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ABSTRACT

The nature of the dark matter critically affects the large-scale structure of the universe. Under the assump-
tions that the universe is spatially flat with zero cosmological constant and that primordial perturbations were
adiabatic with a Harrison-Zeldovich spectrum, neither hot dark matter (HDM) nor cold dark matter (CDM)
appears consistent with the observed large-scale structure. Warm dark matter (WDM) is an intriguing alterna-
tive from the point of view of both cosmology and particle physics.

We consider a one-parameter family of WDM models. The linear power spectra for these models is calcu-
lated and compared with the corresponding spectra for CDM, HDM, and mixed dark matter (MDM), as well
as the power spectrum derived from observations. Our linear analyses suggest that a model universe domi-
nated by a particle whose mass-to-temperature ratio m,/T, is increased by a factor of 2 as compared with the
standard HDM neutrino gives a reasonable fit to the data on large (>8 h~! Mpc) scales.

N-body simulations for this particular WDM model show features of both HDM and CDM. As in HDM,

the first objects to collapse are large pancake-like structures. The final matter distribution is rather smooth,
and structures as small as galaxy halos are excluded. However, there appear to be virialized rich clusters
evident in the CDM but not in the HDM simulations. Unfortunately, a simple comparison of the matter
distribution and its statistical properties with observations indicates that WDM, like CDM, has too much

power at small scales. This is particularly evident in the small-scale pairwise velocity dispersion. The cluster
multiplicity function has the wrong shape, with too many rich clusters being produced, although this conclu-
sion is based on the simple assumption that light traces mass in groups of galaxies.

Subject headings: cosmology: theory — dark matter — large-scale structure of universe — methods: numerical

1. INTRODUCTION

While there is ample evidence for dark matter in our uni-
verse, its nature remains a mystery. Is this matter in the form of
baryons, massive neutrinos, or something new and exotic? The
answer to this question critically affects our understanding of
the early universe, in particular the formation of structures
such as galaxies, clusters, and voids.

For the purposes of structure formation, it is the distribution
of the dark matter particies in velocity space that is most
important. For example, in a universe dominated by cold dark
matter (CDM), the velocity dispersion of the dark matter at the
time of matter-radiation equality (t.,) is negligible, and struc-
ture formation begins with the collapse of relatively small
objects. Larger mass objects form by aggregation, leading to a
bottom-up scenario. Hot dark matter (HDM) has large veloc-
ity dispersion at t., and leads to a scenario in which large
pancake-shaped objects form first and then fragment into
smaller objects (top-down scenario).

HDM and CDM represent extremely simple models, in that
once one specifies the density of the dark matter, the velocity-
space distribution function f(v) is fixed. Of course, to fully
specify a cosmological model, one must include the total
density (p = Qp . = 1.05Qh% x 10* eV cm™3), the baryon
density (pp = Qg p..ir), the Hubble constant today (H, = 100 h
km s~! Mpc™!), the cosmological constant (A), and the initial
power spectrum of density perturbations. (Here and through-
out, we set i = ¢ = kg = 1.) The “standard” HDM and CDM
models have Q = 1,A =0,0.5 < h < 1.0,0.01 < Q; < 0.1, and

adiabatic primordial perturbations with P(k)oc k. It now
appears that neither of these standard models is consistent
with the observations. CDM for example, has too little power
on large (230 h~! Mpc) scales relative to small (<10 k™1
Mpc) scales. HDM, on the other hand, has trouble forming
galactic-scale structures early enough to be in agreement with
observations of high-redshift quasars.

One set of alternatives involves nonstandard HDM or CDM
scenarios. For example, Albrecht & Stebbins (1992) have
shown that wakes of cosmic strings can seed small-scale struc-
tures in an HDM-dominated universe, thereby avoiding the
problems of early galaxy formation. Other possibilities include
nonzero A (Peebles 1984; Turner, Steigman, & Krauss 1984;
Efstathiou, Maddox, & Sutherland 1990; Turner 1991), pri-
mordial perturbations with a tilted spectrum [i.e., P(k) oc k*;
n # 1] (Adams et al. 1993), decaying particles (Bond & Efsta-
thiou 1991; Dodelson, Gyuk, & Turner 1994), and mixed hot
and cold dark matter (MDM) (Shafi & Stecker 1984; Davis,
Summers, & Schlegel 1992; Taylor & Rowan-Robinson 1992;
van Dalen & Schaefer 1992; Klypin et al. 1993).

Here we consider warm dark matter (WDM) cosmologies
withQ=1,A=0,0.5 <h < 1.0, Qg =0, and primordial per-
turbations P(k) oc k. (We discuss our choice of Qg below.) By
warm dark matter, we mean any particle whose velocity dis-
persion during the time of structure formation is nonnegligible
but less than the velocity dispersion for standard HDM.

To keep things simple, we consider a one-parameter family
of distribution functions for the dark matter candidate which
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interpolate between the distribution functions for HDM and
CDM. To be precise, we take the distribution function for the
dark matter or “x” particles to be

B

ePleTy +1°

fv) = M)

where T, is the photon temperature, v = p/(p> + m%)'/?, and m,
is the particle’s mass. The distribution function is specified by
three parameters o, §, and m,. However, for the purposes of
understanding structure formation, only two combinations of
these are relevant, one related to Q, h? and the other related to
the shape of the distribution function. In standard HDM,
a=(4/11)'3, B=1, and the remaining parameter—the
mass—is chosen to set Q. This leaves no freedom for the shape.
In CDM scenarios, the velocity dispersion is negligible, and
therefore the actual form of the distribution function is irrele-
vant. For our purposes, it is useful to think of CDM particles
as having a distribution function given by equation (1) in the
limiting case a = constant, § — 0, and m — co. (Equivalently,
we can keep f fixed and let « > 0 and m — .) For the family
of WDM models considered here, « and/or § vary from their
canonical HDM values. The models therefore have one addi-
tional degree of freedom as compared with standard HDM or
CDM, and by varying this parameter, one interpolates
between CDM and HDM. The remaining parameter describes
a family of models that are equivalent from the point of view of
large-scale structure though distinct in terms of how the dark
matter particles were produced. These points will be discussed
in detail in § 2.

This work is, at least in spirit, similar to that done for MDM.
MDM models contain an admixture of hot and cold particles
and can also be described as a one-parameter family which
smoothly interpolates between HDM and CDM. But, as we
will see, there are both qualitative and quantitative differences
between MDM and WDM cosmologies.

WDM, along with CDM, was introduced in the early 1980s
(Pagels & Primack 1982; Peebles 1982; Bond, Szalay, &
Turner 1982; Olive & Turner 1982) when it became clear that
HDM had serious flaws. CDM has of course received far more
attention, and for good reason. First, WDM, with an addi-
tional free parameter, is less predictive. Second, the early candi-
dates for WDM were not particularly compelling, in that they
required a new particle in the 100 eV-1 keV range, well within
the reach of particle accelerators. However, both of these
reasons have become obsolete. First, as mentioned previously,
the standard CDM model does not seem to fit the data, and so
models with more freedom are now in vogue. Second, a better
understanding of the early universe has led to a number of
WDM candidates such as right-handed or sterile neutrinos,
suggesting that, at least from the point of view of particle
physics, WDM is as palatable as CDM.

The rest of the paper focuses on understanding large-scale
structure in a WDM-dominated universe and comparing the
results with observations. We begin with linear perturbation
theory. In § 3, we outline our calculation of the linear transfer
function and discuss, in § 4, various tests using the derived
power spectra. The strategy is to use linear tests to survey the
family of WDM models and determine which is most prom-
ising. We also use this opportunity to compare these models
with the other possibilities such as MDM. We conclude that
large-scale structure in a universe dominated by a particle
whose mass-to-temperature ratio m,/T, is roughly twice that of

Vol. 458

the standard HDM is in reasonably good agreement with the
data. Linear theory also suggests that there are problems with
early galaxy formation, although here we are in the nonlinear
regime and so should use caution before reaching any conclu-
sions. Proceeding to the next level of approximation, we carry
out detailed N-body simulations of a model WDM-dominated
universe and compare with similar simulations for CDM and
HDM. The results are discussed in § 5. In particular, we
visually analyze large-scale structures; we study the (nonlinear)
power spectrum, the two-point correlation function, pairwise
velocities, and the group multiplicity function. A summary and
some conclusions are given in § 6.

2. MODELS OF WARM DARK MATTER

In this section we motivate two prototype WDM candidates
and show that they are equally well described by equation (1).
First, however, we review the standard HDM neutrino.

2.1. Hot Dark Matter

The three neutrinos in the standard model interact with
ordinary matter via the weak interactions. Thus they decouple
from the primeval electromagnetic plasma at temperatures of
the order of a few MeV and therefore, unlike the photons, are
not heated when e* annihilate. To calculate the temperature
and number density of neutrinos (Weinberg 1972; Kolb &
Turner 1990), we first note that the universe expands adia-
batically so that the entropy density

272
S=75 g4(T)T? @

scales as a~ 3. Here a is the Robertson-Walker scale factor, T is
the common temperature of all particles thermally coupled to
the photons, and g,(T) is the effective number of degrees of
freedom of massless particles. After the neutrinos decouple,
their temperature, T,, scales as a~!, and therefore s/T: =
(2n*/45)g,(T,/T,)* remains constant. Prior to e* annihilation,
g, = 11/2 (counting photons, electrons, and positrons),
whereas after e* annihilation, g, =2. Therefore, T,/T,=
(4/11)'73, and the yelocity-space distribution function is

_ 1
e 1

fp) )]
That is, the distribution function is described by equation (1)
with o = (4/11)!/3 and g = 1. By integrating equation (3) over
all momenta, one recovers the well-known result (Gerstein &
Zeldovich 1966; Cowsik & McClelland 1972; Marx & Szalay
1972):

m
Qh?=—"—.
Y 93 eV

@

2.2. Early-decoupled Particles
The above results can be generalized to any particle which
decouples when it is still relativistic. For particles decoupling
earlier than the standard model neutrinos,

T, (4\"[ 1075773
ﬁ“(u) [g*(TD)] ’ ©)

where T, is the temperature of the universe when the “x”
particles decouple; g, here includes contributions for the three
standard model neutrinos (in contrast with the g, of § 2.1) and
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is equal to 10.75 for 100 MeV < T, S 1 MeV and 106.75 for
T, 2 300 GeV (Kolb & Turner 1990). The distribution func-
tion for a particle which decouples when g, 2 11 will have
both a lower temperature and a lower number density relative
to the standard HDM neutrino; that is, a < (4/11)'3; g = 1.
This in turn implies that for fixed Q, h? the particle will have a
higher mass and therefore reduced velocity dispersion relative
to standard HDM. WDM of this type was discussed by
Peebles (1982), Bond & Szalay (1983), and Bond, Szalay, &
Turner (1982). At that time, the favored WDM candidate was
the gravitino, the supersymmetric partner to the graviton.

2.3. Right-handed Neutrinos

Another group of WDM candidates are the right-handed
neutrinos. In the standard model, all fermions except the neu-
trinos have both left and right chiral projections. This is at
least in part why neutrinos in the standard model are massless.
Right-handed neutrinos (one species for each ordinary neu-
trino type) are arguably the most natural additions to the stan-
dard model. Once right-handed neutrinos are added, there is
the possibility for Dirac-type neutrino mass terms similar to
the terms which give rise to masses for the charged leptons and
quarks. In addition, because neutrinos are electrically neutral,
there is also the possibility for Majorana mass terms, and
therefore oscillations between right- and left-handed neutrinos.
Oscillations of this type have been invoked in an MSW
(Mikheyev & Smirnov 1986; Wolfenstein 1978) type solution
to the solar neutrino problem (Barger et al. 1991; Butler &
Malaney 1992).

Right-handed neutrinos do not interact via the strong, elec-
tromagnetic, or weak interactions and so it is natural to think
of them as having been in equilibrium early on and decoupling
at relatively high temperatures. If for example, they decouple
before the electroweak phase transition (g, ~ 100) then the
number density, which scales as T3, will be a factor of 10
smaller than that of standard neutrinos. To close the universe
one would therefore need a right-handed neutrino with a mass
m, ~ 900 h? eV, thereby making it a perfect warm dark matter
candidate.

There are two possible problems with the above arguments,
one from astrophysics and the other from particle physics.
First, as we will see in later sections, a keV mass particle leads
to phenomenology very similar to that of CDM, especially on
the largest scales. (With this in mind, Malaney, Starkman, &
Widrow 1995 have considered MDM models with a right-
handed 1 keV neutrino as the cold component and an ordinary
neutrino as the hot component. See also Valdarnini & Bono-
metto 1985.) Second, it was observed by Langacker (1989) that
there is no reason to expect right-handed neutrinos to be in
equilibrium at early times. In fact, an accurate calculation of
the rate for producing right-handed neutrinos indicates that
the dominant production mechanism is the oscillation men-
tioned above. The oscillation rate peaks at temperatures ~ 100
MeV, suggesting that the number of right-handed neutrinos
prior to the electroweak phase transition was negligible. (This
calculation has evolved over the years, starting with the work
of Dolgov 1981. Manohar 1987 presented an interesting model
which explained very nicely the quantum mechanics involved.
As far as we know, Langacker’s work was the first to derive
realistic cosmological limits on the various neutrino param-
eters. Subsequent refinements were introduced by Barbieri
& Dolgov 1990, 1991; Enqvist, Kainulainen, & Maalampi
1990a, b; Enqvist, Kainulainen, & Thomson 1992; Cline 1992.)
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Dodelson & Widrow (1994) considered the possibility that a
nonequilibrium distribution of neutrinos could be produced by
oscillations. In particular, they showed that as long as g, is
constant during the epoch when the neutrinos are produced,
their distribution function is given by equation (1) with ¢ =
(4/11)*® and B < 1, where the value of B depends on the
parameters of the neutrino mass matrix. For fixed Q,, decreas-
ing B corresponds to increasing the mass.

2.4. Distribution Functions

The generic WDM candidate therefore has a distribution
function given by equation (1) with three parameters, o, f§, and
m. Fixing the density of the particles implies one constraint:

o’ m,
Q.h° = p (W)(% eV) ‘ ©

This leaves two free parameters, which we can choose to be
m,/a and o. The former is proportional to m,/T, and governs
the shape of the power spectrum. The remaining parameter o
generates a family of models that are equivalent from the point
of view of structure formation, though they are distinct if one is
interested in how the particles are produced. In particular, for
fixed Q h? and m,/o, one value of a corresponds to early-
decoupled matter and another corresponds to oscillation-
produced sterile neutrinos although both lead to exactly the
same predictions for large-scale structure. Quantitatively, we
have

Power SpeCtrumearly-decoupled maner(ml)

= Power SPCCtrumsterile neutrinos(mZ) H (7)

4/3 2/3
m, 0.5
= -_— . 8
m, 163<100 eV) < W ) eV t)

To close this section, we mention two final points about
WDM candidates. Recently Babu, Rothstein, & Seckel (1993)
have proposed Majorons as another WDM candidate. Pre-
sumably this candidate would have a distribution function like
that of early-decoupled matter. Finally, the distribution func-
tion we have taken for sterile neutrinos assumes that g, is
constant during the time when the neutrinos are produced.
While this is not always a good assumption, a preliminary
analysis of models with a time-dependent g, does not yield
transfer functions terribly different from the ones considered
here.

where

3. THE POWER SPECTRUM

The growth of perturbations in the early universe is govern-
ed by the Einstein equations coupled to a Boltzmann equation
for each type of matter present. Our model universe consists of
three components: ordinary matter (photons, baryons, and
electrons), massless, standard model neutrinos, and massive
right-handed neutrinos. At early times, the fluctuations in the
matter fields are small and one can use linear perturbation
theory (Peebles 1982; Bond & Szalay 1983), where the zeroth-
order solution describes an Finstein—de Sitter universe. In
linear theory, the line element can be written

ds® = dt*> — a*()[0,p — hoplx, 1)]dx*dx* . )

The baryon/photon/electron mix is treated as a tightly
coupled ideal fluid characterized by a density field p, and a
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velocity field v,. To first order, the density field can be written
pyx, 1) = p, o()[1 + d,(x, 1)] . (10

This one-fluid approximation greatly simplifies the numerics.
While it is valid prior to recombination, a more careful treat-
ment is required if one is interested in small angular scale
microwave background distortions and/or if baryons play an
important role in the post recombination evolution of the
density perturbations. We leave microwave background calcu-
lations for future work. So we are implicitly assuming that
Qg ~ 0. This may be in conflict with big bang nucleosynthesis
(Copi, Schramm, & Turner 1995 and references therein), and in
this respect our models are not as realistic as they could be.
However, the differences between the power spectra of Qg = 0
models and those with a more realistic Qg = 0.02-0.1 should
be no more than 10%.

We assume that there are three massless neutrino species
and one massive neutrino species. To first order, their distribu-
tion functions can be written

of:
F0, %, 1) = oo ) — p —3{; ApxD), (1)

where i = v, x denotes the type of neutrino; p = |p|; and f; o
are the zeroth-order distribution functions, given by equation
(1) with appropriate choices for o and B.

In the synchronous gauge, the metric perturbations are
encapsulated in the two functions h3; and h = Tr (h,z). The
functions h, hss, 0,, v, A,, and A, form a complete set of
variables. We expand each in terms of its Fourier components
[e.g. O,(k, 1) = [d*x ™5 (x, 1)]. The equations (with the tilde
omitted for convenience) are (Peebles 1982; Bond & Szalay
1983)

A, +ikp L= A, = (1 — p?) + hyy(Gu? — 1), (12
uE(p) ( ©9) 33(3p ) (12)
A, + ikpA, = h(1 — p?) + h333> — 1), (13)
5, + $ikv = 2, (14)
z‘;+i‘fl=0, (15)

i+ h = 16nGa2{pv‘o 5,

1 dp N Yo

t3.2 9 J 2ny [E(”’ * E(p)]("’ o )A} ’
(16)

. . 16nGa®

has —h= 7;k -

4 & oo
x [5 Proby + izzv_xgi fﬁ pu(—p %)A.] Y

Some notation: E(p) = (p? + m?)*/2, where m is zero for the
massless neutrinos and m = m, for massive neutrinos; G is
Newton’s constant; g; is the number of degrees of freedom for
the ith species (equal to 2 for all the particles here); y = k-p;
and dots denote differentiation with respect to conformal time
© = | dt/a(t).

The power spectrum today | 5p,/p, |

can be expressed as an

integral over A (p):
1 d’p o 2
Pk) =|— -
( ) sz (27I)3 E(p)p ap Ax(TO, k’ p) ’ (18)

where 7, is the conformal time today. Actually, on very large
scales (k — 0), the power spectrum is independent of the type of
dark matter present and depends only on the initial pertur-
bations. It is therefore convenient to define the transfer func-
tion '

0Py .\ [P
k = — b d
T(k) p (k)/p (k—0), (19)

x x

where by construction, T(k) = 1 for k — 0. The power spec-
trum can then be written

P(k) = Bk"T?(k) , (20)

where n is the spectral index for the primordial perturbations,
and B is the normalization constant.

The transfer functions for a representative sample of WDM
models are shown in the top panel of Figure 1. Our models all
assume h = 0.5, Qp = 0.0, and Q = 1.0. For definiteness, we
label the models by the mass the neutrinos would have
assuming they are produced through oscillations. We define
my = 23 eV to be the mass of a standard HDM particle in such
a universe. The model labeled 2m,, therefore refers to a universe
dominated by a 46 eV particle whose distribution function is
given by equation (1) with a = (4/11)*3 and g = 0.5.

The transfer functions in Figure 1 are bracketed by the
transfer functions for CDM and HDM (h = 0.5 and Qg = 0.01)
found by Holtzman (1989). For comparison, in the bottom
panel of Figure 1 we show his transfer functions for MDM
models.

Perturbations on the largest scales enter the horizon after ¢,
and after the massive neutrinos have become nonrelativistic.
Growth on these scales is unimpeded, and the power today
directly reflects the primordial spectrum. On smaller scales
there are two effects. First, subhorizon-sized perturbations do
not grow until ¢.,. This explains the break in the CDM transfer
function at k ~ 0.1 Mpc~!. Second, relativistic particles can
free-stream out of dense regions, and therefore subhorizon-
sized perturbations in relativistic matter fields are severely
diminished. As noted by Bond, Efstathiou, & Silk (1980), the
free-streaming scale is

2n 1 m,
kps = A’Fs =0.5 MpC <100 CV) . (21)
We see this in the fact that the scale at which the WDM curves
first deviate from the CDM curve decreases in scale (ie.,
increases in k) as we increase the mass-to-temperature ratio.
The neutrinos in MDM are much lighter and hence free-
stream over much larger scales. This reduces the power spec-
trum at k = 0.1 Mpc~! (since MDM neutrinos constitute only
a small fraction of matter, not all power is damped; CDM
power remains).

We now show that the transfer function depends only on the
velocity dispersion of the massive neutrino: m,/T, oc m,/o. It is
useful to carry out the computation of the transfer function in
terms of the variable g = p/T, = p/T,a. We see that p/E =
q/[q* + (m,a/T,a)*]"> depends only on a/m,. Moreover, we
can change the integration variable in equations (16) and (17)
from p to q. The integrals can then be written as an integral
over g which depends on a/m, times a*f. For example, the
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F1G. 1.—Transfer functions for WDM (top) and MDM (bottom) models; k is in units of h Mpc™*
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integral in equation (16) becomes
d’q
4 T4
Pt f o

m.a q* —fo,x
A, .
[ 1 +< ) NI +(m a/T, )2] *
(22)

Therefore, the only dependence on m,, o, f is through the two
combinations a/m, and o*B. But the latter is simply related to
the former via equation (6). So we conclude that the power
spectrum depends only on a/m, ; in words, it depends only on
the ratio of the heavy neutrino temperature to its mass.

4. LINEAR TESTS

4.1. Fixing the Mass

We want to determine the optimal value of the WDM mass.
To do this, we focus on excess power (EP), a quantity which
measures the relative mass excess on 25 h~* Mpc and 8 h™*!
Mpc scales (Wright et al. 1992). In addition, linear theory is
used to estimate the epoch of galaxy formation. To facilitate
these calculations, we use analytic fitting functions for the
transfer functions found in the previous section. These are
given in the Appendix.

It is generally accepted that the power in density fluctuations
on 25 k™! Mpc relative to 8 h~! Mpc is greater in the data
than in the standard CDM model. To quantify this, we first
define the linear rms density fluctuations on a scale R:

2\ 172 2 172
e (T[S o

where M ~ 1.2 x 10'2 h2 M (R Mpc™1)? is the total mass in
a sphere of radius R, and W(x) = 3(sin x — x cos x)/x> is the
top-hat window function. Wright et al. (1992) introduce the
quantity EP defined as

EP =34 225 (24)
Og

This definition is such that EP = 1 for standard CDM (h = 0.5,
Qz =0.1, Q = 1), whereas consistency with the Automatic
Plate Measuring Facility (APM) angular distribution function
(to be discussed below) requires EP = 1.30 4+ 0.15. Note that
EP is independent of normalization, or, equivalently, biasing.
The results for our family of WDM models are shown in
Figure 2. For comparison, we also give EP in MDM as a
function of the hot dark matter fraction. As expected, EP
decreases as we increase the mass of the WDM particle. Our
results for m > m,, agree with those for an Qz; = 0 CDM model,
and we expect that, like CDM, the EP calculated for WDM
with a more realistic Qg = 0.05-0.1 will be 5%-10% higher
than in the Qg = 0 case. With this in mind, we conclude that an
m ~ 2m, WDM model will have sufficient large-scale power to
be in agreement with the APM results.

To go further, we must normalize the power spectrum of
equation (20). The COBE satellite (Smoot et al. 1992) has mea-
sured fluctuations in the cosmic microwave background on
large angular scales where T(k) ~ 1. These measurements are
consistent with a spectral index n = 1 for the primordial per-
turbations. This is also the value predicted in the simplest
models of inflation and is the value used in our analysis. (See,
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HDM L ]
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1.2
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CDM

L1111
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1 10 100
m/m,
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F1G. 2.—Excess power in theories interpolating between HDM and CDM.
Solid curve shows how WDM with its free parameter m (lower axis) inter-
polates. Note how it quickly becomes similar to CDM. The dashed curve
shows the interpolation of MDM with its free parameter, the energy density in
neutrinos (upper axis). The observationally preferred value of EP is 1.3.

e.g., Adams et al. 1993 for a detailed discussion of cosmological
models with different values of n.) Following Efstathiou, Bond,
& White (1992) (more recently, see Bunn, Scott, & White 1995;
Gorski et al. 1994), we use the COBE results to determine the
normalization constant of the power spectrum in equation

(20):
()6
5 \H, T,

Here T, = 2.726 + 0.006 (Mather et al. 1994) is the present
temperature of the microwave background. The first-year
COBE data gave Q,s.,s = 17 pK; this is the normalization we
have chosen for the N-body runs described in § 5. Numerically,
this gives B = 6.0 x 105 h~* Mpc*. The 2 year data have come
in closer t0 Q.. = 20 UK, so we might be slightly underesti-
mating the amplitude of the power spectrum. A higher ampli-
tude would, however, amplify, not alter, our conclusions.

Large-scale streaming velocities measure the mass fluctua-
tions directly and can therefore be used to test and constrain
models. For example, Bertschinger et al. (1990) estimate the
three-dimensional velocity dispersions of optically selected gal-
axies within spheres of radius 40 and 60 h~! Mpc and find
0,(40) = 388(1 +£ 0.017) km s~! and 4,(60) = 327(1 + 0.025)
km s~ . However, on such large scales, the power spectrum is
independent of model type, at least within the class of models
considered here, and therefore these measurements can only
provide an alternative to COBE normalization. For the
moment, the COBE measurements appear to be on firmer
ground; streaming velocities are consistent with COBE but
provide no additional constraints.

In the simplest models of galaxy formation, there is a single
biasing parameter, b, such that bo, gives the fluctuation in
optically selected galaxies on the scale R h~! Mpc. Davis &
Peebles (1983) find that bog ~ 1 and therefore 1/64 is a
measure of the optical bias. For WDM with m = 2m,, 64 =

(25)
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LO(Q,ms-ps/17 pK), significantly lower than the CDM value of
1.24 (recall that this is for low Qg).

Perhaps the greatest difficulty with HDM is in forming gal-
axies at sufficiently early times, a problem shared by MDM
models with 230% of mass density in the hot component. In
the spirit of this section, we address the issue of galaxy forma-
tion for WDM using linear perturbation theory. It is already
evident from Figure 1 that there will be problems: the linear
transfer function drops too rapidly for k = 0.3 h Mpc ™!, which
is precisely where power for galaxy formation is supposed to
reside. Bond & Efstathiou (1991) and Adams et al. (1993) use
the mass excess on 0.5 h~! Mpc scales, o, 5, to estimate the
epoch of galaxy formation: 1 + z, ~ o, 5. This estimator gives
unacceptably low values for z, for our models (645 = 1, 1.7,
2.7, 3.8 for m, = my, 2m,, 4m,, 8m,, respectively). A more
sophisticated calculation, based on the Press-Schechter
approximation (Press & Schechter 1974), gives equally dis-
couraging results. In Figure 3 we show the number density of
“galaxies” N(> M) at different redshifts z for MDM, CDM,
WDM, and HDM. Here “ galaxies ” refers to objects with mass
greater than M = (2n)*?p, R} = 10'* M, where R, is the
radius of a Gaussian filter (see, e.g., Klypin et al. 1993, egs.
[9]-[10]). The dashed curve corresponds to the Q, = 0.3,
Qp = 0.1, Qg = 0.6 model discussed by Klypin et al. (1993).
Their equation (1) takes into account the evolution of the
shape of the linear power spectrum. The other models in Fi-
gure 3 use the linear power spectrum at z = 0 and assume P(k,
z) = (1 + z)"2P(k, 0). (Fitting functions given by Holtzman
1989 are used for the MDM, CDM, and HDM models). The
two MDM curves illustrate that evolution of the power spec-
trum’s shape is a small effect forz < 5.

For z = 0, N(> M) is a factor of 30 smaller in the m = 2m,
WDM scenario than in either CDM or MDM. The situation is
even worse at earlier epochs where N drops rapidly with in-
creasing z. The implication is that WDM with m = 2m, is
incompatible with high-redshift quasars (Efstathiou & Rees
1988) and Lya clouds (Storrie-Lombardi et al. 1995). However,
we believe it would be foolhardy to discard this model on the
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F1G. 3.—Evolution of the number density of dark halos N(>M) (Mpc™3)
with mass greater than M = 10'! M. The curves correspond to different
models as follows: solid curve—CDM; dashed curve—MDM with evolution
(Klypin et al. 1993, eq. [1]); dotted curve—MDM without evolution; long-
dashed curve—WDM with m = 8m, ; dot-dashed curve—WDM with m = 2m,;
dot-long-dashed curve—HDM.
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basis of the above analysis. The Press-Schechter approx-
imation is based on heuristic arguments developed with hierar-
chical clustering models in mind. A key feature of pancake
scenarios like HDM and WDM is the cascade of power down
from large scales to small scales (see § 5.3.1), which is in the
sense opposite to Press-Schechter. In addition, galaxy forma-
tion necessarily involves nongravitational physics such as
hydrodynamics. In pancake models these are the processes
responsible for fragmentation of the first collapsed objects.
Finally, there are many uncertainties that enter when one at-
tempts to compare theory (including data from simulations)
and observations (Efstathiou & Rees 1988; Klypin et al. 1994).

And so we focus on an m = 2m; WDM model which gives
an acceptable value for EP (where we are confident that lin-
ear theory is valid) but has potential difficulties for galaxy
formation.

4.2. Linear Power Spectrum versus Observations

With the “best-fit” mass for WDM now set at m = 2m,, we
can compare the full power spectrum with the data. Recently,
Peacock & Dodds (1994, hereafter PD) attempted to recon-
struct the linear power spectrum P(k) of the underlying matter
distribution from the observed galaxy distribution, using
various existing data sets. They assumed a simple linear
relationship between the matter power spectrum and the
galaxy power spectrum and, in addition, corrected for redshift
distortions and nonlinear dynamics. The results of PD are
displayed in Figure 4, with some modifications:

1. We use error bars based on a simple visual estimate of the
vertical (logarithmic) scatter E = A log,o P ~ 0.15 in their
Figure 6. There they gathered all the reconstructed data from
various catalogs. The dispersion in these measurements seems
to us a fair estimate of present uncertainties. If there were no
systematic errors, one could go a step further and combine all
the different measurements in a given bin, thereby getting
much smaller error bars. This PD did in their Figure 7. We
believe that with the present uncertainties in the different cata-
logs, it is a bit premature to assume that there are no system-
atic errors. Therefore, here we show the larger error bars.

2. In the left-hand panel of Figure 4, we multiply the ampli-
tude of PD’s P4(k) by a factor b> = 1.32 to normalize it to the
optical galaxy distribution. In the right-hand panel, we keep
their normalization to IRAS galaxies (Strauss et al. 1992).

Figure 4 also shows the predicted power spectra for four
models: CDM, WDM with m = 2m,, MDM with Q, , = 0.3,
and HDM. All the spectra assume Qg = 0.01, except for
WDM, which has Qg = 0. CDM, MDM, and HDM spectra
are extracted from Holtzman (1989). The number in paren-
theses gives the linear value of a4, with our assumed value of
Qrms-ps =17 HK

COBE normalization, together with the assumption that the
IR AS galaxy distribution closely follows the underlying matter
distribution, appears to be incompatible with CDM, HDM,
and possibly WDM, and only marginally compatible with
MDM. The situation improves if we normalize instead to
optical galaxies. In any case, all of the models have the same
power spectrum for k < 0.1 h Mpc ™! and can be distinguished
from one another only for k = 0.1 h Mpc~!. The best fit to the
data seems to be MDM. WDM is not too bad, although it
has a bit too much power at intermediate scales
—1.2 5 log 0k < —0.7, particularly if the comparison of the
power spectrum is made with data normalized to IRAS gal-
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FiG. 4—Linear power spectra of the WDM, MDM, CDM, and HDM distributions, compared to the observational data compiled by Peacock & Dodds (1994
[PD]). In the left-hand panel, the measurement of PD has been enhanced by a factor of 1.32 to match the optical galaxy normalization (s = 1). The right-hand panel
is the same as the left-hand one, but the dots are normalized to IRAS galaxies (o5 = 0.75). The error bars we put on the dots are also much larger than those quoted
by PD (see text). The number in parentheses gives the value of a4 for the considered power spectrum.

axies. CDM has of course too much power at small scales and
HDM not enough.

5. N-BODY EXPERIMENTS

This section discusses the results of our WDM, CDM, and
HDM N-body experiments. Section 5.1 outlines the simula-
tions. We make a visual analysis in § 5.2 comparing redshift
“slices” of HDM, CDM, and WDM “galaxy” distributions
with the CfA2 slice of de Lapparent et al. (1986). In § 5.3, we
analyze the pairwise statistical properties of the matter distri-
bution, such as the power spectrum, correlation function, and
line-of-sight velocities, and compare the results with observa-
tions. Section 5.4 discusses the cluster multiplicity function.

5.1. The Simulations

We now discuss the results of N-body simulations for WDM
[m, = 46 eV; T, = (4/11)!/*], HDM, and CDM. Five simula-
tions, four with the particle-mesh (PM) code of Moutarde et al.
(1991) and one with the tree code (TREE) of Bouchet & Hern-
quist (1988; later improved by Hernquist, Bouchet & Suto
1991) are run for each of the models. For the PM simulations, a
1283 grid is used to compute the forces with either 64° or 1283
particles. The TREE simulations involve 32* particles and are
used primarily to check the accuracy of the PM simulations at
small scales. The very large scale regime is probed by PM
simulations with 1283 particles and a physical box size Ly, =
720 Mpc. In these simulations, the mass of each particle is
rather large (M, = 1.23 x 10'*> M ). The physical size of the
other simulations (hereafter PMS, PMS64a, PMS64b, and
TREE) is Ly, = 144 Mpc, with a corresponding particle mass
M, = 9.88 x 10'° M, (128%/N,,,,), which is about the mass
of a galaxy for N, = 128 Table 1 summarizes the various
parameters associated with each simulation.

Our models assume h = 0.5, Qg = 0, and A = 0. Initial con-
ditions (scale factor a = 1) are generated from the linear power
spectrum by slightly perturbing a regular pattern of particles
using the Zeldovich approximation (Zeldovich 1970). The
amplitude of the initial fluctuations is set so that the density

fluctuations on 16 Mpc scales is o5 = 1/16 = 0.0625 (05 =
1/8 = 0.125 for the TREE simulations). The simulations are
then evolved until the linear power spectrum reaches the
COBE normalization (Q,.,s =~ 17) corresponding to a final
scale factor a = 20, 16, and 12, respectively, for CDM, WDM,
and HDM (a = 10, 8, and 6 for the TREE simulations).
Although we studied several stages of the simulations, we
analyze here only the last snapshot. We have neglected pos-
sible free-streaming effects for WDM and HDM. The com-
oving free-streaming length for a neutrino with mass m, is 7.3
Mpc (1 eV/m, )1 + z)}/2. Therefore, free-streaming effects for
WDM and even HDM should be very small during the period
covered by our simulations (z < 20) at the scales of interest to
us (2 1 Mpc).

We have checked that the measurements of the two-body
correlation function and the line-of-sight velocity dispersion
(defined in § 5.3.3) for our CDM simulations are in reasonable
agreement with those of Gelb & Bertschinger (1994, hereafter
GB) and Zurek et al. (1994), who did high-resolution CDM
simulations with large numbers of particles. We have not yet
compared the results of our WDM and HDM simulations to

TABLE 1

CHARACTERISTICS OF THE SIMULATIONS

A’min Lbox

Name (Mpef  N,u®  (Mpoy
PML ......... 5.625 1283 720
PMS.......... 1.125 1283 144
PMS64a....... 1.125 643 144
PMS64b...... 1.125 643 144
TREE ........ 0.225 323 144

@ Spatial resolution. For the PM code, this
scale corresponds to the size of a grid cell. For the
tree code, this scale corresponds to the short-
range softening parameter €.

b Mass resolution (number of
particles).

¢ Simulation box size.

matter

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...458....1C

F1G. 5—Thin slices Ly,,/32 thick extracted from the simulations PML (left-hand panels) of physical size L,,, = 720 Mpc and the simulations PMS (right-hand
panels) of physical size L, = 144 Mpc. The top, middle, and bottom panels correspond respectively to the CDM, WDM, and HDM model.
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large, high-resolution simulations (this is left for future work).
We may in fact be underestimating the small-scale velocity
dispersions (§ 5.3.3), although a preliminary comparison of a
TREE simulation to a PM simulation, both starting from the
same initial conditions and using 64° particles, suggests that
the discrepancy will be less than 30%. The discrepancy
between high- and low-resolution codes should be much less
pronounced for analysis of the statistical properties of the
density distribution.

5.2. Visual Impression

Figure 5 displays thin (L,,,/64 thick) slices of the simulations
PML and PMS. The panels from top to bottom correspond to
CDM, WDM, and HDM. Figure 6 is the same, but the slices
are thicker (Ly,,/32 in the left-hand panels and L,.,/4 in the
right-hand ones), and only overdense regions are kept. These
regions are found using one of the following two methods:

1. For the large PML simulations (left-hand panels), we
assume that galaxies form in weakly evolved overdense
regions. We take for convenience this epoch of “galaxy
formation” to be when a = 2, corresponding to a redshift
2z = 9,7, and 5 for CDM, WDM, and HDM, respectively. At
this scale factor, we select particles that have at least one neigh-
bor closer than 4 = 0.95 times the mean interparticle distance
d and follow them until the present time. This procedure
amounts to selecting overdense regions bounded by isosurfaces
with densities at z, of order p/p ~ 2/43 ~ 2.33. The corre-
sponding density contrast at the present epoch (if one naively
applies linear theory) is dp/p ~ 27, 20, and 16 for CDM,
WDM, and HDM, respectively. It is important to say here that
this way of selecting “ galaxies ” does not aim to be fully realis-
tic, except that we want to exclude regions where galaxy forma-
tion is unlikely to take place. Note thus that the redshift z,; of
“galaxy formation” we chose here for WDM is much larger
(and to a large extent more realistic) than the one discussed in
§ 4.1. But taking a smaller value of z,; would not change signifi-
cantly the conclusions of the very qualitative analyses we shall
do hereafter, provided that the final linear density contrast of
the selected regions is still close to ~20.

2. For the PMS simulations (right-panels), we consider the
present epoch and use the friends-of-friends algorithm of Efsta-
thiou et al. (1988, hereafter EFWD) to select connected groups
of particles in which each element has at least one neighbor
closer than 4 = 0.2 times the mean interparticle distance.
These groups define regions of density larger than p/p ~
2/A% ~ 250. They are displayed in the right-hand panels of
Figure 6 and will be used later to study the cluster multiplicity
function.

A useful exercise is to make a direct comparison with the
CfA redshift survey (de Lapparent et al. 1986; Geller & Huchra
1989). CfA-like slices are extracted from the catalogs of points
displayed in the left-hand panels of Figure 6 and displayed in
Figure 7 along with the observed galaxy distribution (de Lap-
parent et al. 1986). The observer is assumed to be at the bottom
of each slice. The slices have a depth of 12,800 km s~ ! in
redshift space, or 256 Mpc with our choice of H,,. The synthetic
slices account for redshift distortions induced by the peculiar
velocities of the galaxies. In addition, we model selection effects
as follows: given the magnitude limit 15.5 of the CfA survey
and the Schechter form (Schechter 1976) for the galaxy lumi-
nosity function (with parameters measured by de Lapparent,
Geller, & Huchra 1991), we compute the average number

COLOMBI, DODELSON, & WIDROW

density n; of selected galaxies in a thin shell at a distance D
from the observer. The probability that a matter particle at a
distance D is included in the synthetic survey is then np/ng,
where ng is the average number density of “galaxies” in the
N-body sample. When D is small, we can have nj, > ng, indicat-
ing that we undersample the real galaxy distribution. The
contour ny, = ngis indicated by a dashed line on each figure.

To facilitate comparisons between WDM, CDM, and.
HDM, we use the same random numbers to set the initial
conditions for each simulation. By construction, the power
spectra have the same normalization at the COBE scale, and
therefore each model should present similar features at very
large scales. This is indeed the case. The WDM model con-
sidered here is, as expected, pancake-like rather than hierarchi-
cal, with a smooth density distribution similar to the one found
in the HDM simulations. However, as in the CDM case, the
WDM distribution exhibits rich, dense, and almost spherical
clusters which are certainly virialized. Such clusters are absent,
or at best very rare, in our HDM simulations. Indeed, the
dense regions in the HDM simulations are still sheetlike or
filamentary, i.e., not yet virialized. One can also see (right-hand
panels of Fig. 6) that the WDM distribution presents nice large
filamentary structures. This is also the case in the CDM dis-
tribution (e.g., West, Villumsen, & Dekel 1991), but there the
filaments tend to be broken into clumpy substructures.

We also see from Figure 6 that the apparent size of the
underdense regions or voids increases as one passes from
CDM to WDM and HDM, in agreement with earlier studies
(e.g., Melott 1987). HDM appears to be ruled out because the
voids are too large as compared with the CfA data (Zeng &
White 1990). The voids in the WDM simulations are still a bit
too large. On the other hand, CDM nicely reproduces the
qualitative features of the CfA slice, as already stated by White
et al. (1987b).

" The dense structure in the center of the CfA slice corre-
sponds to the Coma Cluster. The fact that it is elongated is due
to the high internal velocity dispersion of this cluster. We do
not have such strong effects in our synthetic slices, not because
our models do not produce such clusters (we shall see later
that, on the contrary, the small-scale velocity dispersions are
quite large) but because our PM code tends to underestimate
small-scale velocities. Indeed, the resolution of the simulations
used to build the slices is about 6 Mpc, which is typically the
size of a rich cluster.

5.3. Matter Distribution Properties

This section is devoted to the pairwise properties of the
matter distribution. In particular, we consider the evolved
power spectrum P(k) = {| 5,;|*>) (§ 5.3.1), the two-point corre-
lation function (§ 5.3.2), and the pairwise velocity dispersion
(§ 5.3.3). All the analyses are made directly on the matter parti-
cle distribution without modeling galaxy formation or obser-
vational effects such as redshift distortion or selection in lumi-
nosity. When comparing with the data, we must thus remem-
ber that the simulations give information only on the mass
distribution, while observations probe the distribution of gal-
axies. In § 5.3.4 we discuss briefly how the difference between
the two—so-called biasing—influences our interpretation. Our
basic conclusion is that nonlinear effects substantially tarnish
the optimistic view we gained in § 4, when we included only
linear effects.
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F1G. 6.—Same as Fig. 5, but only overdense regions, where galaxies are expected to remain, have been kept, and the slices are thicker. In the left-hand panels, the
slices are Ly,,/32 thick; the matter particles belonging to regions of density larger than p/p ~ 2.33 have been selected at a weakly evolved stage a = 2 and followed

until the present time. In the right-hand panels, the slices are Lyo,/4 thick; each point represents a connected group of particles belonging to regions of density larger
than p/p ~ 250.
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FiG. 7.—CfA-like redshift slices of the observed galaxy distribution. The observer is located at the bottom of each slice. The slices are 256 Mpc deep (with our
choice of the Hubble constant). The top panel represents a slice of the real observed galaxy distribution (courtesy of V. de Lapparent). The others panels correspond
to artificial catalogs built from the simulations, taking into account redshift-space distortions and selection effects (see text). From top to bottom, one passes from
CDM to WDM and HDM. The central slices have the same geometry as the CfA slice, i.e., cover the declination range 2625 < & < 32°5. The left-hand slices are the
adjacent slices with 20°5 < & < 26°5, and the right-hand ones are the adjacent slices with 3225 < 6 < 38?5. All the slices are projected on the plane 6 = 0, and are
rescaled so that they all have the same apparent size. The small dotted arcs of a circle determine a limit below which we undersample the observed galaxy distribution

(see text).

5.3.1. Power Spectrum

Figure 8 shows P(k) for WDM, CDM, and HDM. For each
simulation, we compute the density field p(x) in a grid of
resolution 1283 using a cloud-in-cell (CIC) scheme (see, e.g.,
Hockney & Eastwood 1981). The power spectrum is then
obtained by fast Fourier transform. The calculation is done for
27t/ Lioy S k < kny/3.2, where the results are only weakly con-
taminated by nonphysical, numerical effects, such as white
noise or the smoothing introduced by the CIC affectation.
Here ky, is the Nyquist frequency of the grid used to compute
the power spectrum. The curves represent averages over all
simulations (including TREE), and the error bars correspond
to the rms dispersion.

The nonlinear power spectra are much closer to each other
than are the linear ones. In particular, it is difficult to dis-
tinguish WDM from CDM. This is not so surprising: as
already noticed—for example, by EFWD—an expanding colli-

sion less medium subject to gravitational instability seems to
evolve toward self-similar behavior that is only weakly depen-
dent on initial conditions. Essentially, power cascades down
from large scales to small scales as the system enters the non-
linear regime. Since the initial power spectra considered here
have roughly the same shape at large scales, the differences
between CDM, WDM, and HDM tend to decrease with time
as the system relaxes. Our first important conclusion then is
that nonlinear effects make the power spectrum of WDM look
very much like CDM.

The data points in Figure 8 correspond to the noniinear
power spectrum P§; (k) inferred from P{(k) using the mapping
of PD. In other words, to be able to compare our nonlinear
power spectra to their measurements, we omit the step in their
calculation which consists of going back in time to obtain the
linear power spectrum. In principle, Figure 8 should lead to the
same conclusions found in Figure 4 (left-hand panel) where we
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Fi1G. 8—Power spectrum measured in the WDM, CDM, and HDM simu-
lations. For log,, k < —1.1, linear theory is used (nonlinear effects are negli-
gible on such scales). The dots correspond to the data used by Peacock &
Dodds (1994), enhanced by a factor of 1.3% to match the optical galaxy power
spectrum. The error bars on the dots are our own and are much larger than
those quoted by these authors (see § 4.2).

used the linear power spectra, P{. This is approximately true
for CDM, but not quite for WDM and HDM, particularly at
the smallest scales shown in Figure 8. However, this is not very
surprising, since the mapping of PD is expected to be less
accurate for pancake models. We therefore expect the nonlin-
ear comparison in Figure 8 to give the more realistic compari-
son between our models and the measurements.

Even with our generous error bars, the CDM distribution
has too much power at small scales confirming earlier findings.
WDM, like CDM, seems to systematically overestimate
the observations for log,, k = —1.0, particularly around
log;o k = —1. The HDM distribution provides a very good fit
at large scales (log,, k < —0.7) but with too little power on
small scales. Biasing, as will be discussed in § 5.3.4, or normal-
ization of the data points to IRAS galaxies (see § 4.2), probably
worsens the situation for WDM.

5.3.2. Correlation Function

Figure 9 displays the two-body correlation function &,(l) =
{d(x)d(x + 1)», where & = dp/p is the density contrast. Since the
two-body correlation function is just the Fourier transform of
the power spectrum (see, e.g., Peebles 1980), we expect similar
conclusions. For each simulation (except PML), we measure
&,() and average the results. The analysis is done for
Ly, /128 < I < Ly,,/9, where the lower bound corresponds to
the spatial resolution of the PM code and the upper one is
imposed to avoid possible contamination due the finite size of
the simulation box. The error bars represent the rms dispersion
of the simulations. The dashed line is the power-law fit &4() =
(1/10.8)~*-77 of the two-body correlation function measured by
Davis & Peebles (1983) in the optical galaxy distribution.

As expected, the results are similar to those of § 5.3.1. In
particular, the function £, measured in the WDM distribution
is very close to the one measured in the CDM distribution,
although its overall logarithmic slope is closer to the observed
one. In both cases, the measurements overestimate by a signifi-
cant amount the optical correlation function and therefore
require some “antibias” between the galaxy distribution and

and HDM simulations. The dashed line is the power-law fit of Davis & Peebles
(1983) in the observed galaxy distribution.

the matter distribution, i.e., £4(I) = b*())¢,(I), with b(l) < 1. For
example, at the correlation length of the optical galaxy dis-
tribution I, ~ 10.8 Mpc, we measure b(l,) = 0.8 for CDM and
WDM, and b(l,) = 0.9 for HDM. We return to this point in
§5.34.

5.3.3. Pairwise Velocities

The line-of-sight pairwise velocity dispersion,
1
a4(r) = —= {[v(x + 1) — o(x)]*)2, (26)
1 \/§

provides another probe of structure on galaxy and cluster
scales. Here »(x) stands for the peculiar velocity of the matter
measured in our simulations; a,(r) calculated in the synthetic
data can be compared (with caution) to measurements in the
galaxy distribution as is done in Figure 10. The analysis for the
simulations is similar to the one used to calculate the two-body
correlation function. The error bars, which represent the rms
dispersion over all of the synthetic data sets, are quite large,
especially for r < 10 Mpc, where ¢, is dominated by rare, large,
and hot (high internal velocity dispersion) clusters (see also
GB; Marzke et al. 1995).

%ﬁ%&i‘ﬁi‘ I IHTHQI . “:
ek L

0.5
log,, ¢ (Mpc)

F1G. 10.—The quantity o, (defined in eq. [26]) as a function of separation /
measured in our N-body experiments, compared to measurements in the
observed galaxy distribution. The thick vertical segment corresponds to a
compilation of the recent measurements of Mo et al. (1993) and Marzke et al.
(1995) on various galaxy catalogs (see text).
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Once again we see that the results for WDM and CDM are
fairly close. Even HDM gives similar results at small scales.
This last point apparently contradicts the results of the pre-
vious sections, which looked at the statistics of the density
distribution. However, the collapse of large cluster-like objects
can produce large velocity dispersions at small separations,
particularly just after the first shell crossing (see also Gelb,
Gradwohl, & Frieman 1993).

Note that the velocities we obtain here are much larger than
those for MDM, for which Klypin et al. (1993, hereafter
KHPR) obtained o,(1 h~! Mpc)~ 450 km s~!, a value
approximately 3 times smaller than the one we find for WDM,
CDM, and HDM ! This difference is rather surprising, and one
could argue that it may be due to some numerical artifact.
However, we think that our N-body results are reliable to
within 30%, as discussed in § 5.1. Part of the difference may be
due to the fact that CDM, HDM, and WDM have more power
than MDM on large scales —1.3 <log ok < —0.8 (see, e.g,
Fig. 4). This large-scale power cascades down to smaller scales.
Free-streaming effects could also contribute to the difference.
Indeed, there is no free-streaming at scales larger than ~ 1 Mpc
for all the models we study. This is far from being the case
in MDM, where free-streaming can significantly affect the
dynamics of structures as large as clusters.

The thick vertical line on Figure 10 corresponds to a com-
pilation of recent measurements made by Marzke et al. (1995)
and Mo, Jing, & Borner (1993). It indicates the velocity range
280 km s~! < 09 < 720 km s~ . Marzke et al. measured ¢9(1
h~! Mpc) = 540 + 180 km s~ ' in the combined latest CfA2
catalog (Huchra, Vogeley, & Geller 1995) and SSRS2 catalog
(da Costa et al. 1994). Mo et al. measured ¢f in the CfAl
(Huchra et al. 1983) and (old) CfA2 catalogs (Huchra et al.
1990) as well as the SSRS1 catalog (da Costa et al. 1991) and
the 1.930 Jy redshift survey of IRAS galaxies (Strauss et al.
1992). For separations 0.8 h~! Mpc <r < 1.6 h™! Mpc, they
find, 280 km s ! < 69 < 700 km s~ *, which is in good agree-
ment with Marzke et al., the one exception being the result for
the (old) CfA2 catalog result that we did not take into account
while drawing the vertical line. Indeed, this last catalog is
dominated by the Coma Cluster ¢4 ~ 1400 km s~ *, a value
close to the one we measure in our N-body experiments.
Except for this particular measurement, the observed o9 is
significantly less than the ¢, found in the simulations.

The models exhibit small-scale velocities more than a factor
of 2 larger than those observed in the galaxy distribution, sug-
gesting that they are excluded by the data. However, there are
stilt large uncertainties in the measurements (Zurek et al. 1994;
Mo et al. 1993). In addition, there is the usual problem that the
velocity dispersion measured for galaxies may be different from
the velocity dispersion for the underlying matter distribution.
We now turn to this ever-present question of biasing.

5.3.4. Biasing

The preceding subsections have all illustrated that nonlinear
effects substantially enhance the power in a WDM model at
scales k = 0.1 h Mpc~!. The observations of galaxy distribu-
tions seem to indicate that there is less power on these interme-
diate scales than the model predicts. One way to reconcile this
discrepancy would be to invoke “antibiasing,” i.e., assume that
P9/P and 69/, are less than unity. There are two problems
with this solution. First, the extensive studies of biasing in
CDM models suggest that the biasing parameter b = (P9/P)/?
is larger than unity. One might argue that WDM may be
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biased differently, since it is not a “hierarchical” model like
CDM. This leads to the second problem: there have been some
studies of biasing in pancake models, and these suggest that the
bias factor b is larger than in hierarchical models. The situation
for velocities is slightly better. The velocity bias parameter
defined here as b, = ¢9/0, is expected to be less than unity, for
it is difficult to imagine a mechanism which can accelerate the
baryonic matter but not the dark matter. Both merging
(Couchman & Carlberg 1992) and dynamic friction inside clus-
ters (Carlberg & Dubinski 1991) may significantly decelerate
the galaxies relative to the dark matter, thereby leading to a
low b,,.

We first review the work on biasing. (1) Perhaps the simplest
method is to assume that galaxies form in regions with den-
sities larger than a given threshold and that their distribution
follows the matter distribution in these regions (e.g., Einasto,
Klypin, & Saar 1986 and references therein). This is basically
the method used to generate the left-hand panels of Figure 6,
although there the “galaxies” were selected at some reason-
able epoch of galaxy formation and then followed until the
present. (2) A more elaborate approach is to assume that gal-
axies form in the peaks of the matter distribution (see, e.g.,
Davis et al. 1985; Bardeen et al. 1986). These two methods lead
to values of b larger than unity (at least for Gaussian initial
fluctuations). (3) Another procedure, which makes use of a
friends-of-friends algorithm to select connected groups of par-
ticles to identify halos of galaxies (Frenk et al. 1988), can lead
to antibias b < 1, particularly at small scales. However, this
result depends strongly on the way large halos are treated. If
large halos have significant substructure and correspond to
several galaxies rather than only one, then the bias will be
larger and probably greater than unity (GB). Further refine-
ments can be added to the above recipes (see, for example,
White et al. 1987a; Klypin et al. 1993; Nolthenius, Klypin, &
Primack 1994; GB; Carlberg 1988, 1991; Fry & Gaztafiaga
1993). In addition, one can attempt to treat the collisional
nature of the luminous matter (e.g., Katz, Hernquist, & Wein-
berg 1992; Cen & Ostriker 1992). In general, one finds that b is
larger than unity. The bias is, however, deeply related to the
merging history of galaxies and to the way galaxies form in
clusters: values of b smaller than unity are still not excluded for
CDM (see, e.g., Couchman & Carlberg 1992; Zurek et al.
1994).

Velocity bias has been studied in detail for the CDM model,
but there is no real agreement yet in the scientific community.
Current estimates indicate 0.5 $b, <1 (e.g, Couchman &
Carlberg 1992; Cen & Ostriker 1992; Katz et al. 1992; Carl-
berg 1994 ; Zurek et al. 1994; GB). The first two methods (1 and
2) of galaxy selection invoked above, which assume that gal-
axies form in overdense regions or in the peaks of the density
distribution, lead to a velocity bias only slightly smaller than
unity. Friends-of-friends algorithms (method 3) can lead to a
significant velocity bias of order b, ~ 0.5 or even smaller.
Indeed, the selected objects can be rich halos with high internal
velocity dispersions, whereas ¢, takes into account only the
average (barycentric) velocity. If, however, very massive halos
fragment into smaller components (i.e., correspond to several
galaxies instead of just one) the velocity bias would be larger
and probably close to unity (GB).

It is not obvious how to implement biasing in a pancake
model. The difficulty is that the matter is organized in thin
sheets and so it is difficult to identify halos. The most naive
approach (method 1) is to assume that galaxies form in the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...458....1C

NN Y A X

0B

r

No. 1, 1996

overdense parts of the matter distribution. This leads to the
second left-hand panel of Figure 6. The power spectrum of this
WDM distribution is approximately twice as large as the one
directly measured in the full WDM distribution. The idea that
the power spectrum is strongly enhanced in WDM if galaxies
form in the overdense parts of the matter distribution agrees
with earlier studies of HDM (White, Frenk, & Davis 1983;
Braun, Dekel, & Shapiro 1988). Of course, processes of galaxy
formation are not simple, and one can find arguments that
reduce such an enhancement, such as the feedback from the
first generation of formed objects in the luminous distribution
(Braun et al. 1988). Recent analyses of the HDM model, includ-
ing the hydrodynamics of the gaseous component (Cen &
Ostriker 1992), seem, however, to confirm the above simple
view that the galaxy power spectrum is larger than the matter
power spectrum in pancake models.

To summarize, with the current observational data the
models we are studying require b < 1, b, < 0.5. While certainly
not impossible, this seems rather unlikely.

5.4. Group Multiplicity Function

The multiplicity function (Gott & Turner 1977), essentially
the density of groups and clusters as a function of the number
of objects they contain, can be quite useful in testing structure
formation scenarios. Following Weinberg & Cole (1992), we

- measure the multiplicity function in our N-body experiments
and compare the results to those of Moore, Frenk, & White
(1993, hereafter MFW) for the CfA galaxy catalog,

By definition, a group of particles in our synthetic data will
have the multiplicity X if it involves N members with
2¥~! < N <2X. The multiplicity function n(X) is then the
number density of groups with multiplicity X. The groups
themselves are selected with the friends-of-friends algorithm of
EFWD and are thus connected sets of particles for which each
member has at least one neighbor closer than 4 = 0.2 times the
mean interparticle distance. Right-hand panels of Figure 6
display the groups selected in this way from our PMS N-body
simulations.

The measurement of the multiplicity function in the
observed galaxy distribution is quite a delicate matter. Indeed,
in three-dimensional galaxy catalogs, the apparent number
density of galaxies decreases with distance due to selection
effects. In addition, peculiar velocities of galaxies distort esti-
mates of their distances. MFW correct for these effects and
derive a luminosity function 7i(L) of groups. To do this, they
used a friends-of-friends algorithm similar to the one of EFWD
but modified in order to take into account observational effects
(see also Huchra & Geller 1982; Geller & Huchra 1983; Nol-
thenius & White 1987). We use the measurements of MFW for
groups with overdensity similar to that of our groups, dp/p ~
250 (D, = 1.0 Mpc in their notation; see their Table 2). In
order to convert their luminosity function, one must make
some assumptions about the mass-to-light ratio for the groups.
The simplest assumption is that M/L is the same for all objects.
We use M/L = 123 M /L, as estimated by MFW.

For the simulations, we assume that each matter particle
corresponds to one member (i.e., galaxy) in a group. We deter-
mine n(X) in each simulation (except TREE) and average the
results. The analysis is made for X > 6, as the assumption that
the mass-to-light ratio is the same for all group members may
work only for groups with large numbers of objects. Even with
this precaution, our analysis may be questionable because of
the low-mass resolution of our simulations: the mass of our
matter particles is indeed at least of the order of 10! M.
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F1G. 11.—Multiplicity function measured in our N-body experiments
(curves with error bars; see text) compared to the measurement in the CfA
galaxy catalog by Moore, Frenk, & White (1993) (circles). We assume here that
groups and clusters have a constant mass-to-light ratio M/L = 123 M /L,
where M /L, is the mass-to-light ratio of the Sun. The unit of mass chosen to
compute the multiplicity is M = 9.88 x 10'® M. A cluster of multiplicity X
has a mass between 2¥ ~! M and 2* M.

Figure 11 shows n(X) for both the N-body simulations and
the data. The error bars represent the rms dispersion between
all the measurements. No error bar indicates that there was
only one measurement available.

The multiplicity function for WDM is closer to HDM than
to CDM, an indication that structure formation begins with
the formation of large pancake-like objects. None of the
models agree with the data at large multiplicity, at least for the
mass-to-light ratio we choose. We can choose a different M/L,
but this does not really help. In particular, n(X) for WDM and
HDM have the wrong shape, and the one for CDM is not
much better. In Figure 12 we plot the mass-to-light ratio as a
function of multiplicity required if the N-body results are to
agree with the data. For X < 10, the M/L required by CDM is

3.5
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F1G. 12.—Mass-to-light ratio (in units of the mass-to-light ratio of the Sun)
that would be required for the multiplicity function measured in our N-body
experiments to fit the one measured by Moore et al. (1993) in the CfA catalog
(see Fig. 11).
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comparable to the observed M/L = 150 + 50 M /L, (see, €.g8.,
Peebles 1992), whereas the values of M/L required by WDM
and HDM are too small. At larger X, the required ratio M/L
increases with X and becomes unrealistically large for all the
models.

The above analysis indicates that the WDM, CDM, and
HDM models considered here all produce too many rich clus-
ters. Moreover, WDM and HDM clearly exhibit the wrong
shape for n(X), provided one assumes that the mass-to-light
ratio of clusters is constant or only weakly varying with rich-
ness, as is currently suggested by observations (see also Wein-
berg & Cole 1992). However, our analysis is rather crude and
needs to be improved before any final conclusions are made.

6. CONCLUSION

Warm dark matter is an interesting and viable alternative to
the standard CDM and HDM cosmologies. Quite generally,
WDM refers to any particle whose velocity dispersion is non-
negligible (for the purposes of structure formation) but less
than the velocity dispersion for the standard HDM neutrino.
We have studied a one-parameter family of WDM models
where the distribution function for the dark matter candidate
is given by equation (1). Here we summarize our results.

1. By definition, m = m, corresponds to HDM. As m is
increased, the linear transfer function approaches that of CDM
in a way that is qualitatively different from MDM models.

2. Linear analysis suggests that the m = 2m, WDM model
satisfies observational tests which probe structure on scales
greater than 25 h~! Mpc. These tests include EP (excess power
on 25 h~! Mpc as compared with 8 h~! Mpc) and bulk veloci-
ties on 40-60 h~! Mpc. In addition, the COBE normalized
linear power spectrum provides a better fit to the data than
either HDM or CDM. However, WDM may have problems in
forming galaxies at sufficiently early times.

3. Detailed N-body simulations for CDM, HDM, and
WDM (m = 2m,) are used to compare the models in the non-
linear regime. As one might expect, WDM has properties of
both HDM and CDM. In particular:

a) Structure formation in the WDM model studied is
pancake-like rather than hierarchical. The density distribution
is rather smooth, and structures as small as galaxy halos are
excluded.

Rich, dense, almost spherical, and certainly virialized clus-
ters appear. These are evident in the CDM simulations but not
in the HDM simulations.

Simple visual analyses of the large-scale structures such as
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filaments, sheets, and large void suggest that WDM reproduces
the observed ones well, although the voids may be slightly too
large, but still significantly smaller than in HDM.

b) The pairwise statistical properties of the WDM distribu-
tion look pretty much as in CDM (power spectrum, corre-
lation function, line-of-sight velocity dispersion). WDM thus
presents more “power” at small scale than observations,
implying an antibias b < 1 between the galaxy distribution and
the matter distribution.

All models predict velocities on small scales that are much
higher than the velocities measured in the data, although there
are a number of both theoretical and observational uncer-
tainties which could explain this discrepancy.

The group multiplicity function, which estimates the density
of groups or clusters of galaxies as a function of the number of
objects they contain, is calculated for the three models and
compared with the multiplicity function for the CfA galaxy
catalog derived by Moore et al. (1993). The multiplicity func-
tion for WDM is similar to that of HDM, illustrating the
pancake-like nature of gravitational collapse in a WDM uni-
verse. Neither the HDM nor the WDM multiplicity functions
have a shape in agreement with the data. CDM is not much
better.

The primary purpose of this paper has been to see how the
velocity space distribution function of the dark matter affects
the formation of structure. We have therefore made a number
of simplifying assumptions which allow for easy comparisons
among the models. In particular, we set h = 0.5, Qg = 0, and
A =0, and have assumed a simple form for the primordial
perturbation spectrum. Our tentative conclusions are that,
within this context, warm dark matter does not agree well with
the data. By varying these assumptions and parameters,
however, WDM could do better. The results enumerated
above may help discover a more fitting context for warm dark
matter.
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APPENDIX

It is often useful to have an analytic fit for the linear transfer functions calculated in § 2. Since our models range from HDM to
CDM, some care must be taken if a single functional form is to be used for all models. We choose analytic functions of the form

6
2 log,o T(k) = _lei(h—zk)m >

where k is measured in units of Mpc ™! and n; = i/6. The fitting functions are valid for k < 0.5 Mpc~*. The values of the parameters

p; for the models considered are given in Table 2.
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! TABLE 2
— VALUES OF p;
Mass Py P2 Pa Ps Pe
Mgy ....... —13.73 112.0 —3459 505.6 —348.7 85.18
2mg...... 0.4449 —10.22 56.25 —122.8 1150 —4220
4my...... —12.78 9430 —2574 3281 —2004 4542
8myg...... 5.271 —49.26 173.0 —280.7 2069 —57.63
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