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ABSTRACT

We investigate the physical behavior in the nonlinear regime of Kelvin-Helmholtz (KH) instabilities in a
simple conducting shear flow in the presence of magnetic fields, based upon the use of numerical simulations
of the ideal magnetofluid equations of motion in two dimensions. The flow is characterized by three principal
control parameters: the Mach number M of the shear flow, the ratio « of the Alfvén speed to the sound speed,
and the effective diffusivity; we investigate how these parameters affect the evolution and saturation of the
instability. The key result of our study is that even relatively small magnetic fields (i.., small compared to the
equipartition intensity) affect the way the KH instability saturates with respect to the purely hydrodynamic
case. If the magnetic field intensity is not sufficiently strong to suppress the KH instability entirely, then the
field itself can still mediate the turbulent decay and diffusion of energy and mass across the layer. We present
a detailed study of the various phases of this process for our simple shear layer configuration.

Subject headings: instabilities — methods: numerical — MHD — plasmas

1. INTRODUCTION

The instability of the boundary layer separating two fluids in
relative motion (Kelvin-Helmholtz instability) appears fre-
quently in many astrophysical and geophysical situations,
ranging from the interaction of the solar wind with the magne-
tospheric boundary (Uberoi 1984) and cometary tails (Ray
1982) to the dynamics of accretion disks (Anzer & Borner 1983)
and jets in extragalactic radio sources (Birkinshaw 1991a) and
young stellar objects (Biihrke, Mundt, & Ray 1988). Many
studies have therefore been devoted to understanding the
linear behavior of the instability under the influence of different
physical ingredients typical of these widely differing environ-
ments. Starting from the classical results for the incompressible
case, which can be found summarized in Chandrasekhar’s
monograph (1961), the effects of compressibility have been
introduced both in the pure hydrodynamical situation (Sen
1964 ; Gerwin 1968) and in the magnetohydrodynamic (MHD)
case (Sen 1963; Pu & Kivelson 1983). The effect of a finite
thickness of the shear layer has been discussed by Ray (1982)
and Ferrari & Trussoni (1983). The case of cylindrical
geometry, which applies to astrophysical jets, has been studied
by Ferrari, Trussoni, & Zaninetti (1981), while the extension to
relativistic velocities, again in relation with extragalactic jets,
has been considered by Ferrari, Trussoni, & Zaninetti (1980)
and by Birkinshaw (1991b). Finally, the effects of anisotropic
pressure, typical, for example, of CGL theory, have been
analyzed by Trussoni et al. (1988).

More recently, thanks to a wider availability of super-
computers (and of sufficient computing time to solve large
problems) and to the development of refined algorithms for the
solution of fluid equations, it has been possible to begin the
analysis of the evolution of the instability in the fully nonlinear
regime. The pure hydrodynamical case has been widely investi-
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gated (see, e.g, Woodward 1987; Lele 1989; Sandham & Rey-
nolds 1989, 1991), while only few results have been obtained for
the MHD cases; this lag in the MHD cases has occurred
because of the greater difficulty in finding accurate and robust
algorithms for the solution of the MHD equations. Thus,
Miura (1984) investigated the evolution of a single shear layer
with a uniform magnetic field either parallel or perpendicular
to the direction of the flow; however, his results are limited in
the exploration of the parameter space and in the extent of
timé during which the evolution is followed. Finally, Hardee et
al. (1992) have studied the evolution of a double shear layer
with a uniform longitudinal magnetic field and a supersonic
flow velocity. The focus of their work is, however, more on the
comparison between the scale length of the structures gener-
ated during the nonlinear evolution and the wavelengths of
maximum growth rate predicted by the linear theory than on
the new physical effects introduced by the magnetic field.

Recently, Zachary, Malagoli, & Colella (1994) have devel-
oped a MHD code based on a high-order Godunov method.
Methods of this kind have, in fact, proven to be very effective
for supersonic flows in the hydrodynamical case. In this paper
we describe the results obtained for the evolution of two-
dimensional perturbations of a single planar shear layer
obtained with this code.

The introduction of magnetic fields can be expected to intro-
duce several new physical effects that may change the evolu-
tion of the instability significantly with respect to the purely
hydrodynamic case. For example, we recall that in two-
dimensional hydrodynamical turbulent flows, there is an
inverse cascade of energy toward small wavenumbers, whereas
in the three-dimensional case, the cascade of energy is toward
large wavenumbers; in contrast, the cascade of energy is
always toward small wavelengths in the MHD case, even in
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two dimensions (Pouquet 1978; Orszag & Tang 1979;
Biskamp & Welter 1983). As a second important effect, we
observe that energy can be dissipated via magnetic field recon-
nection as well as via viscosity (Frisch et al. 1983; Biskamp &
Welter 1983). In this paper we analyze how these new physical
effects affect the simplest nontrivial shear flow configuration,
namely, a single shear layer with a uniform field directed along
the flow. Furthermore, we restrict our attention to relative
velocities near Mach number M = 2V /c, = 1 (where ¢, is the
sound speed); this restriction is based on the fact that for
supersonic velocities it is known that the nature of the linear
instability changes from monotonic to oscillatory and that new
nonlinear instabilities appear (see discussion below). This
supersonic case will be the subject of a subsequent paper.

The organization of this paper is as follows: in § 2 we
describe the physical problem we study, summarize the basic
results in linear theory, and outline the numerical method used
for the integration of the MHD equation; we describe our
results in § 3. Section 4 is devoted to the summary and dis-
cussion.

2. THE PHYSICAL PROBLEM

2.1. Basic Equations and Initial Configurations

We study the nonlinear evolution of the Kelvin-Helmholtz
instability of a single magnetized planar velocity shear layer.
The relevant equations are the compressible single-fluid MHD
equations:
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in Cartesian geometry, where the variables E, p, p, v, and B are,
as customary, the specific energy, pressure, density, velocity,
and magnetic field, respectively, and v is the ratio of the specific
heats. Here we do not give the specific expression for the
viscous and dissipative terms o, PBress €visc, and €., that
appear in the momentum, induction, and energy equations. In
our code, these terms are not introduced explicitly but arise
from the complicated numerical dissipation mechanism of the
Godunov method, for which there is no analytic expression.
We will discuss the rationale for these terms in § 2.3. For the
moment, we simply assume that these terms are very small, so
that they do not need to be included in the linear instability
analysis. However, we will see that the nonlinear saturation of
the Kelvin-Helmholtz instability does require the presence of
viscous and resistive dissipation.

In the initial configuration, the fluid moves with a velocity
v,, which has the shear profile along the y-direction

v, = V, tanh (y/a), 6

and the other quantities are uniform. In particular, the uniform
magnetic field is directed along the x-direction, parallel to the

velocity. We now impose a perturbation to the y component of
the velocity at t = 0 of the form

v, = v,,, sin (k. x) exp [—(y/0)’] ™

where v, (< V) is the amplitude of the initial perturbation, k,
is its wavenumber along the x-direction, and o is a parameter
that fixes its width along the y-direction.

The numerical calculations will be performed on a domain
of size D = 2m/k, in the longitudinal x-direction and 2D in the
transverse y-direction. We take D as our unit of length and the
Alfvén crossing time over D, 1, = D/v,, as our unit of time (v,
is the initial Alfvén velocity). In general, a and ¢ should be
chosen to satisfy h < a < D, where h is the size of the computa-
tional grid cells and ¢ < D, but their specific values are not
expected to influence our results. The reason for the choice of a
is dictated by numerical considerations, as discussed below,
while ¢ simply makes sure that the perturbation amplitude
decays away from the vortex sheet. Here we have chosen
a = D/20 and ¢ = D/10. We assume periodicity in the longitu-
dinal direction, thus imposing periodic conditions at the longi-
tudinal boundaries; free outflow conditions are used instead at
the outer boundaries, viz.,at y = +D.

2.2. Linear Results

The linear stability properties of a magnetized velocity shear
configuration have been extensively studied by many authors,
starting with the early work of Chandrasekhar (1961) on the
incompressible vortex sheet case. The effects of compressibility
have been taken into account by Sen (1964), Fejer (1964),
Talwar (1964), Southwood (1964), and Pu & Kivelson (1980);
the effects of a smooth velocity shear layer (as opposed to the
vortex sheet assumed in earlier linear analyses) have been con-
sidered by Lau' & Liu (1980), Ferrari & Trussoni (1983), and
Miura & Pritchett (1982).

The main effect of the magnetic field on the flow stability
properties is to stabilize the fluid interface with respect to the
pure hydrodynamic case; this effect can be understood simply
as the consequence of field line tension, quite analogous to the
stabilizing role played by surface tension in the context of
Rayleigh-Taylor instability. The resulting decrease in growth
rates is a sensitive function of the field strength, and full stabil-
ity is reached when the Alfvén velocity becomes of the order of
the total velocity jump across the shear layer. The condition
Vo > v, for instability holds exactly in the simpler incompress-
ible vortex sheet case; in the compressible case, in which one
also allows for the effects of a finite width shear layer, this
condition is only approximately valid (Pu & Kivelson 1980;
Lau & Liu 1980).

Compressibility has the principal effect of introducing a high
Mach number cutoff to the instability: although in the incom-
pressible case, instability is found for every value of the velocity
jump, a compressible vortex sheet is unstable only for M <
M., where M., is a critical value that depends on the fast mag-
netosonic velocity. This behavior is analogous to that of the
pure hydrodynamical case, in which stability occurs for M >
2\/5. As for that case, a smooth layer is unstable also for
M > M, if we remove the requirement that perturbations
vanish at infinity and allow for radiation boundary conditions
(Blumen et al. 1975; Ferrari & Trussoni 1983). It is also well
known (see Artola & Majda 1988, 1989a, b) that in this high
Mach number regime, nonlinear instabilities develop that have
a very different evolution from the nonlinear counterpart of the
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Kelvin-Helmholtz instability, although they also ultimately
lead to the growth of a mixing layer.

Finally, the introduction of a smooth shear layer has also a
stabilizing effect on small-wavelength perturbations. Contrary
to the vortex sheet case, which was a scale-free problem, we
have here a defined scale, i.e., the thickness of the shear layer,
which is chosen so that there are at least five computational
cells within the shear layer. In the scale-free case, the growth
rate was proportional to the wavenumber k; this behavior is
still valid for the smooth shear layer in the low-wavenumber
(large wavelength compared to the thickness) regime. As the
wavenumber is increased, the growth rate reaches a maximum
at ka ~ 1 and then decreases, reaching stability for values of
ka ~ 2, with the exact value depending on the other param-
eters (Ferrari & Trussoni 1983; Miura & Pritchett 1982; Ray
1982). The main reason for the introduction of a finite thick-
ness of the shear layer is precisely to stabilize very short wave-
lengths with a scale comparable to the size h of the
computational cells: although these wavelengths are near the
dissipation scale of the numerical code and would probably be
damped, they sometimes introduce large spurious oscillations
in the simulations. Since we are primarily interested in the
large-scale features of the flow, with low-wavenumber modes
k < 1/a, this does not represent a problem.

2.3. The Numerical Method

We have used here for the first time the new multidimen-
sional code for ideal magnetohydrodynamics developed by
Zachary et al. (1994). This code is a higher order Godunov
method that uses an approximate Riemann solver for ideal
MHD. Higher order Godunov methods have been used suc-
cessfully to study problems in compressible hydrodynamics,
which involve the formation and evolution of strong shock
discontinuities. The most prominent representative of this class
of codes is certainly the piecewise parabolic method of Colella
& Woodward (1984), which has been used extensively to study
a wide variety. of problems in astrophysical fluid dynamics,
ranging from supersonic compressible convection (Malagoli et
al. 1991; Porter et al. 1994) to supernovae explosions (Fryxell
et al. 1991). Our MHD code reconstructs the profiles of the
physical variables using piecewise linear interpolation, fol-
lowed by projection onto characteristics for the construction of
the left and right states-at the cell boundaries. The most deli-
cate and interesting part of the method is its approximate
Riemann solver. Contrary to the hydrodynamic case, the
Riemann problem for ideal MHD does not have a completely
consistent and unique solution because the MHD equations
are not strictly hyperbolic, in the sense that characteristics can
become degenerate, depending on the orientation of the mag-
netic field. As a consequence, it is not possible to give a general
formulation for Lax’s entropy condition (Lax 1954). Our
Riemann solver is based on the Engquist-Osher flux formula-
tion given by Bell, Colella, & Tragenstein (1982), plus several
switches that treat the special cases of characteristic degener-
acies. The resulting code has proven stable and robust on a
large test suite of problems (see Zachary et al. 1994).

Although we are trying to solve a problem that is very close
to the ideal MHD limit because of the very small dissipation
present in astrophysical plasmas, numerical dissipation cannot
be avoided; typically, such numerical dissipation is much
larger than physical diffusion for the grid sizes allowed by
current (and anticipated) computer hardware. As we have done
in the past (see, e.g., Bogdan et al. 1993), we assume that the
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dissipation mechanism of the Godunov method provides an
adequate model for subgrid-scale dissipation, while ensuring
the highest possible resolution, i.e., lowest possible dissipation,
for a given grid size. Our and others’ (Porter et al. 1994; Boris
1991) experience suggests that the numerical dissipation of
monotonic schemes can indeed be used as a reasonable model
for subgrid-scale dissipation. For more quantitative evidence,
we have simulated the turbulent decay of a magnetized
Orszag-Tang vortex (Orszag & Tang 1979) with our code and
have found that the results are in good agreement with those
from a pseudospectral code with physical dissipation taken
into account (Picone & Dahlburgh 1991; however, our calcu-
lation required fewer grid points). Our assumption is even
more reasonable in the case of astrophysical plasmas, where
fundamental uncertainties in the observations will make any
phenomenological dissipation model equally uncertain, even if
it were based on more theoretically motivated considerations
than purely numerical effects. Ultimately, we will use our
physical intuition and our experience with the numerical algo-
rithm to evaluate and analyze the results from the numerical
experiments, in a way similar to laboratory experiments.

3. RESULTS

In this paper, we have focused on the case of a marginally
supersonic shear layer, i.e., on the case in which the relative
shear velocity reaches at most M =1 (the case of strongly
supersonic flows will be treated in a subsequent paper). We
have varied the relative Mach number between M = 0.5 and
M =1, but we will discuss only this last case since we obtain
essentially the same results for M = 0.5. In addition, we have
varied the relative strength of the initial magnetic field | B, |, as
measured by the ratio o =uv,/c,, between o =005 and
o = 0.25 (a, = 0.5 being the critical value above which the flow
is linearly stable). Finally, we have repeated one case, namely,
M =1 and a=0.1, using two different grid resolutions
(100 x 200 and 256 x 512) in order to estimate the effects of
decreasing the effective dissipation. Some of the cases we con-
sider are essentially identical to those studied by Miura (1984),
although our calculations achieve higher resolution and are
carried out for longer times. As we shall see, both differences
lead us to modify some of Miura’s conclusions substantially.

We have identified three stages in the evolution of the
shear layer instability; we discuss these in turn immediately
following.

Phase 1: The initial phase strongly resembles the evolution
expected for the ideal MHD problem in the linear regime, in
which the instability grows exponentially; the leftmost panel in
Figure 1 displays a gray-scale snapshot of the fluid density
during this phase and shows the characteristic vortical pattern
traditionally associated with the hydrodynamic Kelvin-
Helmbholtz instability. This phase is also characterized by
growth of the magnetic field, which is frozen into the fluid and
is therefore stretched by the vortical motions.

The initial topology of the magnetic field line stretching is
illustrated in the top two panels of Figure 2. We follow two
field lines located symmetrically on both sides of the shear
layer. The field lines are expelled from the center of the initial
large vortices and are stretched into narrow filaments, which
turn out to be slow magnetosonic waves (in fact, rarefaction
waves). The magnetic field strength is concentrated and ampli-
fied inside these slow waves, until localized reconnection events
occur (bottom panel of Fig. 2), thus ending the ideal MHD
phase of the evolution.
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FiG. 1.—The leftmost panel shows a gray-scale snapshot of the fluid density during phase 1 (time T = 2.3). Denser regions are white, and emptier (rarefied)
regions are black. The spiral pattern of less dense matter corresponds to the slow rarefaction wave discussed in the text. The wavelength of the initial perturbation is
A = 1. The middle panel shows the density field during phase 2 (time T = 5.3), in which strongly turbulent fluid motions are produced by the transient reconnection
events. The rightmost panel shows the fluid density during phase 3 (the final phase T = 19.1). The case shown has M = 1 and « = 0.1.

It is essential to realize that the field amplification observed
during this phase cannot be a dynamo process. It has been long
recognized that in two dimensions, regenerative dynamo
action is impossible in principle (see Moffatt 1978, and refer-
ences therein). Thus, the amplification we observe must be a
transient phenomenon, and one would then expect that the
field will eventually decay, once the instability saturates, owing
to resistive dissipation; this is indeed what we subsequently
observe (see below). In this context, it is useful to note that
Miura (1984)’s calculations terminated during this phase, in
which strong field amplification was also observed by him;
indeed, Miura concludes that the KH instability constitutes a
dynamo process on the basis of this observed magnetic field
amplification. It should now be clear that this conclusion was
premature.

Phase 2: As the magnetic field is stretched by the vortical
flows, the gradient scales of the magnetic field go to smaller
and smaller scales; this process is observed to continue until
the field gradient scales are of order the resistive dissipation
scale in the calculation (given approximately by the grid
spacing for our code), at which point resistive reconnection
takes place, and small-scale turbulent motions develop. At this
time, the magnetic energy reaches its maximum value and
decays subsequently. The middle panel of Figure 1 shows a
snapshot of the density during this phase. The filamentary
structures in the density distribution closely trace filaments of
strong magnetic field concentration.

The process by which magnetic field decay occurs is seen in
the sequence of contour plots shown in Figure 3: viz, the

magnetic field begins to reconnect. However, this reconnection
process proceeds initially in an intermittent manner. That is,
after each reconnection event that leads to field decay smaller
scale vortex motions develop, which in turn “rewind” and
strengthen the magnetic field until new (smaller scale) magnetic
structures are generated, which then in turn again decay by
reconnection and thereby release further energy. This process,
which is a well-known feature of MHD turbulence (see, e.g.,
Biskamp & Welter 1983), leads to a cascade of both energy and
enstrophy to smaller and smaller scales. Figure 4 illustrates
this behavior: the maximum in magnetic energy coincides tem-
porally with the first reconnection event seen in Figure 3;
immediately subsequent to this event, one can see the magnetic
energy build up once more (although not to as high a peak
value as in the first instance), only to decay yet again as the
newly formed smaller scale field structure reconnects.

An obvious question is how these results depend on the
effective resistivity, or equivalently on the grid resolution of the
calculation. In particular, we can ask how the field amplifica-
tion is modified by the decrease in resistivity (ie., by an
increase in resolution). In order to answer this question, we
have run a problem with the same parameters on two distinct
grid sizes (100 x 200 and 256 x 512) and computed two quan-
tities: first and most obvious, the total magnetic energy;
second, the smallest spatial scale associated with the magnetic
field perturbations, as measured by A = min (|B|/|V x B]).
Figure 5 shows the evolution of the two quantities for the two
cases. As expected, at the higher magnetic Reynolds number,
which corresponds to the higher grid resolution, diffusive
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FiG. 2—Contour plots of selected magnetic field lines during phases 1 and
2 of the instability evolution. The upper panel displays these field lines during
the very initial period of phase 1; the middle panel illustrates the wrap-up, or
stretching, of field lines during the course of phase 1; and the lower panel
shows the onset of phase 2, in which magnetic field lines wrapped up by the
vortical fluid motions begin to reconnect and thereby dissipate magnetic
energy.

scales are smaller. As a consequence, the magnetic field lines
are distorted to smaller scales, namely, all the way down to the
smaller diffusive scales, and the resulting field amplification is
larger: the total magnetic energy grows to a higher maximum
for the higher grid resolution.

One can also ask how the results depend on the strength of
the initial magnetic field in the shear layer; one expects that for
sufficiently strong magnetic fields, the instability ought to be
suppressed. Figure 6 shows the results of a parameter study of
this question as a function of « = v,/c,. Our results confirm
our expectations: while the temporal evolution of the magnetic
field is not especially sensitive to « for smaller values of « (i.e.,
for weak initial magnetic fields), there is a sudden transition in
which significant field amplification and the instability itself
are suppressed when a becomes larger than a critical value
(here roughly 0.1). For « < 0.1 the stretching of the magnetic
field (and the corresponding amplification of the field’s
strength) is limited by the formation of field structures at the
smallest possible scale, i.e., at the resistive diffusion scale. This

the field amplification, as measured by the ratio | d®xB?(t)/|
d*xB32, is independent of the initial strength | B, |, as can be
seen from the upper panel of Figure 6. For « > 0.1 all of these
effects, particularly the formation of small-scale field struc-
tures, gradually decrease until the instability is eventually com-
pletely suppressed (for a ~ 0.2).

Finally, we note that this phase is also characterized by a
rapid increase in the shear layer width, and hence in mixing
across the shear layer, as indicated in Figure 7. This mixing is
driven by the small-scale turbulent motions seen in, for
example, the middle panel in Figure 1 (which is a snapshot
taken during this phase). Figure 7 also shows that the widening
of the shear layer reaches an asymptotic quasi—steady state,
which turns out to signal the onset of phase 3, discussed next.

Phase 3: In the final phase, the small-scale turbulence decays
monotonically until a new statistically steady flow sets in. The
final result is the formation of an enlarged, mixed layer that
exhibits filamentary structures approximately elongated along
the direction of the initial shearing flow, and aligned with the
magnetic field. The rightmost panel of Figure 1 is a snapshot of
this final phase.

The formation of filamentary aligned structures is a known
feature of decaying, magnetohydrodynamic turbulence and has
been observed previously by, for example, Picone & Dahi-
burgh (1991). Once the alignment process occurs, further desta-
bilization of the shear layer seems to cease altogether, and, in
concert, further widening of the shear layer and magnetic field
decay also cease. The result is an asymptotically stable shear
flow, as seen in the final state in the rightmost panel of Figure
1. The mean flow velocity assumes a quasi-linear profile across
the shear layer, as shown in Figure 7, and, in the central parts
of the layer, fluid motions cease almost completely. The final
layer is slightly hotter than the surrounding fluid, as a result of
the dissipative heating that occurs during the decay of small-
scale turbulence. This can be seen in Figure 8: since the layer is
again in gas pressure equilibrium with the surrounding
medium, the heating of the fluid has caused the layer to
expand, thus lowering the density in the center.

We conclude that the evolution of the shear flow instability
in the magnetized fluid case is indeed distinctly different than
in the purely hydrodynamic case. Most prominently, the basic
mechanism for the saturation of the instability in the magnetic
case is a transfer of kinetic to magnetic energy (phase 1), fol-
lowed by its dissipation via magnetic reconnection (phases 2
and 3). Contrary to the purely hydrodynamic case, in which
energy cascades toward the largest scales and vorticity concen-
trates into a single isolated vortex, here energy can cascade to
small scales, where it is dissipated, and vorticity is uniformly
redistributed (rather than concentrated) over a final, wider
shear layer. The typical timescale of the entire process is of the
order of a few Alfvén crossing times. The width of the final
layer is of the same order as the initial perturbation wavelength
for the weaker initial magnetic fields (x < 0.1); it gradually
decreases as « is increased, as is to be expected as a conse-
quence of the weakening of the instability (cf. Fig. 9). The
material within the layer is completely mixed, but there is no
substantial loss of mass from the layer: this result, which can
be trivially inferred by looking at Figures 1 and 2, has also
been confirmed by looking at the dispersion of a passive scalar
field by this shear flow.
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F1G. 3.—Snapshots in time of magnetic field line plots, taken from the same calculation as in Fig. 1 (at the lower resolution); time runs from left to right, and top
to bottom (the time at which each snapshot is taken is indicated at the top of each panel). One can clearly see the reconnection event at ¢t ~ 4 and the reformation of a
smaller scale vortex at t ~ 5.01; they are a succession of such events (marked in Fig. 3 by the two peaks in the magnetic energy temporal evolution) that terminate the

“ideal ” phase of the instability.
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F1G. 4—Evolution of the average magnetic energy for the same calculation
as in Fig. 1 (at the lower resolution). The dashed vertical lines delimit the time
interval in which the snapshots of Fig. 3 are taken. One can see how the
occurrence of reconnection events that end the “ideal "phase of the instability
is also marked by the beginning of the magnetic field decay.

One question might be whether our choice of the initial
perturbation is in any way restrictive, since the perturbation
wavelength used in the calculations has been chosen to be
much larger than the thickness of the layer (ka = 0.05), which is
much larger than the wavelength of the fastest growing mode
(ka ~ 1). We believe that the answer is no, and our reasoning is
as follows: The hydrodynamical results tell us that long-
wavelength modes dominate the evolution past the linear
stage. The reason is that although short-wavelength pertur-
bations grow faster in the linear stage, they readily transfer
energy to longer wavelengths through the vortex pairing
process in the nonlinear regime. In the magnetic case we expect
to follow this hydrodynamic scenario during our phase 1 (ie.,
before the field becomes dynamically important); thus, we
expect the largest wavelength excited mode to dominate at the
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F e T Y ] end of phase 1. We have verified this expectation by a simula-
0 5 10 15 20 tion in which we perturbed both the fundamental wavelength

Time (ka ~ 0.05) and its first harmonic (ka ~ 0.1); we find that
F1G. 5—Magnetic field evolution as a function of effective resistivity, or vortex pairing occurs faster in phase 1, unimpeded by the pres-

grid resolution. The upper panel shows the averaged magnetic energy; the
lower panel shows the magnetic field spatial scale, defined by A= |B|/
|V x B|. Note that, as expected, higher grid resolution (and hence, higher
magnetic Reynolds number) leads to smaller diffusive scales and larger field

ence of the magnetic field, so that, at the end of phase 1, we find
only one big vortex remaining; the subsequent evolution is
then the same as in the case where only one wavelength was

amplification. perturbed.
Clearly, the largest wavelength that can be excited coincides
with the Fourier mode corresponding to the horizontal size D
3.0F . ; : : of the computational domain. This is a consequence of our
. —— Va/Cs =005 ] choice of periodic boundary conditions, which imposes a par-
S 25F - - Ve/Cs= o007 3 ticular symmetry to the problem. However, it is clear that, as
‘é" . - :“/ oo ] long as D > a, where a is the initial width of the shear layer as
g 2oF - v:jc: s E in equation (6), our results will scale in a self-similar way with
N 3 D. Similarly, we can expect that if we embed the final quasi—
é" “E 3 steady state layer in a larger horizontal domain (by, for
& 4 ofF e o 3 example, replicating the solution periodically), we would even-
F ] tually find that the layer becomes unstable in the way pointed
0.5C . : ; e out by Ray (1986) (note that our final layer resembles closely
0 5 0 me ° 20 25 his initial condition). A different choice of boundary conditions
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Fic. 6.—Magnetic field evolution as a function of time for different values
of the initial magnetic energy, or a = v,/c,. The upper panel shows the aver-
aged magnetic energy; the lower panel shows the magnetic field spatial scale,
defined as in Fig. 5. The solid horizontal line in the lower panel indicates the
value of the effective diffusive scale in these numerical computations. It is 0.80
evident that field saturation occurs roughly when the spatial scale of the mag-
netic field reaches the diffusive scales. The temporal evolution of the magnetic
field is not especially sensitive to « for very small values of a; however, for
values of a larger than a critical value (here, roughly 0.1), there is a transition in
which significant field amplification begins to be suppressed.
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tribution across the layer at time T = 19.1 (same as in the rightmost panel in
Fig. 1).
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may also produce different final results, like in the work of Wu
(1986). More generally, more realistic models of specific astro-
physical shear flows will be needed to determine the evolution
of the Kelvin-Helmholtz instability in more realistic settings.
However, such studies are beyond the scope of this beginning
investigation into the nonlinear Kelvin-Helmholtz instability.

4. SUMMARY AND DISCUSSION

In this paper, we have used a new numerical method, based
on the Godunov scheme, for integrating the single-fluid fully
compressible magnetohydrodynamic equations to attack the
nonlinear evolution problem for unstable magnetized shear
flows. We have followed the (Kelvin-Helmholtz) shear flow
instability well into the nonlinear regime, and we have dis-
cerned three stages in the instability’s evolution: (i) a linear
stage, in which exponential growth of the perturbed flow
occurs, including that of the magnetic field perturbation; (ii)a
dissipative transient stage, in which field amplification satu-
rates and the ultimate decay of the strongly amplified fields
begins via a succession of highly intermittent reconnection
events; and (iii) a saturation stage, in which the small-scale
turbulent motions decay to form aligned structures; the onset
of this final stage is also signaled by the relaxation of the
velocity profile to a statistically quasi-steady form.
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The main result that emerges from our calculation is that
even weak equilibrium magnetic fields can lead to a dramatic
change in the instability evolution with respect to the purely
hydrodynamical case. The reason is that the field is strongly
amplified by the vortical motions that develop from the
unstable modes growth and can become locally dynamically
important. In such cases, it can then act as a mediator for the
transfer of energy toward small scales, at which it can be
quickly dissipated by localized reconnection events. This is
very different from the pure hydrodynamical evolution, in
which case energy is transferred to the largest scales, large
vortices are formed, and dissipation is very ineffective. In this
respect, an important parameter that can control the evolution
is therefore the effective magnetic Reynolds number R,,. We
have, in fact, explored the dependence of our results on R,,,
showing that, as expected, larger R,, leads, in the first phase, to
larger magnetic field amplification. By increasing the initial
magnetic field strength, we determine how magnetic field
amplification becomes gradually suppressed as the magnetic
field approaches the critical intensity for which « = o, = 0.5.

When the instability is active, the shear layer decays into an
enlarged, steady vortex sheet in which the magnetic field
returns approximately to its initial strength and orientation,
while the flow material has been completely mixed and heated
during the process of turbulence decay. The width of the final
layer is enlarged from its initial state and is roughly equal to
the size of the initial perturbation.

The very simple flow configuration we have studied here is
obviously far removed from likely astrophysical situations.
However, we have been able to identify some particular pheno-
mena associated with the evolution of nonlinear magnetized
Kelvin-Helmholtz instabilities, such as the dynamics of turbu-
lence decay and associated energy dissipation mechanisms and
material mixing, which are likely to play important roles in the
more complex circumstances encountered in astrophysical
systems.

A major unresolved issue is how our results are affected by
dimensionality. That is, we would like to know what happens
in three dimensions. A fundamental reason for believing that
the problem in three dimensions may be significantly more
complex is that dynamo action is then not prohibited ; hence, it
is not obvious that the strong fields built up during the linear
phase 1 must subsequently decay in the three-dimensional
case. Resolution of this issue is an obvious task for the future.
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