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ABSTRACT

To explain the observational evidence gathered during recent years about periodic oscillations in quiescent
solar prominences, the modes of oscillation of some theoretical models for solar prominences have been
studied. The main drawback of these models is the lack of a realistic temperature profile for the prominence-
corona system, which should be obtained from the coupling between magnetostatics and energetics once the
physical properties of the prominence and the prominence-corona transition region (PCTR) are known.
However, this seems to be far from our present possibilities since there is a lack of knowledge about the
physical processes occurring in both.

To make further progress in the study of MHD waves in prominences, we have adopted an “ad hoc” tem-
perature profile that can be adjusted to give different runs of the temperature, from prominence to coronal
values. This profile allows us to modify the thickness of the PCTR while modifying the steepness of the tem-
perature variation within it. Also, by including this profile in the model proposed by Poland & Anzer, we are
able to construct an equilibrium model for the prominence-corona system and to study the linear, adiabatic
MHD waves of such configuration.

Among the results obtained we highlight that the presence of a PCTR does not eliminate the subdivision of
modes into hybrid, external, and internal and that its existence is linked to the presence of two temperature
plateaus. A change in the thickness of the PCTR produces a modification of the mode frequency and also
affects the horizontal velocity component of internal modes by diminishing its amplitude in the prominance
region. For a thin PCTR, because of the velocity amplitude inside the prominence, the modes likely to be
detected in prominence oscillations are the internal and hybrid ones, although as a consequence of the effect
already pointed out, the existence of a thick PCTR could make difficult or even impossible the detection of
internal modes.

In summary, our results point out the importance of the PCTR to the oscillations of quiescent solar promi-
nences and to the identification of modes through the amplitudes of the eigenfunctions in the prominence.
This indicates the strong need for accurate knowledge of the physical properties of this region, in order to be
able to make accurate theoretical predictions about the amplitudes and frequencies of oscillations in quiescent
prominences. Probably, that knowledge can be obtained in the near future by means of the UV instruments of

the SOHO spacecraft.

Subject headings: MHD — Sun: corona — Sun: magnetic fields — Sun: prominences

1. INTRODUCTION

During recent years, observational evidence about the pres-
ence of periodic oscillations or waves in solar prominences has
been obtained, and it is well summarized in reviews by Tsubaki
(1988), Schmieder (1988, 1989), and Vrsnak (1993). These oscil-
lations have been detected mainly in the velocity field and can
be classified into three categories: short-period oscillations,
having periods of 5 minutes or less, intermediate-period oscil-
lations, between 8 and 20 minutes, and long-period oscil-
lations, the periods of which range mainly between 40 and 90
minutes. Balthasar et al. (1993) have also established the exis-
tence of oscillations of very short period (30 s), and although
this value has not been confirmed by other observations, it is
hard to doubt its reality since it was determined by a simulta-
neous observation of the prominence with two telescopes.

Oliver et al. (1993) studied the MHD modes of a solar
prominence surrounded by a coronal region with a global
magnetic configuration and density given by the modified
Kippenhahn-Schliiter model proposed by Poland & Anzer
(1971). The configuration consists of a cool and dense medium,
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representing the prominence, embedded in a hot and tenuous
plasma, representing the corona, with uniform but different
temperatures in both regions. In such a configuration, in which
there is a sudden jump of the temperature and density from
prominence to coronal values at the interface between the two
regions, slow, fast, and Alfvén modes can be classified as inter-
nal, external, or hybrid. Oliver et al. (1993) described internal
modes as those that do not disappear when the coronal region
is removed, external modes as those that do not disappear
when the prominence is removed, and hybrid modes as owing
their existence to the presence of both media.

Recently, Oliver & Ballester (1995) used the prominence-
corona model of Low & Wu (1981) to study the effects of
anisothermality on the MHD modes and to determine how a
smooth transition region affects the classification of modes
reported in Oliver et al. (1993). The temperature run provided
by the Low & Wu model, with a smooth transition between the
prominence and the corona, is just the opposite of the sharp
one used in Oliver et al. (1993), and no evidence for hybrid,
external, and internal modes was found. It was then suggested
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that this subdivision disappears when the temperature suffers a
very smooth transition from prominence to coronal condi-
tions.

Of course, the ideal situation would be to know exactly
which are the physical properties of the prominence-corona
transition region (PCTR) and then, by use of a full energy
equation, to construct a theoretical model with a realistic tem-
perature profile for the prominence-corona system. However,
even with an accurate knowledge of the physics of the PCTR,
this is not an easy task because of the nonlinearities in the
equations and the difficulty of obtaining realistic prominence
temperatures and widths (see, e.g., Milne, Priest, & Roberts
1979; Schmitt & Degenhardt 1995).

The physics of the PCTR is now a subject of lively debate
(Engvold 1989; Vial 1990; Chiuderi-Drago 1990) because of
the discrepancies coming from the observational data.
Analyses of EUV and UV lines in quiescent prominences indi-
cate that the PCTR is very thin and similar to the
chromosphere-corona transition region (Orrall & Schmahl
1976, Rabin 1986). However, when the PCTR is observed in
limb prominences, by means of UV lines, and in filaments by
use of radio wavelengths, the physical parameters needed to
explain both sets of observations are in disagreement. Those
discrepancies can be solved when the dependence of the
thermal conduction on the angle between the magnetic field
and the direction of the local temperature gradient is taken
into account (Chiuderi & Chiuderi-Drago 1991).

As a tool to make further progress in the study of MHD
waves in prominences, we have adopted a temperature profile
by which a smooth temperature transition from a cool promi-
nence to a hot corona can be achieved. The shape of this “ad
hoc” temperature profile is based on observational evidence
(Schmahl 1979) and theoretical models (Chiuderi & Chiuderi-
Drago 1991; Rovira et al. 1994), and its expression allows
variation of the thickness of the PCTR and the steepness of the
temperature profile within it. The expression for temperature
was next introduced into the Poland-Anzer model, which
yields analytic solutions for the equilibrium quantities, and the
linear and adiabatic MHD waves of the system were studied.

Our main goals here are to study the influence of the PCTR
on the behavior of the modes and eigenfunctions and to ascer-
tain the conditions needed for the existence of the subdivision
of modes reported by Joarder & Roberts (1992) and Oliver et
al. (1993).

2. BASIC EQUATIONS AND COMPUTATIONAL TOOLS

2.1. Equilibrium Equations

The reader is referred to Oliver et al. (1993) for a complete
description of the equilibrium configuration. Let us just
mention that the prominence and corona are modeled using a
generalization of the one-dimensional solution of Kippenhahn
& Schliiter (1957), put forward by Poland & Anzer (1971), that
allows one to consider a nonuniform temperature distribution.
The equilibrium magnetic field lies in the (x, z)-plane, trans-
verse to the prominence sheet, with a constant horizontal com-
ponent B,,. The vertical magnetic field component and plasma
density are given by

Bolb) = B tanh [2%1 gé(f‘)] : (1
2
Pl =3 ?U( ) sech? [2%2 @] - )
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Moreover, the plasma density at the prominence center, p,(0),
is related to the parameter B, , by the expression

BZ, = 2uRT(0)po(0) - G)

In the above equatlons we have introduced the new physical
variable T, defined in terms of the temperature T and mean
atomic weight ji:

T(x)
fi(x)
This variable is used to replace T and f in the equilibrium
equations, where they always appear in the form T/i. The

pressure can be obtained from equation (2) and the perfect-gas
law:

T(x) = S

_ T(x) ~
Po=poR _ﬁ(x) = poRT(x) . ®)
In addition, the function f(x) in equations (1) and (2) is given by
* dx’
X) = = . 6
fx) f o) ©)

In the derivation of the equilibrium physical variables no
attention was paid to the termal interplay between conduction
and heat gains and losses. The temperature is thus a free func-
tion of the model. The MHD modes of oscillation of one-
temperature and two-temperature isothermal solutions of the
Kippenhahn-Schliiter type have already been investigated by
Oliver et al. (1992, 1993). We here consider a profile in which
there is a smooth temperature transition from a central plateau
with prominence conditions to two lateral plateaus with
coronal conditions (see Fig. 1a for typ1ca1 plots of T). From
among the large number of ways in which this could be
achieved, we selected the formula

~ 1 ~ A 1 ~ 4 X — X,

Tx)=5 (I + T) + 5 (. — T,) tanh —— Q]
for x > 0 and a symmetric counterpart for x < 0. This expres-
sion corresponds to a central prommence region with T()_c) ~
T T,/ii, embedded in a coronal region with T(x) ~
T//zc The transition layer between the two regions (i.e., the
PCTR) is centered about the positions x = +x,, and, for the
profile given by equation (7), has a thickness roughly equal to
6A.

The values T, = 10* K and 7, = 2 x 10° K were used in all
the computations described here; this is equivalent to taking,
for example a prominence with a temperature T,=17000 K
and ji = 0.7 and a corona with T, = 10 K and ji = 0 S. More—
over, the values B,, =5 G and po(0) =5 x 10" kg m~
have been assumed. Figure 1 shows the temperature and
density profiles obtained from equations (7) and (2) for different
widths of the PCTR.

2.2. Magnetoacoustic Wave Equations
Adiabatic oscillations of the system about the equilibrium
state are next considered, which results in a pair of coupled
ordinary differential equations for the x- and z-components of
the plasma velocity (see Oliver & Ballester 1995):

d*v, dv,

i q: dx+q2d + g0, + qu0;, ®
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F1G. 1.—a) Equilibrium temperature (with T'= T//i) and (b) equilibrium density for different widths of the prominence-corona transition region (roughly equal to
6A). In these figures x,, = 3A + 3000 km and x, = 50,000 km. Solid lines: 6A = 0; dotted lines: 6A = 300 km; dashed lines: 6A = 900 km.

d?v, dv,
ax? = B ax
X x
where the coefficients q,—qg are complex functions of x that
involve the oscillatory frequency w and the wavenumber in the
vertical direction, k,. The solutions of these two equations
describe the behavior of the fast and slow magnetoacoustic
modes of equilibrium models of the Kippenhahn-Schliiter type.
The Alfvén mode is governed by a separate equation, decou-
pled from the previous two, and is not studied here. One of the
conclusions in Oliver et al. (1993) and Oliver & Ballester (1995)
is that the Alfvén mode has properties very similar to those of
fast modes with infinite vertical wavelength (ie., for k, = 0),
and one can reasonably expect that the same will happen in the
present situation.

dv,
+q6;i—x_+q7vx+QSUzs (9)

2.3. Numerical Computations

Equations (8) and (9) have been integrated between x = —Xx,
and x = +x_, and at these two places we have assumed the
existence of a dense photosphere that acts as a rigid and per-
fectly conducting wall against coronal perturbations. This
means that our differential equations are supplemented with
the four boundary conditions

vEx) =v(£x)=0. (10)

In the numerical computations that we perform, the vari-
ables are dedimensionalized as follows:

i=i’ 2=i9 kz—kzx05
Xo Xo
5= v, _ v, 5= Cy
a0 T e0) T el0)’ mn
BOx = == = l s B()z - BOZ s _0 CSZ(O)?pO )
Ox BOx 'yBOx
- 9Xo - wXg
g="737, W="2,
c2(0) ¢(0)

where X, is a length used for dedimensionalization (for which
the value x, = 3000 km is used), cZ(x) = yRT(x)/ji(x) is the
square of the sound speed, and ¢,(0) is the sound speed at the
prominence center.

One of the eflects of gravity on the fast and slow modes of
the system is the vertical amplification or damping of waves
that results from a complex vertical wavenumber. Here we

follow Oliver et al. (1992, 1993) and write k, = « + id, i.e., k, =
a/xo + id/x,, so that fast and slow waves propagate with a
vertical wavelength equal to 2mx,/a and their amplitude is
modified by the factor exp (0z/x,). In the solution of equations
(8) and (9), we select a fixed value of « and thus have an eigen-
value problem, with v (x) and v,(x) the (complex) eigen-
functions and w and ¢ the (real) eigenvalues.

A careful study of the problem posed by equations (8), (9),
and (10) shows that the eigenfunctions v(x) and v,(x) are sym-
metric or antisymmetric about x = 0 (in fact, they must have
opposite parity), and so the integration of the differential equa-
tions can also be carried out between the center of the system
(x = 0), where knowledge of the parities of v, and v, can be
used, and the boundary (x = +x_). No difference between the
solutions calculated by integrating from x = —x_ to x = +x,
and from x = 0 to x = +x, has been observed; therefore, the
second range of integration is used in most of the calculations
presented here since it is the one that results in better per-
formance of the numerical codes.

The differential equations were solved with the help of the
numerical techniques that are described in Oliver et al. (1992,
1993). The first of these techniques is based on the construction
of the solution to equations (8) and (9) as a linear combination
of two auxiliary solutions that satisfy the known boundary
conditions for v, and v, at one end of the integration range. We
then have an initial-value problem for the auxiliary solutions,
which are propagated toward the other end. At this point, the
boundary conditions described by equation (10) yield a con-
straint that helps us find the eigenvalues @ and 6. The compu-
tations carried out in Oliver et al. (1993) prove that this
method is often inadequate when large values of the width of
the system or the wavenumber are selected, so it has only been
used for small x, and «. For larger values of x. or o, a
boundary-value technique has been used, as it is far more ade-
quate.

3. RESULTS

We first compute the dispersion diagrams for different
widths of the transition region (6A), with x,, in equation (7)
given by x,, = 3A + 3000 km. The other parameters are held
fixed. These dispersion diagrams are similar to those in pre-
vious works (e.g., Figs. 2 and 3 in Oliver et al. 1993 and Fig. 3
in Oliver & Ballester 1995), in that the square of the fast-mode
frequency shows a parabolic dependence on wavelength while
the frequency of slow modes displays almost no variation with
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wavelength. Thus, the results can be well characterized by the
value of w for a = 0, that is, for infinite wavelength in the
vertical direction.

Tables 1 and 2 show the square of the dimensionless fre-
quency for the kink and sausage modes, respectively, with
lowest w and three values of the PCTR thickness: 6A = 0, 300,
and 900 km. The results indicate that a thin PCTR has almost
no influence on the modes of the system, the reason being that
the modes under consideration have wavelengths of the order
of or larger than 20 Mm and thus “see” the smooth transition
region (only 300 or 900 km wide) as a genuine discontinuity, so
one should expect only minor differences between the three
configurations. Modes with wavelengths of the order of or
shorter than the width of the PCTR are those most affected by
the inclusion of a transition region between prominence and
corona.

The modes in Tables 1 and 2 have been labeled as hybrid,
external, and internal. Evidence for this subdivision comes
from various features of the modes, one being the evolution of
their frequencies, for « = 0, as x_ is changed. This frequency
evolution is shown in Figure 2 for the case in which no PCTR
is present (obviously, no differences were found between this
plot and those for 6A = 300 and 900 km). As the half-width
increases in this figure, one can see that external modes (dotted
lines) are clearly affected by the change in x,, whereas internal
modes (solid lines) are practically unaffected, except at the
regions where they interact with external modes. It is worth
noticing that the coupling between internal and external
modes in these diagrams is very weak, so the transformation of
a mode from one type to the other takes place over a large
range of x. and is not actually as clear-cut as it appears in
Figure 2.

TABLE 1

DIMENSIONLESS FREQUENCY SQUARED OF MAGNETOACOUSTIC
KINK MODES

@2 FOR PCTR WIDTH (6A)

MobE TyYPE* 0 km 300 km 900 km
HS.......ooeennl. 8.90 x 1072 8.88 x 1072 8.84 x 1072
ESl.....ccevinnn. 7.28 7.27 7.25
IS1 ...l 11.27 11.17 10.98
ES2....cccevinnnn, 30.60 30.58 30.48
IS2 o, 40.72 40.32 39.50

2 Key: H = hybrid, E = external, and I = internal; S =slow and
F = fast. The numbers 1 and 2 denote first and second harmonic.

TABLE 2

DIMENSIONLESS FREQUENCY SQUARED OF
MAGNETOACOUSTIC SAUSAGE MODES

@2 FOR PCTR WIDTH (6A)

MobE TyYPE* 0 km 300 km 900 km
HF ...........c... 2.18 2.18 2.16
) ) 3.61 3.58 3.54
ESl...coovieininnn. 792 7.92 7.92
| 7 U 22.46 22.23 21.75
ES2.ccovviininnnns 31.84 31.83 31.82

* Key: H = hybrid, E = external, and I = internal;
S = slow and F = fast. The numbers 1 and 2 denote first
and second harmonic.

Vol. 456

407\\ -

- —

Ta of el

10}

0 __________________________________ -

45 55 65 75
z, (Mm)

FIG. 2—Dimensionless frequency squared (®?) of kink modes vs. the half-
width of the system (x_) for a configuration without PCTR (6A = 0).

The behavior of the modes in Figure 2 can be understood
with the analysis of the frequencies of a simpler system, such as
the one studied by Joarder & Roberts (1992), obtained by
removing the PCTR in the temperature profile and eliminating
the vertical magnetic field component, which results in a
uniform prominence and a uniform corona. The approximate
values of the frequency (see eqs. [54] and [55] in Oliver et al.
1993) predict woc x ! for external modes, w oc x.'/* for
hybrid modes, and w independent of x, for internal modes.

In order to obtain further clarification of the nature of inter-
nal, external, and hybrid modes, we consider two additional
types of temperature profile computed from equation (7): one
in which a very thin prominence is embedded in a coronal
environment and a second in which a normal-sized promi-
nence is surrounded by a very narrow layer of hotter plasma.
Following the idea that led to plotting Figure 2, the frequency
of magnetoacoustic modes has been plotted versus x, for « = 0
(see Figs. 3a and 3b). It is obvious that all modes evolve in a
similar way and that their relative positioning is maintained as
the half-width is varied. It is therefore impossible to make any
differentiation among the different modes in Figures 3a and 3b,
which then leads us to the conclusion that the distinction
between internal, external, and hybrid modes is meaningless in
a configuration in which either the prominence or the corona is
practically eliminated. We conclude that, in order to have the
three types of modes (internal, external, and hybrid), the
coexistence of two different regions with quite different tem-
peratures is necessary. After an almost complete removal of
one of the regions, we are left with the modes belonging to the
resultant inhomogeneous region, which evolve similarly to one
another when x, is varied.

Another effect that has important observational conse-
quences is the modification of the shape of the horizontal
velocity component for the internal modes, the amplitude of
which suffers a reduction in the prominence region. When the
thickness of the PCTR is small, the order of magnitude of the
amplitude of the horizontal component of the eigenfunction is
similar in the prominence and the corona, but when the thick-
ness is increased the amplitude outside the prominence
becomes much greater than inside, as for external modes. This
indicates that the presence of a thick PCTR will make difficult
the detection of the internal modes in the body of the promi-
nence, limiting the possibility of detection to hybrid modes,
whose eigenfunctions are unaffected by the thickness of the
PCTR. On the other hand, the eigenfunctions corresponding
to external modes are also unaffected by changes in the thick-
ness of the PCTR.
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F1G. 3.—Dimensionless frequency squared (@) of kink modes vs. (a) the half-width (x,) for a system with a very narrow prominence region and (b) the prominence

half-width (x,) for a system without coronal region. The temperature profiles were computed from eq. (7) with (@) A = 1.5 km and x,, = 4.5 km and (b) A = 150 km

X =X, — 50km, and x, = x, — 500 km.

4. CONCLUSIONS

In this paper, we have studied the influence a PCTR has on
the MHD modes of oscillation of a quiescent prominence. This
study was performed by inclusion of an “ad hoc” temperature
profile in the model put forward by Poland & Anzer (1971). A
temperature profile was chosen so that its steepness within the
PCTR and the width of the PCTR could be varied at the same
time. Once the model was set up, we studied the linear, adia-
batic MHD modes of such configuration.

Our main results can be summarized as follows:

1. Hybrid, external, and internal modes have been found for
the widths of the PCTR considered, i.e., up to 900 km.

2. The identification of such modes can be made easily by
studying the frequency change when the system’s boundary
position (x,) is modified. Change in x, gives rise to different
frequency shifts for the different types of modes, in agreement
with the results in Joarder & Roberts (1992) and Oliver et al.
(1993).

3. The frequency is influenced by the thickness of the tran-
sition region; it always decreases when the thickness is
increased. However, this influence is greater for the harmonics
since they have shorter wavelengths.

4. When the coronal region is removed, leaving the promi-
nence and the transition regions, the distinction between the
different modes disappears, and we are left with the modes
corresponding to the remaining, inhomogeneous region.

5. The same happens when the cool region with constant
temperature is made very narrow while keeping the transition
and coronal regions. This situation corresponds to the theo-
retical temperature profiles computed by Chiuderi & Chiuderi-
Drago (1991) and Rovira et al. (1994).

6. In a previous paper (Oliver et al. 1993), it was shown that
internal modes have a horizontal velocity that is greater in the

prominence than in the corona, which led to the conclusion
that internal and hybrid modes are the most likely to be
detected. In the present case, this holds true when the thickness
of the PCTR is small, but when this thickness is increased, the
horizontal velocity component of internal modes becomes very
similar to that of external modes, as its maximum is now found
in the corona. On the other hand, the shape of the hybrid-
mode eigenfunction remains basically unchanged. Of course,
this has important observational consequences since the possi-
bility of detection of internal modes will diminish proportion-
ally to the thickness of the PCTR.

The most important consequence of the above results is that
the existence of the subdivision of modes is due to the
coexistence of two media, connected by the PCTR, with two
different plateaus of temperature. The removal of one of such
plateaus leads automatically to the disappearance of the sub-
division.

We also have shown that the presence of a PCTR can affect
substantially the modes of oscillation of prominences by
varying their frequencies and, in some cases, modifying the
eigenfunctions. All this evidence points out how crucial it is to
obtain an accurate knowledge of the physical properties of the
PCTR (i.e., whether it is a continuous or a discrete structure,
the temperature and density profiles, its typical thickness, etc.),
not only to understand the gathered observational data on
prominence oscillations and to make accurate theoretical pre-
dictions, but also to be able to construct realistic models of
quiescent prominences. Hopefully, we expect that, in the near
future, such information about the PCTR will be obtained by
means of UV instruments on board the SOHO spacecraft.
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