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ABSTRACT

Recent observations of GRS 1915+105 and GRO J1655+40 reveal superluminal motions in Galactic sources.
This Letter examines the physical conditions within these Galactic sources, their interaction with their
environment, and their possible formation, and contrasts them with their extragalactic counterparts. In particular,
e"-e” and e-p jets are contrasted; constraints on particle acceleration in the jets are imposed using X-ray and
radio observations; and the y-ray flux from e*-e~ jets expected at EGRET energies and the flux in infrared lines
from an e-p jet are estimated. It is also suggested that these sources may exhibit low-frequency radio lobes
extending up to several hundred parsecs in size, strong, soft X-ray absorption during the birth of the radio
components, and emission-line strengths anticorrelated with the X-ray flux. The implications for other X-ray

transients are briefly discussed.

Subject headings: galaxies: jets — radio continuum: stars — stars: individual (GRS 1915+105, GRO J1655+40)

1. INTRODUCTION

There is now direct evidence for superluminal motion in the
radio images of two strong Galactic X-ray transient sources,
GRS 1915+105 and GRO J1655+40 (Mirabel & Rodriguez
1994, hereafter MR94; Tingay et al. 1995; Hjellming & Rupen
1995, hereafter HR95). These motions are probably associated
with relativistic jets emanating from a black hole in an X-ray
binary. Several other transient radio sources associated with
soft X-ray novae may also involve collimated jets (HR95). In
this Letter we use existing radio, optical, and X-ray observa-
tions to place constraints on the physical conditions within
these radio-emitting X-ray transients, contrasting them with
their extragalactic counterparts. We analyze the jets in some
generality, speculate upon how they may be collimated, and
illustrate these ideas using GRS 1915+105 and GRO
J1655+40.

2. RELATIVISTIC JETS
2.1. Synchrotron and Inverse-Compton Emission

Consider a jet formed atr = 10°rx cm ~ 10® cm near a black
hole in an X-ray binary of orbital radius @ ~ 10'> cm. From the
resolved radio synchrotron emission, we define a fiducial
equipartition field strength B* ~ 4(Tss/p—1716)*" 3" mG, where
the brightness temperature T = 10T K is evaluated at the
frequency v = vy GHz, ¢ = 0.1¢_, rad is the opening angle,
and the radio spectral index is az ~ 0.5 (cf. Rybicki &
Lightman 1979). Let the jet Lorentz factor be I', and let its
velocity make an angle 6 with the line of sight. The jet power
associated with the emitting electrons and the electromagnetic
field is then given by

o

jet ~ 5/7
2\ &

where 8, = [['(1 — B cos 0)]™" and rough equality occurs at
equipartition.

When the speed of advance of the jet’s head V), is super-
sonic, strong shocks may be formed at the outer lobes, as in
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extragalactic FR II sources, and can give rise to hot spots and
low-frequency lobes. When V), is subsonic, there may be a
FR I type source (e.g., Begelman, Blandford, & Rees 1984).

To estimate the maximum radio power emitted by the lobes,
we assume that the lobes subtend ~1 sr so that their pressure
is ~LPp"r* ~3x107L%n"rE" dyn cm™. The lobe
brightness temperature at a fiducial frequency ~5 GHz then
satisfies Tps S 4 X 10°L%n"*r;g” K. These lobes may be de-
tectable against the normal Galactic radio background.

Accelerated relativistic electrons can also radiate by inverse-
Compton scattering of accretion disk radiation. Let the energy
density be dominated by photons of energy Ex ~ 1 keV (in
contrast to ~10 eV for extragalactic sources) and luminosity
L(r), and let the characteristic Doppler factor for transform-
ing this radiation into the frame of the jet be §;(r) so that the
associated photon energy in the jet frame is Ex ~ §,Ex.
Introduce a characteristic electron cooling energy in the jet
frame by equating the radiative cooling time to the outflow
timescale

r
Ee’:c (r) ~ 3(B_k) L;3§r12 GCV, (2)
7

where k; ~ (87) ~ T%r;* for direct illumination by the accre-
tion disk and k; ~ I'*7, if this radiation is scattered locally by
free electrons in the surrounding medium with local Thomson
depth . Inverting equation (2), we can define a cooling radius
r.(E}), within which electrons of energy E, will cool. In order
to accelerate an electron to an energy < E,. requires that the
particle acceleration occur impulsively on a timescale #;., <r/
I'c. The maximum +y-ray energy that can be scattered is then
8,(r/Tcty) E¢.. The scattered flux and spectrum depend upon
the fraction of the jet kinetic energy that is transformed into
relativistic particles in this manner. If a fraction m of the jet
power is emitted as +y-rays, the integrated y-ray flux at Earth
will be

F, ~ 1008 L,D;* ergs s cm?, ®)

where D, is the distance to the source in 10* pc. Further
features of the Compton scattering depend upon whether the
jet is pair- or proton-dominated.
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2.2. Positronic versus Protonic Jets

If y-rays are emitted at small enough radius, they will not be
able to escape without creating electron-positron pairs. These,
in turn, can produce lower energy y-rays, and a cascade will
develop that terminates when the vy-ray has a low enough
energy to escape. The region from which y-rays of a given
energy can escape is known as the y-sphere, and its radius is

r(E,) =~ 3 X 107k, L zy(m>c*/E,) cm, €Y

where 10“Lg, s™' is the spectral luminosity of the central
X-ray source, k,, ~ (1 — cos ¢) for radiation from an accretion
disk that propagates at an angle ¢ to the jet, and k,, ~ 7if the
local scattered component dominates (cf. Blandford & Levin-
son 1995). We can invert equation (4) to define the threshold
energy E.(r), which is the maximum energy of an escaping
v-ray from radius r.

Now, pairs will cool to subrelativistic energies for r < 7,(m.c?)
~ 3 X 10%; Ly/T cm. Their density will be limited by annihila-
tion (Blandford & Levinson 1995). We can also define an anni-
hilation radius, r,,,, within which the density of annihilated pairs
becomes smaller than that required to carry the jet power. Conse-
quently, pair jets require the presence of some other carrier of
energy and momentum. (This may be a problem for the model of
Liang & Li 1995.) In the absence of baryons, this is presumably
electromagnetic. For subrelativistic pairs, 7, ~ 3 X 10°LI'™"
cm and is somewhat less if the pairs remain relativistic.

Another important difference between the Galactic and the
extragalactic sources is that the former have much steeper
X-ray spectra, and consequently their y-spheric radii increase
more rapidly with increasing +y-ray energy. Furthermore,
Tam ~ 7,(1 GeV), instead of ~r (1 MeV) as in the extragalac-
tic case. This probably means that the y-ray spectrum will be
flatter in the MeV-GeV range. Furthermore, the bulk Lorentz
factors of the jets in the bright EGRET active galactic nucleus
(AGN) sources are typically of order 10, much larger than
those inferred for the jets in the Galactic sources. A plausible
picture of Galactic e jets, based on the above results, is as
follows: some fraction of the accretion luminosity (or the spin
energy of a rotating black hole) is extracted from the central
source in the form of a collimated electromagnetic jet. During
quiescent states, the jet is essentially invisible. However, when
either the particle acceleration is sufficiently rapid or a re-
duced ambient radiation field renders the inverse-Compton
radiation loss sufficiently ineffective, pairs can be injected to
energies above E,(r), and an intense pair cascade is initiated.
At this radius, a transition to a particle-dominated flow occurs
via the evolution of the cascade, which leads to y-ray emission
and the eventual formation of a superluminal radio feature. If
the cascade is initiated within the annihilation radius, the
mildly relativistic pairs will be annihilated, and the radio
spectrum will exhibit a low-energy cutoff.

If the jet is accelerated and collimated close to the black hole
as an e-p plasma, perhaps through the agency of radiation
pressure, and particle acceleration is inefficient above = E ., (r)/T,
then pairs are not created, and the minimum jet power is larger
than that given by equation (1) by a factor ~ [71,/Ymin IN(Vmax/
Yenin).]"", Where the electron distribution function is supposed
to extend from 7y, tO Yn.. Typically, this factor is ~3-30.
(Alternatively, a pair jet may form as described above and plasma
from the surrounding wind may be entrained.)

One possible diagnostic of e-p jets is the presence of
Doppler-shifted spectral lines, such as Ha, as seen in SS 433.
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Because of the relativistic motion of the jet, the line will be
Doppler shifted by the approaching and receding Doppler
factors §,. Following Begelman et al. (1980) and Davidson &
McCray (1980), we suppose that the gas in the line-emitting
region is clumped, and we denote by & the volume-filling factor
of the dense blobs comprising the line-emitting beam and by
10"R;5 cm the beam’s length. The Ha emissivity should lie in
the range between 1076 and 10™® ergs cm® s™' at ~10* K
(Davidson & McCray 1980), depending on the density in the
emitting blobs. Let us adopt the value 10™%° ergs cm® s™'. We
then obtain for the emitted flux

Fuo = 10728%(L;3/Dy)*(eRys*T*) ' ergsem 2 s™',  (5)

where it has been assumed that the average density of the hot
phase is en.y. The cold blobs should be confined by the
pressure of the hot phase in the jet or, alternatively, by the
magnetic fields.

3. JET FORMATION AND CONFINEMENT

The Galactic superluminal sources further demonstrate that
relativistic jet formation can operate on a stellar as well as a
galactic scale. Presumably, the common feature is the presence
of an accretion disk orbiting in a relativistically deep potential
well. In order to explore how this might occur in a (M ~
3-10 M) binary X-ray source, we suppose that the jet is
collimated by a wind emanating from the disk surface over a
range of radii from <107 to = 10" cm with speed Vy =
1000V km s~' declining with cylindrical radius. As the jet
propagates away from its source, there will be radial transport
of linear momentum, which will flatten the velocity profile. If
most of the momentum derives from large disk radius, then
the asymptotic jet speed will be Vyg ~ 1-10.

It has long been argued in the case of AGNs and proto-
stellar jets that a hydromagnetic wind is a more plausible
collimator than a purely hydrodynamic wind because when the
field is primarily toroidal, the transverse force density is
1 2d(r P uag)/dr, (as opposed to —dP,,/dr, for gas pressure),
which allows a large jet pressure to be confined by a much
smaller external pressure. In addition, in the expanding wind,
P, declines less rapidly than P, which implies that magnetic
collimation is likely to become relatively more important. We
adopt the magnetic collimation hypothesis, although much of
what follows is more general.

For r << a, magnetic confinement of the jet can be relatively
effective with each nested magnetic surface confining the
interior flow, until ultimately the inertia of the wind from the
outer disk prevents transverse expansion. However, this mag-
netic focusing cannot provide much pressure amplification
after the jet has propagated out to a radius comparable with
the outer radius of the disk. At this point, either the jet itself
must have sufficient internal density to be effectively free and
travel hypersonically with Mach number = ¢! or it must be
confined by the inertia of the surrounding wind. The former
possibility may be relevant for e-p jets. However, we suspect
that pair jets require external confinement at this radius. The
foregoing considerations suggest that the jet itself exerts a
transverse pressure of

P~3X10'LyI' ?B 'ri7-; dyn cm 2, 6)

which will cause the surrounding, slower wind to expand with
a speed ~(P/pw;,)"* = Vy;¢, where Wj denotes values of the
wind density and speed averaged within a few jet widths. The
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minimum wind discharge for ultimate inertial confinement at
radius r ~ a is then given by

My; 107 LT 2B 2V s Mo yr 7, @)

and the associated wind power is T 10%L 5" 28~ ¢ =2 Vy;5 ergs
s~'. (In making this estimate, we have supposed that most of
the discharge is confined to a polar wind with transverse scale
~ 3 jet radii. If the wind fills a larger solid angle, the discharge
and power must correspondingly be increased.) This wind will
propagate well beyond the observed radio sources before
terminating through a strong shock when its momentum flux
balances the ambient interstellar pressure.

If we measure the wind discharge as ~10 %M. w-¢ Mo yr~', its
Thomson optical depth is likely to be 7(r) ~ 0.1 My;_sVysrs'
forr,, = 0.1. For ry, S 0.1, we emphasize that the optical depth
need not be much greater than this value because of the
efficiency of magnetic confinement. However, the wind that we
postulate is likely to extinguish any soft X-ray flux and
variations if it is strong enough to collimate the jets.

The thermal state of the wind depends upon the photoion-
izing flux. The ionization parameter is U ~ 0.1L yyssVys/M Wi—6+
For 0.1 S U < 10, a two-phase medium is possible with hot
Compton-heated gas at a temperature T ~ 10"-10° K co-
existing with line-emitting gas at a temperature 7 ~ 10* K. (At
the density envisaged, the thermal equilibration time turns out
to be short compared with the outflow time.) Now suppose
that the mass accretion rate increases as a consequence of
some disk instability. The ultraviolet and X-ray emission will
increase as a consequence of enhanced dissipation at the inner
disk. This will heat the gas so that the pressure is largely
thermal as opposed to largely magnetic. We suggest that this
prevents effective magnetic collimation, and consequently a jet
does not form. When the disk accretion rate falls, the ioniza-
tion parameter falls, and the gas in the wind cools so that it
becomes magnetically dominated. This allows a collimating
hydromagnetic wind to form. If there is also a central source of
relativistic plasma or electromagnetic energy, perhaps derived
from the spin of a central black hole, then this can form the
radio-emitting core of the radio jet (cf. Meier 1995). This wind
is also likely to be a source of optical and ultraviolet emission
lines, and our model predicts that the fraction of the bolomet-
ric flux reprocessed in the form of emission lines should be
anticorrelated with the X-ray flux.

4. INTERPRETATION OF GRS 1915+105 AND GRO J1655—40
4.1. GRS 1915+105

This source is at a distance of D, ~ 1.25 (MR94) and
exhibits X-ray luminosity of a few times 10* ergs s (Harmon
et al. 1994). It has been observed by the VLA at 5 and 10 GHz.
Following MR94, we assume, for simplicity, that the pattern
speed and the flow speed are equal (c.f. Bodo & Ghisellini
1995). The inferred speed and angle to the line of sight of the
ejecta are then B~ 0.92 and 6= 70° £ 2° (MR94), corre-
sponding to 8, =~ 0.57. (This measurement allows us to predict
the wavelengths of, for example, possible Ha lines, namely
~1.15,2.15 pm.) The radio features appear to move away at a
constant speed out to a distance of at least 0.1 pc from the
central source (MR94).

On 1994 March 24, the measured flux was ~0.7 Jy. Even
though the source was not resolved at that time, the inferred
distance from the putative core was ~("08, and the blob size was
~006, corresponding to a linear size of ~10' cm. We estimate
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P =~ 1.8 X 107° dyn cm ™, and B* ~ 2 X 1072 G, at a distance
of ~10 cm from the central source. Equation (1) then gives
Lz =2 for an e* jet and ~4 times that for an ep jet. The
annihilation radius r,,, = 2.4 X 10° cm. Taking k,,Lgs = 107
yields r, ~3 X 10* (E,/1 GeV)™ cm. Since r,(1 GeV) <7, a
low-frequency cutoff of the radio spectrum from the jet may be
expected. The acceleration time required for a formation of a
particle-loaded blob is < 1073(r/c). From equation (3) it follows
that F, £3 X 10° n ergs cm ™ s~". If the radiative efficiency
= 0.1, y-ray outbursts from a pair jet might be detectable.
Alternatively, for a protonic jet, we estimate that Fy;, < 107 ergs
s~ cm™2, which might be detectable.

Recently, Rodriguez & Mirabel (1995) have reported the
discovery of two 20 cm radio sources (80, 40 mJy), coincident
with two 0.5 kJy, 100 um IRAS sources both 17" (~60 pc) from
GRS 1915+105. The sources are colinear with position angle
close to that of the radio ejections. The infrared power is
~3 X 10® ergs s™', which suggests a high radiative efficiency.
The individual components are both elongated along the same
position angle. Rodriguez & Mirabel suggest that these two
sources are O stars surrounded by H 11 regions.

Alternatively, the hot spots might be synchrotron emission
from the ends of the jets. If so, then we can estimate the jet
power by assuming that the size of the hot spots is ~/ pc and
the shocked jet fluid flows through this region with mildly
relativistic speed. We find that L; ~ 5 X 10°4¥I"%" ergs s/,
where k = 1 is the ratio of the total pressure to the relativistic
particle pressure. For [ ~ 3, k ~ 1, this is within an order of
magnitude of the jet power inferred on the basis of the
observed jets. The inferred pressure is ~107® dyn cm™.
However, the radio flux density is much smaller than the 100
pm flux density, in contrast to other optically thin synchrotron
sources. One possible explanation is free-free absorption,
which can occur if there is ionized gas present with density
~3 % 10° cm™3, T~ 10* K, in rough equipartition with the
relativistic electrons and magnetic field. Perhaps this is cool
gas behind a radiative bow shock surrounding the advancing
hot spot. If so, the characteristic age of the radio source will be
~3 X 10° yr, just compatible with the estimated mass-loss rate.

4.2. GRO J1655—40

For this source, we adopt the parameters inferred by HR95,
namely, D, = 0.31 (this distance is in a very good agreement
with the distance inferred by Bailyn et al. 1995, based on
interstellar absorption), B = 0.92, and 6, ~ 0.46. (The pre-
dicted Ha wavelengths are 1.4, 1.8 um.) The lowest frequency
observed with the VLA was v, = 0.15. The light curves
indicate a peak flux of 5.5 Jy at this frequency 6 days after the
beginning of the observations, implying ! < 10" cm, and
Ts ~ 107 K. During the high X-ray state, Harmon et al. (1995)
derived a 20-100 keV luminosity of ~10% ergs s™' and photon
spectral index of about —3, extending to at least 700 keV
(Kaaret et al. 1995). If we extrapolate the spectrum down to
1 keV, we estimate L S 1 during high states. However, the
X-ray luminosity was in fact smaller during the peak of the
radio flux, as discussed below. Kaaret et al. (1995) also report
that the power spectrum of soft X-ray fluctuations exhibits no
features and little power above 0.1 Hz, which is consistent with
a wind being optically thick to Thomson scattering out to a
radius ~ 10" cm.

For illustration we shall assume k,,Ls = 107°. Adopting

these parameters we obtain P, ~5X 107 dyn cm™,
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B*~107 G, Lp>06, 7y >7x10® cm, and r,~
107(E,/10%)" cm, for an e jet. For an e-p jet, L33 = 3. The Ha
flux obtained from equation (5) is roughly the same as that
obtained for GRS 1915+105.

Bailyn & Orosz (1995) have measured a spectroscopic
orbital period of 2.6 days (similar to the period inferred by
HRO5 and the proposed eclipse period of Bailyn et al. 1995)
and a mass function f; = 3.35 £ 0.14 Mo, implying that the
compact object is a black hole with a mass ~ 5.3 My and
a ~1x 10" cm. They have also reported observations of a
hard optical continuum with spectral indexd In F,/d In v ~ 0.3
(similar to that expected from a classic accretion disk) as well
as an emission-line spectrum exhibiting Balmer lines and He 1
and a F/G stellar spectrum. The presence of eclipses verifies
that the inclination i ~ 85°. After correcting for reddening, the
optical luminosity is ~0.01 times the X-ray power and is
comparable with that expected from a wind of the strength
that we have had to posit to account for the radio jet
collimation. The line widths are also compatible with those
expected from a wind with Vs ~ 1. The hard X-rays are not
subject to strong eclipse (Kaaret et al. 1995). All of this is
consistent with the model inferred on the basis of the radio
data. The secondary star is a ~1 M, dwarf of radius < 10" cm
lying well within its Roche lobe (of radius ~ 3 X 10" cm). The
optical and hard X-ray emission emerges from a fluctuating
Thomson photosphere of similar size, associated with the disk
wind. This accounts for intermittent, partial eclipses. One
outstanding question raised by this model is the mode of mass
transfer. We note that the power incident upon the secondary
(~3 X 10% ergs s™) is marginally sufficient to transfer mass at
the deduced rate of ~10° M, yr™' through the L, point
assuming total efficiency.

5. FUTURE OBSERVATIONAL TESTS

The existence of collimated relativistic outflows in these two
Galactic superluminal sources is a strong motivation for a
search for other examples, particularly in known X-ray tran-
sients (HR95). (Observations in the week following X-ray
outbursts are particularly relevant in view of the reported
behavior in GRO 1655—40.) The two Galactic y-ray sources,
1E 1740.7—2942 and GRS 1758—258 (Mirabel 1994; Chen,
Gehrels, & Leventhal 1994), show many similarities to the two
sources considered above (radio jets, hard X-rays, upper limits
on the masses of the stellar companions), as well as some
differences (detected vy-rays, correlation between the radio and
X-ray fluxes). It is also of interest to reexamine Cyg X-3 from
which Strom, van Paradijs, & van der Klis (1988) report mildly
relativistically moving radio components.

The counterparts of the giant radio lobes by which the
extragalactic counterparts of these sources were first recog-
nized (or alternatively of W50) should also be sought. This
search should be most profitably carried out at low frequency,

and, as in the extragalactic case, the radio source sizes may be
very large ( 10’), depending upon the history and local gas
density. As extragalactic observations also emphasize, there
are possible strong selection effects, and GRS 1915+105 and
GRO 1655—40 may be modest Lorentz factor (I' ~ 2) exam-
ples of a much larger class, most of which contain ultrarela-
tivistic jets (I' ® 10) rendered invisible by beaming away from
us. Perhaps 1E 1700—2942 and GRS 1758—258 belong to this
class. In addition, perhaps sources like A0620—00 are coun-
terparts of radio-quiet quasars.

Also drawing upon the extragalactic analogy, a search for
~1 GeV +y-rays using EGRET is well motivated, and a
successful detection would strengthen the case for e™-e~ jets.
Conversely, the detection of optical or infrared Doppler-
shifted emission lines would strengthen the association with SS
433 and argue for an e-p jet.

Given the large inclination derived from the radio source
kinematics (i ~ 84°; HRO9S5), a measurement could then be
translated into an estimate of the size of the Roche lobe of the
companion star. Understanding the size of the orbit and
consequently of the accretion disk should also help define the
physical conditions in the bipolar wind that we have invoked to
account for the jet collimation. Further constraints on the
discharge in the wind can come from observing the soft X-rays
with ROSAT at energies < 1 keV during the phases when the
radio components are being formed. If the outflow is as dense
as we propose, then the soft X-rays should be efficiently
absorbed. A quite separate bound on the wind density may be
derivable by seeking rapid variability in hard X-rays using
ASCA during high states. Observation of rapid variability on
timescale ¢.,, would imply that any wind would be optically thin
to Thomson scattering beyond a radius r ~ ct.,,. If, somewhat
unexpectedly, the compact object in either source is a neutron
star with a measurable spin period, then this test will be much
stronger. In addition, we have suggested that the relative
strength of the emission lines from this wind should be
anticorrelated with the X-ray flux.

However, perhaps the most fundamental understanding as to
the nature of these sources will come from analyzing the kine-
matics of the radio components to see if there are genuine
periodicities in either the timing of the outbursts or, as tentatively
supported by the observations of HR95, the component angular
velocities projected on the sky. It will be especially interesting to
learn if, on these grounds, the Galactic superluminal sources are
more affiliated with extragalactic jets or SS 433.
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