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ABSTRACT

The peculiar velocities of galaxies distort the clustering pattern anisotropically in redshift space. This effect
on the statistics of isodensity contours is examined by linear theory. The statistics considered in this paper are
the three- and two-dimensional genera of isodensity contours, the area of isodensity contours, the length of
isodensity contours in the two-dimensional slice, and the level crossing statistic on the line. We find that all
these statistics in redshift space as functions of density threshold of contours have the same shape as in real
space. The redshift space distortion affects only amplitudes of these statistics. The three-dimensional genus and
the area hardly suffer from the redshift space distortion for 0 < Qb~3/3 < 1, where b is a linear bias parameter.
The other statistics are defined in one- or two-dimensional slices of the sample volume and depend on the
direction of these slices relative to the line of sight. The latter statistics depend on Qb~ %3, This dependence
will be useful when the deep redshift surveys are available.

Subject headings: cosmology: theory — galaxies: distances and redshifts — large-scale structure of universe —

methods: statistical

1. INTRODUCTION

Redshift surveys of galaxies play essential roles in revealing
the structure of our universe. If galaxies move purely with the
uniform Hubble expansion, redshift surveys would tell us the
real distribution of galaxies. In reality, however, the peculiar
velocities of galaxies distort the distribution in mapping from
real space to redshift space. The distortion is along the line of
sight, and the clustering pattern of galaxies in redshift space
becomes anisotropic.

There are two characteristic features in the redshift space
distortion. On very small scales, the random peculiar motions
in virializing clusters stretch the shape of clusters along the line
of sight, known as the “finger of God” effect. As a result, the
strength of the clustering is weaker in redshift space than in
real space (e.g., Lilje & Efstathiou 1989; Suto & Suginohara
1991; Peacock 1993; Matsubara 1994a). On large scales, the
coherent velocity field falling in the region with the excess mass
makes the perturbation enhanced along the line of sight, in
contrast to the small-scale case (Sargent & Turner 1977;
Kaiser 1987; Lilje & Efstathiou 1989 ; McGill 1990).

The redshift data are to be compared with many theories on
the structure formation of the universe. The straightforward
predictions of these theories, however, are usually described in
real space. To compare the theories with observations, the
various statistical measures, such as correlation functions,
probability distribution functions, etc., are used. Among such
statistics, there is a class of statistics using a smoothed density
field which cuts the noisy property of galaxy distribution.

For example, Gott, Melott, & Dickinson (1986) introduced
the topology of isodensity contours of those smoothed fields.
The genus G, which is defined by —3 times the Euler charac-
teristics of two-dimensional surfaces, can be a quantitative
measure of the topology and was analyzed both in numerical
simulations and in redshift surveys of galaxies by many
authors (Gott, Weinberg, & Melott 1987; Weinberg, Gott, &
Melott 1987; Melott, Weinberg, & Gott 1988; Gott et al. 1989;
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Park & Gott 1991; Park, Gott, & da Costa 1992; Weinberg &
Cole 1992; Moore et al. 1992; Vogeley et al. 1994; Rhoads,
Gott, & Postman 1994). Analytic expressions of the genus for
some cases are already known, including the Gaussian random
field (Doroshkevich 1970; Adler 1981; Bardeen et al. 1986;
Hamilton, Gott, & Weinberg 1986), the Rayleigh-Lévy
random-walk fractal (Hamilton 1988), union of overlapping
balls (Okun 1990), and weakly non-Gaussian random fields
(Matsubara 1994b). So far these expressions have been derived
only for isotropic fields.

There are other statistics of isodensity contours, which
include the two-dimensional genus in two-dimensional slices of
density field G, (Melott et al. 1989), the area of isodensity
contours N3, the length of isodensity contours in two-
dimensional slices of density field N,, and the level crossing
statistic N; (Ryden 1988; Ryden et al. 1989). The analytic
expressions of all the above statistics for isotropic Gaussian
random fields are known.

The growth of the density fluctuation of the universe on
large scales is described by linear theory in the gravitational
instability picture of the structure formation (e.g., Peebles
1980). Thus, if the initial fluctuation is a Gaussian random
field, as is often assumed, the statistics of isodensity contours of
the density field with large smoothing length should obey the
random Gaussian prediction. Because the known analytic
expression for Gaussian random fields is for the isotropic field,
this Gaussianity test of the initial fluctuation should be per-
formed in real space, which is not feasible in reality. It is not
obvious whether or not the redshift space distortion strongly
affects statistics of isodensity contours. As for the genus,
Melott et al. (1988) found by analysis of N-body simulations
that genus is hardly affected by redshift space distortion when
the smoothing length is larger than the correlation length, ~5
h~! Mpc.

In this paper, the redshift space distortions of statistics of
isodensity contours G, G,, N3, N,, and N, are studied analyti-

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...457...13M

14 MATSUBARA

cally by linear theory of gravitational instability, assuming that
the initial fluctuation is a Gaussian random field. These sta-
tistics will be determined accurately with the future redshift
surveys. Our approach provides the Gaussianity test which can
be performed directly in redshift space. Moreover, the redshift
space distortion depends generally on the density parameter of
the universe, and our formula could be expected to discrimi-
nate this parameter.

The rest of this paper is organized as follows. In § 2, the
distant-observer approximation to evaluate the redshift space
distortion of statistics is introduced. We show directly that our
definition of this approximation is equivalent to the approx-
imation adopted by Kaiser (1987), who gave for the first time
the redshift space distortion of the two-point statistic by linear
theory. Then we derive the useful anisotropic statistics in red-
shift space. The main results of this paper, the formulae for
statistics of isodensity contours in redshift space, are derived in
§ 3. We discuss the results in § 4.

2. FIELD CORRELATIONS IN THE DISTANT-OBSERVER
APPROXIMATION

Kaiser (1987) showed that the distortion of the power spec-
trum in redshift space, P)(k), from that in real space, P"(k), is
given by the simple formula

POk) = (1 + fu?)*P"(k) , 1)

where i is the cosine of the angle between the line of sight and
the direction of k, and f(Q) = H 'D/D ~ Q°%¢, where D is the
linear growth rate and H is the Hubble parameter. The Q
dependence of f(Q) is approximately the same in the presence
of cosmological constant A (for details see Lahav et al. 1991),
and we use this approximation, f~ Q35, extensively in this
paper. This simplicity of equaticn (2.1) relies on the approx-
imation that the sample volume is distant enough from the
observer compared with scales of fluctuations considered.
Inhomogeneity of the redshift samples closer to the observer is
not negligible, nor is the anisotropy; this prevents us from
giving a simple expression as in equation (2.1). When the
sample volume is distant from the observer, the direction of the
line of sight is approximately fixed in the sample volume. We
refer to this approximation fixing the line of sight as the
“distant-observer approximation.” Adopting this approx-
imation, the Cartesian coordinates in which the line of sight is
fixed are convenient for our purpose, The Cartesian coordi-
nates make the calculation of statistics of isodensity contours
easy. Our distant-observer approximation exactly reproduces
Kaiser’s result (eq. [2.1]), which is derived by first introducing
spherical coordinates and then using the approximation that
the sample is distant from the observer. Our approach depends
on the Cartesian coordinates from the beginning, and it would
be useful to see directly the equivalence of Kaiser’s approx-
imation and our distant-observer approximation. The deriva-
tion of Kaiser’s result in Cartesian coordinates is simpler, as we
will see in the following.

In the Cartesian coordinates of our distant-observer approx-
imation we define the direction of the line of sight by a unit
vector 2. Using the line-of-sight component of a peculiar veloc-
ity field U(r) = v(r) - 2, the mapping of the coordinates from
real space to redshift space is given by

s =r+ % [U(r) — U(0)] . 2.2)
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The observer is placed on the origin of the coordinates, 0. On
the large scales we are interested in, we can relate the number
density of galaxies in redshift space, p{”, and that in real space,
p¥, by evaluating the Jacobian of the mapping in equation
(2.2), resulting in

1 R 1
pYs(r)] = [1 +gé VU(r):| pAr) . (2.3)
Leaving only linear order in density contrast 6 = p/p — 1 and
peculiar velocity field, this relation reduces to

1
08 r) = 6D(r) — i 2-VU(@r). (24)
The peculiar velocity field in linear theory (Peebles 1980) is, in
growing mode,

or) = —HfVA~150r) , 2.5)

where A™! is the inverse Laplacian and 6% is the mass density
contrast in real space. In the following, §, and 4, are assumed
to be proportional to each other. This assumption is called
linear biasing: §, = bJ,,, where b is the bias parameter which is
a constant. The relation between the density contrast in red-
shift space and in real space is, up to linear order,

o =[1+fb"¢- V)2A~1169) , (2.6)
or, in Fourier space,
3(s) LA P
oJk)=]1+fb o o(k) , 2.7

which is Kaiser’s result.
In the following, we use the parameters ¢; and C; defined by

2
o3(R) = f % kPO WKR) 2.8)

1
C(Q) =3 J dp (1 + fb~1?)?, 29
-1
where W(x) is the Fourier transform of the window function to
smooth the noisy field of the galaxy distribution. The two
popular windows are the Gaussian window Wg(x) =
exp (—x2/2) and the top-hat window Wiy(x)= 3(sin x —
x cos x)/x3. We assume that the window function is an iso-
tropic function. The rms ¢® of density contrast in redshift
space is given by

(06)? = Cya2. (2.10)
We define the following normalized quantities,
o 0,69 0;0;0%
o= F s i = o_(s) . wij = o-:s) s (211)

where 6§ is the smoothed density contrast in redshift space.
These quantities obey the multivariate Gaussian distribution
in linear theory if the primordial fluctuation is a random
Gaussian field. The multivariate Gaussian distribution is deter-
mined completely by the correlations of all pairs of variables.
For our purpose below, the statistics of quantities «, f;, and w,,
(i=1,2,3;1,J = 1,2)is sufficient. Choosing the coordinates in
which the line of sight is the third axis, all the correlations
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among the above quantities at some point are as follows:

oy =1, <af>=0,
1/C o2
{acwpy) = 5 <C_(1) - 1) 0'_(;, Oy »

C, 0%
=125,
Co> 03 Y

<ﬁ1ﬁ1> = % (1 -

2
C, o}

BiBs> =0, <B3B3> =C_00'_(2,’ Biwp> =0,

1 2C, C,) o3
onony =3 (1 -2+ 2) 2

X (015 0k, + 1k Oyr + 611051 -
It is more convenient to consider
(2.12)

instead of w;;. The new set of variables a, §;, and @,; are
distributed as multivariate Gaussian and the nonvanishing
correlations of these variables are only

Oy = 0y — aawyy)

<Cxa> = 1 ’
1 C,\ o?
<ﬁ1ﬁ1> = <ﬂ2ﬂ2> =5<1 _C_0> U_g,
C, o2
<ﬂaﬁ3> =C_0;’

<&’11 ‘bu> = <0~022 6’22>

1 26, G, Ci\ .93
=31 2) of 1 o2} 2|22
8[3< co+co) 2( Co>y =5

L 1 26, C, ¢\ ,] o
(12222 g1 -22) 2 |22

@utwy =5 (184 2) {1-2) 7%
~ 1 2C C,)\ a2
<w12w12>=§(1—c—01+c_z>6_§,

where y = 62/(0, 7,).

3. STATISTICS OF ISODENSITY CONTOURS

Let us derive the formula for statistics of isodensity contours
in redshift space. In the following, the primordial fluctuation is
assumed to be a random Gaussian field.

3.1. Genus Statistic

The genus is — % times the Euler number. The Euler number
density of isodensity contours is evaluated by

number of maxima + number of minima
— number of saddle points (3.1)

of the contour surfaces with regard to some fixed direction.
The expectation value of the Euler number of the isodensity
contours per unit volume is (Doroshkevich 1970; Adler 1981;
Bardeen et al. 1986)

nP(v) = <o — v)o(B1)3(B) | B3| (w11 @22 — @12)>, (3.2)

where the isodensity contours are defined to be the surface
0% = vo®. This expression is valid even for general anisotropic
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fields. Using new variables @;; in equation (3.2), the following
result for the expression of genus G in redshift space is
derived:

1 3\/3 C C
Ny) — — — () — V2 (=1 E1) )
GY(®v) > n$v) > Cy (1 C0>G v, (3.3
where, from equation (2.9),

C,  114(6/5fb~" + 3/T)fb"")
Co 314+@B3)fb1+1/5(fb 1)’

and G is genus in real space (Doroshkevich 1970; Adler 1980;
Bardeen et al. 1986; Hamilton et al. 1986) given by

o \} 2y,-v2/2
\/50 (1 —v%e . 3.5)
)

The redshift space distortion does not alter the shape of genus
as a function of density threshold, and only the amplitude is
affected. The Q dependence of the change in amplitude is
plotted in Figure 1 (top). The effect of redshift space distortion
is small for Qb~ %3 less than unity. This fact is in agreement
with the N-body analysis of Melott et al. (1988).

(3.4)

G(r)(v) = (27'[)2

3.2. Two-dimensional Genus Statistic

The next statistic we consider is two-dimensional genus.
This statistic is defined in the two-dimensional flat plane S in
three-dimensional space. The density field calculated in three-
dimensional volume defines the high-density points in the

T T T T TTTIT T IIIIIII] T T T TTTIT

G(s) /G(r)

Gz(s) /Gz(r)

oll Co il vl Lol
.01 1 1 10

Qb

Fi1G. 1.—Top: amplitude of genus in redshift space relative to that in real
space. Bottom: relative amplitude of two-dimensional genus. The angles
between the slice and the line of sight are 65 = 0°, 15°, 30°, 45°, 60°, 75°, and
90° (from upper line to lower line).
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plane which constitute the excursion set on the plane. The
two-dimensional genus is defined by the number of contours
surrounding the high-density region minus the number of con-
tours surrounding low-density regions (Adler 1980; Coles
1988; Melott et al. 1989; Gott et al. 1990). The redshift space is
anisotropic because of the presence of the special direction (line
of sight), so the two-dimensional statistic depends on the angle
05 between the plane S and the line of sight. The alternative,
equivalent definition of two-dimensional genus is useful in the
following. For some arbitrarily fixed direction in the two-
dimensional surface, the maximum and minimum points are
defined on the contours. These points are classified into up-
crossing and downcrossing points with respect to the fixed
direction. The two-dimensional genus is defined to be

1 (number of upcrossing minima
— number of upcrossing maxima
— number of downcrossing minima

+ number of downcrossing maxima) 3.6)

of the contour lines with regard to some fixed direction in the
plane S. The latter definition can be used to obtain the follow-
ing expression for two-dimensional genus per unit area of the
plane:

GS(v, Bs) = —3{3( — v)3(B,)| B sin 65 + B3 cos Os|wy,) .
3.7)
The corresponding expression in the case of the isotropic two-

dimensional field appeared in Bond & Efstathiou (1987). From
this expression, we obtain

3 C C 3C
(s) — = 1—=L)1=-= =1 _1 29
G20, 69) 2 \[( Co>‘ Co ( Co cos™ Us

x GPWv) . (38)

To derive this result, we use @,, rather than w,,, then regard
the variables a, B, f, sin 05 + f5 cos Og, and @,, as indepen-
dent variables. The two-dimensional genus in real space G
has the following form:

G(r)(v) — 1 ( [ >2ve—v2/2
VT2 \ fa,
The redshift space distortion again affects only the amplitude
of two-dimensional genus. The dependence on Q and 65 of the
change in amplitude is plotted in Figure 1 (bottom). The depen-
dence on the direction of the plane 0 for large Q can be used to
determine the cosmological parameter by this statistic.

(3.9)

3.3. Area of Isodensity Contours
The area of isodensity contours per unit volume (Ryden
1988; Ryden et al. 1989) is given by
NY) = (8 — v) /BT + B3 + B3 - (3.10)

This expression is valid even for general anisotropic fields.
Introducing spherical coordinates for f;, the above expression
is calculated to be

- S4B (-85
- B )

x In

x NOG), (3.11)
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where N{ is the area in real space given by
2 o
N = —=— 2L e7/2, (3.12)
’ \/En Oo

Again, only the amplitude is affected. The Q dependence of the
amplitude is very weak as plotted in Figure 2 (top).

3.4. Length of Isodensity Contours in Planes

As in the case of the two-dimensional genus statistic, a two-
dimensional flat plane S is considered in the statistic of length
of isodensity contours. The length of intersections of isodensity
contours and the plane S was introduced by Ryden (1988). For
isotropic density fields, this statistic is proportional to the area
of statistic considered in the previous section. As shown below,
for anisotropic fields in redshift space, the proportionality
factor depends on the direction of the surface S relative to the
line of sight. The angle 65 between the plane S and the line of
sight is relevant as in the case of the two-dimensional genus
statistic. The expectation value of length of isodensity contours
in the plane S per unit area of the plane is given by

NY(v, Og) = (e — V)\/ﬁf + (B sin 05 + B3 cos 65)*) .
(3.13)

To evaluate the above equation, note that «, §,, and f, sin
05 + B3 cos O are noncorrelated, independent variables. Intro-
ducing the polar coordinates for the latter two variables, the

T T T T T T T T T T TTTTT
- 1
Z ]
z r ]
- 4
i i
01] R T B SRR AT B R N R
N T T T T
- 1 {
>
E -
z B 7
~ |
0|| Lol ol Ll
T T T T
z 1 —
E -
Z‘_‘ - -
OI’ Lol Ll
.01 .1 1 10
Qb-5/3

Fi1G. 2—Top: amplitude of area statistic in redshift space relative to that in
real space. Middle: relative amplitude of length statistic. The angles between
the slice and the line of sight are 65 = 0°, 15°, 30°, 45°, 60°, 75°, and 90° (from
upper line to lower line). Bottom: relative amplitude of level crossing statistic.
The angles between the crossing line and the line of sight are §, = 0°, 15°, 30°,
45°,60°, 75°, and 90° (from upper line to lower line).
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following expression is obtained:
6 C 3C
N(zs)(",es)=\/_ 1__1+(_1_
Co

n Co
< [3C./Co) — 1] cos? b5 )

*E\T=(C1/Co) + [(3C1/Co) — 1] cos? O

x NOW), (3.14)

where E(k) is the complete elliptical integral of the second kind,

1> cos? fg

n/2
Ek) =J 1=K sin® $d¢ (3.15)
0
and N is the expectation in real space,
O(y) = & N©
NYw) =3 NY. (3.16)

The redshift space distortion affects only amplitude as well as
other statistics considered in this paper. The dependence on Q
and 6 of the amplitude is plotted in Figure 2 (middle).

3.5. Contour Crossings

The contour crossing statistic is the mean number of inter-
sections of a straight line L and the isodensity contours. This
statistic of large-scale structure is introduced by Ryden (1988)
and studied extensively by Ryden et al. (1989) using numerical
simulations and redshift observations. For isotropic density
fields, this statistic is also proportional to the area statistic. In
redshift space, the density field is anisotropic, and this statistic
depends on the angle 6, between the direction of the line L and
the line of sight. The mean number of crossings per unit length
of the line L is given by

NP, 6,) = <5 — v)| By sin 0, + B cos 0,]> . (3.17)

This expression is evaluated by noting that « and B, sin 6, +
B, cos 8, are noncorrelated, independent variables, resulting in

3, ¢, (3C
NP, 6,) = \/ 3 [1 o <_c:1 B 1> cos’ GL]N({)(V) ’

(3.18)

where NY is the expectation in real space,
NPE) = 3NDE) . (3.19)

Again, the redshift space distortion affects only amplitude. The
dependence of the amplitude on Q and 0, is plotted in Figure 2
(bottom).

4. DISCUSSION

The strength of the effects of redshift space distortion varies
according to which statistic is focused on. The characteristic
point in linear theory is that all the statistics in redshift space
considered in this paper have the same shapes as in real space
as functions of density threshold. The redshift space distortion
affects only the amplitude.

As for genus G(v) and area N;(v), the redshift distortion of
amplitude is small for 0 < Qb33 < 1 (Figs. 1-2). This prop-
erty justifies the comparison of the observational redshift data
and the theoretical Gaussian prediction in real space (egs. [3.5]
and [3.12]), at least in the linear regime. In the Gaussianity test
of primordial fluctuation using genus and area statistics, the
effect of redshift space distortion can be ignored approx-
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imately. The similar statistical measure of galaxy clustering, the
skewness {63>/¢(6%>? induced by weakly nonlinear evolution
from the Gaussian primordial fluctuation, has recently been
reported not to be affected much by redshift space distortion
(Juszkiewicz, Bouchet, & Colombi 1993; Hivon et al. 1994).

The direction-dependent statistics, two-dimensional genus
G,, length statistic N,, and crossing statistic N, are shown to
exhibit the dependence on Q and the direction to define sta-
tistics. In Figure 3, the direction dependence of these three
statistics is plotted. The direction dependence of amplitude on
these statistics is relatively large: for Qb~%3 = 1, the amplitude
varies more than 20%, while for Qb3 = 0, the amplitude
does not vary and is equal to the amplitude in real space. The
direction dependence depends on Qb~ /3, and the statistics G,,
N,, and N, are three different types of indicators to determine
the cosmological parameters. The redshift space distortion of
the power spectrum (eq. [2.1]) or the two-point correlation
function of Kaiser’s result were used for determining the
parameter Qb 5/* (Hamilton 1992, 1993; Fry & Gaztafiaga
1994; Cole, Fisher, & Weinberg 1994). Gramann, Cen, & Gott
(1994) introduced the ratio of density gradients
<[08®/or 1*»/<[06%/or ]*) as a discriminator of Qb 73,
where 7| 1s a coordinate which is parallel to the line of sight
and r, is a coordinate which is perpendicular to the line of
sight. This ratio is equal to 3C,/C, in linear theory. Our results
can be used as a complement to these observations.

However, there are some caveats on the results. Linear
theory is valid on fairly large scales. Our results are valid when

T T T T T[T T T[T T[T T[T T[T TT T
= 1= — —
g -
<) r 7

0 e b b e v b b dyagy

T
c 1“
; - .

0 e e b b e b b b b e

e T
e lx
Z—‘ - -

0 e b b b s bevs been b b

0 10 20 30 40 50 60 70 80 90

65, 6,

F1G. 3.—Relative amplitude of direction-dependent statistics as functions of
the angle between the line of sight and the plane or the line on which the
statistics are evaluated. Five cases Qb~ % = 0.125, 0.25, 0.5, 1.0, and 2.0 (from
upper line to lower line at 6 = 90°) are plotted in each panel. Top: two-
dimensional genus. Middle: length statistic. Bottom: level crossing statistic.
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the smoothing length R is large enough to guarantee g, < 1.
This means that we should take R > 8 h™! Mpc. We need a
large smoothing length, greater than ~10-20 h~! Mpc, for the
comparison with observations. This is too large, however, to
have statistical significance for the presently available data.
This is a limitation of our analysis if the redshift sample is not
so deep.

When smoothing length is not very large and g, is not much
less than unity, there are still nonlinear effects. As for the genus
statistic, we find that the amplitude of the genus curve is sup-
pressed more than that expected in linear theory (Matsubara &
Suto 1996) from the comparison with N-body simulations.
Nonlinear evolution changes the shape of the genus curve or of
curves of other statistics of isodensity contours (Matsubara
1994b, 1995). The N-body result shows that the shape of the
genus curve in redshift space is still the same as in real space in
the weakly nonlinear regime (o < 1).

Strictly speaking, our results should be applied to very deep
samples, such as the Sloan Digital Sky Survey, to have a suffi-
cient level of statistical significance. As the sample depth of the
galaxy redshift survey increases, the redshift distortion
attributable to the cosmological expansion or general rela-
tivistic effect becomes important (Alcock & Paczynski 1979;
Ryden 1995). In the Friedmann-Lemaitre model, the comoving
distance to the object at z is given by

where

X EJ [Qo(1 + 2)3 +(1=Qf— )1 + Z)2 + lg]”’”dz )
0

4.2)
For z <€ 1, dis given approximately by
cz 240 — Qo — 2
=—|14+— 2. 4.
dc HoI: + 2 z+0(z)] 4.3)

Therefore, the deviation from the simple linear Hubble law
becomes appreciable even at relatively low z; at z = 0.1 (~300
h™! Mpc), the cosmological redshift space distortion becomes
—7.5% in the Einstein—de Sitter model. Thus, even for redshift
surveys extending up to z = 0.1, this systematic effect domi-
nates the statistical peculiar velocity effect (~3% for v = 1000
km s~ ! at z = 0.1, for instance). One can compute the statistics
of the observed sample in d. space rather than in z space using
equation (4.1) directly. In any case, the result should be sensi-
tive to the assumed set of Q, and A,. In this case, some feed-
back procedure is needed to distinguish low Q and high Q
using Figure 3. Note, however, that this problem is not specific
to the statistics of isodensity contours, but it should be taken
into account in the two-point and higher order correlation
analyses as well.

((Qo + Ao — 1) Y2 sin (xo/Qp + 49 — 1)
for Qo + 4o > 1, I am grateful to Y. Suto for a careful reading of the manu-
_< — script and useful comments. Thanks are also due to the referee,

dc < X for Qo + 4, =1, cor i I
H, B. Ryden, for pointing out the importance of the cosmological
(1 = Qp — Ag) Y2 sinh (/1 — Qy — 4o) redshift space distortion in the present study. I acknowledge
for Qu + A < 1 Fhe support of a JSPS .Fe]lowship..This research was supported
. 0T 70 ’ in part by grants-in-aid for scientific research from the Minis-
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