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ABSTRACT

We examine the evolution of H-functions during the process of violent relaxation of collisionless self-
gravitating systems. Our arguments follow a few, relatively recent, works which dealt with this subject. We
point out that the functional that is extremized through violent relaxation does not necessarily increase at all
times and that it may decrease if the system has specific, far from equilibrium, conditions. We propose to
distinguish between two phases of violent relaxation. In one phase the H-function may decrease with time,
while in the other it is always a nondecreasing function of time. The phase during which the H-function may
decrease is characterized by the conversion of kinetic to gravitational energy, and it happens before the
central-dense and outer-dilute equilibrium structure is formed. We propose initial conditions to be imposed on
N-body numerical simulations, which can be performed in order to test our claims.

Subject headings: celestial mechanics, stellar dynamics — methods: analytical — methods: numerical

1. INTRODUCTION

Three decades have passed since Lynden-Bell (1967) first
suggested the process of violent relaxation, through which col-
lisionless self-gravitating systems rapidly relax. The quest for
better understanding of violent relaxation has continued since
then (e.g., Shu 1978, 1987; Saslaw 1985; Madsen 1987). In
particular, there has been a great interest in criteria for violent
relaxation (e.g., Saslaw 1970; Kadomtsev & Pogutse 1970) and
the functional that is extremized through violent relaxation
(Lynden-Bell 1967; Shu 1978; Stiavelli & Bertin 1987; Spergel
& Hernquist 1992). The form of the functional that is extrem-
ized is

H= —JC(F)d3xd3v, (1.1)
and is usually called the H-function. It should be noted that in
statistical mechanics H is usually defined with the opposite
sign. C(F) is a convex function (d2C/dF? > 0) of the coarse-
grained distribution function with C(0) = 0. For an ideal gas,
the entropy is given by S = kg H, where kg is the Boltzmann
constant, and C(F) = FInF. For collisionless self-gravitating
systems C(F) should have a different form.

In the last decade, several papers brought the H-function of
collisionless self-gravitating systems back to the scientific liter-
ature. The arguments started with an incorrect statement
(which was in any case not crucial to the main conclusions of
their paper) made by Tremaine, Henon, & Lynden-Bell (1986),
who treated the evolution of the H-function in a self-
gravitating system during the violent relaxation process. They
use the coarse-grained distribution function F, which is
obtained from the fine-grained distribution function f by divid-
ing phase space into equal volume macrocells and averaging f
over the volume of each macrocell. They assume that at some
initial time, t = ¢, the coarse-grained distribution function and
the fine-grained distribution function are equal, and they show
that for any later time, ¢, > t,, the inequality H(t,) > H(t,)
holds. Although they claim to show that H is a nondecreasing
function of time, Sridhar (1987), who demonstrates how H can
decrease in 1 d.of., and Kandrup (1987a) point out that the
first authors actually show the weaker inequality only.
Kandrup argues that a general expression for the evolution of
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the H-function at arbitrary time must explicitly include the
form of the potential, which, for self-gravitating systems
without external potential, is given by V2U(x, t) = 4nGp,
where U is the potential and p is the mass density. Kandrup
ends his discussion by claiming that whether H is a monotoni-
cally increasing function of time during the violent relaxation
process is still an open question.

Starting from where Kandrup (1987a) ends, Soker (1990)
derives an expression for the time derivative of a general H-
function in which the potential appears explicitly. Soker
applies the expression to self-gravitating systems and argues
that the condition for having a nondecreasing H-function for
all coarse-grained distribution functions is that, on the average,
the high-density regions contract and the low-density regions
expand. Although Soker derives his results under several
assumptions, he conjectures that the results are more general.
In a relatively recent paper, Spergel & Hernquist (1992)
propose a functional that is extremized through violent relax-
ation. Their elegant and convincing derivation is based on two
Ansdtze, which imply the existence of a detailed balance, from
which it can be shown that their functional is a nondecreasing
function of time.

The goal of this paper is to show that the assumptions of
Spergel & Hernquist (1992) are generally valid only when the
violently relaxing system is not too far from the final equi-
librium, in the sense that a structure of central dense region
together with an outer dilute region is already defined. In order
to do so, we compare in § 2 their Ansdtze with the criterion for
violent relaxation proposed by Saslaw (1970) and with the
results of Soker (1992). It is well known that the H-theorem,
which claims that the H-function is a nondecreasing function
of time, holds only after “initial correlations have died away,”
as Kandrup (1987b) puts it. The paper by Kandrup contains an
excellent, very relevant discussion of properties of the entropy
as well as the H-theorem. In § 3 we propose a set of initial
conditions to be used in N-body numerical simulations of
gravitating systems, which can be performed in order to check
the validity of our claims regarding H-function evolution
during violent relaxation. We follow Jaynes (1971) when we
propose initial conditions where kinetic energy is converted
into gravitational energy. This may lead to the decrease of the
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H-function at early stages, although its final value will be
higher than its initial value. We summarize in § 4.

2. ON CRITERIA FOR VIOLENT RELAXATION

We start by giving the expression for the time variation of H
that was derived by Soker (1992). We will use this expression
for dH/dt to propose a way to characterize violent relaxation,
at least in what we call a “ vigorous phase.” We give the expres-
sion for a system in which the systematic variation is along one
coordinate axis x* (eq. [3.10] of Soker 1992),

H= % JC"(U MNIVEU(As)® — (Av)*]

J J
X (51%)(6—;)‘13)6 .

The different variables are defined as follows. The phase space
is divided into macrocells of sizes 2As and 2Av, along the coor-
dinates x* and v*, respectively. We denote by { f> the coarse-
grained distribution function obtained from the fine-grained
distribution function f by averaging over the phase space
macrocells 2As x 2Av. C is a convex function, d>C/d{f»* > 0
with C(0) = 0, and U is a general potential. Equation (2.1) is
accurate to the third power in Av and As. As for the other
assumptions and constraints which have been made in the
derivation of equation (2.1), see Soker (1990).

For self-gravitating systems V2U = 4nGp and is thus non-
negative. Therefore, the two terms inside the square brackets in
equation (2.1) have an opposite contribution in each macrocell.
In order to obtain H > 0 for arbitrary As and Av, it is neces-
sary that, on average, (0f/0v)Vf be positive in the high-density
regions and negative in the low-density regions. In general, this
implies that the H-function increases when, on average, the
high-density regions contract and the low-density regions
expand. During relaxation of stellar systems via the violent
relaxation mechanism, for example, this must not be the case.
In this process groups of objects are formed and destroyed
until the system relaxes (Saslaw 1985). In this process the high-
density regions can expand and the low-density regions can
contract. It is possible, therefore, that during the violent relax-
ation process, if we take macrocells with As < 7 Av, we obtain
an opposite sign for H than by taking macrocells with
As > 1t Av, at any specific time. Here 7 is a characteristic time-
scale, i.e., the same 7 required by the time coarse-graining of
Saslaw (1970). This means that a coarse-grained distribution
function for which the H-function decreases momentarily may
be found, although it will increase for all possible coarse-
grained distribution functions over a long enough period of
time.

Untii now we have summarized the derivation and dis-
cussion of Soker (1992). We shall now go further. Based on the
behavior of H discussed above, we propose the following clas-
sification for a violently relaxing system when it is far from
equilibrium conditions. A collisionless self-gravitating system
is in the phase of a “vigorous” violent relaxation if, at any
given time during this phase, a coarse-grained distribution
function for which momentarily H < 0 can be found. We do
not specify here which form should be selected for C(F), but it
is probably appropriate to choose the C(F) that the system
maximizes.

Criteria for characterizing systems during the violent relax-
ation process, without direct reference to the evolution of the
H-function, have been proposed by Saslaw (1970) and
Kadomtsev & Pogutse (1970) (see the discussion in Saslaw
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1985). Saslaw (1970) gives a criterion by using coarse graining
in time, while Kadomtsev & Pogutse (1970) use coarse graining
in phase space. The way by which the second criterion relates
to the first has already been discussed by Saslaw (1985). The
physics behind the criterion given by Saslaw (1970) is that the
largest contribution to the potential at a specific point comes
from a distant mass whose mean field time fluctuations is
uncorrelated with the variation of the local value of f. Saslaw
shows his criterion to be sufficient, but he leaves open the
question of whether the criterion is also necessary.

With the goal of understanding structures of galaxies from
fundamental statistical mechanics, Spergel & Hernquist (1992)
consider functional extremization. In their search for a func-
tional that is extremized in violent relaxation, Spergel & Hern-
quist start with two Ansdtze. First Ansatz: The effects of
time-varying fields attending violent dynamical processes on
individual particles can be represented as a sequence of dis-
crete, impulsive scattering events. Second Ansatz: The states
accessible to a particle undergoing a scattering event are deter-
mined fully by the instantaneous values of the particles’ inte-
grals of motion at the time of the scattering.

Spergel & Hernquist (1992) then assume that the scattering
is a local process and that the density of state available is
g(E) oc (E — U)'?, where E is the particle total energy, and
E — U is its kinetic energy. According to the model of Spergel
& Hernquist, most of the scatterings occur near perigalacticon.
This model contains the assumption that a group of gravi-
tating point masses, which is the scatterer, is already defined
near the center of the system.

From these Ansdtze and assumptions Spergel & Hernquist
propose that violent relaxation maximizes a functional K, in
which the density of states Y(E) is replaced by the local density
of states g(E). This is equivalent to replacing Inf by In(fiy/g) in
the expression for C(F) in equation (1.1). The functional K is a
nondecreasing function of time.

Two comments regarding the functional K should be made.
First, the idea of changing Infinto In(fh), in the expression for
the functional, where h is a “ weight ” function of microcells, is
not new. Stiavelli & Bertin (1987), for example, take h to be the
radial period of orbits with specified energy and angular
momentum. Thus, the weight function depends on the proper-
ties of individual stars.

Second, the transition from Y(E), which depends on the
number density of particles near E, to g(E), which depends only
on the individual star energy E, resembles the transition from
the Gibbs H-function to the Boltzmann H-function (Jaynes
1965). With our sign in the definition of the H-function, the
Boltzmann H-function is equal to or larger than the Gibbs
H-function. The Gibbs H-function is equal to the Boltzmann
H-function if and only if the distribution function factors into a
product of single-particle functions (e.g., Jaynes 1965). It is the
Gibbs H-function that is actually used in the current paper.

How are the assumptions and derivation of the extremized
functional of Spergel & Hernquist related to previous criteria
and results? The second Ansatz of Spergel & Hernquist (1992)
appears to be in accord with the criterion of Saslaw (1970),
which asserts that the mean field time fluctuations of a distance
mass is uncorrelated with the variation of the local value of f.
However, Spergel & Hernquist’s first Ansatz and the assump-
tions that follow it, concerning discrete scattering by a local
potential, appear to be in disagreement with the criterion pro-
posed by Saslaw (1970), which claims that the largest contribu-
tion to the potential at a specific point comes from a distant
mass.
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The expression for the local density of states g(E)oc
(E — U)'? indicates that particles are more likely to be scat-
tered into states with higher total and kinetic energy. Energy
conservation implies that the total energy of the scattering
group of point masses decreases during the interaction. The
group of gravitating point masses that scatter the particle will
contract when its total energy decreases, while the scattered
particles’ apgalacticon will increase. Therefore, the scenario
presented by Spergel & Hernquist (1992) is compatible with the
condition derived by Soker (1990) for the increase of the H-
function (eq. [2.1]).

The result of the above considerations is that the assump-
tions of Spergel & Hernquist (1992), although reasonable and
appearing to lead to the right extremized functional at the end
of the violent relaxation, are not necessarily fulfilled at the
beginning of the relaxation process. Their assumptions seem to
characterize the phase of the violent relaxation when the high-
density and low-density regions are already well defined. If,
indeed, our claims above hold, then it is reasonable to define
two phases of violent relaxation. An early phase, the “ vigorous
phase,” where the criteria of Saslaw (1970; see also Kadomtsev
& Pogutse 1970), as well as the one suggested here, following
equation (2.1), apply; and a second phase, the “calm phase”
where the assumptions of Spergel & Hernquist (1992) hold.
The second phase starts when the high-density and low-density
regions begin to form, although they are not yet relaxed. The
calm phase corresponds, in the more general case, to the phase
at which initial correlations have already decayed, and there-
fore a general H-theorem can hold (Kandrup 1987b). 1t is not
necessary that the first phase occur. In the process of galaxies
merger, for example, where the high-density regions are well
defined before the collision, the first phase appears not to exist.
A numerical test to the above proposed scenario of H-function
evolution is described next.

3. PROPOSED NUMERICAL SIMULATION TESTS

Jaynes (1971) notes that in order to have the H-function
decrease (increase with the plus sign in his definition of H), the
kinetic energy should decrease. He discusses a gas obeying the
van der Waals equation of state, where the attractive van der
Waals forces convert kinetic to potential energy after an explo-
sion starts. He then quantitatively considers the violeting of the
H-theorem when a volume constraint is removed.

In our case, it is the gravitational attraction that will convert
kinetic to potential energy. Since we are interested in suggest-
ing a numerical test and not in rigorously proving the decrease
of the H-function, we can make several simplifying assump-
tions. We assume that the temperature T of the point masses
system can be approximately defined, even though the system
is not in equilibrium, by 3Nky T/2 = E,, where E, is the kinetic
energy, kg is Boltzmann constant, and N is the total number of
particles. We take all particles to be of equal mass and take the
H-function of an ideal gas as an approximation to our colli-
sionless self-gravitating system (Shu 1978):

H=A+NInV +3NInT, (3.1

where V is the volume and A is a constant. The condition for
the decrease of H, dH/dt <0 when the volume increases is

(Jaynes 1971)
oTy 2t
oV /g 3V

We take a spherical system of mass M and radius R, so that
the potential energy is Eg ~ GM?/R = GM*(4n/3V)'/3, where

(3.2)
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V = 4nR3/3 is the volume. The total energy is E ~ E, —
GM?/R. Substituting for the kinetic energy in the expression
for the temperature gives

21 GM?
T~-—I|E 33
v (5 %) 6
Substituting R oc V ~!/3 and differentiating gives
T 2 1 GM?
o) . 2 L GM° (3.4)
av),~ 9 Nks VR

By substituting equations (3.3) and (3.4) in condition (3.2), we
find that the conditions on the total energy and kinetic energy,
in order for the H-function to decrease when the volume
increases, are

1 GM? 1 GMm?

2R and Ey < >R
Thus, the kinetic energy at the beginning of the process should
be less than half the magnitude of the gravitational energy.
Since we start by increasing the volume, the kinetic energy will
further decrease. The conversion of kinetic to potential energy
is a necessary condition for violating the H-theorem (Jaynes
1971). However, when the system finally relaxes and reaches
equilibrium, it is virialized and Eg =|Eg|/2. Thus, in the
overall relaxation process, potential energy will be converted
into kinetic energy.

Even though we do not expect the temperature to be well
defined initially, and the gravitational energy may somewhat
differ from the ¥~ !/ dependence, we can use the consider-
ations given above to propose a numerical test to study the
decrease of the H-function. We suggest the following initial
conditions and calculations of the H-function evolution in a
spherical N-body numerical simulation. The numerical simula-
tions may also be performed for nonspherical, nonequal mass
particles systems, of course. First, the kinetic energy should be
less, preferentially much less, than half the gravitational poten-
tial energy magnitude: Ex < | E;|/2. This initial condition of a
“cold system” is compatible with systems violently relaxing
into states resembling distribution of elliptical galaxies
(Tremaine et al. 1986).

Second, the system should expand outward, mimicking an
explosion. That is, the initial largest component of the veloci-
ties of most particles, or even all particles, is the positive radial
component. In order to calculate the H-function as a function
of time, the phase-space volume should be divided into a set of
macrocells, each having a volume Ay = Ax Av, in a suitable
coordinate system. Since the velocity distribution is not iso-
tropic in our proposed simulations, the distribution function
may not be coarse grained along energy hypersurfaces, as done
by Hernquist, Spergel, & Heyl (1993), for example.

The coarse-grained distribution function is calculated after
every time step by counting the number of particles in each
macrocell N {t). Since the particles are assumed to be of equal
mass, the distribution function in macrocell j is given by
F(t) = N{t)/Au. A convex function C(F) must be assumed. It is
reasonable to compare several different functions that have
been proposed (Lynden-Bell 1967; Shu 1978; Stiavelli & Bertin
1987, Spergel & Hernquist 1992). The H-function is given then
by summing over all macrocells H = —AuZ; C(F)). It should
be noted that the violent relaxation is an incomplete process,
so that the search for a maximum of the H-function should be
done up to a prescribed precision. A good discussion on the
incompleteness of violent relaxation, on some properties and

E <

(3.5)
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limitations of coarse- and fine-grained distribution functions,
and on other assumptions and characters of violent relaxation
may be found in the two back-to-back papers by Madsen
(1987) and Shu (1987), and in Stiavelli & Bertin (1987).

We note that even in systems which are already in equi-
librium there are statistical fluctuations in the number of
objects in the macrocells, which cause statistical fluctuations in
the H-function. These fluctuations can cause H to decrease for
a short period of time. However, the timescales of these fluctua-
tions are expected to be of the order of the particles crossing
times of the macrocells, which are shorter than the duration for
which H will decrease as a result of transferring kinetic to
potential energy. Also, by increasing the number of particles,
the fluctuations will be smaller, while the change in H due to
relaxations will not be much influenced.

4. SUMMARY
Our main results are summarized as follows.

1. A coarse-grained H-function (or functional), which is
maximized through violent relaxation of collisionless self-
gravitating systems, does not necessarily increase at all times
during the relaxation.

2. The coarse-grained H-function is likely to decrease when
kinetic energy is converted to gravitational energy, before the
central-dense and outer-dilute structure is well defined.

3. This behavior of the H-function leads to a possible dis-
tinction between two phases of violent relaxation. The
“vigorous phase,” during which the H-function may decrease,
and the “calm phase,” during which the H-function always
increases. The vigorous phase will occur only in systems start-
ing with specific initial conditions. We claim that the assump-
tions of Spergel & Hernquist (1992) are appropriate for the
calm phase. The relaxation will always end through the calm
phase, and therefore the functional which Spergel & Hernquist
(1992) propose to be extremized seems to be correct. The calm
phase corresponds in the general case to the phase at which
initial correlations have already decayed (Kandrup 1987b).

4. We proposed a set of initial conditions to be imposed on
N-body numerical simulations in order to test our claims.
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