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ABSTRACT

We have measured the two-dimensional power spectrum of the Las Campanas Redshift Survey on scales
between 30 and 200 £ ~' Mpc (qo = 0.5, Hy, = 100 A km s™' Mpc™"). Such an analysis is more sensitive to structure
on scales greater than 50 A~' Mpc than a full three-dimensional analysis, given the geometry of the survey. We
find a strong peak in the power spectrum at ~100 2~ Mpc relative to the smooth continuum expected from the
best-fit cold dark matter model (Prob ~ 2.5 X 10~* with Q& = 0.3 assuming a Gaussian random field). This signal
is detected in two independent directions on the sky and has been identified with numerous structures visible in
the survey that appear as walls and voids. Therefore, we conclude that there exists a significant increase in power
on this scale and that such structures are common features in the local universe, z < 0.2.

Subject headings: cosmology: observations — galaxies: clusters: general — large-scale structure of universe

1. INTRODUCTION

The existence of large density fluctuations in the galaxy
distribution on the order of 100 2~' Mpc in size has been
known since the discovery of the Bootes void in the early 1980s
(Kirshner et al. 1981). Other early evidence of structure on
such scales was found by Chincarini, Giovanelli, & Haynes
(1983) and de Lapparent, Geller, & Huchra (1986). Subse-
quently, Geller & Huchra (1989) reported the discovery of the
“Great Wall,” a large wall-like distribution of galaxies over 100
h~' Mpc in extent. More recently, Broadhurst et al. (1990)
have claimed detection of a sharp spike in the one-dimen-
sional power spectrum around 128 A~' Mpc using deep
pencil-beam surveys (see also Mo et al. 1992).

Although it is not unexpected that large structures should
exist according to currently popular working theories of large-
scale structure formation, such as a cold dark matter (CDM)
power spectrum coupled with the “pancake” scenario of
structure formation as predicted by Zeldovich, the existence of
excess power on a preferred scale is problematic. However,
there do exist physically motivated reasons to expect some
perturbation in the power spectrum on these scales. For
example, this scale is on the order of the horizon size at
mass-radiation equality, and an “acoustic peak” in the power
spectrum on these scales is a prediction of many standard
cosmologies (see Peebles 1993, § 295).

To make a definitive measurement of galaxy density fluctu-
ations in this regime requires a large number of independent
volumes situated over a broad region of the sky. The Las
Campanas Redshift Survey includes over 26,000 galaxies with
a mean redshift of z = 0.1 and is well suited for making such
measurements. The survey consists of six slices, each approx-

imately 1°5 thick in declination by 80° wide in right ascension.
In each hemisphere the slices are centered on the same right
ascension while being offset in declination by 3° or 6°. The
three slices in the south Galactic hemisphere are located at
—39°, —42°, and —45° decl. centered on 0"45™ R.A., and the
three in the north at —3°, —6°, and —12° decl. centered on
12"45™ R.A. A more detailed description of the survey,
including a detailed discussion of the preparation of the
redshift sample and various selection effects, appears in Shect-
man et al. (1995) and Lin et al. (1996a).

2. POWER SPECTRUM ANALYSIS

In order to estimate the two-dimensional power spectrum,
we principally follow the analysis outlined by Peacock &
Nicholson (1991) and Feldman, Kaiser, & Peacock (1994) with
some minor changes (see also Burbidge & O’Dell 1972;
Webster 1976; Park et al. 1994). Each slice was analyzed
separately. The coordinates of each slice were rotated in order
to maximize the projection of the slice in the x-y plane. The
data were cut to include only those galaxies with 10,000 km
s =9, =45,000 km s”! in order to minimize the effects of
uncertainties in the selection function. For fields in which the
number of redshifts observed was less than that observable
given the magnitude limits for the field, the observed points
were weighted by (fos) ", Where fq, is the observed fraction
(see also Lin et al. 1996a). This weighting approximates
uniform weighting for a magnitude-limited sample.

The galaxies were expanded in plane waves and normalized
in the standard manner. The Fourier expansion is given by

ag EN;nl E (fobs,')71 exp (ik.xi)’ (1)
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where N,, is the weighted number of galaxies in the sample,
fobs. is the appropriate fraction, x; is the galaxy’s two-dimen-
sional coordinates (xi, ¥:), and a, = (@, ay,) is the complex
Fourier coefficient of the two-dimensional Fourier transform
at wavenumber k = (k,, k,). The complex Fourier coefficients
w, of the window function with power spectrum W,(k) were
determined using the same angular and radial selection func-
tion as that of the data but with 50 times the number of
galaxies distributed randomly. The window function is simply
the Fourier transform of the selection function. The Fourier
transform of the random catalog was then subtracted from that
of the data and the power spectrum calculated (see Feldman et
al. 1994).

Converting sums to integrals, the normalized convolved
estimate of the two-dimensional power spectrum P,y (k) is

fd2’;W21)(k - ’é)[Pzn(l‘;) + S2D] )
[ W (®) - @

This expression shows the well-known result that the true
power spectrum P,;(k) plus the shot noise Sy, is convolved
with the power spectrum of the two-dimensional window
function Wy (k) to give the measured signal P,(k). At the
wavelengths reported in this Letter, the correction term due to
subtraction of the DC level is negligible and will be ignored
(Peacock & Nicholson 1991, eq. [25]).

on(k) =

2.1. Calculation of the Two-dimensional Power Spectrum

The two-dimensional power spectrum P,y (k,, k,) is a pro-
jection of the three-dimensional spectrum P;p(k,, k,, k) onto
the k,-k, plane by way of a window and depends on the
geometry and orientation of the survey. As a heuristic, in this
development one can approximate the survey as having an
effective volume with dimensions (d,, d,, d.), where d, < d,,
d,, and model the window functions in each of these directions
as Gaussians with width o; ~ #/d. In such a case the window
function is separable, and the relationship between the two-
dimensional and three-dimensional power spectrum is easily
seen. Calculations for a one-dimensional projection and fur-
ther discussion can be found in Szalay et al. (1991).

In a full three-dimensional analysis neglecting the shot
noise, the power spectrum estimator is

1

2m)**0,0,0,

« f f f dh. dk, dh P, K )

—w

P3D kx’ kya kz) =

X e—[(kx-léx)Z/zaﬁ]e—[(ky-léy)z/zuﬁ]e—[(k,-lé,)l/zaZ]' (3)

In our two-dimensional analysis, the volume is collapsed
along the z-direction, which results in a planar survey with
dimensions (d,, d,) and a projection of power onto the k,-k,
plane. It can be shown that the resulting two-dimensional spec-
trum is given by the k, = 0 component of the fully convolved
three-dimensional power spectrum. Therefore, we may define

P2D (Iéxs Iéy) f d]ézPSD (Iéx, Iéy, ]éz)e*(kfﬂaf), (4)

1

which formally illustrates the projection. Then
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for consistency with equation (2). Note that our definition of the
two-dimensional spectrum includes the normalization factor
(\/Eo-z)‘l for direct comparison with the Pk, ky, k, = 0)
component of the full three-dimensional sg)ectrum. Therefore,
our results are reported in units of (¢ ™' Mpc)®. For all subsequent
analysis, the exact window functions have been calculated numer-
ically, and the Gaussian approximation has not been made.

3. RESULTS
3.1. CDM Simulations

In order to check our results and investigate the effects of
the survey’s geometry, selection functions, and those due to
redshift distortions, we performed an identical analysis on
synthetic data kindly supplied by Changbom Park (see Park et
al. 1994). Fifty-six realizations of sets of the three southern
slices were culled from a large CDM simulation, (576 A"
Mpc)® with Ok = 0.2, using the same selection function and
geometry as the survey’s. The two-dimensional power spec-
trum for each slice in a set was calculated and then averaged
together to generate a mean power spectrum for each set. The
mean result for all 56 sets is shown in Figure 15 together with
error bars derived from these data. For all slices, the shot-
noise power was less than 250 (A~ Mpc)®.

Also shown in Figure 1b is a line indicating the expected
two-dimensional power spectrum after projection and convo-
lution of the underlying three-dimensional power spectrum of
the simulation. The window functions for each slice were
calculated numerically and then used to project and convolve
the analytic three-dimensional spectrum. As may be seen,
there is excellent agreement between the synthetic data and
the expected analytic result. This indicates that effects due to
wavelength-dependent redshift distortions are expected to be
minimal in this regime.

Also plotted is the envelope of 1 ¢ fluctuations based on the
amplitude of the expected signal and the degrees of freedom
calculated from the number of independent modes for a given
wavenumber |k| given the effective area of the two-dimensional
window function (FWHM: 2.20 X 10~ A2 Mpc?). The good
agreement shows that a formal analysis based on a model
spectrum, calculated degrees of freedom, and Gaussian ran-
dom field is highly accurate. A similar technique will by
necessity be used with the survey data.

3.2. Las Campanas Survey Results

The mean result for all six survey slices is shown in Figure
la. Figure 2 shows the individual measured power spectrum
for each slice and the mean north and south signals. Since for
the survey data it is not possible to know the underlying
three-dimensional power spectrum a priori, we calculated the
expected power spectrum given a class of linear CDM models
with 0.2 = Ok = 0.5 (Efstathiou, Bond, & White 1992; Bond
& Efstathiou 1984). These models were projected and con-
volved as above and fitted to the measured signal between 30
h~' Mpc and 70 A~! Mpc using only their overall amplitude as
a free parameter. The best-fit spectrum was given by Qs = 0.3
and is shown in Figure 1a.
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Fi6. 1.—Comparison of the average signal from all six slices of real data . 6000 -
compared to 56 sets of synthetic data with the same geometry and selection B
function as the three southern slices (—39°, —42°, and —45° decl.). For the 4000 -
synthetic data, the 1 ¢ error bars are derived from the sets themselves. The 1 }
o error envelope is based on the calculated degrees of freedom at each 2000 N
wavelength together with the mean signal. The analytic spectrum is calculated 0 L 4 1 a2 1 . 1 . [ 1

using the underlying power spectrum in the synthetic data projected and
convolved with the window functions. For the real data, a best-fit power
spectrum was derived by projecting and convolving linear CDM power spectra
with Q4 between 0.2 and 0.5 and fitting the result to the real data between 30
and 70 A~! Mpc. The best fit was found to be Q& = 0.3 and is shown in the
graph. The error bars are calculated using the expected signal together with
degree of freedom analysis. Also plotted is the best-fit spectrum with
Qh = 0.24. This is shown for comparison with the findings of the one-in-six
QDOT IRAS survey.

As is evident, the measured signal below 70 A~' Mpc and the
fit are in good agreement; however, a strong excess of power
appears at ~100 A~ Mpc. This peak is essentially unresolved
since its width is approximately that expected solely from
convolution with the window function. The error bars are
derived from analysis of the degrees of freedom at each
wavenumber. Significant excess power at wavelengths at or
above 100 2™ Mpc is evident in five of the six slices in Figure 2.

To be conservative in our analysis of the significance of this
peak, we consider each set of three slices as one independent
sample. The mean power spectrum at this wavenumber,
[k| = 0.067, consists of an average over approximately 15
independent modes in the north and 15 in the south with 2
degrees of freedom in each mode giving a total of 60 degrees
of freedom. The amplitude of the measured peak at this point
is approximately 1.76 times the expected signal as given by the
Qh = 0.3 model. Taking the null hypothesis that the local
universe on these scales is drawn from a Gaussian random
field (as reported by Feldman et al. 1994), the significance of
this peak is ~2.5 X 107, that is, a peak of this amplitude at
this wavenumber would be expected by chance once in ~3900
similar surveys. Also shown for comparison is the best fit for an
Qh = 0.24 model, which was the result found for the updated
one-in-six QDOT IRAS survey (Feldman et al. 1994). In this
case, the significance is ~1.1 X 1073,

| ' 1 ' 1 ' 4 ' 1 ' I
0.031 0.063 0.094 0.126 0.157 0.189

Wavenumber k (h Mpc™)

Fi6. 2.—Individual graphs showing the signals from each of the six slices
together with the mean signals for the north (—3°, —6°, and —12° decl.) and
south (—39°, —42°, and —45° decl.) sets. Both directions show significant excess
power at ~100 2~! Mpc. Peaks above 100 ~~! Mpc are evident in five of the six
slices. One sigma error bars are shown for only the north and south means as
the individual slices in each hemisphere are not independent. For all slices, the
shot-noise power was less than 250 (A~! Mpc)®.

Amendola (1994) has shown that the significance of a peak
may be overestimated given the null hypothesis of a Gaussian
random field because of the higher order correlations in the
density field, albeit the simulations indicate that this effect is
not important at these wavenumbers (Fig. 1b). The significance
may also be modified by considering that one is also able to
measure peaks at other wavenumbers. However, the existence of
a peak on these scales has been anticipated by Broadhurst et al.
(1990) using one-dimensional pencil-beam surveys.

4. DISCUSSION AND ANALYSIS

4.1. Comparison to a Three-dimensional Analysis
and Other Surveys

A question is, what are the advantages of a two-dimensional
versus a three-dimensional analysis (see Lin et al. 1996b) at
these wavenumbers? This is answered by comparing the
differences between a one-dimensional projection and two-
dimensional convolution versus a straight three-dimensional
convolution given the geometry of the survey. To first order,
the effective dimensions of the survey given a full set of three
slices in one hemisphere are 300 X 400 X 50 A~' Mpc. In the
geometry of the two-dimensional analysis, the survey dimen-
sions are 300 X 400 ™' Mpc. This affords several significant
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advantages, the most obvious being that a two-dimensional
analysis can fairly sample wavelengths up to several hundred
h~' Mpc. On the other hand, a full three-dimensional analysis
samples wavevectors at all orientations to the planes of the
slices. As a result, the measured signal becomes dominated by
aliased power at wavelengths above ~50 2! Mpc, the effective
thickness of a set of slices.

A well-sampled two-dimensional analysis also has advan-
tages as regards the detection of non-Gaussian structures since
such structures show up as strong, localized peaks at a specific
wavevector in the power spectrum. Depending on how the
survey has cut through such structures, these peaks may show
up at their true frequency or be projected to other wave-
lengths. However, the excess power will still show up as a
strong, local peak and be easily detected in a two-dimensional
analysis. In a three-dimensional analysis in this geometry, such
peaks would be smoothed over many directions and wave-
lengths because of the large width of the window function in
the third dimension, which makes such sharp features more
difficult to detect.

Other surveys, such as the CfA2 (Geller & Huchra 1989;
Vogeley et al. 1992) and SSRS2 (da Costa et al. 1994a),
although sampling structure at higher densities, are limited at
these wavelengths. Recent work by da Costa et al. (1994b)
reports analysis of volumes with a depth of ~130 2~ Mpc. As
these surveys contain only a few independent modes at this
scale, it is not surprising that they might not detect such a
peak. This signal has also not been detected in recent analyses
of the IRAS survey (see Fisher et al. 1993; Feldman et al.
1994). The latter analysis has on the order of the same
effective volume as ours; however, the sampling density is a
factor of 10-15 less, and the shot noise is on the order of the
signal. In our survey, the sampling density and signal-to-noise
ratio is a factor of 10 greater. Also, it has been shown that the
detection of structure is a function of sampling density and
signal-to-noise ratio (see Szapudi & Szalay 1996).

4.2. Identification of Contributing Structures in the Survey

In order to determine what structures are responsible for
these spikes, maxima of the plane waves corresponding to the
largest peaks above ~100 ~~" Mpc have been overlaid on maps
of the real space distribution of galaxies for a slice from each
hemisphere, —12° and —39°. The appropriate peaks have been
identified as well on the conjugate two-dimensional power
spectrum contour maps of the same slices. These are shown in
Figure 3 (Plates L1-L2). The maxima of the plane waves, with
phases from the Fourier transform, have been plotted as

straight lines in Figure 3. Large structures with the appearance
of walls and voids being traced out by superclusters are being
detected by the two-dimensional power spectrum analysis,
which gives strong visual confirmation of the results.

It is not unexpected that the strongest peak on Figure 3
corresponds to a wavevector pointing in the redshift direction
as this may be due to amplitude enhancements from redshift
distortions (see Kaiser 1987). However, the existence of
numerous other peaks and structures with different orienta-
tions at this same scale precludes interpretations based prin-
cipally upon this effect.

4.3. Gaussian or Non-Gaussian Structures

Of interest to the theory of structure formation is whether
this excess power is the result of the existence of non-Gaussian
structures or is rather an inherent increase in power. Unfor-
tunately, power spectrum statistics are not that robust in
making such a determination (see Amendola 1994). An anal-
ysis based upon the distribution of power spectrum amplitudes
(see Szalay et al. 1991) has proved inconclusive, primarily
because of the degree of smoothing from the window function.
On the other hand, the appearance of the structures identified
by the peaks is striking as is the partial coherence between the
peaks as can be seen in Figure 3. Such coherence would not be
expected in the case of a Gaussian random field.

5. CONCLUSIONS

We have detected multiple structures in the galaxy distribu-
tion in two independent regions on the sky that correspond to
a peak in the two-dimensional power spectrum on the order of
100 2~ Mpc, a wavelength similar to that reported by Broad-
hurst et al. (1990). The survey contains approximately 30
independent modes on this scale. The probability of detecting
such a signal by chance, with the assumptions of a Gaussian
random field and the best-fit linear CDM power spectrum, is
2.5 %X 107* (Qh = 0.3 fit between 30 A~ Mpc and 70 A~' Mpc).
The structures responsible for this signal have been identified and
have the appearance of walls and voids. Therefore, such large
structures appear to be common features of the local universe.
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Fic. 3.—These plates show the two-dimensional power spectrum for the (¢) —12° and (b) —39° decl. slices in the north and south, respectively. The power spectra
have been normalized to the expected Ok = 0.3 spectrum as a function of wavelength in order that fluctuations have the same expectation at all wavelengths. A signal
of 6.1 corresponds to the expectation of only one peak of greater height over the entire graph. The width of the peaks in this figure gives a rough idea of the size
of an independent mode. The coordinate of each peak (k,, k,) in the power spectrum corresponds to the normal of a plane wave in real space. The three highest
peaks above 100 #~' Mpc have been numbered and correspond to the graphs showing the real space distribution of galaxies. The straight lines indicate the maxima
of these plane waves with the appropriate phase and noted wavelength. In this way it is easy to see which structures in real space are responsible for these peaks;
however, true plane wave density fluctuations are not to be expected.
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