
easier to see after rewriting. Introducing the angular diameter
distance of d5'®, D(1,, A,) = a(4,) sin, (A; — 4,) (see Appendix
A), and using the two-dimensional projected angle of § 1 above,

o _Z(Vry o 9)

we can write

alh) a9
B0, qudw.z) )

S o8
— m J; o dAD(4, 2) Fw; (4) . (40)

Finally, we note that to zeroth order d/de’ = §/00' with ¢ the
vectorial angle of equation (1). This allows us to make the
replacement

L=0l42

o8t 0

20~ 50 @1

in equation (40). The result is the most elegant form of our
equation. It is also the easiest form in which to recover the thin
lens limit. For this, suppose the potential is that appropriate to
a static, geometrically thin lens. Then the first term in equation
(40) vanishes and we can approximate the angular diameter
factor as constant over the region for which the potential is
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important. Finally, we replace 4, with 4, since, to first order,
they are equivalent in M';. The result is

o DM, A) 8 [* .
M~ ——=—""— | di&. 42

%% 56, 20 00 ), “
We have already seen that the integral of & over the back-
ground path produces the Einstein deflection angle. As a result
we conclude that in this limit our equation has reproduced the
usual magnification matrix defined by the 6-gradient of equa-
tion (1).

5. THE THIN LENS IN EINSTEIN-DE SITTER SPACE

As an explicit illustration of the ideas above we will solve for
the magnification matrix appropriate to a point mass pertur-
bation of Einstein—de Sitter spacetime. We will find that the
usual expression of the magnification matrix is correct pro-
vided that the impact parameter is much the smallest length
scale in the problem (save, of course, for the Schwarzschild
radius of the point mass). Certainly the calculation below is the
hard way to produce this result. Nevertheless, for the first time
the standard result is obtained along with correction terms
arising from the time variation of the perturbation and the
difference between the actual path and its piecewise geodesic
approximation.

Our starting point is the potential approximation to general
relativity (Martinez-Gonzalez, Sanz, & Silk 1990), which writes
the perturbation to the flat FRW metric in equation (5) appro-
priate to a comoving point particle of mass m located at (x;, y,,
z;) on the spatial hypersurfaces of constant conformal time as

—m
am/(x — x)* + (Y —yP + @ —2)*

It is worth noting that this perturbation is not static. Its time
dependence, however, is simply that of the background space-
time, that is, it is set by the cosmology. We certainly do not
expect time variation of this magnitude to affect photons
streaming past the lens. We will see this prejudice borne out in
the calculations below. Nevertheless, this emphasizes that
more complicated details will emerge in the rigorous picture of
lensing than in the usual models.

We will suppose that, other than the point mass, the obser-
ver, and the lensed source, the spacetime is filled with dust so
that we can take a = a,n?/n? with the subscript o denoting
evaluation at the observer and a, constant with the dimension
of length (McVittie 1964). It is useful to keep in mind that with
our conventions the only dimensionful numbers in this
problem are a, and m and both have dimensions of length.

To avoid unnecessary complications we will take both the
source and the emitter to be comoving, as would be true, for
instance, if both were far from the point mass. We suppose the
observer to be at the spatial origin of coordinates with the
source image toward the positive x direction. The light from
the source does not travel exactly down the x-axis because it is
bent by the action of the lens. We could calculate the bending
by constructing the path using equations (13) and (14) above.
Instead we will use equation (38) to gain the magnification
matrix directly. The background path appropriate to the situ-
ation is given by xP4(4) = (4, 4, — 4, 0, 0) with 4, the affine
parameter at the observer. We denote by 4, that value of the
affine parameter at which x©* intersects the plane x = x,, i.e.
x; = A, — 4,. For the usual lensing scenarios, this point of inter-

o, x) = 43)
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section is very nearly the point of closest approach of the
photon to the lens.

Given our geometry, the physical linear size of the impact
parameter, b, is given by

b = a()/y? + 22 (44)

so that the angle between the lens and the image of the emitter,

0, is given by
0 — a(A)y/ yi + 2} 45)
D(Ap )

It will be convenient to define an unbarred angular-diameter
distance symbol, D,,, by D,, = D(4,, 4,)/a(A,;) = (A, — A,) so

that
/2 2
0 = Vit zi ) (46)

D

Also, in terms of the vectorial decomposition of 8 introduced
in § 1, we have x{ = 6'D,, i =2,3. The physical situation
described by the above geometry is illustrated in Figure 3.

We start the calculation by noting that for an Einstein—de
Sitter background we may combine the second and third terms
in equation (38) to give

ol

i i 2 i ta , 49
M =6;+ D, o; Lodl(l — 4 i A
2 ba \ 27, (0)ik ¢
+ D,, fa dA[(4, + /1,1)/1 -2, /lq — A9 NP . @7

The details of our model lens then transform this into

. . 2nim
M =01 —-2¢,)5: + —
J J ao Doq
X [Iy —Ios 4 A+ A1y 5 — A, 25155105
6n2m .y
+ [IO,S - (lo + Aq)Il,S + /‘LoquZ,S]xlxi ’ (48)

a,D

where we have put

oq

Aq 1

b | @
As all of these integrals may be explicitly performed, a general
(but complicated and uninstructive) expression for the magnifi-
cation matrix may be written down. For illustration, we will
consider the situation that the impact parameter is much
smaller than all the other physical sizes in the problem, so that

observer

v

A

Dol

F1G. 3—The geometry of § 5: 6 is the angle at the observer between the lens
and the emitter; 4, is the affine parameter value at which the background
geodesic intersects the lens plane; 4, is the affine parameter value at which the
background geodesic intersects the source plane; the observer is located at
affine parameter value 1,; a(4)D,, is the angular diameter distance in the
background between the observer and the lens plane.
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the integrals simplify to

4 5
s =~ 37gmps, ~ 7 &
4 1
1 — —
L= T es TR
4
fo.s = ~3g°pg
2
I3 20Dz A (50)
2 1
L;=——5>5+=5A
BT ey TR
2
fos = =gz,
Dy, D, 1
I, = A,
21 /l,,l+/ll+i,
where
oy [AA = DN
=4 _ b I
[ [

With somewhat more algebra it can be shown that I, ; and
all the terms proportional to A contribute negligibly to the
magnification matrix under the assumption of small impact
parameter. The remaining terms combine to produce

Vol. 458

which, because g and e are equivalent to the needed order, is
also expressible as

. 4mDe . 00
M= — ! (02 51 2—07> . (53)

This agrees exactly with the usual magnification matrix for the
point mass lens (Schnieder et al. 1993, chap. 2).

6. SUMMARY

We have presented formulae (13), (14) for the null geodesics
intersecting an observer’s world line in an important class of
perturbed spacetimes, FRW backgrounds with scalar pertur-
bations, in the longitudinal gauge. We have used these equa-
tions to obtain a general formula (36) for the magnification of
ray bundles in these spacetimes. With this, we can show for the
first time how the usual lens equation (1) and magnification
matrix are recovered in the curved FRW spacetimes without
dividing light paths into near and far lens regions. To illustrate
our formulae we have calculated the magnification matrix
appropriate to a point deflector in an Finstein—de Sitter space-
time. We are able to show how the usual formula emerges
along with (in this case negligible) correction terms. The tech-
niques used in this paper are easily applicable to FRW space-
times with vector or tensor perturbations.
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cussions. This work was supported by the National Science
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APPENDIX A

THE JACOBI EQUATION OF FRW SPACETIMES

We consider the equation of geodesic deviation in the spacetimes ds'®?, related by conformal transformation to the background

FRW spacetimes. The equation of geodesic deviation along kO* is

2

di?

D_ Oxt = R(O)u

k(O)ak(o)ﬁ Sx7 . (Al)

Here D/dJ is the covariant derivative along k‘©*, We will take k(®* to be the wavevector of a radial null geodesic parameterized as in

§ 3 above. Changing variables via dx#(A) =
equation (A1) as
2

v =

We want to solve this equation subject to the initial conditions dx*(u) =

P(A, a)*,v%(4), a an arbitrary affine parameter value along k(®*, allows us to write

—kJ*, v%(A) . (A2)

0 and dox*/dA(u) = dk*(u). These initial conditions describe

some impulse which jolts the geodesic at some affine parameter distance u.
Equation (A2) conveniently decomposes into three separate equations, one for each of the timelike component, and transverse

and longitudinal projections of the spatial components. To see this, multiply equation (A2) by unity in the form of (63

. The resuit is

d? d?
=0

where v} =

=0

- Jaﬂ) + Jaﬂ-

2

T v = —wv! (A3)

(0p — Jip* and v} = J';v%. The solutions for the given boundary conditions are elementary. Returning to the original
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variable 6x*,
A . A .
6x°(%) = vz ; Ok°(A — u) , ox}y(4) = ;% Oky(A —u), ox'(A) = %—i Sk sin, (A — u) . (A4)

We can use the solution above to determine the angular diameter distance in the actual background spacetime. To do this, let
k©#(2) = (1, —y, 0, 0) and suppose an impulse at u given by 6k*(u) = dk%(u) = (0, 0, — ye, 0), with € infinitesimal. Let 5x*(4) be the
solution to the Jacobi equation for this impulse, dx*(1) = p(4) sin, (A — u)(©0, 0, €, 0) = (0, 0, re, 0). Since ox* is a Jacobi vector,
xO¥(3) = (4,r,0,0) and x‘9(1) + 6x*(1) are neighboring null geodesics to first order in €. The angle that their wavevectors make at u
is €. The proper linear distance (in d5@?) that they span at affine parameter 1 is (6x*§(} 6x*)"/2. The angular-diameter distance of our
FRW background is defined as the ratio of this proper linear distance to the subtended angle,

- 1
D, ) = - (0x'31% 6x")1"

= a(4) sin, (u — 1), (AS)
where the sense of the affine parameter in equation (AS)is that 1 < w.

APPENDIX B
GEODESIC DEVIATION IN PERTURBED SPACETIMES

Consider an arbitrary metric perturbed spacetime with metric
=g + hyy (B1)

with h,, small. Let x{’%(1) be an afﬁnely parameterized geodesw of g. Solutions, {(©(2), to the Jacobi equation of the background
along x‘o"‘(l)

d2 c(O)u
di?

generate nearby geodesics, x‘°”‘(l) via x{P(2) = xP(2) + {O%(A). Let x4(4) and xj4(4) be geodesics of g,, generated using the
perturbative geodesic expansion from x{*(1) and x{#(4), respectively. We claim that, to first order, x4(4) — x%(4) solves the geodesic
deviation equation of g, along x%(4).

There is certainly nothing surprising in this claim. In fact, the assertion must be true if the perturbative geodesic expansion
correctly generates nearby geodesics of g,, as we claim it does. The explicit proof offered here can, thus, be thought of as another
check on the method itself. Since the proof is nothing more than a tedious application of the usual perturbative techniques we
present it only in schematic form.

To see that our assertion is true, we start with the Jacobi equation of g,,, along x%(4)

d*w*
+ 21 k”‘
pra Ao d/l
By a Taylor expansion, the decomposition of the Christoffel terms into zeroth and first-order expressions in the perturbation, the
ansatz w* = wO 4+ wk and the identity k% = kO + k™" we can express equation (B3) as two equations holding along xQH(R),
one containing only zeroth-order terms and the other containing only first-order terms. The zeroth-order equation is seen to be
equivalent to equation (B2), so that we already know that w®*(1) = x{(4) — x{’%(4) is a solution. The first-order equation may be
written T[w'"] = 0 for some operator T. The specific form of T will not be necessary for our current purposes but it is not hard to
obtain.
Consider now the equation obeyed by x{*(1) = x4(4) — x{PHA),
d2xn o corg X8 o (Ovar 0
y 12 + 2K " + TRl kK xfD” = — Tk kPP (B4)

which holds along x{*(1) (PB). Using Taylor and k() = kQ%(2) + w@%(1), where - = d/dA, we can write equation (B4) as an
equation along x{*(1). If we subtract from this equation the equation for x{*(4), which also holds along x@* (and is identical to eq.
[B4] after the subscript Bs are replaced by As) we obtain the result T(xY§’ — x’) = 0 and our assertion is proved.

+ 2Tk @

d{(O)ﬂ
=+ T KOO0 = 0 (B2)

Ly % Ko kbw = 0. (B3)
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