THE RELATION BETWEEN ROTATIONAL VELOCITIES AND SPECTRAL PECULIARITIES AMONG A-TYPE STARS

HELMUT A. ABT Kitt Peak National Observatory, NOAO, ¹ Box 26732, Tucson, AZ 85726-6732; apj@noao.edu

AND

NIDIA I. MORRELL² Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, La Plata, Argentina Received 1994 July 18; accepted 1994 December 6

ABSTRACT

We obtained new data to determine whether the spectral appearance of A-type stars is entirely determined by their rotational velocities. For this purpose we derived rotational velocities for 1700 northern A-type stars from CCD coudé spectra, calibrated with the new Slettebak et al. system, and new MK classifications based on wide photographic Cassegrain spectra for 2000 northern and some southern stars in the Bright Star Catalogue. In addition we determined the equivalent widths of the λ 4481 Mg II lines in the coudé spectra. Tables and graphs show the variations of rotational velocities and λ 4481 line strengths as functions of type and luminosity, and frequencies of the normal and abnormal stars.

After deconvolutions of the rotational velocities, assuming random orientations of rotational axes, we find that all rapid rotators have normal spectra and nearly all slow rotators have abnormal spectra (Ap or Am). Those abnormalities are generally attributed to diffusion and can occur only with little rotational mixing. However at all types there are overlaps of these distributions, implying that a given intermediate rotational velocity is insufficient to determine whether the star should have a normal or abnormal spectrum. However, we realized that (1) some of our "standards," such as Vega and α Dra, are really abnormal, causing us to classify similar peculiar stars as "normal," (2) many of the "normal" stars near A2 IV have the characteristics of peculiar stars such as low rotational velocities and weak 4481 Mg II and K lines, and (3) the mean rotational velocities of "normal" stars are depressed just at those types where the Ap and Am stars are most frequent. Therefore we conclude that the overlaps are due to our failure to detect all the abnormal stars and that a specific rotational velocity is probably enough to determine whether a star will have a normal or abnormal spectrum.

Subject headings: stars: chemically peculiar — stars: early-type — stars: fundamental parameters — stars: rotation

1. INTRODUCTION

Among the A-type main-sequence stars there are several types of peculiarities. First, the metallic-line (Am) stars (Titus & Morgan 1940) are mostly very obvious because they have metallic lines as in early F-type stars, strong hydrogen lines as in late A-type stars, and very weak Ca I (λ 4427) and Ca II K lines as in early A-type stars. There are also similar peculiarities among the early A's, of which Sirius (Strom, Gingerich, & Strom 1966) is a good example. Such stars show a smaller range in types, for example, for Sirius: Am(K/H/M = B9.5/A0/A1). They are difficult to identify without abundance studies or high-quality classification spectra. The Am stars do not have significant magnetic fields: Conti (1969) found that they are less than 50 G. Am stars are usually found in spectroscopic binaries (Abt 1961).

A second class of peculiar stars are the peculiar A stars (Ap) that have much more extreme abundance anomalies, ranging

¹ Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

² Visiting astronomer, Kitt Peak National Observatory, on a 1989–1991 fellowship from the Consejo Nacional de Investigaciones Científicas y Technicas de la Republica Argentina. up to factors of 10^4 or more above or below normal solar abundances, rather than the factors of 10 or so found in the Am stars. Although many of these stars have temperatures and masses of B stars, their underabundances of He has caused spectral classifiers to call them A stars, hence Ap. They have strong magnetic fields (Babcock 1958), except in the case of the HgMn stars. The magnetic Ap stars are infrequently found in close binaries (Abt & Snowden 1973).

The explanations for both kinds of peculiarities seem to be in the occurrence of radial diffusion of ions between the two outer convective zones in the absence of meridional circulation associated with rapid rotation (Michaud 1970). For Atype stars the effects are calculated to show up (Michaud et al. 1976) in 10^4 yr for Sr, 10^5-10^6 yr for He, and longer for heavy metals. The occurrence of such stars in open clusters of various ages (Abt 1979) are consistent with those times of formation.

Based on meridional circulation models of Sweet (1950) and Tassoul & Tassoul (1982), Michaud (1982) found that diffusion in Ap stars should occur only for rotational velocities less than about 90 km s⁻¹ and in Am stars (Michaud et al. 1983) with less than about 120 km s⁻¹. Observationally Wolff & Preston (1978) found a maximum rotational velocity of 90 km s⁻¹ for HgMn stars; for magnetic Ap stars they note a few

with $100 < V \sin i < 200$ km s⁻¹. For the Am stars the upper rotational limit is about 120 km s⁻¹ (Abt & Moyd 1973). Therefore this agreement between theory and observations is quantitatively excellent.

A third kind of abundance peculiarity is the λ Bootis stars that show underabundances of the metals (Morgan, Keenan, & Kellman 1943; Oke 1967; Baschek & Searle 1969). These stars occur at all rotational velocities (see below). The current best explanation (Venn & Lambert 1990; Charbonneau 1991) involves, rather than a diffusion mechanism, the accretion of gas that has been depleted of certain elements during the process of grain formation. Such a process may not depend upon the stellar rotational velocity except that the metal-underabundant material accreted onto the photosphere will gradually be mixed inward by meridional circulation and diluted. Therefore the effect is a temporary one that shows only as long as the accretion is occurring. The λ Bootis stars would be difficult to distinguish from weak-lined or Population II A-type dwarfs, if there are such stars in the solar vicinity. However of the 23 A5-F2 stars listed below that have λ Bootis or λ 4481-weak spectra and with radial velocities given in the Bright Star Catalogue (Hoffleit & Jaschek 1982, hereafter BSC), the mean absolute radial velocity is 12 km s⁻¹ and the range is from -22 to +22km s⁻¹. Such stars do not seem to be Population II stars. Also, their mean rotational velocity is 120 km s⁻¹, which is normal for Population I stars (see § 2.2) but does not sound likely for Population II stars. However, we are not sure that among the F-type stars the ones called λ Bootis or " λ 4481-weak" are different than the ones called "wl" or weak-lined.

The final type of peculiarity to be mentioned below is the shell stars. Those have hydrogen emission lines or sharp metallic absorption lines produced in shells or disks; those lines are superposed on stellar spectra that generally show no abundance anomalies. Most, but not all, such stars have very broad lines, indicating the maximum rotational velocities observed among the A stars.

We have found only one star in the BSC of the HR 4049 peculiarity, so we will not discuss that further.

The study by Abt & Moyd (1973) of normal and Am stars showed a nearly complete dichotomy in that all the rapid rotators (after allowance for random inclination effects) have normal spectra and all the slow rotators are Am stars; the overlap was only 1.3% of the stars. They left us with the thought that if one had both excellent measures of the rotational velocities of a statistically large sample of stars and good MK classifications to isolate the peculiar-abundance stars, would there be no overlap? That is, is the stellar rotational velocity the only parameter that determines whether a star will have a normal or abnormal (Ap or Am) spectrum? To answer that question is the primary goal of this project.

The published rotational velocities in compilations such as the BSC come from many different sources, and it is not clear that all those sources succeeded in calibrating consistently to the same system. Therefore we proposed obtaining good quality spectra (with coudé dispersions and CCD detectors) of a large sample of A-type stars and calibrating those against the new standards by Slettebak et al. (1975). We decided to observe all the stars from A0 to F0, inclusive, in the BSC (we used the third edition in selecting the stars) observable from Kitt Peak with the coudé feed telescope, namely, all the stars between declinations -30° and $+70^{\circ}$. This sample, which is larger than is necessary to obtain good statistical results, was observed partly as a service to provide a large set of consistent rotational velocities for others to use. This sample includes about 1700 stars.

Similarly, the published MK classifications come from many different observers using a variety of equipment, some of which was incapable of detecting subtle peculiarities, such as the HgMn stars that require fairly high dispersions to show the λ 3984 Hg II line. Therefore we obtained a separate set of spectra that are especially suited for visual classification, namely, 39 Å mm⁻¹ Cassegrain spectra that are 1.2 mm wide and on fine-grain emulsions. We used the 2.1 m Kitt Peak telescope, which can reach to the north pole; with the CTIO 1.5 m Cassegrain spectrograph we observed some of the stars south of -30° . There are about 2000 stars in this set.

In the course of getting the rotational velocities from Gaussian fittings to line profiles (mostly from λ 4481 Mg II), we decided to obtain the equivalent widths of that line. That turned out to be important in distinguishing some peculiar stars because λ 4481, being the strongest non-Balmer line in the optical spectra of early A stars and having an equivalent width that is relatively insensitive to spectral type, is an excellent tool for detecting abnormal Mg abundances.

2. THE MEASURED PARAMETERS

2.1. MK Classifications

The photographic spectra were classified by the first author on a Boller & Chivens binocular spectracomparator against standards mostly by Morgan, Abt, & Tapscott (1978). We used Kodak IIa-O emulsions, wide (1.2 mm) spectra, and a technique of overexposure and underdevelopment to reduce contrast. Most of the details about our classification terminology are given in Table 1. We did not attempt to distinguish between luminosity classes Va and Vb among the early A's for these field stars because the latter occur only among extremely young stars (Abt 1979).

For normal stars our classifications agree very well with those by Gray & Garrison (1987, 1989a, b); our types are 0.11 ± 1.12 (rms error per measure) subclasses earlier than theirs and 0.06 ± 0.76 luminosity classes less luminous. The systematic differences are not significant, because the estimated errors in the means are ± 0.16 and ± 0.11 , respectively. The random rms differences are one subtype and three-quarters of a luminosity class per star. A comparison of normal stars with the classifications by Cowley et al. (1969) shows our types to be 0.41 ± 0.82 subclass earlier and 0.41 ± 0.75 luminosity classes brighter. In this case the systematic differences are significant because the estimated errors in the means are ± 0.12 and ± 0.11 , respectively. The random errors between our and Cowley et al.'s classifications are about the same as in the comparison with Gray and Garrison.

We used only standards by Morgan and his collaborators. One difficulty with those is that there are insufficient broadlined standards. To remedy that, Gray & Garrison (1987, 1989a, b) derived new broad-lined standards ($V \sin i = 150$ – 275 km s⁻¹), partly by using other known data about those stars. Thus the question naturally arises as to whether our classifications for the broad-lined stars differ systematically from those by Gray & Garrison; we can expect that the random er-

136

1995ApJS...99..135A

..99..135A

1995ApJS.

rors will be larger because broad-lined stars are more difficult to classify than sharp-lined stars.

We therefore selected the 63 A0–A2 stars in common with Gray & Garrison (1987) and with $V \sin i > 150 \text{ km s}^{-1}$. We find that our types are systematically earlier by 0.27 ± 0.16 (mean error in the mean) subclasses, which is less than 2 σ and is not significant, but 0.55 ± 0.10 (mean error in the mean) luminosity classes less luminous, which is significant. Thus our temperature classifications are in agreement with those of Gray & Garrison for both sharp- and broad-lined stars, but our luminosities differ for the broad-lined stars.

However, the larger differences are in that we have detected many more peculiar stars than either Gray & Garrison or Cowley et al. Of the stars we call peculiar, both other sets of authors detected only 45% as peculiar. Many of the remainder have weak λ 4481, and because we have the equivalent width measures to confirm our visual estimates, we tend to accept our classifications. We used a higher dispersion (39 Å mm⁻¹) than did Gray & Garrison (67 and 120 Å mm⁻¹) and Cowley et al. (125 Å mm⁻¹) so we could see faint lines better. Also, the latter authors ignored 4481 because it gave erratic results (private communication).

Detailed explanations about our classification terminology are given in Table 1.

The classifications are given in the fourth column of Table 2. The first three columns give the stellar identifications as BSC numbers (HR), Henry Draper numbers (HD), and other designations. The last gives constellation names and double-star names, usually taken from Aitken (1932). The component ob-

 TABLE 1

 Explanation of the Classification Terminology

Designation	Meaning
(standard)	Classification standard star
s	Sharp lined
n	Broad lined
nn	Very broad lined
ksn	The Ca II K line has both sharp and broad components.
st	Strong
wk	Weak
v	Very
λ Βοο	A star in which many of the metals are weak, indicating underabundances.
4481 weak	The 4481 Mg II line is weak. Measures may indicate that other lines are also weak. This may be a mild version of the λ Boo stars.
Am(A3/A7/F0)	A metallic line star in which the spectral type based on the Ca II K line is A3, on the Balmer lines is A7, and on the metallic lines is F0. This is an abbreviation of the form $Am(K/H/M = A3/A7/F0)$.
p(SrEuCr st, CaMg wk)	An Ap star in which the Sr is strongest relative to the standards, Eu is next strongest, etc.; the lines of Ca and Mg are weak relative to those in standards. The type is based on the hydrogen lines.
shell (Ti, Ca)	A shell spectrum that has sharp Ti and Ca absorption lines.
(:)	Uncertainty in the previous symbol

FIG. 1.—Rotational velocities in Table 2 are plotted vertically against those by Slettebak et al. (1975) for 26 B9–A4 stars (*above*) and 14 A5–F0 stars (*below*) that they have in common. The least squares line (ignoring the last point) in the upper panel is given by $2 + 0.979 V \sin i$ (Slettebak et al.) and in the lower panel by $7 + 0.958 V \sin i$ (Slettebak et al.).

served (e.g., A, B, or AB) applies to both the classification spectra and the rotational velocities unless indicated otherwise; for example, see HR 526 where A was observed for the classification and AB for the rotational velocity. Dots indicates that spectra were not available.

2.2. Rotational Velocities

The rotational velocities were derived by the second author from the coudé spectra, using the CCD spectra collected by the first author. The CCD coudé spectra were obtained with a dispersion of 10 Å mm⁻¹, pixel size of 25 μ m, resolution of 1.3 pixels, and S/N = 100-200; these gave a resolution of 0.33 Å or 22 km s⁻¹. Because the instrumental and rotational widths add as squares, we cannot resolve rotational velocities smaller than about 10 km s⁻¹. In an IRAF reduction scheme the continuum intensity was selected, the spectral slope was tilted to zero, Gaussian profiles were fitted to the two lines used (λ 4481 Mg II, λ 4476 Fe I), and half-widths were determined. For stars with V sin *i* > 220 km s⁻¹ the Gaussian fits become inadequate, and the half-widths are underestimated.

All of the northern stars measured by Slettebak et al. (1975) were included in this program. They measured line profiles on high-resolution scanner spectra and compared them with profiles computed from model atmospheres by Collins. For the stars that we have in common with them the relation between their rotational velocities and our measured half-widths were plotted. The plots of the resulting rotational velocities from λ 4481 are shown in Figure 1 for the B9–A4 and the A5–F0

⊿'

TABLE 2

HR

100

11

138

68 71 76 81 81

50B 53 66 66

20 44 50 A 50 A

104 114

118 125 127

.39 .31

170 225: 165

:

51 Psc ADS 449AB

292**4** 3003

133 136

2888 2904 2913

128 129 132

.55 .51

23

F1 III

6130 6178 6288

292

20 100 155 188 188

IIIP(HgMn st, Mg wk) A4/F1/F0) (A5/F1/F2) Vp(SrCr v.st; K sn)

A3 III B8.5 II Am (A4 Am (A5 A3 Vp(

3283 3322 3326 3883 3980

146 149 151 178 183A

Phe w

ADS 862AB 39 And ADS 863A ADS 868A

>> A2 F1

σ Scl 26 Cet ADS 875A

293 301

... 85 135 35

A2.5 V A2 IV A9 V Am (A4/F0/F2)

5914 6028 6114 6116

286 287 289 290

A2 IVp(Ca st, Sr wk)s A1 IV

.68

.91

.57 0.54

150

FO Vn A5 Vn

6314 6416

P4
S
\sim
-
•
•
0
0
•
•
:
:
JS
JS
pJS
ApJS
5ApJS
95ApJS
95ApJS
995ApJS
1995ApJS

							14					
HR	Ð	Other	MK Classification	V sin _i km s ⁻¹	4481 W(A)	HR	Ĥ	Other	MK Classification	> X	sin_i m s-1	4481 W(A)
317	6530	28 Cet	Al III	30p 355	0.23p	502	10587		Al V		180	0.53
324	6658	41 And	Am (A2/A5:/A3)	73	.55	526 526	11031	ADS 1438AB	FU V A: A2.5 V	AB	:40 AB:	.47
325 328	6668 6695	79⊎ ² Psc	Am (A4/F0/F0) A3 V	70 135	• • • • •	534 538	11335	AB	FO: Vp(4481 wk) A1 V		21 155	.34 47
331	6767	u Psc	A4 V	:	:							
333	6798		A1 Vn	190	.51	540 711	11408		A5 III A1 Vn() Roo)		53	.61
336	6829	31 Cas	A0 Vp(4481 wk)nn	315:	.37	545	11503	5γ ¹ Ari	A0 Vp(\ Boo)n		185	.32
349 349	7034	330 Cas 82 Psc	A/ V (standard) FO IV	41 85	. eo	516	11503	ADS 1507B	A2. Wh(sitherm st	(Jan Digad	45	44
359	7312		FO IV	•	:	2 1		ADS 1508A		(w. 6		
361	7344	865 Psc	A7 IIIn	180	.52	547	11522		FO IV		120	• 53
		ADS 996A	:			553	11636	68 Ari	A4 V		65	.59
362	7804	C PSC B R9 PSC	E1 V ኳን ቫ V		• • •	558 138	11753	φ Phe	AO III AO 11-14811-1-			•••
379	7853	ADS 1055A	Am (A5/F1/F2)	47	. 53	569	11973	AUS IJ/IA 97 Ari	AU VP(4461 WK)N FO IV		- 29 95	.64
381	7925		F0 Vn	:	:			ADS 1563A	:		Ċ	Ċ
382	7927	34¢ Cas	FO Ia (standard)	23	.69	د/ د ا	11171	48 Cas ADS 1598AB	V CA		2	20.
383	7964	900 PSC	A2 V	80	.44	578	12140		A6 V		120	.57
384	8003	35 Cas Ang 1088A	A2 Vnn	285:	.60	579	12173	ADS 1606A	A5 III		31	.52
395	8374	47 And	Am (A1/F1/F2)	33p	415	581 581	12230	J12 PSC	FO V		n • •	
398	8424		B9.5 IVn	SUL>	SOT.	586	12279	52 Cas	A1 IVp(4481 wk)n		255:	.41
						591	12311	α Ηγί	FO IV		:	:
401 403	8538 8538	44 Cet 376 Cas	A/ Vn A5 III-IV (standard)	195 110	.68	595	12446	1130 PSC	••••		73	.49
418 428	8801 9030	ADS 1151A	Am (A5/F1/F2) Am (A1/A3/A3)	68 75	56	596	12447	1130 PSC	• • •		70	.36
432	9100	97 Psc	A2.5 V	110	.46	597	12467		A1.5 V		• •	• •
433	9132	48 Cet	Al IV	20	.38	870	12408	- 1	AU V		0 / T	.40
444	9484	AUS 1104A	AO III	15	.38	599	12471	36 Tri ADS 1621A	A2 V		9 7	.48
451	9672	49 Cet	A2 Vn	195	.64	604	12534	$57\gamma^2$ And	B9.5 V + A0 V		185	.41
463	9919	102π Psc	FU < F1 V	105	.54	607 612	12573	60 Cet v For	A5 III B9.5 ITTP(Si st. M	lorwk)s	9 G 0 G	
	5000		· - M-D +	CC / -1	0 7	613	12869	12k Ari	Am (A2/A5/A7)s		10	.45
403 473	10148		AZ: VP(SISFUTEU ST, CAMG W F2 Vn	WK) 23 170	. 59 9 10	618	12953		Al Ia		30	.62
476	10204		A9 V	105	12.	620	13041	58 And	A3 V		120	54
4/8	177NT	43 Cas	AU VP(SISTEUNGMN ST, CAMG WK)	D T	17.	622 629	13161 13295	46 Tri 59 And	A5 III A7 Vn		65 215.	0.18
4 80 499	10250 10543	42 Cas ADS 1359AB	B9.5 IV 1 A3 V	135 90	.52	1))) 1	ADS 1683B			•	•

139

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

A
S
\sim
1
•
•
0
0
•
•
•
S
Ь
Q,
4
S
0
σ

HR	Ð	Other	MK Classification	V sin _i km s ⁻¹	4481 W(A)	H H	Ð	Other	MK Classification	V sin.	4481 14/2)
634	13372	5 Tri	Am (A1/A6/A7)	15p	0.26p	797	16861		A2 IVp(?)s	15	0.42
641 655	13476 13869	7X Tri	A2 Iab A0 V	10s 20	. 255	803 804	16955 16970	ADS 2082A 867 Cet	A2 V A2 Vn	160 170	.50
658 664	13936	χ. 9γ Tri	A0 Vp(4481 wk)n A0 Vn	235: 235: 235:	. 29	812 813	17093 17094	ADS 2080A 38 Ari 87µ Cet	A7 III FO III-IV	75 53	.52
668 669 670 671 673	14171 14191 14212 14213 14213 14213	220 Ari 62 And	A0 Vp(SiSr st, Ca wk) A0 Vn (standard) A1 II1 A3: Vp(4481 wk) F3 V	170 170 60 15	. 30 . 44 . 33 . 33	815 816 825 837 839	17138 17163 17378 17566 17581	ç Hyi	A3 V A9 III A5 IAb A2 IV A2 (A1/A6V/A9)	108 108 18	
675	14252	10 Tri	A2 IVS	15	.38	845	17729	γ^2 For	A0 V	135	.42
676 682 684 685	14262 14392 14417 14489	63 And 9 Per	F1 IV B9 Vp(Si st, CaMg wk) A3 IV A1 Ia	110 70 50 25	.58 .51 .66	852 859 873 875	17848 17943 18296 18331	v Hor 21 Per	A2.5 V A8 V A2 Vp(SiEu st, CaMg v A1 Vn	 125 vk)s 10 220:	.52 .18 .44
		ADS 1802A				879	18411	22π Per	A2 Vn	170	.43
691 692	14690 14691	70 Cet	FO Vn Fl V	185 105	. 63 58	883 887	18454 18519	4 Eri 486 Ari	A8 III A3 IVS	95 50	.70
701 704	14943 15004	71 Cet	A6 III B9 III:nn + shell (HI)	200:		888	18520	AUS 220/B 486 Ari ADS 2257A	A2 IV	50	.47
705	15008	б НУІ	A2 V	÷	:	891	18538	ADS 2270B	•	155	.50
707 710 716 717 723	15089 15144 15253 15257 15385	1 Cas ADS 1849A ADS 1878A 12 Tri	A2: Vp(SrCr st, K sn) A3 Vp(Sr v.st, CrEu st) B9.5 Vn + shell (TiFeCaHI) F1 Vwl(met: A3, Ca: A2) A9 IV	40 160 23 83		892 895 897 898 901	18543 18557 18622 18623 18623	θ ¹ Eri θ2 Eri ζ For	A2 IVS Am (A2/A6:/F0) A3 V A2 V F3 IV	40 15 98	.45 .39
724 729 730 732 733	15427 15550 15588 15633 15633	¢ For 26 Ari ADS 1906A	A2.5 V A9 V F0 IV A6 III F0 IV	170 141 141		905 906 916 916	18769 18778 18866 18928 18928	49 Ari ß Hor 111 ³ Eri	Am (A2/A6/A7) A7 III A6 III A9 Vn A2.5 V	43 43 160 120	
769 773 778 782	16350 16432 16555 16628	32v Arí n Hor 33 Arí ADS 2033A	A0 III A6 V A7 V A3 V	15 120 		925 932 943	19107 19275 19279 19545	10p ³ Eri	A5 V A1 Vn A2 Vn	170 285: 80	.56 .46 .63
789	16754		Al V	:	:	1	DODET		TTT ON	0	*
791 793	16769 16811	34µ Ari ADS 2062AB	Am (A4/A5V/F0) A0 Vn	30 160	.50	954 961 967	19832 19978 20041 20104	56 Ari ADS 2424A ADS 2436AB	B9.5 Vp(Si st, CaMg v A7 V A1 Ia A2 V	vk)n 85 145	.16 .63 0.51

TABLE 2-Continued

1 4481 1 W(A)	0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63		0 . 49 8 . 43 0 . 28p 13s	00000	. 61 . 56			8. 00 10 10 10 10 10 10 10 10 10 10 10 10	
V sir km s ⁻	8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	25(1 25(1 91	8 H 4 M	••••••••••••••••••••••••••••••••••••••	k) <1(140 140	101) 	x)	
MK Classification	A8 IV A2.5 V A0 Vp(A Boo) Am (A2/A6V/A7)	A2 VN A2 VN A3 VN A1 IVN A1 IVN A3 V A3 V	A3 V A3 V A2 IVp(4481 wk) A1 IVe	B9.5 Vn A7 IV A9 IV A5 V	AI V A9 Vp(SrEuCr st, CaMg W A7 V A0 V	FO V B B9.5 IV F1 V	B7: Vp(SiSr st, HeCa wk F0 III A1 V Am (A3/F0/A7)	A2 V B6 IIp(He v. wk, 4481 wi A1 V F1 IV Am (A3/A7/A5)	AM (AZ/A5V/FZ) F2 Vn
Other		Υ Cam σ For	42 Per 28t ⁷ Eri ADS 2799A	r I F C C	32 ELL ADS 2850B	ADS 2910A	36r ⁹ Eri	38v Tau 41 Tau	δ Hor
뮾	23139 23193 23258 23277 23277	23281 23401 23523 23594 23594 23728 23738	23848 23878 23878 23985 23985	24072 24141 24164 24164	24334 24712 24809 24809	24832 24982 25202	25267 25291 25371 25425	25490 25823 25910 25945 25545 25553	26612
H	1130 1133 1137 1137 1138	1148 1148 1158 1161 1170 1171	1177 1181 1188 1188	1192 1192 1196 1197	1217 1217 1223 1223	1225 1229 1238	1240 1246 1246 1246	1251 1268 1272 1275 1275	1302
4481 W(A)	0.42 .46 .30 .34	.46 .50 .64	.51 .48 .58 .41	.45 .57 .53 .53			. 59	. 48 . 21 . 54 . 54 . 54	.45 .45
V sin i km s ⁻ 1	15 120 15 215:	190 .: 15 130	130 35 120 20	200: 30: 105 175	190 200: A: 105 A: 105 A: 105 A: 200:	16 1 160 1 160		25 160 65 28	135 60
MK Classification	Al IV AO IV Fl Vs Am (A1/FO/F2)s B9.5 Vn	 A9 III Am (A3/A6/A7) A3 IIIS F0 IV	 A1 V F0 V A2 V A0 IIIS	A3 Vp(4481 wk)n A0 Ia (standard) A2 IV A2 V A1 Vn	AO Vn AO VP(4481 wk)n A4 IV A2 V	A5 III A2 Vp(4481 wk)	A5 Vn Am (A3/A5/A5) A2.5 V A3 V	A3 IVS A0 V B9.5 p(λ Boo) A4 IV A3 III-IV	A0 V A2 IV-V
Other	58¢ Ari ADS 2431A ADS 2433A ADS 2443A	A 135 Eri	32 Per 65 Ari	AB ADS 2563A ADS 2565A	ADS 2582AB	ADS 2592A		7 Tau ADS 2616AE 20 Eri	t For 11 Tau
臣	20149 20150 20193 20210 20283	20293 20313 20320 20346 20346 20606	20677 20980 21004 21038 21050	21335 21389 21402 21427 21447	21610 21620 21688 21688 21743	21769 21819	21882 21912 21981 21997	22091 22243 22470 22522 22615	22789 22805
HR	971 972 975 976	980 984 986 993	1002 1018 1020 1026 1027	1036 1040 1041 1043 1043	1055 1056 1062 1065	1068 1073	1075 1078 1081 1082	1086 1091 1100 1102 1103	1114 1118

R.
S
∞
_
· :
-
0
0
•
ς.
JS.
pJS.
ApJS.
5ApJS.
95ApJS.
95ApJS.
.995ApJS.

1 4481 W(A)	0.27		. 4 1	.48	:	.66	.66	• 58 • 59	.48	10. 164.	.44	.52	0 0 7 7 7 7 7	.50	58	.73	.49	.72	57	.41	.43		.44	.66			
V sin km s ⁻ 1	40		07	18	•	125	145	78 73	180	115 75	06	31	120 120 195	73	98	65	180	63 63	1 2 0	100	15	195	06	165		•	
uo					it, Sr st,							20												1 m j L m 1			
MK Classificati	 A2 TVD(?)	F2 III	All (A4/A0/A/)	A2 IIIS	89.5 Vp(Si v. s	Camg wkj F2 V	F2 V	A6 V FO IV	A3 Vn	(/A4/A3/A/) INA A6 V A9 TTT P4	B9.5 V	Am (A1/A3V/A3)s	A3 < A1 V A0 Vn	F1 V	A9 TV	Am (A3/A7/F2)	A2 Vn	Am (A3/A7/F0)	A1 TV	A3 Vp(4481 wk)	ALM (A7/F0/F2)	AO VP(A Boo)n	A1 V	A9 V 21 TVn + shell	B9.5 IV	A2 V	
Other	ADS 3304A	v Men	00 144 ADS 3317A	ADS 3318A	α Dor	2 Cam	ADS 3358AB 89 Tau	90 Tau 51 Eri	01 <i>4</i> 1 mar.	9202 Tau			ADS 3379A ADS 3379A 59 Per			4 Cam					2 2 2	2m ² Ori		97 Tau	5 Cam	50000	
Ĥ	28929 28978	29116	04767	29173	29305	29316	29375	29388 29391	29459	29488 29488 29499	29526	29573	29646 29646	29867	30034	30121	30127	30210	10205	30422	30453	30739	30752	30780 30823	30958	31093	
HR	1445 1448	1456	0C#1	1460	1465	1466	1472	1473 1474	1477	1479 1480	1482	1483	1490 1490	1501	1507	1511	1513	1519	1500	1525	1528	1544	1546	1547	1555	1559	
4481 W(A)	0.67	65 79	.28	92.	10.0	. 53	. 40 0	• • • • • • • •	0.4 0.1 0.1 0.1	.55	.48	. 4 . 7 4 .	.62	Ľ	.0.	.46	.58	46	.73	.60	.51		.63	.61	.51	L L	
V sin i km s ⁻ 1	68 138	83 85	10	35	130	165	8 G	120	155 155	45	70	165	6 83	L F T	C/T	15	225:205:		5 ° 6	88	145 80		75 165	75	31 135	0	;
MK Classification	Am (A5/F0/F2) A7 IV	FO V A5 TTT-TV	B9 Vp(4481 wk)s	AO VP(Sist. Mowk)	A2 IV-V FO TV (standard)	A2: V	Am (A//ÉU/É2)	FU IV A4 V	AU (A6/F0/F2) Am (A6/F0/F2) Am (A2/F0/F2)	A8 V	A3: IV B0 5 TTT	A2 V A2 V	A6 V		A0 VII	A2 IV	A8 Vn A6 Vn	Am (AR/FO/F2)	Am (A6/A9/F0)	F2 V	8 A5 V A7 III (standard)		FO Vn	A7 V	Am (A7/A8/F2) F2 V		
Other	50w ² Tau	51 Tau	53 Tau	56 Tau	57 Trail	ADS 3146A			60 Tau 63 Tau	646 ² Tau	66 Tau ADC 3203A	425 Eri	65k ¹ Tau	ADS 3201A	ADS 3201B	680 ² Tau ADS 3206A	690 Tau 71 Tau	4774 PUA	AB AB	76 Tau	ADS 3230AE 780 2 Tau		80 Tau	ADS 3264A	81 Tau 85 Tau	410CC 344	
臣	27045 27084	27176 27236	27295	27309	27322	27402	27450	27505	27628 27749	27819	27820	27861	27934		016/7	27962	28024 28052	ANCRC	28226	28294	28319		28485	28527	28546 28677	<i>c</i> 7 L a C	
11 1																											

F4
S
$^{\circ}$
1
•
0
0
•
•
•
S
JS.
oJS.
ApJS.
ApJS.
5ApJS.
95ApJS.
995ApJS.

in _i i 4481 s ⁻ 1 W(A)	10 0.40 90: .50 10p .23p	105 .105 81 .59 50 .38	28p .26p	13s .16s 10 .28 	21 .43 00 .47		65 .33 40 .42	11 .57	15 .33 00: .50	10 .46 	43 .19 90 .48	40 .47 70 .43 10p .28p	15s .17s	75 .26 35 .52	80 .43 	50 .46	00: .49	•
AK Classification V s. km ،	42 IV 17 Vn	Am (A3/A8V/A8) 10 III	14 V + F2 III:		Am (A9/A9/F2) 11 IV 11	0 V III 01	Am. (B9/A0V/A1) 35 Vp(Si v. st, Fe II st, 10 v.v.	17 IV 1.	Wm (A2/F0/F3) 20 12 Vm	10 10 10 10 10 10 10 10 10 10 10 10 10 1	VI V + A1 V VI IV	12 V 111 95 11 V 12 V		11 Vp(4481 wk) 10 V 113 V	10.5 V	14 V 10 Vn	um (A5/A9V/F2)	
Other	14 Cam	11µ Aqr	ADS 3799AB	5µ Гер	14 Aur 108 Tau	18 Ori 1		18 Aur / ADS 3893A	ADS 3903A	16 Cam 1	AB	ADS 3930A 1 ADS 3930A 1 110 Tau 2				ADS 4068B 7		
Ð	33266 33296 33541	33641 33654	33883	33904 33948	33959 34053	34109 34203	34317 34452	34499	34533 34557	34653 34653 34787	34790 34868	34904 34968 35189		35242 35505	35693 35693	35909	36060 36162	10700
HR	1675 1678 1683	1689 1692	1701	1702 1704	1706 1711	1714 1718	1724 1732	1734	1736	1745	1752 1758	1760 1762 1774		1777	1807 1809	1819 1821B	1827 1832	Totot
4481 W(A)	0.35 .64	.52	.22	.30		.53	.56	. 39	.32.67	65.	.63	.72	.32	.26 87	.12	02.	.50	.54
V sin i km s-1	250: 250: 25	160	105 65	4 9 0 0 0	• •	95	125 45	320:	320: 195 15		90 118	68 130	23	30 75	15.0	001	35 35	190
MK Classification	F0 IV A0 Vp(4481 wk)n F1 V B9.5 V	a 200 a 2	A0 Vp(\ Boo) F2 V	F2 V F0 V	A0.5 V Am (B9.5/A0/A1)	A1 V	A5 V FO Ia	B9 Vnn	B9 Vp(\ Boo)nn A8 IV A9 V	A3 III Am (A4/F0/F2)	B7 V A7 V	Am (A7/A9/F2) A9 V	F.I "Vp(4481 WK)	Al Vp(SiCr st, CaMg wk) at TV	A7 IV B9.5 Vp(Si st, CaMg wk)	A5 IV	AL VP(SISC, CAWK) Am (A2/F2/F3) 1	A3 III
Other	Pic A 7 Cam	ADS 3536AE 6 Ori	7π ¹ ori		98 Tau	ADS 3547A 4w Aur	ADS 3570A ADS 3570A 76 AUT	ADS 3605A ADS 3597B	ADS 3597A 64 Eri		ADS 3623A 1021 Tau	AB	9 Aur ADS 3675A	11 Ori	ADS 3672AE	106 Tau	14 Ori ADS 3711AF	678 Eri
£	31203 31209 31236 31236	31283	31295	31411	31590	31647	31739 31964	32039	32040 32045 32115	32196	32273 32301	32428 32480	32537	32549 32608	32650	32977	33054	33111
Н Н	1563 1565 1566	1569	1570	1578 1583	1589 1590	1592	1596 1605	1609	1610 1611 1613	1615 1615	1619 1620	1627 1632	1637	1638 1638	1642 1643	1658 1658	1664 1664	1666

TABLE 2—Continued

in ₁ i 4481 s ⁻ 1 W(A)	15p 0.28p 25s .08s	15: .41 15: .50 90 .60	50 .44	80 .49 10 .43 80 .52 35 .61	85 .75 18 .35	41 .46		71 .63	10 .22 20 .35	48 .62 10 .23		21 .60 18 .45	25 .41 90 .40	95 .61 61 61 .64	05 .56 50: .56	•• 48 ••48 00: •52	л С
V si km s		51 21 21 20	16	30100	w 11	4.	wk)	-	-	11,	•		10		10	57	
fication	V (SB2)	L WK)			/F2)	V (SB2)	v. st, CaMg		st, CaMg wk)	/A7)s 1 wk)		47)s	ast)	/F2)	lll		
MK Classi	A0 V + A0	A2 Vp(448: A3 Vn A6 V	Al V	A3 Vn A2 III A2 V A0 Ib	Am (A4/F0, F2 IV	A2 V + A2	FO III-IV AO VP(Si	A7 III	Al Vp(Si Al V	Am (A4/A5, Al Vp(448;	AO IAb AO IIIS F2 V	A7 V Am(A4/A5/i	B8.5Vp:(Ca A1 V	F1 V B9 V Am (A7/A9,	B9 IV + sl A2 Vn	B9.5 Vn A2 IV: A1 V	
Other	136 Tau ADS 4474AE				16 ₁ Lep	346 Aur ADS 4556A	g COL 370 Aur Ang Afge	59 Ori	AUS 4000A 36 Aur 60 Ori	2 Mon	ADS 4589A	ADS 4633A 61µ Ori ADS 4617AE		39 Aur 40 Aur	17 Lep 180 Lep	ADS 4704A	
日	39357	39421 39551 39586	39662	39789 39866 39927 39970	40062 40136	40183	40248 40292 40312	40372	40394 40446	40536 40588	40589 40626 40745	40873 40932	40924 40972	41074 41214 41357	41511 41695	41759 41841 41843	
H	2034	2039 2045 2046	2050	2060 2066 2071 2074	2079 2085	2088	2094	2100	2102 2103	2108 2110	2111 2112 2112	2124	2127 2129	2132 2138 2143	2148 2155	2160 2163 2164	, r
4481 W(A)	0.43	. 53	.63	.46 .35	.62	.46 .56		.39	6.2.	4.	.42	.52	.48 .62	.13p .08s	 	.38 .53	.36
V sin _i i km s ⁻ 1	180 85		63	140 220: 55	118 60	130 155	170: 170:	28 205:	230:	00 75	145 75 175	110	200: 73	25p 10s	404 •••	220: 65 65	5 2 2 2
WK Classification	45 Vn 16 (A3/A6/A6:)	40 VD 70 Ib (standard)	72 V	 39.5 IVn 49 III	45: V	A1 V A9 V	AI Vp(4481 wk)n A4 IV F0 Vp(MgCa wk)	PO IVS PO IVS PO IVD + Shell (Ca K. Ti)	A3 Vp(4481 wk)nn A1 IVp(Cr st, CaMg wk)	AO TITS	A2.5 V F0 IV A2 IVn + shell (Ti II,	са К, НІ) 43 V	43 Vn 47 III	42 Vp(4481 wk)	49 V A6 V	Al IIIn + shell (Ti, Ca K) A3 V b1 V	A1 IVP(4481 WK)
Other M		ADS 4177A 11α Lep E	ADS 4146A F	38 Ori E 45 Ori <i>I</i>	ADS 4196A 122 Tau . 7	v ¹ Col 7	49 Ori 7	12 Lep	26 Cam 270 Aur 7	4 1	ADS 4376AB 7 ADS 4333A E ADS 4333A E 131 Tau 7	29 Cam <i>P</i> ADS 4412A	145 Lep 7 52 Ori 7 205 43902B		δ Dor β Pic 2	31 Cam	30E Aur 7
ΟĦ	36496 36499	36673	36719	36777 36965 37077	37147 37286	37306 37 4 30	37439 37507 37594	37788 38090	38091 38104 20100	38206 38206	38284 38309 38545	38618	38678 38710	38735	39014 39060	39182 39190 39220	39283
HR	1853 1854	1865 1865	1869	1872 1888 1901	1905 1915	1919 1926	1929 1937 1940	1955 1968	1969 1971	1975	1976 1978 1989	1992	1998 1999	2001	2015 2020	2025 2026 2026	2029

TABLE 2—Continued

4481 W(A)	::			.57 .35p	.27s .40 .51	44.	.44 .41	42	24 28 29 29	. 26 . 41 . 54	.47	 744 1711	.42	. 52 . 44	c#•	.50 .39 0.68
V sin i km s ⁻ l	::		າທ າທ	115 35p	555 110 145	200:	80 40	190 100 100	25 35 75	15 25 90	125	140 150 38	12	190 80 120	رور 105	225: 23 150
MK Classification	A0 V A1 V	Am (A5/A7/A7) E0 TV	B9 IVP(4481 wk)	FO V Am (A2/A5/A7) SB2	A5 Vp(4481 wk) 22 V	A0 ID A6 Vp(4481 wk)n	A1 V A0 IV	AO V A2 Vn A2 IV	A2 VF(A BOO) A2 V A2.5 V	B9 Vp(4481 wK) A0 III A2 V	A2.5 V	Al III F5 Vwl (met: A9)	A7 11 Am (B9.5/A0/A1)s	A1 V A2 V B9.5 IV	Al V Al V	A5 Vp(4481 wk)n A7: Vp(SrCr st, CaMg wk) F2 V
Other				19 Gem		13 Mon A	11 Lyn 14 Mon	ADS 5211A 552 CMa 247 Gem A	ADS 5302A	AB 26 Gem	12 LYn 205 54002	ADS 5400B ADS 5377A	32 Gelli 9α CMa ADS 5423A	ADS 5447AB	AUS 2470A 36 Gem 375 55113	ALS JULLA 59 AUL ADS 5534A
윺	45557 45560	45618 45638	45927	46031 46052	46089 46251	46300	46590 46642	46933 47020 47105	47561	47827 47863 48097	48250	48250 48272 48501	48915	49048 49050 49147	49908	49949 49976 50018
HR	2345 2346	2350	2362	2371 2372	2375	2385	2402	2414 2417 2421	2449	2457 2457 2466	2470	2470 2471 2481	2491	2498 2502	2529	2532 2534 2539
4481 W(A)	0.68	.60	.29	:	.37	.51	.55	. 50 . 50	.51 .39	.34		56	. 42	.40	.37	143 143 143 143 143 143 143 143 143 143
V sin ₁ 1 km s ⁻ 1	120	125	18 225:	•	355: 25 20	120:	15 210:	65 35 225 :	180 150 150	10		175 95 95	21 135	270: 20	115 	250: 210: 220:
tion					(d wk)									2 u		
MK Classifica	A7 III-IV	A2 V	FO III AO Vn	AO V	B9.5 IVnn Al Vp(SrCr st, Cal B9.5 V	A0 Vnn A2 V	A4 III A6 Vp(4481 wk)n	A2 V A2 V	Al IVn Fl IV A2 Vp(4481 wk)	B9.5 V:p(SiSrCr st) A5 II	A2 Vn A1 TV	A9 V A6 V F1 V	Am(A3/A8/A6) Al IV-V A7 V	B8 Vn + shell (Hi,Ca A0 Vp(4481 wk)s + A?	B9 V Am (A2/A7V/A7) A2 Vn(4481 wk)	A2 VP(4481 WK)n A0 Vn B9.5 V
Other MK Classifica	41 Aur A7 III-IV ADS 4773B	41 Aur A2 V ADS 4773A	FO III AO Vn	π^2 col A0 V	B9.5 IVNN Al Vp(SrCr st, Cal B9.5 V	A0 Vnn A2 V	44 III 42 Aur A6 Vp(4481 wk)n	ADS 4865A A3 V 2 Lyn A2 V 75 Ori	ADS 4901A AI IVn 6 Mon F1 IV 4 Lyn A2 Vp(4481 wk)	ALA 4720AB B9.5 V:p(SiSrCr st) A5 II	A2 Vn A1 TV	ADS 4971AB A9 V ADS 5039A A6 V F1 V	Am(A3/A8/A6) A1 IV-V 8c Mon A7 V	ADS 5012A B8 Vn + shell (Hi,Ca A0 Vp(4481 wk)s + A?	AB B9 V v Pic Am (A2/A7V/A7) 22 Vm(4481 mb)	ADS 5070A B9.5 V
HD Other MK Classifica	42126 41 Aur A7 III-IV ADS 4773B	42127 41 Aur A2 V ADS 4773A	42278 FO III 42301 AO Vn	$42303 \pi^2$ Col A0 V	42327 B9.5 IVnn 42536 Al Vp(SrCr st, Cal 42729 B9.5 V	42818 A0 Vnn 42824 A2 V	42954 AUF A4 III 43244 42 AUF A6 VD(4481 Wk)n	43319 AUS 4865A A3 V 43378 2 LYN A2 V 43525 75 Ori	43683 ADS 4901A AI IVN 43760 6 Mon F1 IV 43812 4 LYN A2 VP(4481 wk)	амо 473048 43819 B9.5 V:p(SiSrCr st) 43847 A5 II	43940 A2 Vn 44092 A1 TV	44333 ADS 4971AB A9 V 44472 ADS 5039A A6 V 44497 F1 V	44691 Am(A3/A8/A6) 44756 Al IV-V 44769 8ε Mon A7 V	ADS 5012A 44793 B8 Vn + shell (Hi,Ca 44927 A0 Vp(4481 wk)s + A?	45050 AB B9 V 45229 v Pic Am (A2/A7V/A7) 45339 b 2 Vm(A481 vv)	45320 ADS 5070A B9.5 V 45380 ADS 5070A B9.5 V 45394 16 Cam 27 TV

F4
S
$^{\circ}$
•
•
0
σ
•
•
•
S
Б
Ō,
Ā
D.
6
0
1.1

4481	W(A) 0.61 .54	.59 .42	.57 .50 .38 .58	.58 .42	47.	.41 .59 .43	.54		• 83 57	.40	.44	.24 .36 .44	.51	.49 0.46
V sin i	km s ⁻¹ 83 130	210: 255: 60	155 155 145 145	10 10 10	130 13	70 45 63	165 160	75 115 21 61 140	101 25	10	10 85	240: 15 40	63 133	125 10
MK Classification	Am (A9/F2/F3) A9 V	A0 V B9 Vn B4 V (SB2)	F0 Iab A0 V F3 V A0.5 Vs A3 Vn	A2 Ib 	F0 VP(4481 WK) F0 V	AO V FO IV FO V	A9 Vn A2.5 V	B9 IV A1.5 V A5 II F0 IV A1 Vp(4481 wk)	F2 V A2 TV	Am (A0/A2:/AlIV)s	F2 V A6 V	A0 Vp(4481 wk)nn Am (A8/F1/F0) A0.5 III	AM (A//A8/F2) Fl V	A2 V
Other	556 Gem	AUS 3903AB ADS 6012B 19 LYN ADS 6012A	58 Gem 59 Gem 21 Lyn 1 CMi	A	61 Gem A	5n CMi 62p Gem	ADS 0103A ADS 6093A 64 Gem	A 7 ₀ 1 CMi 68 Gem AB	86 ² CMi 660 Cem	ADS 6175B 66α Gem	ADS 6191AB	96 ³ CMi		
Ð	56963 56986	57049 57102 57103	57118 57744 57927 58142 58187	58439 58461 58552	58585 58585	58907 58923 58946	58954 59037	59256 592507 59412 59881 60107	60111 60178	60179	60335 60345	60357 60489 60629	61035 61035	61219 61227
HR	2776 2777	2780 2783 2784	2785 2810 2816 2818 2818 2820	2831 2832 2836	2839	2850 2851 2852	2853 2857	2863 2872 2874 2880 2886	2887	2891	2898 2900	2901 2904 2912	2914	2931 2933
4481	W(A) 0.56	. 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	. 45 . 47 . 50 . 50 . 48	.37 .44 .48	.50	.60	.50	.57 .57 .68 .40	.47	. 58 . 48 . 1	• • • •	.37 .56 .59	.44	0.58
V sin ₁ i	120 120	215: 28 145	13 145 180 180	55 215: 35	28 140	110 115 25	35 135 135	85 90 125 95	140	135 155 225.	195.	35 ••• 145	15	28
MK Classification	A2 IV A2 TV	A8 VN F1 IV A8 V	F1 IV Am (A5/A9/F0) A5 V A1 IV A1 IV	A0 V A0 Vn A2 IV	F2 V A2 V	F F 2 V A 8 V A 2 V	A2 IV-V A2 V	A2.5 V A4 IV F4 V F1 IV B9.5 V + A0 (SB2)	A0 V	B9.5 III A6: V A3 Vn	A4 Vn	A0 V B9.5 Vn A2 V A3 V (standard)		Am (A7/F1/F2)
Other	340 Gem ADS 5532A	38 Gem ADS 5559A	ADS 5557AE	16 Lyn 17 CMa	ACOCC SUA	ADS 5629AE ADS 5680A	ADS 5746A ADS 5746B	47 Gem A 21 Mon	226 Mon ADS 5864A		64 Aur	54A Gem	ALS 2901AE	47 Cam ADS 5995A
Ð	50019 50062	50277 50420 50635	50644 50643 50700 50747 50853	50931 50973 51055	51330 51693	51733 52100 52479	52859	52913 54801 54958 55057 55111	55185	55344 55595 56169	56221	56341 56386 56405 56537	56731	56820
HR	2540	2551 25557 25564	2565 2566 2570 2572 2578	2584 2585 2588	2597 2606	2607 2620 2620	2644A 2644B	2647 2700 2705 2707 2710	2714	2716 2724 2751	2753	2755 2757 2758 2763	2768	2772

4
S
\sim
-
•
•
0
0
•
•
03
S.
JS.
ApJS.
ApJS.
5ApJS.
95ApJS.
.995ApJS.

HH	요	Other	MK Classification	V sin i km s ⁻¹	4481 W(A)	НК	CH	Other	MK Classification	V sin i km s ⁻¹ i	4481 W(A)
2936 2946	61295 61 4 97	24 LYN	F2 IV A2 IVn	33 215:	0.49	3174 3183	67159 67456	ADS 6588A A		110 15	0.34
2950A 2950B 2958B	61563 	ADS 0285A ADS 6263A ADS 6263B	AO IV AO IV AG V	50 	.35	3189 3190 3197	67725 67751 67934	A	A0 Vp(4481 wk)n A7 V A0 Vp(4481 wk)n	100	
2962	61859		E5 V	10p	.33p	3198 3214	67959 68332		A1 III A7 III	10 78	.41
2966 2969 2977	61887 61931 62140	49 Cam	B9.5 V B9 Vn A7 Vp(Sr v. st, CrEu 4200	200: 155 18	. 40 . 41 . 29	3215 3221 3224 3224	68351 68457 68543	15 Cnc ADS 6680A	A0: V:p(SiSr st, CaMg wk A8 V A2 Vn	()s 25 45 235:	.51
2989	62437		st, CaMg wk, K sn) F0 V	35	.53	3228	68703 68758	ADS 6673A	F1 IV A2 Vn	75 250:	.49
2991 2992 2996	62510 62555 62533	79 Gem A 3 Din	A0.5 V A4 III A2 Tab	110 35 35	. 48 . 48	3255 3255 3257	68930 69589 69665	29 LYn 21 Pup	A5 III A1 IV A2 IV	75 110 70	. 52 44 44
3009	62863 62863	2 Fup B ADS 6348B	F0 V + F0 V (SB2)	270: 60p 35s	.29p .21s	3258 3265 3277	69682 69997 70313		F0 IV Am (F2/F1/F4) A2.5 V	25 100 100	. 41 . 53 . 53
3010	62864	2 Pup A ADS 6348A	A2 V	55	.49	3279	70442	ADS 6762AB	A2 Vp(SrCr st, CaMg wk) G2 III + A?	25 410 110	.41p
3015 3021	62952 63208	4 Pup 82 Gem	FO IV AO V + GO III	95		3284	70569	20 Cnc	FO V	41 4	.52
3039 3040	63586 63589	AUS 03/8AE A	, B9.5 IV Am (A2.5/A5/A7)	205: 31	.45 .53	3285 3308 3310	70574 71141 71150	23¢ ² Chc	F0 V A2 IV A5 IV	115 50 120	.64 .47 .34
3060 3067 3077	64042 64145 64347	ADS 6414A 83¢ Gem	A3 V A1 V	155 150 40	.46 .64	3311	71151	ADS 6815B 23¢ ² Cnc ADS 6815A	A2 Vp(4481 wk)	135	.41
3082 3083	64486 64491		B9.5 IVs A9 Vp(λ Boo)		.14	3314 3320	71155 71267		AO V A7 V	115 15	441
3108 3109	65299 65339	53 Cam	A2 IV A3 Vp(Sr v. st, SiCrEu st, Camab)		. 26	3329 3333 3333	/129/ 71496 71555	2 НУА А 28 Cnc 29 Cnc	FU VWL(MEC: A6) FO V A7 V	13 120 105	. 43 . 67 . 54
3131 3132 3136	65810 65856 65900	4w ² Cnc A A	AL V	215: 145 20	.56 .43	3335 3337	71581 71663	ADS 6828AB	A2 V + A2 V F0 V	20 25p 18g	.36 .28p
3163 3164A	66664 66684	8 Cnc ADS 6569A	A1 V B9.5 Vp(A, Boo)	175 65	.47	3339 3344 3352	71688 71815 71973	ADS 6872A	A2.5 V A2 Vs Am (A4/F0/F2)	100 25	. 45
3164B 3167 3173	66824 67006	AUS 0009B 28 Lyn 27 Lyn	AU VP(4481 WK)N B9.5 VP(CaMg WK) AO V	 15 175		3354	72037	2 UMa ADS 6872A	Am (A3/A5/A7)s	18	.43
		ADS 6600A				3355	72041	300 ¹ Cnc	FO V	103	0.54

TABLE 2—Continued

4481 W(A)	0.55	.38p	.36 .36	 4	.44	.61 .56	.63	.71 .44 .65	.54	.56	. 50			.46	.47	.44 .51 .57	. 59	0.43
V sin i km s ⁻ 1	73	21p	102	2 IS	13	120 60	120 90	95 85 140	65	105	170		<10	••• •••	10 13	71 45 205:	100	75
MK Classification	A5 V	Am (A4/A9/F2)	Am (A4/A6/A7) a2 TV	Am (A4/F1/F2)	Am (A1/F2/F3)	A5 V Am (A2/A9/F0)	A5 V A6 V	A7 V A1 V A7 IV (standard)	Am (A5/A9/F0)	A2 IV	A6 Vn A2 V	A6 V A1 V A0 Vp(4481 wk)n	B9 Vp(SrHgMn) A0 Vn F0 V	Al III Am (A2/A7/F3)	B8 IIIp(HgMnEu st, Mg wk) Am (A4/F1/F3)s	F2 VW1(met. A8) Am (A6/A9/F0) A0 V	A6 III-IV A8 V	AO V
Other	510 ¹ Cnc	15 HYA	ADS 7061A	17 Hya ADS 7093B	17 Hya	FYX	ADS 7095A 620 ¹ Cnc	630 ² Cnc 91 UMa	ADS 7114A 65α Cnc	ADS /115AE A	66 Cnc	67 Cnc 12k UMa	ADS /158AE 69v Cnc	15 UMa	76k Cnc 141 UMa ADS 7211A		с Рух	
Ð	75698	75737	75811	76369	76370	76398 76483	76512 76543	76582 76595 76644	76756	76757	77093 77104	77190 77309 77327	77350 77537 77660	77692 78209	78316 78362	78661 78676 78702	78922 78935	78955
HR	3519	3523	3526	3552	3553	3555 3556	3559 3561	3565 3566 3569	3572	3573	3586 3587	3589 3592 3594	3595 3601 3606	3608 3619	3623 3624	3635 3637 3638	3645	3646
4481 W(A)	0.20	.26	55	.51		.36	.47	. 47 . 50	.52p	.44	.59 .43	.34p .27s		.32	.52 .50	.39	0.60	
V sin _i km s ⁻ 1	15	40	180 275:	78 88	10	10	230: 30p	135 35 265: 20	68p 1 E C	220:	51 185 58	50 65 60s	t) 10 115 115 155	10	55 135 115	20 10	103	
MK Classification	B9.5 Vp(HgMnEu st, CaMo wk)	8 B9 Vp(4481 wk) A0 TTTp(Sr st)	A6 Vn A0 Vn	F2 V F0 V	Al II FO VD2(Sr st)	Al Vp(SrCr v. st, CaMg v. wk)	Al Vn A2 V + F8 III	A3 V A0 Vnn A0.5 Vs	A1 V + F5 II	B9.5 Vn	A5 III A0 V A7 V	AI IV AO V F8 III	Al Vp(HgMnSiEu st, CaMg w) A6 V A5 V A1 V	Al Vp(4481 wk)	A3: V A2 V B9.5 IV	B8 IIIp(HgMn) A1 III	FO IV AS V	
Other		ADS 6862AE 34 Cnc	AB 33 LVN	A 2DS 68712B		3 Нуа		36 Cnc 46 Hya 37 Cnc		η ΡΥΧ	41e Cnc	43γ Cnc 45 Cnc	49 Cnc 10 Hya 481 Cnc	AUS 6988B 50 Cnc	13 ₀ Hya	ADS 7006A 14 Hya	5 UMa	
臣	72208	72310	72462	72617	72660	72968	73029 73072	73143 73262 73316	73451	73495	73731 73997 74190	74198	74521 74591 74706 74738	74873	74879 74988 75137	75333 75469	75486 75495	
HR	3361	3367 3372	3374	3380	3383 3383	3398	3401 3402	3406 3410 3412	3416	3420	3429 3437 3446	3450	3465 3469 3473 3474	3481	3483 3486 3492	3500 350 4	3505 3507	

TABLE 2—Continued

4481 W(A)	0.50 .53 .58	. 55 . 55 . 51 . 51 . 51 . 51 . 51	.15s .31	. 54 . 54 . 54	70.	.51 .37 .62	• • • • • • •			.41 .78 .39	.41 .31	.72 .44 0.42
V sin ₁ i km s ⁻¹	70 135 83 31	98 98 135 18p	25s 20	130 105 15	011	140 245: 175	180 25	215: 185 220: 15	170 150 15 85	95 88 180	215: 15	58 41 21
MK Classification	A2 V Am (A3/A5/A5) A0 V A3 V A2 IV	F2 V F2 V A7 V A9 Vn Am (A9/F1/F1)	A2 IV	A7 V Am (A5/F0/A8) B9.5 III	A2 V	A2 V A1 Vn(K sn) A6 V	A5 V F2 V	A9 Vn A2 V A0 Vn B9 IV A9 V		B9.5 V Am (A4/F0/F0) A0 IIIP(Fe II st, 4481 wk)	+ Shell AO V AO V	Am (F0/F2/F2) F2 IVW1(met: A9) Am (A7/F1/F3)
Other	14 Leo 15 Leo	28 UMa A 19 Leo AB 20 Leo AB	30¢ UMa	AUS / 34 3AB 6 Sex 22 Leo 7 Sex	8Y SEX ADS 7555AB	31 UMa ADS 7591A		12 Sex ADS 7625A ADS 7627A	21 LMi 30n Leo 15a Sex	17 Sex	ADS 7681AB	ADS 7705A
Ð	83731 83808 83869 83886 83886 83886	84179 84607 84722 84812 85040	85235	85364 85376 85504	α Ω Ω	85795 85905 86266	86301 86358	86611 87243 87318 87348 87344 87344	87500 87696 87737 87887 88824	88025 88182 88195	88372 88522	88699 88815 88849
HR	3848 3852 3854 3855 3855 3861	3865 3879 3885 3885 3885	3894	3906	5 5 5	3917 3921 3931	3933 3936	3945 3958 3962 3963	3969 3974 3975 3981 3985	3986 3988 3989	4000 4003	4011 4016 4021A
4481 W(A)	0.37 .38 .32 .40	.54 .48 .51 .57	.49 .56	.34 .49 	.58	.59	.50	.55 .50 .50 .37	.53 .54 .54 .58 .58 .58	. 64 . 22 . 44	.35	0.39
v sin _i i km s ⁻¹ i	160 160 15 15 30	145 245: 35 135	45 195	10 200: 	10 150	45 140	190	51 155 210: 65 220:	65 155 165 105 105	93 160 100	45 101	20
MK Classification	F0 IV A0 Vp(A Boo) B9 IVp(HgMn st, CaMg wk) A2 V	A6 V A0 V (SB2) A8 Vn A5 Vn	A3 V A1 V	A2 Vs B9.5 Vn A3 IV	F1 p(SiSrCrEu)	AU IIIP(4481 WK) FO V	A6 Vn	F0 IV A3 V A6 Vn A2 IV A3 Vp(4481 wk)nn	A7 V A9 V Am: (A5/F0/A7) A0 Vn F0 V	F2 V A0 Vp(4481 wk) A0 V	A1 V A9 V	AO II-IIIS AO V (SB2) A9 V
Other	36 LYn 21 HYa	18 UMa ADS 7286A ADS 7286B	ADS 7285A 38 LYn ADS 7292A		ADS 7334AB	29 HYA ADS 7382AB 23 UMa	ADS 7396A	32 T ² Hya ADS 7426A	S Ant 26 UMa ADS 7446A	ADS 7446B 7 Leo	AUS / 446A 42 Lyn	3 4 Нуа 37 Нуа
£	79066 79108 79158 79193 79248	79439 79752 79763 80024	80064 80081	80447 80613 80930	81009 81039	81/28 81937	81980	82043 82380 82428 82446 82523	82573 82582 82610 82621 82685	82747 83023	83104 83287	83373 83650 83727
HR	3649 3651 3652 3655 3657	3662 3675 3676 3686A 3686A	3689 3690	3702 3711 3719	3724 3727	3757 3757	3758	3760 3778 3785 3787 3792	3796 3797 3798 3799 3806A	3806B 3810 3818	3822 3829	3832 3846 3847

TABLE 2—Continued

4481 W(A)	0.54 .29 .46	.21p .19s .39	. 49	.39 .76 .34	.42	.60 .71 .59	.43	.42 .45	.40	.55	.59 .56	.46 .43	.52	. 56 . 55 . 54	.28 .54 .54	.40
V sini km s ⁻ 1	85 10 205: 51	15p 10s 18	22	35 135 150	200:	53 75 71	35	13 33	135 75	200:	125 85	33 60 60	230: 115	75 40 145	25 175 165	15 120
MK Classification	Am (A4/A6 V/A6) B9.5 IIP(4481 Wk) A0 V A2 III-IV	F2 Vp(4481 wk) Am (A3/A7 V/A9)	A3 V	AO III F2 IV AO V	A0 Vn	Am (A3/A5/A7) F0 V A6 IV	Al IV	Am (A1/A2/A3) F0 V	 A3 Vp(4481 wk)	F0 Vn	Al V Am (A3/A6/A6)	A7 IVP(Sr) A1 IVs A2.5 V	A2 Vn A3 V	A6 V A2 IV A2 IV-V	A0 IVp(4481 wk) B9.5 Vn A4 Vn	Al IV (standard) A9 VD(4481 wk)
Other	ADS 7930A 53 Leo 40 Sex ADS 7936AB	44 LMi 41 Sex	ADS 7942A A	45w UMa 48 LMi 54 Leo A ADS 7979A	54 Leo B ADS 7979B	49 UMa 59 Leo	ADS 8019A 486 UMa	60 Leo ADS 8028AB	51 UMa	AUS 8046A	64 Leo	67 Leo ADS 8071A		116 Crt	ADS 8086AB 69 Leo 688 Leo	700 Leo
ЦЦ	93397 93526 93702 93742	93765 93903	94180	94334 94480 94601	94602	95256 95310 95382	95418	95608 95698	95771 95934	96220	96441 96528	96707 96723 96738	96819 97138	97244 97277 97302	97411 97585 97603	97633 97937
HR	4214 4218 4227 4229	4230 4237	4244	4254 4254 4259	4260	4286 4288 4294	4295	4300 4302	4303 4309	4315	4320 4322	4330 4331 4332 4332	4334 4340	4341 4343 4344	4347 4356 4357	4359 4366
4481 W(A)		.44 .64 .63	.43	.57 .31 .54	.29p .11s	.34		.57	.63	. 50	.36	.54 .46	.59		.51 .45	0.44
sin i ms-1		135 160 155		180 <10 255: 180	10p 10s	15	12 77	105 <10	120	190	160	115 165 15	105 145	200: 235: 195	65 185	195
MK Classification V	Am (A9/F1/F3) AO Vp(4481 wk)n A5 V (standard)	A2 Vp(\ Boo; met:B9.5) A7 III A9 V	A9 V A1 IV	A5 Vn A1: Vp(SiSrHg st, CaMg wk) A: A1 Vnn A5 V	Am (A0/A1/A2)s (SB2)	A2: IVp(SiCrSrHgMn st, CaMg wk)	FZ VP(A BOO; MET: FU, 4481 wK) Am (E0/E2/E2)	All (FO/FZ/FZ) A3 V A2: VP(SiSr st, CaMg wk)	A6 V Am (A0/A2/A2)	A3 IV A0 Vp(A Boo)	A0 V	A6 V A0 V A2 IV	A5 V A7 III-IV	A7 Vn A0 IVp(4481 wk)nn A3 Vn	F0 V A1 V	A4 V
Other	ADS 7705B 23 LMi 32 UMa 367 Leo 33A UMa		42 Leo	ADS 7739 27 LMi		25 Sex	30 TM:	45 Leo		32 LMi 33 LMi	ADS 7813A	ADS 7826A 34 LMi 49 Leo		40 LMİ	ADS 7899A A 41 LMİ	
£	88850 88960 88983 89025 89021	89239 89243 89455	89571 89774	89816 89822 89828 89904	89911	90044	1/006	90470 90569	90745 90763	90840 91130	91311	91312 91365 91636	91790 91858	91992 92245 92769	92787 92825	92941
HR	4021B 4024 4026 4031 4033	4041 4047 4055	4062 4070	4071 4072 4073 4075	4076	4082	4090	4096	4108 4109	4113	4131	4132 4137 4148	4152 4155	4160 4172 4189	4191 4192	4197

TABLE 2—Continued

											0. 70				
4481 W(A)	0.34	.50	:	.50 .45	.69	.65 .48	• 53 • 58 • 69	.50	.62 .63 .36	.34	. 16 . 16 . 29 . 73	.52 .48 .52 .53	.77 .42 .48	.47	.53 .53 .66 0.68
V sin _i km s ⁻¹	35 61	78 38	•	33 175 190	122 78	51 215:	175 65 85	145 145	180 15 225:	10 130	35 13p? 41s? 115	40 125 185 65	180 13 18	120	78 65 81 135
MK Classification	A1 V Am (A5/A5/A7)	Am (A4/A6/A7) F0 V	Am (A9/F2/F2)	F3 III A1 V A2 Vp(4481 wk)n	A2 IV Am (A4/F2/F3)	Am (A3/F2/F2) A2 Vn	A2 Vn A3 V Am (A3/A6/F1)	F0 Vp(4481 wk) A5 V	A5 Vn Am (A7/F2/F3) A0 Vn	A2 IV F0 V	Al III F3 IV	A3 V F0 V A2 Vn A9 Vp(A Boo) A4 V	F4 Vn Am (A2/A7/A7) Am (A2/F1/F2) A9: Vp(CrSrEu)	A2.5 V	A8 V A3 IIIP(SrCr) F0 III F2: III-IV
Other	7 Vir 8π Vir AB	67 Vir A 2 Com ADS 8406A	ADS 8406B	11 Vir 3 Com	3 Crv	12 Vir 698 UMa A	6 Com ADS 8501A	13 Vir	8 Com	15 _n Vir AB	12 Com ADS 8530A 4 CVn	13 Com ADS 8539AB 14 Com 16 Com	ADS 8568BC 17 Com	ADS 8568A 20 Com	74 UMa 21 Com 8n Crv
Ð	104181 104321	104513 104827	:	105702 105778 105805	105850 106112	106251 106591	106661 106819 106887	107054 107070	107131 107168 107193	107259 107326	107655 107700 107904	107966 108007 108107 108283 108283	108506 108506 108642 108651 108662	108765	108844 108945 109085 109141
HR	4585 4589	4594 4602A	4602B	4629 4632 4633	4635 4646	4650 4660	4663 4670 4673	4680 4681	4684 4685 4687	4689 4694	4705 4707 4715	4717 4719 4722 4733 4738	4750 4750 4751 4752	4756	4760 4766 4775 4775
4481 W(A)	0.61 .12	.49 .29p	.125	.53	.71.	.52	.43	.60	45	.48	.52.	.38 .55 .31 .46	.62 .27p .30s	.30	.59 .43 0.64
V sin _i km s ⁻ 1	235: wk) 31p	16S 10 65p	25s 240:	230: 130	155 150	73	10	155. 155	205: 55 45	130	70 78 115	18 68 188 165	61 75p 95s	10 55	83 <10 105
MK Classification	A6 Vn F1 p(SrCrSi v. st, CaMg	A2 Vs A1 Vp:(4481 wk)	A3 Vn	Al IVn A7 V	F1 V A1 V	A3 IV	Am (A2/F1/F0) Am (A2/A5II1/A6) A3 Vn	FO VN F1 IV	A3 IV A1 IV B9 Vb(Hamn)	A4 V A6 III + F8 III	A3 IV 49 V A3 V	Am (A2.5/F1/F3) Am (A5/F0/F2) Am (A4/A6/A7) F3 V A0 V (standard)	Am (A9/F1/F1) A2 Vn F0 IVp(CrsrEu)s	A3 IVp(4481 wk)s A1 III	FO V Al IIIS FO V
Other	74¢ Leo A ADS 8115A	55 UMa		147 Crt	AUS 8103A 80 Leo 57 UMa	ADS 8175A		ADS 8231AB 59 UMa	ADS 8249AB ADS 8259A	25 Vir 93 Leo	4 Vir ADS 8311AB 946 Leo ⁷ ADS 8314A	ADS 8330A ADS 8330A A A 647 UMa	65 UMA ADS 8347A 65 UMA	AUS 034/U 95 Leo 30n Crt	ADS 8368A ADS 8371AB
Ð	98058 98088	98280 98253	98673	98772 99211	99329 99787	99859	99945 100518 100740	101107	101150 101369 101391	102124 102509	102510 102590 102647	102660 102910 102942 102990 103287	103313 103483 103498	103578 103632	103928 104039 104179
æ	69 69	78 80	88	91	10	24	129 154	65	81 93	15 27	31 34	5445 54535 475	61 61	64	74 79 84

TABLE 2—Continued

Ħ	£	Other	MK Classification	V sin i km s ⁻¹	4481 W(A)	HR	멳	Other	MK Cl.	assification	v sin ₁ i km s ⁻ 1	4481 W(A)
4778 4780	109238 109307	22 Com	FO V Am (A5/Ą7/A7)	85 13	0.65.	4917	112486	ADS 8710AB	Am (A	2/A8/A7) (SB2)	10p 10s	0.27p
4781 4789	109309 109485	21 Vir 23 Com	B9.5 V A0 Vs	115 50	.41	4921	112846	44 Vir Ans 8727A	A4 V		95 95	.42
4797	109585		FO V	91	.54	4936 4937	113436 113459	48 Vir	A1 VP F0 V	(4481 wk)n	215: 140	44.
4799 4805	109704 109860	25 Vir	A2 V A1 IVS E0 VS	140 60	.40	4948	113865	ADS 8759AB ADS 8777A	A3 V		75	.64
4811 4816 4816	110066	9 CVn	AG VP(A Boo) AG VP(A Boo) AO III:p(SrCrEu v. st)	255: 21	 9 9 4	4950 4963	113889 114330	ADS 8772AB 510 Vir	Am (A A2 IV	5/A9/F0) S	115 <10	.67 .35
4824 4825	110377 110379	27 Vir A 29 _Y Vir	A6 Vp(\ Boo) F0 IV	160 28	.48 .36	4971	114447	ADS 8801AB 17 CVn ADS 8805A	FO V		71	.51
4826 4828	110380 110411	ADS 8630A ADS 8630B 300 Vir	F0 IV A0 Vd(4481 wk)	15 140	.30	4974 4978	114504 114576	A AB	AO IV A3 V		80 185	.47
4833	110462	76 Vir	A2 IV	40	.47	4990A	114846	54 Vir	B9 V		06	.43
4847 4852 4852	110951 11112 111133	32 Vir FD Vir	Am (A5/F0/F2) A7 V A0 Vm(sr/rF1 v st	28	.42	4990B 5003	115227	ADS 8824A ADS 8824B	A2 VP A2 V	(Sr st, CaMg wk)	110	
4855	111164	BE VIL 34 Vir	AV VP(SICIEM V. SC, Ca, met wk)s A3 VD(A BOO)	175	. 53	5004 5005	115271 115308	19 CVn	Am (A F2 Vp	6/A6/A8) (CaMg wk)	98 75	.49
4859	111270		A7 V	63	.57	5010	115365	Å	A6 V		165	.52
4861 4865 4866 4866	111308 111397 111421 111469	28 Com 29 Com 30 Com	AO VP(4481 wk) A1 V A7 V	175 150 195		5021 5021 5023	115709 115709 115735	20 CVn 21 CVn	F3 IV A2 IV B9.5	>	115 955 905	. 4 6 4 6 4 1 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1
4875	111604	ADS 8674A	A5 Vp(À Boo)	180	.36	5025 5031	115810 115995	ADS 8861D ADS 8864AB	A7 IV A1 II:	I	101 58	.56 .45
4881 4886 4892	111786 111893 112014	ADS 8682B	F0 Vp(\ Boo, met: A1) A4 Vn A0 V + A0 V (SB2)	135 215:	.14	5033 5037 5040	116061 116160 116235	64 Vir	A2 V A1 V Am (A:	3/A6/A7)	165 205: 18	.56 .49 .46
4900	112028 112097	ADS 8682A 41 Vir	A0 IIP(MgSi wk)s F0 Vp(A Boo, met:A7)		.54	5045 5054	116303 116656	795 UMa	Am (A Al IV:	4/F0III-IV/A9) s	28 25p	.27 .26p
4901 4904 4905	112131 112171 112185	77 UMa	A2 V A7 V A0 Vp(SiSr, met: st, CaMg	115 120 25	. 58 . 30	5055 5057 5059	116657 116706 116831	ADS 8891A ADS 8891B	Am (A) A3 VS A8 V	2/A6/A6)	255 25 25 25 25 25 25 25 25 25 25 25 25	. 24s . 56 . 48 . 66
4911 4914	112304 112412	12 ^{α¹ CVn}	ых) B9.5 Vn Аm (A9/F4/F3)	180 10	.44	5062 5074	116842 117200	80 UMa A	A5 Vn F5 Vw	1(met: F0 V)	210: 21	.58 .33
4915	112413	$12\alpha^2$ CVn ADS 8706A	AO Vp(SiEu, met st, CaMg wk)	÷	:	5075 5076 5078	117201 117242	ф	F2 VS A9 VS		96 190	.31
4916	112429	8 Dra	F2 Vwl(met: A7)	130	0.60	6/0c	187/11		A 0 <		17	86.0

4
S
$^{\circ}$
-
•
5
~
01
•
•
•
s.
JS.
oJS.
ApJS.
ApJS.
5ApJS.
95ApJS.
995ApJS.
1995ApJS.

481 (A)	51	.32	65 46 57	.44	677 677 672	. e L . 65	.11	.34p .17s .56	54 51 47	. 5 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	· 55 · 45
4 3	0	-						0.10		-	0
/ sin us'l	80 160	12	58 115 115 115	95	7 85 85	130	110	311 13 13	145 145 145 18	120 130 185 45	
MK Classification	Al V Al.5 V En.10	FU LY AO III (standard:) Am (Al/A8V/FO) (SB2)	A8 V B8.5 Vp(Si) A0 V A7 V	B9.5 V	A7 V Am (A8/F1/F1) B9.5 V Am (A8/F1/F1)	AZ V Am (A5/F1/F2) AG V	A0 Vp(A Boo, met: v. wk) A2 Vp(SrCrEu st, CaMg wk)s A2 Vn	Am (A1/A3 V/A4) Al IV F0 V	B9.5 V F0 Vp(A Boo, met: A5) A4 V A2 V A5 IVS	Al Ib A0 V A2 III A3 V A2 IV	Am (A1/F1/F2)s Am (A7/F1/F1) A2 IV F2 V A2 Vs + A2 Vs A2 V vs + A2 Vs
Other	05 1714	, γι 11α Dra η Aps	3 UMI ADS 9152A 176 ² Boo	ADS 9173A		211 BOO ADS 9198A	197 Boo	100) Vir	ሲ Cen	ADS 9247A ADS 9258A	22 Boo 104 Vir ADS 9277B
Ĥ	122866 122958	123299 1233998 123998	124063 124224 124576 124675	124683	124913 124915 124931 124931 124931	125158 125161 125161	125162 125248 125283	125337 125349 125442	125473 125489 125632 125642 1256582 1256582	125835 126129 126200 126248 126367	126504 126661 126722 126943 126983 126983
НК	5280 5284	5291 5303	5305 5313 5324 5329	5332	5333 5341 5343 5343	5349 5350	5351 5355 5357	5359 5360 5364	5367 5368 5372 5373 5374	5379 5386 5388 5392 5392	5401 5405 5411 5411 5413 5413
4481 W(A)	0.41	0 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		.45 .45	. 61 . 71 . 62 . 45	. 60 . 63 . 48	.45	. 51 . 51 . 51 . 51 . 53 . 53 . 53 . 53 . 53 . 53 . 53 . 53		.53 .51 .63	. 60 . 46 . 56 . 58 0 . 38
V sin _i km s ⁻ 1	140 155	140 51 180	13 2055: 2055:	101	145 135 190	83 130 240: 45	95	140 165 1205	205: 220: 45 113	115 70 65	130 65 115 170
ation			st, CaMg wk)		c	u (st, uf st)	st, Ca wk)	wk) n	
MK Classific.	AO V F1 V	A2 V A7 III A2 V	A7 VP(CrEuSr A1 VP(SrSi) A2 IVn	A8 V B9.5 V	A5 V A9 V A8 V F0 Vp(À Boo)	A8 V F2 V A2 Vp(4481 w A1.5 V	A1.5 V	A2 1VP(SF V. A1.5 V A1 IVS A0 V A0 V	AO V A5 Vn A0 Vp(SrCrEu A0 IIIS A8 V	A4 V A2 V A1.5 V A8 IV B9.5 Vp(4481	A7 V A0 V A3 V A3 V A3 V
Other	A 72 Vir ADS 8974A	73 Vir AB	78 Vir ADS 8954AB 795 Vir	AUS 8956A 81 UMa	24 CVn ADS 8966A 25 CVn ADS 8974AB	ADS 8987AB 82 UMa 1 Boo	ADS 8991A ADS 8994AB		85 Vir AB 84 UMa	86 UMa	92 Vir 10 Boo 11 Boo 930 Vir ADS 9085A
	76 36	558 561 716	054	0CT	1232 1235 1349 1623	8660 8889 9024 9055	9086	9476 9476 9752 9765	9786 0047 0198 0455 0600	0818 0874 0934 1164 1409	L607 1996 2365 2405 2408
峊	1173 1174	1179	8880 1117 1117	118		2222	iii i		55555	50000 50500 50500	00000

153

· · · is discussion

A.
S
$^{\circ}$
, - 1
•
0
0
JS.
JS.
pJS.
ApJS.
5ApJS.
95ApJS.
995ApJS.
1995ApJS.

481 (A)	.42	.40 .43	.41	. 53	::	:	41	48			.54	.49			.53	5		45	.63		62		÷
i W	°										••										0		
V`sin. km s⁻.	30 95	110 75	100 30	101 110	::		40	• ມ • ມ •		45 45	210	10 65	•	•	175	100	220	98 145	85	•	123	•	:
MK Classification	Al IVS A9 IV	8 AO V B9.5 IV	A5 IV A0 Vp(Si v. st, Ca wk)	A5 III A3 V	AM (F0/F1/F2:) AM (A9/F2/F1)	F5 Ia	B9 p(Si v. st) A0 IIIS	B8 IV A2.5 V		B9.5 Vp(Si st, CaMg wk)	s A2 Vn	A9 Ib A1 V	F8 II + A	A3 V A2 Vn	A4 Vn A1 V		A3 1V B9.5 Vn A3 TV	F2 V A2.5 IVp(4481 wk)	F2 IV	A0 V B9 Vn	AO p(Si st, Ca wk) A9 V	Al IIIn	A2 IV
Other	59 Hya	ADS 9453AE 17 Lib 198 Lib	60 Hya BX Boo	ADS 9477A	ADS 9493A ADS 9493B		47 Boo	ADS 9500A		241 ¹ Lib	ADS 9532AB 251 ² Lib	1 Lup		B Cir v Tra	48X BOO	: .	4 26L	29º Lib		7 Ser 50 Boo	u Lup 8 Ser	 !	p Oct
Ĥ	132145 132219	132230 132742	132851 133029	133112 133388	133408	133683	133880 133962	133981 133994		134759	134967	135153 135263	135345	135379	135384 135502	1 2 5 5 5 0	136174 136403	136407 136729	136751	136831 136849	136933 137006	137058	137333
HR	5574 5577	5578 5586	5591 5597	5599 5608	5610A 5610B	5621	5624 5627	5628 5629		5652	5656	5660 5665	5667	5670	5672 5676	0273	5693 5693	5703	5716	5717	5719	5724	5729
4.2	4 6	• -1 00		4	e	41	9p 5s	n			•••	•	-		мO	0	ഗഗ	•	-0		•••	• 4	6
448 W(A	0.2	• • • •	ມູ່ມູ	? : :	.4	4.0	201	•	:	:	::	:	÷	:	ς, γ		ю. 4	:	4.0	•	::	• •	0
V sin ₁ i 448 km s ⁻ 1 w(A	55 0.2 115 .5	205: 5 115 .5	63 .5 105 .5	۲ 	100 .4	85 .4 105 .5	30p .2	0°T	•	:	::	•	110 .6	:	265: .3	145 .4	55 45 .45	:	90 .4 205: .5	•			105 0.5
MK Classification V sin i 448 km s ⁻¹ W(A	A0 Vp(4481 wk) 55 0.2 A4 IV 115 .5	A0 III	F0 IV 63 .5 A4 V 105 .5	13 .2 A9 p(SrEu st, Ca wk, K sn) B9.5 III	Al V 100 .4	A0 V 85 .4 A8 V 105 .5	30p .2	9. OFT	A1 V	F0 Vn	A0 VII F3 V	AI V	AU V 110 .6	G9 II-III (G)	A0 IIINN 265: .3 A0 IIIp(A Boo) 55 .2	145 .4	A0 IV 55 3 A0 III:p(SrCr)s 45 4	Am (A2/A6/A8)s	A3 V 90 .4 A1 Vn 205: .5	A3 IV	B9.5 Vs A0 V	A0 IIIN	F0 IV 105 0.5
Other MK Classification V sin i 448 km s ⁻¹ W(A	ADS 9277A A0 Vp(4481 wk) 55 0.2 A4 IV 115 .5	ADS 9288A A0 III ADS 9288A A0 III 205: .5 ADS 9301AB A6: Vn 205: .5 27Y BOO A A7 III-IV 115 .5	A F0 IV 63 .5	280 BOO A α Cir A9 p(SrEu st, Ca wk, K sn) B9.5 III	Al V 100 .4	33 Boo A0 V 85 .4	29π ¹ Boo 30p .2 ADS_9338A 25s .0	2911 - 130 - 130 - 130 - 15 ADS 9338B	/7 ζ Boo A1 V		ADS 9357A F3 V	A IA	365 BOO AU V 110 .6 ADS 9372B	e Boo G9 II-III ADS 9372A	109 Vir A0 IIInn 265: 3 55 Hya A0 IIIp(A Boo) 55 2	57 Hya 145 .4	7u Lib A0 IV 55 .3 7u Lib A0 III:P(SrCr)s 45 .4	ADS 9396A ADS 9396B Am (A2/A6/A8)s	90 ⁴ Lib AB A3 V 90 .4 A Al Vn 205: .5	A3 IV	ω Oct B9.5 Vs	ADS 9442A A2 IV 75 .5	16 Lib FO IV 105 0.5
HD Other MK Classification V sin i 448 km s ⁻¹ W(A	127067 ADS 9277A A0 Vp(4481 wk) 55 0.2 127167 Add 44 IV 1127167 55 0.2	127304 ADS 9288A AO III 127726 ADS 9301AB A6: Vn 205: .5 127762 27Y BOO A A7 III-IV 115 .5	127959 A F0 IV 63 .5 127964 . A4 V 105 .5	12815/ 280 BOO A 13 .2 128898 α Cir A9 p(SrEu st, Ca wk, K sn) 128974 B9.5 III	128998 Al V 100 .4	129002 33 Boo A0 V 85 .4 129153 J A8 V 105 .5	129174 29π ¹ Boo 30p .2 ADS 9338A 25s .0	4. USI 291285 BDS 93388	8 129246/7 5 Boo A1 V	129422 FO Vn	129798 ADS 9357A F3 V		129988 360 BOO AU V 1129988 360 BOO AU V ADS 9372B	129989 ɛ Boo G9 II-III	130109 109 Vir. A0 IIInn 265: .3 130158 55 Hya A0 IIIp(A Boo) 55 .2	130274 57 Hya 145 .4	130557 AO IV 55 3 130559 7u Lib AO III:p(SrCr)s 45 4	ADS 9396A ADS 9396B Am (A2/A6/A8)S	130841 9α ^c Lib AB A3 V 90 .4 130917 A Al Vn 205: .5	131562 A3 IV	131596 w Oct B9.5 Vs 131625 A0 V	131951 A0 IIIn 132029 ADS 9442A A2 IV 75 .5	132052 16 Lib F0 IV 105 0.5

154

 $\ensuremath{\textcircled{}^{\circ}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

TABLE 2—Continued

4481 W(A)	0.49		.42	. 4 6	.54	.185 .185 .298	.54	7 E	. 54 40	• • c • •	•	.27	.12p .14s	34	. 29	.33	40	.52	.53	.52	.32	.43		0.46
V sin i km s ⁻ 1	120 95		ע טיע	38 38 185	115	210: 95 25	150 73	01	115	0 • C 1 • F / •		255:	25p 70s	160	10	255:	25	160	115	195	10 285:	140		30
MK Classification	A2 V A3 TV	89.5 III 111 121	Al V *** (*32/51/52)	Am (A3/F1/F3) Am (A3/A7V/A7) A3 Vp(4481 wk)n	Al Vn A3 V	A5 Vn A9 Vp(À Boo) B9 5 Vn(4481 wk)	FO V FO V		AU IIIP(Agmineu)s A2 V BO TTT=/TT=M2 th	BY IVP(RGMI SC, CAMG WA) A2 V + F5 II	A3 V	B9 Vp(λ Boo)nn	B9 IVn + Ap(Si)s	A6 V B9 Vp(4481 wk)nn	B9 Vp(HgMn sl. st)s	B9.5 Vp(4481 wk)nn B9.1170(cisr)	A3 V A3 V	A3 Vn	A2 V	Al III AO Vn	Al IIIS B9.5 Vp(4481 wk)nn	B9.5 IV	B9.5 Vp(4481 wk)nn	Al IV
Other	310 Ser	32µ Ser X Lup		ADS 9/93A 37£ Ser 36 Ser	ç UMi 4 Sco	40 Ser 50 Lib		4	44 Ser	DU HEL		11 SCO ADS 9924A		45 Ser 8 Her	11¢ Her	1400 500	15¢ SCO	AD 16 SCO		ADS 9944A				
CH	141187	141513 141513 141556	141653	141675 141795 141851	142105 142445	142500 142703	143584		143894	144206 144208	1444CD	144708	144844	144874 145122	145389	145454	145570	145607	145622	145647 145674	145788 145964	146754	146416	146514 146624
HR	5870	5881 5881 5883	5886	5892 5892 5895	5917	5919 5930 5930	5960 4962		5972	5983	7660	6002	6003	6004 6013	6023	6025	6031	6033	6034	6035 6036	6041 6051	6061	6066	6067
481 (A)	69	8 6 6	7 4		0 4 8	00	:::	::	1	68	• •	63	}	57	5 0 14 0	18	9	0	277	H	5	14	66	28 /
43	0	•••	•••	4.0				• •	•	•	•••	•	•	•••	•••	•		•			•		•	
sini 4. ms ⁻¹ W	85 0.	165 98 98	18 70 70	21 .4 45 .5	90 190 55	41 55 41			200:	. 111	. 73	88)	81 . 125 .	88 61	200:	165 • •		902 989 989	105	100	58	105	190 0.
V sin ₁ i 4. km s ⁻ 1 w	85 0.	165	Ca WK) 18 .4	21 .4 45 .5	190 190 55	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4481 wk)	200:	. 111		88	•	81 . 125 .	88 61	200:	165		wk) 65 68 68	105	. 100	wk) 58 .(105	.0 061
tion V sin_i 4. km s ⁻ 1 W	85 0.	165	1 ST, CA WK) 18 .4 20 .4	21 .4 45 .5	190 190 55	4 55 4		: Ca, 4481 wk)	200: .!	. 111		88	•	81 125	88 61	200:	165 .4		t, Cawk) 65 .4 68 .6	102	. 100	. Cawk) 65 .(105	190 0.
MK Classification V sin_i 4 km s ⁻ 1 w	Am (F0/F2/F2) 85 0.	A2 III A6 III 98	FZ VP(SFCFEUSI ST, CA WK) 18 .4 A2 IV 20	Am (A6/F0/F0) 21 .4 A2 IV 45 .5	A3 V 90 .5 A7 Vn 190 .6 A3 V 55 .6	A3 V 55 5 Am (A3/AR/FO) 41 6	A7 V	B9.5 Vp(λ Boo: Ca, 4481 wk)	A2 V 200: .!	F1 V 111	FO IV 73 .	20 TV 88		A9 V 81 . A0 V 125 .	F2 V 88 . F0 V 61 .	A0 Vn 200: .	AO V 1 VD (1181 1141) 05 3		A5 Vp(Sr v. st, Ca wk) 65 .4 Am (A2/F0/F2) 68 .6	3. COI 20 20 20 20 20 20 20 20 20 20 20 20 20	A0 V 100	Am (A7/F2/F2) 58 (AO Vp(Sicr st. Ca wk) 65 .	A0 V 105	AL VS AL VS
Other MK Classification V sin_i 4 km s ⁻ 1 w	51µ ¹ Boo Am (F0/F2/F2) 85 0. ans 9676a	137 UMi A2 III 137 UMi A2 III 10 Ser A6 III 98	JE CTB F.2 VP(SECEBUSI SE, CA WK) 18 .4	Am (A6/F0/F0) 21 .4 A2 IV 45 .5	A3 V 90 .5 ADS 9681Aa A7 Vn 190 .6 A3 V 55 .6	A3 V 55 5 Am (A3/A8/FO) 41 6	ADS 9689A A7 V ADS 9689B Am (A7/F1/F2)	τ^{2} Ser B9.5 Vp(λ Boo: Ca, 4481 wk)	53v ² Boo A2 V 200: .!		136 Ser F0 IV 73 .	ADS 9701B 136 Ser A9 TV 88	ADS 9701A 2	5α grB A0 V 81 . 5α grB A0 V 125 .	18 ^{1 3} Ser F2 V 88 . F0 V 61 .	A0 Vn 200: .	A0 V [65 .4	ADS 9744AB	29X,Ser A5 Vp(Sr v. st, Ca wk) 65 .4 22 / Ser Am (A2/F0/F2) 68 .6	44 TU 201 44 TV 201 44 47 47 47 47 47 47 47 47 47 47 47 47	87 CFB A0 V 100 .4 ADS 9757AB	ADS 9775AB Am (A7/F2/F2) 58 .(BP Boo A0 VD(SiCr st. Ca wk) 65 ./	26t ⁸ Ser A0 V 105	281 Ser Al VS 281 Ser Al V 190 0. ADS 9778A
HD Other MK Classification V sin1 4 km s ⁻¹ W	$137391 51\mu^{1}$ Boo Am (F0/F2/F2) 85 0.	137422 137 UMi A2 III 137898 10 Ser A6 III 20000 2000 2000 2000 2000 2000 2000	13/909 JB CFB FZ VP(SFCFEUSI SE, CA WK) 18 .4 137928 A2 IV 20 .4	138105 Am (A6/F0/F0) 21 .4 138213 A2 IV 45 .5	138245 A3 V 90 .5 138268 ADS 9681Aa A7 Vn 190 .6 138338 A3 V 55 .6	138341 A3 V 55 5 138413 Am (A3/A8/FO) 41 6	138488 ADS 9689A A7 V ADS 9689B Am (A7/F1/F2)	138527 t^2 Ser B9.5 Vp(λ Boo: Ca, 4481 wk)	138629 53v ² Boo A2 V 200: .!	138803 AUS 9006AB 138803 F1 V 111 .	138917 136 Ser F0 IV 73 .	ADS 9701B 138918 136 Ser A9 TV 88	ADS 9701A	138936 5α grb A9 V 81 . 139006 5α grb A0 V 125 .	139225 18 ^{r³ Ser F2 V 88 . 139478 F0 V 61 .}	139493 A0 Vn 200: .	139518 A0 V 165 4	ADS 9744AB	140160 29X7Ser A5 Vp(Srv.st, Cawk) 65 .4 140232 22 7Ser Am (A2/F0/F2) 68 .6	14041/ 44n LUS A9 IV	140436 87 Crb A0 V 140436 87 Crb A0 V 100 .4	140722 ADS 9775AB Am (A7/F2/F2) 58 .(140728 BP Boo A0 Vp(Sicr st. Ca wk) 65	140729 26t ⁸ Ser A0 V	1400/05 AI VS 05 05 05 141003 281 Ser Al V 190 0. ADS 9778A

TABLE 2—Continued

4481 W(A)	0.48 .66 .50	.29	. 40 . 59	49.43	.49	.37	.54	.42	.56	.39	.50	. 43 . 43	8 .		.56	.48	.42 .37p	.35s .48	. 55	0.53
/ sin i cm s ⁻¹	115 88 48 145	35	225: 155 70	38	55	95 185	81 73	190	155 88	50 15	120 21	165 30	8/		105	250:	30 65p	75s 30	11	145
MK Classification V	A3 V F2 V A2: IIIp(Sr v. st, Ca wk) A3 V	Al Vp(Si st, CaMg wk)	B9.5 Vp(4481 wk)n A5 Vn A1 IV	Am (A3/A5/A7)s A5 p(SrCrEu st, Ca wk)	A2 Vp(Si st, Ca wk)	A0: IVp(Sr st, CaMg wk) F0 Vn	Am (A2/A//A5) FO V	A0 Vn	AS V B FO V	A0 IVp(A Boo) A0 Vp(SiSrCrEu st, Ca wk)	Al V A2 III	A7 Vn A1 IV	Am (A2/A//A6)	AD V B9 V B9 Vnn + shell (HT Ca K)	A3 V	A4 Vn	A2 IVS 1 A2 V	A2 IV	AT (A3/F0/F0) A2 IV	A9 V
Other	A 19 Oph	45 Her A	ADS 10225A	47 Her 52 Her ADS 10227A	21 Oph	49 Her A	53 Her A	24 Oph ADS 10265AE	ADS 10279AE	586 Her ADS 10310A	ADS 10312AE 59 Her	A		ADS 10326A	60 Her ADS 10334A	ADS 10347A	ADS 10355AE	1	ADS 10360AE 35n Oph	ADS 103/4AE
Ĥ	150894 151087 151199 151431	151525	151527 151676 151862	151956 152107	152187	152308 152569	1525985 152598	152849	153653 153697	153882 153882	153914 154029	154099 154228	104418	154431 154441 154481	154494	154660	154713 154895	155102	155103 155125	155154
HR	6218 6222 6226 6232	6234	6235 6240 6246	6250	6255	6268 6277	6279 6279	6291	6317 6319	6324 6326	6329 6332	6335 6341	0350	6352 6352	6355	6361	6362 6347	6376	6377 6378	6379
4481 W(A)	0.60 .44 .56 61	.61	.73	.46	40	44.	.41	.49	.50	.27p .13s	.48	• •		.44	.44	.44	.59	.48	.56	0.61
sin_i m s ⁻ 1	100 15 15	83	.45 .90	55 	260:	18	125	51	65 140		06	••••••••••••••••••••••••••••••••••••••	60	:15:	95	38	81	45	65 735.	165.
> 2												~		()	H			-		
MK Classification V k	A3 IV A5 II (standard) A2.5 V F3 V	F1 IV	F0 IV A2 Vn	Al III F2 V A2 Vp(CrSr st, CaMg wk)	A3 Vn	A2 III Am (A2/A5V/A5) Ag th-rt	Al V	A2 Vp(SrcrEu st, K sn)	Al IV B9.5 IV	A1 IV	A2 V	A3 V A2 Vp(SiSrCr st, CaMg wk) A2 Vn(srcr v st)	B9.5 V	AB: B9.5 V	Ä	Am (A5/A9/A7)	Am (A1/A6/A6)	B9.5 V 1	Am (A5/F1/F1) A1 Vn	A2 Vn
Other MK Classification V k	180 CFB A3 IV ADS 9990A A3 IV 190 SCO A5 II (standard) A2.5 V A F3 V	50g Ser F1 IV	20Y Her F0 IV ADS 10022A ADS 10031A A2 Vn	21 Her Al III n UMi F2 V 24u Her A2 VP(CrSr st, CaMg wk) ADS 10054A	25 Her A3 Vn	A2 III 30 Oph A Am (A2/A5V/A5) A9 Th-TT	10) Oph Al V ADS 10087AB	9w Oph A2 Vp(SrCrEu st, K sn)	34 Her Al IV 15 Dra B9.5 IV	A LET A LAU	A2 V	A3 V A2 Vp(SiSrCr st, CaMg wk) A2 Vp(srcr v st)	16 Dra B9.5 V ADS 10129C	17 Dra A AB: B9.5 V	ADS 10129A 17 Dra B	ADS 10129B Am (A5/A9/A7)	36 Her Am (A1/A6/A6) ADS 10149B	37 Her B9.5 V ADS 10149A	Am (A5/F1/F1) A1 Vn	ADS 10173A A2 Vn
HD Other MK Classification V k	146738 180 CrB A3 IV ADS 9990A A3 IV 147084 190 Sco A5 II (standard) 147361 A, F3 V	147449 500 Ser F1 IV	147547 20Y Her F0 IV ADS 10022A 147835 ADS 10031A A2 Vn	147869 21 Her Al III 148048 n UMi F2 V 148112 24u Her A2 Vp(CrSr st, CaMg wk) ADS 10054A	148283 25 Her A3 Vn	148330 A2 III 148367 30 Oph A Am (A2/A5V/A5) 148743 A Th-TT	148857 10\ Oph Al V ADS 10087AB	148898 9w Oph A2 Vp(SrCrEu st, K sn)	149081 34 Her Al IV 149212 15 Dra B9.5 IV 14620 4 Hor Andre Al IV		149650 A2 V	142001 A3 V 149822 A2 Vp(SiSrCr st, CaMg wk) 149911 22 Vn(srcr v st)	150100 16 Dra B9.5 V ADS 10129C		ADS 10129A 150118 17 Dra B	ADS 10129B 150366 ADS 10129B Am (A5/A9/A7)	150379 36 Her Am (A1/A6/A6) ADS 10149B	150378 37 Her B9.5 V ADS 10149A	150451 Am (A5/F1/F1) 150483 A1 Vn	150768 ADS 10173A A2 Vn

A.
S
\sim
•
•
σ
σ
•
•
τn
ĥ
õ.
7
10
6
0
5
-

) 35 .30 40 .44 205: .60 75 49) 35 .30 40 .44 205: .60 75 .49 58 .65 210: .53) 35 40 440 440 75 75 75 75 75 49 210 210 210 210 210 210 210 210 210 210) 35 .30 40 44 75 .49 75 .49 58 .65 210: .53 28 210: .53 28 100 .41 110 .41 110 .41 110 .41 125 .47 125 .47 151 .47 155 .47 155 .47) 35 .30 40 44 75 .44 75 .49 58 .65 58 .65 210: .53 210: .53 210: .53 210: .53 210: .53 120 .43 110 .43 125 .44 125 .43 126 .44 126 .4) 35 .30 40 40 44 75 .44 75 .49 58 .65 210: .53 48 210: .53 48 150 .54 150 .54 150 .41 110 .43 155 .51 38 155 .47 155 .47 155 .47 36 155 .47 31 185 .33 31 38 155 .47 155 .47 155 .51 31 190 .56 31 110 .56 31 110 .56 31 110 .56 155 .50 31 110 .56 155 .56 31 110 .56 155 .56 31 110 .56 155 .56 31 110 .56 31 110 .56 155 .56 31 110 .56 110) 35 .30 40 40 44 75 44 75 45 58 65 58 65 58 65 58 65 53 2100 53 58 65 43 110 43 110 43 110 43 125 44 125 44 125 44 125 44 125 44 125 44 125 44 125 44 125 61 138 138 51 145 55 34 145 55 34 145 55 34 145 55 34 145 55 34 175 44 175 56 34 175 56 34 376 56 34 376 56 376 56 376 56 377 56 577 577 56 577 577 5777 57777777777
B9 V: p(S1 st, Mg wk) A2 IVs	A5: Vn am (a3/F0/F0)	A5: Vn Am (A3/F0/F0) Am (A3/F1/F0) A3 Vn	A5: Vn Am (A3/F0/F0) Am (A3/F1/F0) A3 Vn A3 Vn A5: V Am (A7/A9/F3) Am (A9/F1/F2) Am (A9/F1/F2) A6 IV A1: Vp(4481 wk)n A3 IV A1 V	A5: Vn Am (A3/F0/F0) Am (A3/F1/F0) Am (A7/A9/F3) Am (A7/A9/F3) Am (A9/F1/F2) Am (A9/F1/F2) Af IV Al: VP(4481 wk)n A1 V A1 V A1 V A1 V A1 V A1 V A1 V A1 V	A5: Vn Am (A3/F0/F0) Am (A3/F1/F0) Am (A7/A9/F3) A5: V Am (A9/F1/F2) Am (A9/F1/F2) Am (A9/F1/F2) Am (A3:/F1/F2) Am (A3:/F1/F2) Am (A3:/F1/F2) Am (A2/A6/A6) Am (A2/A6) Am (A2/A6/A6) Am (A2/A6) Am (A2/A6/A6) Am (A2/A6/A6) Am (A2/A6) Am (A2/A6) Am (A2/A6/A6) Am (A2/A6) Am	A5: Vn Am (A3/F0/F0) Am (A3/F1/F0) Am (A7/A9/F3) A3 Vn A5: V Am (A9/F1/F2) A6 IV A1: Vp(4481 wk)n A1: Vp(4481 wk)n A3 IV A0 III A0 V A1 (A2/A6/A6) A0 Vp(4481 wk)n A0 Vn A1 Vn A1 Vn A1 Vn A1 Vn A1 Vn A2 Vn A1 Vn A1 Vn A2 Vn A1 Vn A1 Vn A2 Vp(4481 wk)n A2 Vn A1 Vn A1 Vn A2 Vn A1	A5: Vn Am (A3/F1/F0) Am (A3/F1/F0) Am (A7/A9/F3) Am (A7/A9/F3) Am (A7/A9/F3) Am (A7/A9/F3) Am (A7/A9/F3) Am (A7/A9/F3) Am (A7/A9/F3) Am (A3/F1/F2) Am (A3:/F1/F2) Am (A3:/F
52 OPN B9 V 53 OPN A2 I ADS 10635A A5:) ma and Ind	24v ¹ Dra Am (ADS 10628B 25v 2 Dra Am (ADS 10628A Am (550 0 ph AB A3 V	24v ¹ Dra Am (25v ² Dra Am (25v ² Dra Am (ADS 10628A Am (ADS 10628A A3 v 55¢ Ser A5: 55¢ Ser Am (Am (79 Her A1: 766 Ser A1: 76 Ser A1:	24v ¹ Dra Am (ADS 10628B Am (25v2 Dra Am (ADS 10628A A3 v 55x Oph AB A3 v 55x Oph AB A5: 555 Ser Am (79 Her A1: 560 Ser A1: 70 Her A1: 560 Ser A1: 71 v 71 v 71 v 72 Her A1: 73 I0750A A0 v ADS 10750A A0 v	24v ¹ Dra Am (ADS 106288 Am (25v Oph AB A3 v 55c Oph AB A3 v 55c Oph AB A3 v 55c Ser Am (79 Her A1: 56c Ser A1 v 79 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 56c Ser A1 v 70 Her A1: 70	24v ¹ Dra Am (ADS 10628B Am (ADS 10628B Am (ADS 10655A AB A3 v 55c Oph AB A3 v 55c Oph AB A5: 55c Ser Am (Am (79 Her A1: 79 Her A1: 79 Her A1: 70 Her A1: 70 Her A1: 70 Her A1: 70 Her A1: 70 V 0 N 0 1 AM (70 V 0 N 0 1 AM (70 V 0 N 0 1 ADS 10750B A0 V ADS AD V AD V AD V AD V AD V AD V AD	24v ¹ Dra Am (ADS 106288 Am (ADS 106288 Am (ADS 10658 AB A3 v 55c oph AB A3 v 55c oph AB A3 v 79 Her A1 v 79 Her A1 v 70 Her A1 v 70 Her A1 v 70 Her A1 v 70 Her A1 v 70 Her A1 v 70 Her A1 v 70 Her A1 v 70 Her A1 v 70 V 70 Her A1 v 70 V 70 Her A1 v 70 V 70 V 70 V 70 V 70 V 70 V 70 V 70 V
1 159503	4 159541	4 159541 5 159560 6 159561	4 159541 5 159560 6 159561 1 159876 1 159876 1 159877 1 160181 1 160181 1 160613 1 160765	4 159541 5 159560 6 159561 9 159874 1 1598874 1 1598874 1 1598874 1 1598874 1 1600181 1 1600181 1 1606133 1 161270 9 161289 1 161321 1 1616933	4 159541 5 159561 6 159561 1 159861 1 159861 1 159861 1 159874 1 159887 1 159887 1 1601814 1 1601814 1 1601814 1 161321 1 161323 1 161323 1 161848 1 161833 1 161833 1 161833 1 161833	4 15 5 15 5 15 5 15 55 15 55 5 15 15 55 15 55 5 15 15 15 55 5 5 5 5 15 15 15 15 55 5	4 15 5 1 15 5 1 15 5 1 15 5 1 15 5 1 15 5 1 15 5 1 15 5 1 15 5 1 15 5 1 15 5 1 15 5 1 15 5 1 16 16 1 16 16 1 16 16 1 16 16 1 16 16 1 16 16 1 16 16 1 16 16 1 16 18 1 16 18 1 16 18 1 16 18 1 16 18 1 16 18 1 16 16 1
6548 6548	6551 6551		6551 6555 65555 65559 65559 655702 65821100000000000000000000000000000000000	6551 6551 6555 65559 65570 657700 657700 657700 657700 657700 657700 657700 657700 657700 657700 657700 657700 657700 6577000 6577000 65770000000000	6551 6551 6555 65555 65555 65555 65555 65555 65555 66110 66600000000	65555 665655 665555 66555 66111 665555 66110 66557 66555 66111 665555 66555 66111 665555 665555 66555 66555 665555 66555 665555 665555 665555 665555 665555 6655555 6655555 665555 665555 6655555 6655555 6655555 6655555 6655555 6655555 66555555	6 5 5 1 6 5 5 5 6 5
0.49 .36	.58 .53	.53 .53 .49 .44		ი	いいす うち ゆういい うちょう うちょう うちょう うちょう うちょう うちょう うちょう う	ი	らいよう うちょう うちょう うちょう うちょう うちょう うちょう うちょう うち
 25 15	160 90	160 90 230: 35 95	160 90 35 35 35 30 185 210 210 210 210 110	160 90 35 35 35 35 35 145 110 110 110 110 110 110 215	160 90 35 35 35 35 30 110 110 110 110 110 110 215: 215: 270: 65	160 90 35 35 35 35 35 35 11 145 210 215 215 215 215 215 215 35 35 35 35 35 35 35 35 35 35 35 35 35	160 90 35 35 35 35 35 35 110 110 110 115 65 35 115 65 35 115 115 115 115 115 115 115 115 115
AZ IIIS B9.5 Vp(HgMnSrSi)	A9 V A3 V	A9 V A3 V A2 Vn A1 IV A7 V	A9 V A3 V A2 Vn A1 IV A7 V A1 IV F0 Vn F1 IV F1 IV A2 V	A9 V A3 V A2 Vn A1 IV A1 V F0 Vn F1 IV F1 IV F3 Vwl:(met.: F1) A3 IV B9 Vp(4481 wk)n A3 V	A9 V A3 V A2 Vn A1 IV A1 IV A1 IV A1 IV A1 IV F1 IV A2 V F3 Vwl:(met.: F1) A3 IVS B9 Vp(4481 wk)nn B9 Vp(4481 wk)nn B9 Vp(4481 wk)nn B9 S IVN B9 S IVN	A9 V A2 Vn A1 IV A1 IV F0 Vn F1 V F1 IV F1 V F3 Vw1:(met.: F1) A1 IV F3 Vw1:(met.: F1) A2 V F3 Vw1:(met.: F1) A2 V F3 Vw1:(met.: F1) A3 IV B9 Vp(4481 wk)n F3 V F3 VN F3 VV F3	A9 V A2 Vn A2 Vn A1 IV A1 IV F0 Vn F1 IV A1 IV F1 IV A3 IV A3 IV B9 Vp(4481 wk)n A7 V A3 IV B9 Vp(4481 wk)n B9 Vp(4481 wk)n A7 V A3 IV B9 Vp(4481 wk)n A7 V A3 III B9 Vp(4481 wk)n B9 Vp(4481 wk)n B0 Vp(4481 wk)n P0 Vp(4481
6 4 6	97A A	er A9 10397A A5 Her A5 10424A A5 A7 A7	Her 10397A A: Her Her 10424A A: 10424A A: A A A A A A A A A A A A A A A A A A	Her Au 5 10397A Au 5 10424A Au 10424A Au 7 Au 10465AB Au 7 Au 10465AB Au 7 Au 10481A Au 10481A Au Her A Au Her A Au Her A Au	Her A 1 Her 10 10	3 Her 3 Her 55 Her 55 Her 55 Her 55 Her 55 Her 9 Her 9 Her 9 Her 10481A 10481A 10481A 10481A 10526B 10526B 10526B 10526B 10526B 10526B 10526B 10526B 10526B 10526B 10526B 10526B 10526B 10526B 10526B 10526B 105266B 105226B	A A
	as Her ADS 103	ADS ADS ADS	4 DS 555 555 555 4 DS 69 53 53 53 53 5 5 5 5 5 5 5 5 5 5 5 5 5		יקואל אלא אלא אלא אלא אלא אלא אלא אלא אלא		where he was a set of the set of
155375 100 1000 1000 1000 1000 1000 1000 100	155860 ADS 103	L55860 ADS L56164 658 ADS 156208 L56295	L55860 ADS L56164 658 L56295 ADS L56295 ADS L56697 ADS L56697 ADS L56897 & G L56928 53v L56928 53v ADS	LI55860 ADS L56164 655 L56295 ADS L56295 ADS L56295 65 L56897 5 6 L56897 5 6 L56897 5 6 L56897 8 L572897 ADS L577288 73 L577288 73 L577288 73 L577288 73	L55860 AL L56164 65 L56164 65 L56295 AL L56295 AL L56295 AL L56297 A L56397 A L55729 69 L55729 A L57729 A L57728 A A L57728 A A A L57728 A A L57728 A A A L57728 A A A L57728 A A A L57728 A A A A A A A A A A A A A A A A A A A	L55860 MI L55860 MI L55860 MI L55860 MI L55860 MI L55860 MI L55860 MI L55860 MI L55860 MI L55980 MI L55980 MI L55980 MI L55980 MI L55990 MI MI MI <	$ \begin{array}{r} \mbox{ISS} 860 \\ \mbox{ISS} 860 \\ \mbox{ISS} 860 \\ \mbox{ISS} 860 \\ \mbox{ISS} 860 \\ \mbox{ISS} 860 \\ \mbox{ISS} 860 \\ \mbox{ISS} 860 \\ \mbox{ISS} 860 \\ \mbox{ISS} 882 $

rų,
S
∞
-
~
01
0
•
ŝ
JS.
pJS.
ApJS.
ōApJS.
5ApJS.
95ApJS.
995ApJS.
1995ApJS.

i 4481 W(A)	0.49	.47		.59	.40		.56	.51	.42	• 0		. 50	40	.31		.21	.56	40	. 82		.40 .21 .31	.53 .58	.65 .40
v sin km s ⁻ 1	150	165 125	135	43	251 10		170	250: 205:	k) 30	• 0	:002	260: 185	13	k) 10	280:	65	81	240: 155	101		35 35 15	97 43	101 101
MK Classification	A2 V	AO V B9 IV	4 A9 V A3 III	A3 III	A4 V A2 III A111 + 30 112/6921	GIII T AU VS(SB2) AO IIIp(λ Boo)	A2 V	A2 Vnn A2: V	A2 Vp(SiSrCrEu st, Ca w) A6 III-IV	A2 V	AU VP(^ BOO) B9 Vnn	A1: VD(4481 WK) A4 V		A0 Vp(SiSrEu st, CaMg w)	AL V AO Vnn	A0 Vp(Si st, CaMg wk)	F1 V	A2 Vn A0 V	Am (A3/F1/F2) Am (A9/A7V/F2)		B7 IIIp(HgMn) A0 V (standard:)	A6 V Am (A4/F1/F0)	FO IV B8: Vn + AO III AO TIT(HACEAMAGE)
Other	2µ LYr	ADS 11334AB	ADS 11354AB		(390 SEF A 43¢ Dra ADS 11311AB	39 Dra	ADS 11336A A Y Sct			AUS II411A K ² Cra		61 Ser	4		ADS 11448A			Ц	2	ADS 11504A 300 Lyr	26 Sgr	AB
Ĥ	169702	169718 169820	169851 169853	169885	169938 169981	170000	170073	170141 170296	170397 170479	170642	170867	170902	170920	171130	171149	171247	171369	171505	171653		172044 172044 172167	172187 172546	17269 172671
H	6903	6904 6906	6909 6910	6911	6917 6917	6920	6923	6926 6930	6932 6936	6942	6953 6953	6956 6956	6957	6958 6958	6963	6967	6969	6975 6976	6979 6979		6993 6997 7001	7003	7013
4481 W(A)	0.48	.52	.40 .43	.50	.48 .26			.40	.54 .61	:	ν		.27	:	• •	.44 .43	.58	.35	.58	.53	.36 .64	. 43 58	.28 0.52
V sin _i km s ⁻ 1	185	215:	145 230:	95	81 200:	· wk) 18 135 55		235: 170	165 25	•			k) 15	•	• • •	23 140	25	195		95 120	13 13 250:	23 180	35 90
MK Classification	A0 Vn	A2 Vn	B8.5 V A0 Vn	A2 V	F0 IV A3 Vp(4481 wk)	A6 Vp(SrCrEuSi st, CaMg A9 V Am (A3/A7:/A7)		A0 Vn A3 V	A3 V Am (A6/A9/A9)	A8 IV	A0 V A0 Vo(4481 wk)n (SH2)	A7 V	A4 VII A0 IIIp(SrCr st, CaMg w	1 AO V + G1 II	Am (A2/A9/F0) Am (A2/A9/F0)	A III	В9 Іа	B9.5 Vp(4481 wk)n	AO V A5 IV	A7: V A7 IV	F1 V A2 V	B8.5 II Am (A3/F0/F0) A5 IV	A1 Vp(\ Boo) A2 V
Other	68 Oph	AUS 10990AE 95 Her ADS 10003A		ADS 11028A	ADS 11056A	ADS 11056B ADS 11054A 72 Oph	ADS 11076A	ADS 11086A 100 Her	ADS 11089B ADS 11089B		δ UMi ADS 11090A	101 Her	THISTIT SOLA	ADS 11123AB	24 UMİ	ADS 11149AB	ADS 11196A		¢ Oct			108 Her 107 Her	
日	164577	164669	164716 165029	165358	165373 165475	165474 165645 165777		165910 166045	166046 166095	166114	166205 166228	166230	166469	166479	166926 166926	166988	167356	167387	167468 167564	167666 167833	167858 168646	168733 168913 168914	169009 169111
HR	6723	6730	6732 6744	6753	6754 6758	6767 6771		6776 6781	6782 6784	6786	6789 6792	6794	6802	6803	6811 6813	6814	6825	6827	6829 6830	6835 6843	6844 6864	6870 6876 6877	6878 6883

4
S
$^{\circ}$
, - 1
•
0
0
JS.
JS.
pJS.
ApJS.
5ApJS.
95ApJS.
995ApJS.
1995ApJS.

4481 W(A)	0.42	.35	.54	.47	:	.61 .42	.53	.58	.17 .54	.31	.34	.47	.57	.52		. 26	.47	.54	C L	7 6 5 7	.53	.55	.55	.59	.59		.51	0.32
V sin i km s ⁻¹	10	60	140	60	:	125 15	155 111	78	90 59	295:		35	215: 115				65	180	1	170	60	195	78	165	78		140	10
MK Classification	A7 Vp(Sr v. st, Eu st, Came ve V sn)	Cany WY, N SII/ B9 III	A2 V	A3 V	AO IV	A5 V A1 III	A5 V A6 IV	A7 V	B9.5 Vp(Si st, CaMg wk) Fl V	A0 Vp(4481 wk)nn	B9.5 Vp(λ Boo)n F2 V	A4 IV	B9.5 IVn A7 IV	A2 Vn Am (F1/F1/F1)		A4 III-IV B8 IIIp(SiSr st, He I wk	A3 IV	A2 V A3 V		AU V A3 V	A3 V	AO V	A7 V	A2 V	A8 III	AU VN A9 III	A2 V	AO V
Other	10 Agl	147 LYr	ADS 11906A ADS 11897AB	385 Ser ADS 11950AB	ADS 11870A	14 Aql AB	16 LYr	ADS 11964A	A	175 Agl ADS 12026A	16A Aql		51 Dra	α CrA 17 Lyr	ADS 12061A	19 LVr	1			1 Sae	22 Agl	•	25w ¹ Agl			n Tel 28 Agl	29w ² Agl	
日	176232	176437	176560	7 899 / T	176795	176971 176984	177178 177196	177332	177517 177552	177724	177756 178089	178187	178207 178233	178253 178449		179366 179527	179583	179791		180317	180482	180782	180868	181119	181240	181296	181383	181470
нк	7167	7178	7184	1194	7199	7207 7209	7214	7219	7230 7231	7235	7236 7247	7250	7251	7254		7278 7283	7284	7288		7301	7303	7313	7315	7324	7327	7331	7332	7338
4481 W(A)	0.53	.48	.33	.61	.70	.70	.62	.51	.53	.21	.56	.59	.48	.47 .47	.62		. 54	.63	. 64	•	i	.53	 	• • • •	17.	.39	.38 0.46	:
V sin _i km s ⁻ 1		125	35	150	145	195	215:	38	195	25	61	01	3 3 1 2 1	06 11 1	145		110 105	150	93 115			150	 		MK) < TO	<10	50 35	:
MK Classification	A2 V A0 IIID(HGMN)	Al V A2 V	A0 IIIp(HgMn)	A3 V	FO V	A6 Vn	A7 Vn	Am (A5/F0/F2)	F0 Vn	Al Vp(SiHgMn st, CaMg wk	Am (A3/A5V/A6)	A3 LV A3 IV	Am (A2/F1/F2)	A2.5 IV-V A1 IV V 14	F1 IVn		A1 V A2 V	A6 V	F0 IV 23 VD(4481 WK)			A6 V	A2 VP(CaWK) A5 V	A5 Vn	BY IIIP(HGMNEU ST, CAMG	AO II	B9 III A2 IV	FO V
Other		ADS 11640A	46 Dra A	4e ¹ Lyr	Act Lyr 4e ¹ Lyr	ADS 11635B 562 Lyr	ADS 11635C 56 ² Lyr	ADS 11639A 651 LYr ADS 11639A	75 ¹ LYr	ADS 11639D	5 Aql ADS 11667A	111 Her	AB		30 Sgr	ADS 11731A			8 Agl 9,2 Lur	ADS 11737A			bl Dra 01 Ser	02 Ser		36ξ ¹ sgr		
Ð	172864 172883	173495	173524	173582	173583	173607	173608	173648	173649	173650	173654	1/3664	174115	174240 174240	174309		174366	174481	174589	100F		174866	175638	175639	1/5640	175687	175852 175892	175938
H	7025	7048	7049	7051	7052	7053	7054	7056	7057	7058	7059	7069	7077	7085	7088		7090	1096	7101	3011		7110	7141	7142	7143	7145	7155 7159	7160

TABLE 2-Continued

4481 W(A)	0.51	4 4 4 8 1 8	.45 .44	• • • • • •	:	. 83	.46	:	.57	.54	.52	.67	.48		: :	Г С	. 4.	.50	. 44	.43	.49	0.40	:	
V sin i km s ⁻ 1	140 98 1	125	33 140	••• ••• •••	•	91	33 190	:	95	200:	51 85	45	40	210:	 	ŭ	105	1105	15	120	55	190	:	::
MK Classification	A5 V F1 III F1 III	VI 14	A7 V B9.5 IV	B9.5 III A0 Vp(4481 wk)n	Am (A0/A2/A2)	 FO V	A2 III A2 Vn	A2 Vp(SiEuCr)	F1 IV	A5 IVn	Am (A1/A5/A5) FO V	Al Iab	F0 Vp(SrCrEu v. st)	Am (A3/A6/A7) B9.5 Vn	AO IV AO IV	DO 5 TTT	B9.5 V	Al V B9 5 TV	ALIV	A2 V	ע 54 ע גע	A2 Vn	A4 IV	A8 III A0 V
Other	ADS 12789A	v Tel	490 Aq1 186 Cyg	ADS 12880A ADS 12893A ADS 12893B			ζ Sge	AUS 1621 SUR	51 Agl	ADS 1301/A 530 Agl	AUN 13009A				e Pav	X [111] E [58 Aq1	ADS 13093A	61¢ Agl	A	61 Sgr	24 ¢ CYG	AUS 13146A 0 ² Sgr	
윺	186340 186357	186543	186689 186882	186901 186902	186957	186984 186998	187340 187372	187474	187532	187642	187753 187764	187982	188041	188097 188107	188162 188228	188760	188350	188385 188485	188728	188793	188899 188971	189037	189118	189198 189253
HR	7500 7501	7505	7519 7528	7529	164/	7532 7533	7545 7546	7552	7553	7557	7562	7573	7575	7579 7580	7587 7590	7597	7596	7598	7610	7611	7616	7619	7624	7630 7632
40	04	0 0 4	. 00 u	1400		0 4 0 4	• • • •		0.4	27	:	50	57		46	69	44	4 7	56	•	2	64.9		25.0
448 W(A	0.5	4.00		••••	•	•••	• • •	•	•••	••	•	•	••	••	•	•	••	•	•	:	•	•	•	•••
V sin ₁ 1 448 km s ⁻ 1 W(A	83 0.5 35 .7	100 48 45	135 135	100 L-100 L		140			185	, 170	•	220:	165		175	108	75	T30 .	73		·	5 5 7 7	• •	
MK Classification V sin 1 448 km s ⁻¹ W(A	A9 IV B2-5p(HI v. wk) + shell 35 .7 .7 13 HI v. wk)	AIV 100 .4 A9V 48 .5 A8V 45 5	EZ V 135 .7	A2 IV 15		AU 111 AU 140	Am (A1/A4:/A3)		40	AM (FU/FU/FZ) B7 III + Shell (HI, Ca K, 170	A0 Vp(Srcr)	A4 Vn 220: .	A2 Vn 165 .	AZ V 13 13	Al Vn 175 .	F0 V 10 111 108 100 100 100 100 100 100 100	Al V 20 222 75	·····	A9 V 73		7. CO VI C.2A	55 55 55 55 55 55 55 55 55 55 55 55 55		A4 IV
Other MK Classification V sin 1 448 km s ⁻¹ W(A	44 p ¹ Sgr A9 IV 460 Sgr AB B2-5p(HI v. wk) + shell 35 .7 (27 T3 HT v. wk)	A1 V 100 .4 A2 V A8 V 48 .5 47 J SGT 28 28 V 45 5	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 396 Agl A A9 III 85		5 Vul A0 III A0 III 140	Am (A1/A4:/A3) 4 Cyg B9.5 II 35 Act 20 12 12		/1- CYG 40 A2 Vn 185 .!	B7 IIIN + Shell (HI, Ca K, 170 Early Start)	A0 Vp(SrCr)	101 ² Cyg A4 Vn 220: .	A2 Vn 165	51 Sgr Am (A2/A7V/F0) 13	Al Vn 175 .	F0 V 108	All V 75	AUS 12660A 130 .	E2 cor A9 V 73	ADS 12741AB	4. CO 2. VI C.775A 4. CO 4. CO 2. CO	11 Atra B0 5 Vn (ci)		A 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
HD Other MK Classification V sin 1 448 km s ⁻¹ W(A	181577 44p ¹ Sgr A9 IV 181615 46∪ Sgr AB B2-5p(HI v. wk) + shell 35 .7 .7	181960 Al V Al V 100 .4 182239 A9 V 48 .5 183269 47~1 Ser 28 28 28 V 45	182475 F2 V 135 7 182490 2 5 2 1 111 35 7	182564 58 Dra A2 IV 15 182564 308 Aql A A9 III 85 182670 75 A9 III 85		182161 5 Vul A0 III A0 III 140	183007 Am (Al/A4:/A3) 183056 4 Cyg B9.5 II 20 20 183257 5 Az1 20 105		1835545 /1- CYG 40 183545 A2 Vn 185555 A2 Vn	183656 AM (FU/FU/FU/FU/ Ca K, 170 183656 B7 IIIn + shell (HI, Ca K, 170	183806 A0 Vp(SrCr)	184006 101 ² CYG A4 Vn 184035 32 TV	184102 A2 Vn 165 .	184146 A2 V 1841552 51 Sgr Am (A2/A7V/F0) 13 .	184603 Al Vn 175 .	184705 F0 V 108 1084759 9 CVC AB AD: V + G0 TTT 108	184875 Jay 1 V 75 75 75 184875 195875 194875 184875 194875 194875 194875 194875 194875 194875 194875 194875 194875 194875 194875 1948755 1948755 1948755 1948755 1948755 1948755 1948755 1948755 19487555 194875555 1948755555 19487555555555555555555555555555555555555	184884 AUS 12660A 130	184977 A9 V 73 .1	100404 05 391 AU V 150	י כס או כייבא באר גער בא אסוכט. ADS 12775 AC: ער אסוכט אסט אסט אין אין אין אין אין אין אין אין אין אין	185859 55 55		186219 35 391 50 17 186219 344 IV 186219 36 V 186307 AB A6 V 90 0.

TABLE 2—Continued

	£	Other	MK Classification	V sin _i i km s ⁻ 1	4481 W(A)	HR	₽	Other	MK Classification	v sin i km -1	4481 W(A)
ភិគិគិ	39296 39377 39410	ADS 13186AB 14 Vul	A2 Vnn A1 V F1 Vn	• • • • • •	:::	7827 7828 7829	195066 195068 195093	ADS 13870A 43 Cyg 120 Cap B	AO V F2 V AG V	145 43 125	0.48 .52
	89684 89741	63 Sgr	A8 V A2 V	::	::	7830	195094	ADS 13902B 120 Cap A	A2 Vn	250:	.57
	89763 89849	62 Sgr 15 Vul	A1.5 V Am (A8/A9/F3)		0.41	7832	195206	ADS 13902A	A9 IV	85	.61
	89900 90590 90781		A2.5 V A5 Vn A1 IV	240: 15p	.26p	7833 7835 7836	195217 195324 195325	42 Cyg 1 Del	Am (A3/A7/A7) Al Ib Al: III + shell	63 15 200:	.57 .53 .32
	1110		B9.5 Vp(HgMn) + B9.5 Vp (HgMn)	<10p <10s	.17p .12s	7839 7840	195479 195483	AUS 13920AB A ADS 13946A	Am (A1/A9/F2) B8 V	18 140	.47
	191174 191329 191747	ADS 13371A 18 Vul	A3 V A2 V A2 IV	32 30p 30p	.55 .54 .23p	7842 7848 7849	195549 195627 195692	ф ¹ Раv ADS 13964AB	AO V FO V Am (A2/F1/F0)	140 65	. 49
	191984	ADS 13506A	A0 Vn	150	.43	7850 7857	195725 195922	20 Cep	Am (A7/F1/F2) A0 Vp(4481 wk)n	51 185	.37
	192342 192425 192514	ADS 13506B ADS 13543A 67p Aq1 30 Cyg ADS 13554D	A2 IV:p(SrCrEu st, Ca wk) Am (A2/F2/F2) A1 V A2 V	160 165 160	.38 .50 .56	7858 7865 7871 7874	195943 196078 196180 196362	3n Del 45 Del 26 Vul	A2 IV A7 V A2 V A5 IIIS	100000 100000 100000	.51 .30 .46 .46 .46 .46 .46 .46 .46 .46 .46 .46
• •	192518	21 Vul	A5 Vn	205:	.55	18/0	T 7 0 3 / A	A	A9 II (Standard)	17	
	192538 192640	29 CYG	B9.5 Vp(4481 wk) A7 Vp(λ Boo, met.: A1, 4481 wk)	220: 35	.39	7877 7879 7883 7883	196385 196502 196544 196679	73 Dra 51 Del A	F3: V A9: Vp(CrSrEu st, Ca v. 1 A1 IV A1 V	wk) 10 30 150	. 35 . 56 . 50 . 50
	192696 192934 192983	33 CYG	A2 IVn A0 III A1 Vn	225: 190	.51	7891	196724 196821	29 Vul	AO IV AO IIIp(À Boo)s	10	.37
	193281 193281 193472 193495	ADS 13702A 36 CYG 8 Cap ADS 13692A	A2.5 V (A4/F0/F2) Am (A4/F0/F2) A2 LV	75 90 	.46 .51 .63 .46	7916 7913 7916 7917	196867 197051 197101 197120	9α Del ADS 14121A β Pav ADS 14149A	B9 IV (standard) A8 V F2 V A1 Vp(4481 wk)	125 :: 125	.41 .70 .40
	193621 193621 193807	ADS 13692B ADS 13728AB K ² Sgr	F3 V B9.5 Vp(4481 wk) + shell A1 V A6 V	270: 175	. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7920 7924 7928 7930	197157 197345 197461 197508	n Ind 50c Cyg ADS 14172A 116 Del	A9 IV A2 Ia (standard) Am (A7/F2/F0; 4481 wk) Am (A3/F1/F0)	30	
	194882 195050	ADS 13011A ADS 13850AB 40 CYG	A2 IV A2 V	30 120	0.52	7937 7938 7945	197725 197734 197950	17 Cap 4 Cep	A2 V A1 IV A7 Vn	130 25 160	.49 .43 0.61

rų,
S
∞
_
•
•
0
0
•
:
:
ŝ
JS
pJS
ApJS
ApJS
5ApJS
95ApJS
995ApJS
1995ApJS

4481 W(A)	0.57	.45	.37 .35 .54	.34	. 46	. 72 . 72	. 56 . 56	•		. 37 . 61 . 65	.19	. 37 . 41 . 20	.53 .65 0.57
V sin i km s ⁻¹	98	40	100 100 180	20 		125 130 81	70 65	•	55 35 31 31	15 0 88 85	15	175 15 205:	175 155 90
MK Classification	F2 IV	Am (A1/A2/A3)s A2 IV F1 IV A6 V	AO V A7 Vp(SrCrEu st, Ca wk) Am (A5/A6/A7)s A7: Vn	A1 IV A3 II	A0 Vp(Si st, CaMg wk)	FO IV Fl IV A9 III	A1 IV A7 IV F0 IV	Am (A4/FOV/F6)	A3 Vp(A Boo) A0 Vp(SrCrSiHg) F0 IV Am (A6/A9/F0)	A4 Vp(SicrHg) A2 IV A2 V A2 V A2 Vp(4481 wk)	A0 Vp(SiSr st, CaMg wk)	B9.5 VN Am (A5/F0V/F2) F2 IVp(Ca I, Mg II wk) A3 Vn	Al V A6: V A2 V
Other	651 CYG ADS 14787A	ε Mic 31 Cap A Ind	θ ¹ Mic ADS 14849A 5α Cep	106 Edu	ADS 14920A 0 ² Mic AB	18 Agr A A 20 Agr	ADS 14943A 19 Agr		ADS 14962A	35 Vul 6 PsA		8 PsA A	ADS 15142A 23ξ Aqr AB 3 Peg
Ĥ	202444	202606 202627 202723 202730	202923 203006 203096 203280	203439 203501 203562	203585 203696	203705 203803 203843	203858 203875 203925	204018	204041 204131 204153 204153 204188	204411 204414 204854 204943 204943 204965	205087	205314 205471 205539 205541	205765 205767 205811
HR	8130	8134 8135 8135 8139 8139	8147 8151 8155 8155 8162	8169 8174 8178	8180 8186	8187 8190 8192	8194 8195 8198	8202	8203 8206 8208 8208 8210	8216 8217 8217 8230 8235 8235 8235	8240	8246 8253 8257 8258 8258	8263 8264 8265
4481 W(A)	0.47 .47	.50 .54 .42	.53 .53	.34 .57	.67 .66	.62 .41	.53	.22p	.41s .52 .48 .32	.51 .37 .51	.57		
V sin i km s ⁻ 1	90 155	235: 125 15	40 63 . 73	95 145 145	78 91	140 200: 60	145 35	23p	55 55 80 80 80 80	195 10 55	115		 190 18
MK Classification	A1.5 V A1 IV	B9.5 IVn A2 V A1.5 IV	Al V A6 V Am (A5/A9/F3) F2 V A0.5 V	B9.5 Vp(4481 wk) A9 V A5 V	A6 V Am (A4/F0/F0)	F1 V A0 IIIn F0: Vp(Si v. st, met.CaMg	V. WK) A6 V A5 V:p(SiMg)	A3 IV	G0 II-III A3 IV A1 V B9.5 V	B9 Vp(Si)s Am (A2.5/A7V/A9)n 	Am (A0/A2V/A2)	A4 V A8 III B8 IIIp(SiSr st, He wk) A2.5 V	A7 Vn A7 II
Other	26 Agr 13 Del	ADS 14293A AB 14 Del	56 СУЗ А 6µ Адг 76 Dra	16 Del	ADS 14429A	ADS 14460A 58v CYG 20 Cap		12 Agr	AUS 143925 ADS 14592A 22n Cap AB 230 Cap	25X Cap A ADS 14682A ADS 14682B ADS 14682B 6 Equ	ADS 14/02D ADS 14710A	ADS 14710B AB	ADS 14761AB
£	198001 198069	198070 198151 198391	198552 198552 198743 198949 199095	199099 199124 199254	199443 199603	199611 199629 199728	199942 200052	200496	200497 200499 200761 201057	201184 201433 201616	201671	201707 201834 201834 202103	202128 202240
HR	7950 7953	7954 7958 7974	7981 7984 7990 7998 8002	8004 8006 8012	8018 8024	8025 8028 8033	8038 8045	8058	8059 8060 8075 8083	8087 8094 ••••	8101	8102 8106 8114	8116 8120

r4
S
∞
•
0
0
•
JS.
JS
pJS
ApJS
5ApJS
95ApJS
95ApJS
.995ApJS.
1995ApJS

4481 W(A)	0.32 .49 .38p	.445 .38 .41	.46 	. 66	.52 .544 .531	.56	oc. 	.52	• • • • • • • • • • • • • • • • • • •	.31.48	.42 .43	• 5 •	. 35 . 35 . 35	. 43	0.47
V sin ₁ km s ⁻ 1	70 36p	385 220: 80	145 •••	88 20	70 130 40:	86 130	160 	215: 210:	80 185 •••	180 80	160 155		110 110	70	48
MK Classification	AO III Am (A5/A9V/F2) Am (A3/F1/F2)	B9.5 Vnn B9.5 V	Al V A2 Vn A0 Vp(SiSr st, CaMg wk)	A9 III A3 Ib A7 Vh	A5 III A2 V A0 Vn A5 IV	A7 IV A4 IV	AZ VP(CA ST) FO III-IV Al IV	A0 Vn B9.5 Vnn	F0 IV A3 IVn F1 IV	A0 Vp(A Boo) B9.5 V	8 AO V AO V B9.5 Vn	A5: Vn F1 V	B9 II: A1 V A0 III	Al III Am (A2/A7/F0) Am (A9/F2/F2)	Am (A6/A8/A8)
Other	32 Agr § Cep	ALA LOGUA 23 Peg	µ PsA		26 ⁰ Peg 28 Peg		ψ Oct	,	ε Cep π Gru A	51 Agr	ADS 15902A1		57 ₀ Aqr	ß PSA 28p ¹ Cep 58 Agr	
Ð	209515 209625 209791	209833 209932	209993 210049 210071	210210 210221 210271	210300 210418 210419 210516	210594 210715	210739 210853 211096	211211 211287	211336 211356 212132	212150 212404	212495 212643 212710	212728 213135	213236 213272 213320	213398 213403 213464	213534
HR	8407 8410 8417	8419 8422	8429 8431 8434	8441 8443 8444 8444	8446 8450 8451 8451	8460 8463	8464 8471 8487 8487	8489 8491	8494 8495 8524 8524	8525 8533	8537 8542 8546	8547 8563	8569 8569 8573	8576 8578 8583	8584
4481 W(A)	0.57 .61 .60	.44 .61	. 50 . 22p	.55 .55 .14p .18s		.62	. 42 . 42	. 56	.52	.57	. 42 . 44 . 54		.36	.31 0.48	÷
V sin i km s ⁻¹	185 155 230:	10 135	140 140 13P	L 58 81 758 758	115	63	115	130	73 170 60	9 9 9 9 9 9	68 35 31	• • • • • •	270: 240:	260: 110	•
MK Classification	A3 Vn F0 IV A8: Vn	A9 IV F0 IV-V	Am (F0/F1V/F2) A2 V Am (A2/A6/A8) (SB2)	A8 V A0 V + A0 V (SB2)	A8 V A0 III-IV A0 V	Am (A4/FIV/FO)	A1 V A0 IV	A5.V A1 Ia	Am (A4/A7/F2) A0 Vn 21 TV	AI IV FI IV	F2 V Am (A1/A2V/A3)s Am (A1/A9V/F0)	AU (AZ/A9/52) A2 Vn F0 IV	A1 Vn B8 V D0 E V	A2 V	CO II
Other	74 CYG 5 Peg 4 Peg	WINTET STR	40Y Cap 76 Cyg A AB	44 Cap 77 Cyg AB	45 Cap 1 PSA A 79 CYG	49% Cap 49% Cap ADS 15314AB	^θ PsA 11 Peg	10v Cep	2 2 7	14 гед 51µ Сар	15 Peg ADS 15407A	alorci sur § Ind AB	17 Peg	29 Agr ADS 15562A	ADS 15562B
묘	205835 205852 205924	205939 206043	206088 206538 206538	206561 206644	206677 206742 206774 206774	207098	207155 207203	207260 207260	207503 207636 207656	207958 207958	207978 208108 208132	208321 208450	208565 208727 208727	209124 209124 209278	•
H	8266 8267 8270	8272 8276	8278 8291 8293	8295 8300	8302 8305 8307	8322	8326 8328	8332 8334 8334	8337 8342	8345 8345 8351	8354 8358 8361	8366 8368	8373 8377 8377	8389 8396 8396	•

4
S
\sim
•
•
0
0
0.0
SD
JS
ApJS
ōApJS
95ApJS
95ApJS
.995ApJS

4481 W(A)	0.44		. 33 . 44 46 			.53		. 40			. 44	.42.67
V sin i km s ⁻ 1	130	180	40 60 235: <10	245: 63 145 15	145 180 180 70	130	65 175 135 240:	160	52 50 50 50 50 50 50 50 50 50 50 50 50 50	110 35	180	165 70
MK Classification	AO IV AG Vn	A0 Vnn A3 V Am (Al/A3:/A7)s	F0 Vwl(met.: A5) A3 V A0 Vn G0 II-III + A3 V: Am A5/A7/F0)	A3 IIIN F0 IV A1 IV A2 V A1 IV	F2 III A9 V A0 Vn A0 Vp(SiSr st, CaMg wk) Am (A9/F1/F3)	B9.5 V	AO IV A4 III A5 Vp(A Boo) A3 Vn	A3 Vp(Ca II st, Mg wk)	B8 IIIS A2 Vp(SrCrSi st, Ca wk) A0 IIIp(Hg) A5 III	AO VP(S1) AO VP(S1) AO VP(Srcrsihg)	B9 Vn B9.5 IIIp(HgMnS1)	A8 III A0 V Am (A3/A9V/F2)
Other	54α Peg	v Gru ADS 16519A ADS 16519B	89 Agr 2 Cas ADS 16556A	59 Peg 7 And	γ Tuc 9 And	95ψ ³ Agr ΔDS 16671Δ	62t Peg	97 Aqr ADS 16708AB	8k Psc 69 Peg	100 Agr	ß Scl	101 Agr 14 Psc
Œ	218045 218108	218242 218395 ••••	218396 218525 218639 218640 218753 218753	218918 219080 219290 219402 219485	219571 219586 219659 219749 219815	219832	219841 219891 220061 220105	220278	220575 220825 220933 220933	221006 221357 221354	221491 221507	221525 221565 221675
HR	8781 8786 8786	8790 8798	8799 8806 8816 8817 8817 8822	8826 8830 8837 8840 8840	8848 8851 8856 8861 8861	8865	8867 8870 8880 8880	0688	8902 8911 8915 8915	8919 8932 8933	8936 8937	8938 8939 8944
	10					~ ~					<u>م</u> ،	4 0 00
448 W(A	0.4(1 4 .444 	4.0.4	.51	4.0	.94	50 4 • 1	.56 .67 .42	5.0.2	4 1	0
V sin ₁ i 448 km s ⁻ 1 W(A	115 0.46		115		145 .51 170 .64 98 .55	120 .40 155 .55	46	80 95 	60 .56 85 .67 50 .42	125 . 56 80 . 65 20 . 28	55 .4	195 0.4
MK Classification V sin i 448 km s ⁻¹ W(A	Al V 115 0.4	F2 V 83 .56 A2.5 V 115 .55 A2 V 120 .51	A0 V A2 IV-V A2 IV A2 IV A2 IV A1 V F0 Vp(A Boo; met.: A6) 93 .48	A2 IIIS A1 IV A2 V A7 IV A1 III (standard) 10 .46	A3 Vn B9.5 V F0 Vn A2 Vn F1 V F1 V F3 Vn F3 V F3 V F3 V F3 V F3 V F3 V F3 V F3 V	B9.5 V 120 .43 F0 V 155 .55	A0 Vp(SrCrEu) Am (A2/F1/F2) 46 .66 A3 Vp(4481 wk) 70 .41	A6 III 80 .55 A0 IV 95 .48 Am (A5/A7/F2)	A3 V (standard) 60 .56 A3 V (standard) 85 .67 A1 V 50 .42	F0 V 125 56 F2 IV-V 80 65 B9.5 Vp(HgMn st, CaMg wk) 20 22	A3 V 55 .4	A3 V A3 V A3 V A3 V A3 V A3 V A3 V A3 V
Other MK Classification V sin ₁ i 448 km s ⁻¹ W(A	7a Lac Al V 115 0.44 ADS 16021A	39 Peg F2 V 83 .55 ADS 16031A A2.5 V 115 .55 29p 26p A2 V 120 .51 ADS 16673 A0 V 755 43	A0 V A2 IV-V A2 IV A2 IV A2 IV A2 V A2 V A3 V A3 V A3 V A4 A3 V A4 A3 V A4 A3 V A4 A3 V A5 A4 A3 V A5 A4 A3 V A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	AB A2 IIIs 44 41 Peg A1 IV 25 .46 .46 30 Cep A2 V 155 .52 .60 .52 .46 β Oct A7 IV 15 <td< td=""><td>ASDS 16208A A3 Vn 67 Agr B9.5 V 145 .51 F0 Vn 170 .64 c Gru A2 Vn 98 .55</td><td>B9.5 V 120 .43 F0 V 155 .55</td><td>Y PSA AO VP(SrCrEu) ADS 16345A Am (A2/F1/F2) 46 .6 76 Agr A3 VP(4481 wk) 70 .43</td><td>1 PSC A6 III 50p Peg A0 IV 95 .48 1³ Gru Am (A5/A7/F2)</td><td>ADS 16389A A3 V (standard) 60 .56 24α PsA A3 V (standard) 85 .67 A1 V 50 .42</td><td>52 Peg F0 V 125 56 ADS 16428AB F2 IV-V 80 65 ADS 16443A B9.5 VP(HgMn st, CaMg wk) 20 28</td><td>A3 V 55 .4</td><td>2 And F2 IV 195 0.4 2 And A1 V 195 0.4 ADS 16467A</td></td<>	ASDS 16208A A3 Vn 67 Agr B9.5 V 145 .51 F0 Vn 170 .64 c Gru A2 Vn 98 .55	B9.5 V 120 .43 F0 V 155 .55	Y PSA AO VP(SrCrEu) ADS 16345A Am (A2/F1/F2) 46 .6 76 Agr A3 VP(4481 wk) 70 .43	1 PSC A6 III 50p Peg A0 IV 95 .48 1 ³ Gru Am (A5/A7/F2)	ADS 16389A A3 V (standard) 60 .56 24α PsA A3 V (standard) 85 .67 A1 V 50 .42	52 Peg F0 V 125 56 ADS 16428AB F2 IV-V 80 65 ADS 16443A B9.5 VP(HgMn st, CaMg wk) 20 28	A3 V 55 .4	2 And F2 IV 195 0.4 2 And A1 V 195 0.4 ADS 16467A
HD Other MK Classification V sin i 448 km s ⁻¹ W(A	213558 7α Lac Al V 115 0.44 ADS 16021A	21361/ 39 Peg F/2 V 83 .55 213660 ADS 16031A A2.5 V 115 .55 213798 29p ² Cep A2 V 120 .51 214019 ADS 160679 AD V	214035 A0 V 115 44 214150 A2 IV-V 115 44 214203 A2 IV 21 25 44 214279 A1 V 25 44 214454 9 Lac F0 Vp(A Boo; met.: A6) 93 48	214484 AB A2 IIIS 214698 41 Peg A1 IV 214734 30 Cep A2 V 214846 8 Oct A7 IV 214994 430 Peg A1 III (standard) 10 .40	215114 ASDS 16208A A3 Vn 215143 67 Aqr B9.5 V 215664 F0 Vn 215789 e Gru A2 Vn 215874 70 Aqr F1 V 98 .55	215907 B9.5 V 120 .43 216048 F0 V 155 .55	216336 Y ESA AO VP(SrCrEu) 216608 ADS 16345A Am (A2/F1/F2) 46 .6 216627 768 Agr A3 VP(4481 wk) 70 .4	216701 1 PSC A6 III 216735 500 Peg A0 IV 95 216823 1 Gru Am (A5/A7/F2)	216900 ADS 16389A A3 V 216956 24α PsA A3 V (standard) 85 .67 217186 A1 V (standard) 50 .42	217232 52 Peg F0 V ADS 16428AB 217236 F2 IV-V 217477 ADS 16443A B9.5 VP(HGMn st, CaMg wk) 20 .28	217491 A3 V 55 .4	21/498 A3 V 21/798 A3 V 21/754 A0 18 .44 21/754 A1 V 195 0.44 ADS 16467A A1 V 195 0.44

ROTATION AND SPECTRAL PECULIARITIES

HR	HD	Other	MK	Classification	V sin i km s ⁻¹	4481 W(A)
3949	221760	ı Phe	A0	Vp(SrCrEu)		
3954	221950	16 Psc	F2	Vp(G-band st)	16	0.19
2060	222095	74 Peg	A2 32	v TV	15	. 4 4
3963	222133	75 Peg	AO	Vn	215:	. 49
3968	222345	ω^1 Aqr	Α9	v	93	.62
3970	222377		Am	(A1/A9/F0)	50	.66
3971	222386	ADC 16012A	A2	V		
3973 3931	222399	ADS 10913A	A4	III	85	.60
8983	222602		А2	Vn	195	. 47
8984	222603	18λ Psc	A7	IV	60	.54
8988	222661	$105\omega^2$ Agr	В9	.5 IV	130	.44
9002	223024	107 Agr A	Α9	TTT	60	.68
9013	223274	70	A0	v	165	.50
9016	223352	δ Scl	A0	Vp(λ Boo)n	280:	.26
9017	223358	ADS 17021A	۵۵	Vp(SrSiCrHa)	68	. 45
9018	223385	6 Cas	A3	Ia+	30	.62
9019	223386	ADS 17022A	A0	III	25	.36
9022	223438	21 Psc	A 5	III	78	.55
9025	223461	79 Peg	A5	II-III	48	.54
9026	223466	ADS 17029A	Am	(A2/A5/A7)	60	.57
9028	223552	ADS 17032A	F2	IV-V	80	. 55
1606	223640	108 Agr	AU NO	vp(SISF St, Camg wk)	165	.20
9039	223781	82 Peg	AJ	v	103	• 52
9042	223855	25 Psc	В9	.5 V	50	.40
9043	223884		A3	Vn	210:	. 46
9044	223991	ADS 17090AB	Am	(A1/A7/A7)	23	. 42
9048	224103	26 Psc	A0 A1	IIIs V	20	. 37
	224303					
9060	224361		AZ	V	•••	•••
9062	224392	d Tuc	A2 30	TID(SiSrHast CaMay	(k) = 25	16
9080	224801		78	TIP(SISING SC, Cang w	28	50
9092	224995	31 Psc	A7	: IV	90	
9093	225003	32 Psc	А9	III	46	.50
9100	225180	9 Cas	A1	IVp(λ Boo)	25	.35
9102	225200		В9	IVs + A2 n	315:	.36
9105	225218		A3	IVp(λ Boo)s	20	0.34

 TABLE 2—Continued

NOTE.—Table 2 is published in computer-readable form in the AAS CD-ROM Series, Vol. 5, but with the "Other" column deleted.

stars; a plot for the early F stars in similar. These plots show a scatter of ± 8.1 and ± 9.7 km s⁻¹, respectively, which represent our estimated errors. The mean systematic errors are +0.2 and +1.1 km s⁻¹, respectively, which are insignificant. However, for $V \sin i > 225$ km s⁻¹ Slettebak et al. have only one standard, which they marked as uncertain, and we do not know how to extend the calibration curve (Fig. 1, top); our values for velocities greater than 200 km s⁻¹ may be uncertain and are marked with colons. However, we note that for the 26 stars with $V \sin i > 250$ km s⁻¹ our values are larger on the average by 19 ± 11 (s.e. in the mean) than those in the BSC; this difference is not significant, so that we agree on the average with previous measures. We rounded off our measures to the nearest 5 km s⁻¹.

The λ 4476 Fe I line could be measured only among the late A stars, or about 31% of the stars. We found that those measures give rotational velocities that average 6 km s⁻¹ lower than for λ 4481 Mg II. Therefore we added 6 km s⁻¹ to the measures from λ 4476 before averaging them with those of λ 4481. Thus

measures derived from both lines have means that are usually not rounded multiples of 5 km s^{-1} .

The rotational velocities are listed in fifth column of Table 2.

2.3. λ 4481 Equivalent Widths

The equivalent widths, W, of λ 4481 were determined from the Gaussian profile fits for the sharper-lined stars; the values are listed in the last column of Table 2. For the broader-lined stars where Gaussian curves do not fit the wings of the lines, we made pixel-by-pixel integrations, sometimes after performing 2 pixel smoothing first. Our only direct comparison is for HR 7001 = Vega, for which we derived 0.31 Å, and Adelman & Gulliver (1990) give 0.291 Å, which is well within our estimated error of 0.062 Å per star.

The equivalent widths range from 0.11 to 0.83 Å and aver-

age 0.54 Å. The mean values as functions of spectral type and luminosity class are listed in Table 3. For each of four luminosities we list the mean equivalent widths, the rms scatter per star, and the number of stars (n) included. When there were less than 10 stars in a bin, we grouped together the data for two or more spectral types. The rms scatter per spectrum is ± 0.062 Å for the main-sequence stars or 11% of the equivalent width. Of course this scatter is partly cosmic (real differences from star to star) and partly due to measuring errors, such as due to uncertainties in locating the continuum; we do not have the data to separate these sources.

Figure 2 shows these mean equivalent widths as functions of spectral type for four different luminosity classes. The error bars on the symbols are the errors in the means, namely, the rms times $(n - 1)^{-1/2}$. The curve drawn through the main-sequence (class V) stars is repeated in the lower three panels. Those show that within the errors, the relation fitting class V also fits classes IV-I for the late A stars. However, the early A stars of classes IV and III have lower equivalent widths, and those of classes II and I are higher. In fact, for classes II and I the equivalent widths can be fitted by a straight horizontal line within the error estimates. In all cases the equivalent width of $\lambda 4481$ is relatively insensitive to spectral type, so when that line is seen or measured to be weak, that cannot be attributed to a small classification error and must represent an underabundance.

We do not list or use the equivalent widths of 4476 Fe 1. They are generally less than 0.2 Å and vary rapidly with spectral type. And because we did not measure that line in all the late-type stars, the ones measured may be only the cases where

TABLE 3	
Mean Equivalent Widths of λ 4481 Mg ii in Normal St	ARS

		V ^a			IV ^a	
Type	$\langle W \rangle$	rms	n	$\langle W \rangle$	rms	n
A0	0.448	±0.062	102	0.415	±0.054	8
A1	0.465	0.059	84	0.450	0.051	53
A2	0.507	0.060	143	0.464	0.062	56
A3	0.522	0.063	84	0.495	0.072	21
A4	0.518	0.058	20	0.518	0.054	18
A5	0.546	0.057	36	0.551	0.081	16
A6	0.573	0.058	44	10.500	0.050	10
A7	0.583	0.066	44	0.598	0.050	19
A8	0.591	0.058	25) 0.577	0.000	10
A9	0.593	0.069	30	0.577	0.098	18
F0	0.589	0.073	54	0.570	0.105	36
F1	0.561	0.096	21	0.602	0.082	13
		IIIª			II, I ^a	
A0 A1	0.397 0.415	0.040 0.039	23 24	0.554	0.090	14
A2 A3, A4 A5	0.473 0.502 0.538	0.062 0.115 0.061	11 12 14	0.580	0.071	10
A6, A7 A8, A9 F0, F1	0.579 0.644 0.494	0.063 0.111 0.177	13 12 8) 0.563	0.099	10

^a Luminosity class.

FIG. 2.—Equivalent widths, W, of the λ 4481 Mg II lines in normal stars of various spectral types (abscissas) for various luminosity classes as marked. The error bars are standard errors in the mean values. Those errors, that average 11% of the equivalent width per star, are due partly to cosmic scatter and partly to measuring errors. The free-hand curve through the data for the class V stars is transferred to each of the lower three panels for a comparison of values.

the line is normal or unusually strong, so mean values might be misleading.

3. DISCUSSION

3.1. Mean Rotational Velocities

The observed mean rotational velocities for normal stars are listed in Table 4 as a function of spectral type (horizontally) and luminosity class (in four vertical sections). In cases of less than 10 stars we grouped together the measures for several types. At each type and class we give the number of stars measured (n), the mean projected rotational velocity ($\langle V \sin i \rangle$), the estimated standard error in those means (s.e./mean), and the dispersions in the velocities (s.e.).

For class V stars the mean projected rotational velocities are shown in the top panel of Figure 3. We see the well-known decrease from large values in the Bs to small values in the Fs. But the scatter seems excessive in view of the numbers of stars included and the standard errors of the means. A least-squares linear regression shows a decrease from 149 km s⁻¹ at A0 to 111 km s⁻¹ at F0. Relative to that, the scatter is 12.0 km s⁻¹, whereas the mean expected error (Table 4, line 4) is \pm 7.9 km s⁻¹. Therefore the scatter is real at the 1.5 σ level. It shows up primarily as a unexpected rise for A4–A6. Without those three

Vol. 99

1995ApJS...99..135A

				A.	Class V						
Туре	A0 A1		A2	A3	A4	A5	A6	A7	A8	A9	F0
$n \dots \langle v \sin i \rangle$	104 150	86 131	143 132	83 124	21 147	36 148	44 138	43 112	25 114	31 132	46 106
s.e./mean s.e	±7 ±68	7 61	5 61	7 64	13 56	8 46	7 45	8 54	11 52	8 44	7 50
				B.	Class IV				·		
Туре	A0	A	.1	A2	A3	A4-A	15	A6-A7	A	8-A9	F0
$n \dots \langle v \sin i \rangle \dots \\ \text{s.e./mean} \dots \\ \text{s.e.}$	10 79 ±11 ±34		19 53 8 55	57 51 6 48	20 79 13 57	21 107 12 53		21 104 7 33		17 80 12 50	36 83 7 40
				C.	Class III						
Туре	А	.0	Al	A2-A3		A4-A5		A6-A7			A8-F0
$n \dots \langle v \sin i \rangle \dots \\ \text{s.e./mean} \dots \\ \text{s.e.}$	±	24 62 14 67	4 23 2 55 4 13 7 59		21 66 16 69		20 65 9 40	13 80 13 46			18 64 7 28
		D.	Varia	tion with	h Lumino	osity and	Туре				
	C	CLASS II		CLAS	s Ib	CLA	ss Ia		Cl	ass II-l	a
Type	1	A0-F0		A0-	F0	A0	-F0	Α	0-A4		A5-F0
n		10 20 ±4 ±12		14 23 3 11	k 3 1	9 31 3 7			20 27 ±2 +10		13 21 3 11

TABLE 4	
MEAN PROJECTED ROTATIONAL VELOCITIES (km s^{-1}) FOR NORMAL STAF	ł۶

points that scatter is ± 9.6 km s⁻¹, not much larger than the expected value of ± 7.9 km s⁻¹. We will discuss below the reason for the high values between A4 and A6.

Skipping momentarily to class III, a least-squares linear regression of the mean velocities shows a small increase from 60 km s⁻¹ at A0 to 73 km s⁻¹ at F0 (see Fig. 3, third from the top). If we use the visual luminosity decrease by 1.3 mag between A0 and F0 (Blaauw 1963), the small change in bolometric corrections (assuming them to be the same as for dwarfs), and the temperature decreases by a factor of 0.74, we would expect the radii to be smaller by a factor of 0.85 and the rotational velocity to be larger by a factor of 1.17 at F0 relative to A0. This is almost exactly the same as the observed increase by a factor of 1.21. The scatter of ± 6.4 km s⁻¹ is smaller than the expected value of ± 11.9 km s⁻¹. Therefore the small change in rotational velocities is entirely as expected, and the scatter is smaller than expected.

Turning now to class IV stars, we see the same peak at types A4–A6 as among the dwarfs and a small increase from A0 to F0 among the remaining stars as among the giants. A linear regression for the remaining stars shows an increase from 66 km s⁻¹ at A0 to 82 km s⁻¹ at F0 and a scatter of ± 9.9 km s⁻¹ compared with a mean value of ± 9.7 km s⁻¹. Using the abso-

lute visual magnitudes, bolometric corrections, and temperatures for A0 and F0 stars, we predict a rotational velocity at F0 of 1.24 that at A0, while the above slope gives a factor 1.29. Thus the agreement is good, and we are left only with explaining the hump at A4–A7.

The results for luminosity classes II-Ia are understandable. The left block in Table 4D shows the variation with luminosity (with all types combined), and the right block shows the variation with type (with all luminosities combined). The limited numbers of stars force these large groupings. The left block shows an increase in line width with luminosity. That had been found earlier by Abt (1957) and interpreted as an increasing contribution from macroturbulence in the stellar atmospheres. At luminosity class II there is a sizeable contribution of rotation to the line widths, which range from 10 to 43 km s⁻¹ and have a dispersion of 12.2 km s⁻¹. At class Ia the range of line widths is only from 25 to 45 km s^{-1} with a dispersion of only 7.2, showing that much of the line width is due to turbulence that, unlike rotation, probably does not vary from star to star by aspect effect. The right block in Table 4 shows the decrease in rotation with decreasing temperature at a nearly constant luminosity. For the two mean types (A1.2 and A7.9) and with luminosities (of Ib stars) given by Blaauw (1963) and bolo-

FIG. 3.—Mean projected rotational velocities for normal stars of various spectral types (abscissas) and for various luminosity classes as marked. The error bars are standard errors in the mean values; they average about $\pm 8 \text{ km s}^{-1}$.

metric corrections and temperatures given by Allen (1973), we would expect the rotational velocities at the latter type to be 0.71 times those at the earlier type. The discrepancy with the observed factor of 0.79 is probably due to the fact that the line widths are caused partly by turbulence.

We can estimate the atmospheric macroturbulent velocities among the luminous stars if we make three reasonable assumptions. One is that the mean rotational velocities along the upper main sequence do not vary substantially with type, which is true within a factor of 1.2 (Abt & Hunter 1962). A second is that during evolution off the main sequence, stars conserve their angular momentum in shells, rather than in solid-body rotation, which is true if mass loss does not carry away much of the angular momentum (Oke & Greenstein 1954; Abt 1958). Third, we will assume a macroturbulent velocity for A5 III stars of 5 km s⁻¹, but the results would be trivially different if we selected 2 or 10 km⁻¹.

For A5 stars of luminosity classes III, II, Ib, and Ia the mean line broadenings are 65, 20, 23, and 31 km s⁻¹. From their mean luminosities we can obtain relative radii, and we assume from the above that their rotational velocities are inversely proportional. This gives rotational velocities of 65, 19, 7, and 2 km s⁻¹. Differencing these as squares we derive macroturbulent velocities of 5, 7, 22, and 31 km s⁻¹, respectively.

3.2. Deconvolution of the Rotational Velocities

Our line widths yield values of the components of the equatorial rotational velocities, V, projected along the lines of sight, namely, $V \sin i$. The values of the inclinations, i, between the lines of sight and the rotational axes are generally not known except in the rare cases of (1) eclipsing binaries (where $i_{orbital} = 90^{\circ}$ and strong tidal effects will ensure that the rotational axes are roughly parallel to the orbital axes) and (2) variable Ap and spotted stars where independent determinations of the rotational periods are available. But for the bulk of our stars we will have to make an assumption about i to convert from measured values of $V \sin i$ to V.

We will assume that for a large sample of stars there is a random orientation of rotational axes with respect to the lines of sight. The justifications for this assumption are three. First, Huang & Wade (1966) explored the frequency of eclipsing binaries as a function of Galactic latitude, reasoning that if there is any preferred orientation of binaries in the Galaxy, it would be such that the orbits would tend to lie in the Galactic plane. They found no dependence upon Galactic latitude, implying a random orientation of axes. Second, as was mentioned above, variable Ap stars yield independent determinations of the rotational periods from the variation of the abundance or temperature spots in their photospheres. Then a comparison of the two period determinations, one of which is dependent upon the unknown inclinations, yields values of the inclinations. That test was made by Abt, Chaffee, & Suffolk (1972) for 22 stars. They found agreement between observed values of *i* and a random distribution of such values. Third, for visual binaries one can determine the orientations of the orbits in three dimensions. Batten (1967) found a random distribution of orbital axes plotted in Galactic coordinates. Dommenget (1988) confirmed that, at least on Galactic scales larger than 30 pc. The median distance of our stars is about 60 pc. Another test is to see whether in triple visual systems there is any tendency to have coplanar orbits. Worley (1967; see also Batten 1973) found no such tendency. Of course, the tidal effects in visual binaries are very small, but all these studies strongly imply that a random distribution of the rotational axes of field stars is a reasonable assumption.

Let us divide the stars into three groups with types of A0– A1, A2–A4, and A5–F0. The counts of the numbers of stars of various kinds are given in Table 5 for general interest. The group called "4481 weak" include both the λ Bootis stars and the less extreme cases where only λ 4481 is noted to be weak. Please note that even if the BSC were complete to a given apparent magnitude, the frequencies given in Table 5 are limited by apparent magnitude, so that the more luminous stars are overrepresented relative to a sample limited to a given volume of space. In this sample of 1383 A0–F0 stars, 48.0% are of class V, 27.6% are of class IV–I, 6.4% are Ap, 9.3% are Am, 8.1% are λ Boo or λ 4481 weak, and 0.6% are shell stars. Roughly half are dwarfs, one-quarter are normal stars above the main sequence, and one-quarter are peculiar. The remaining stars in Table 2 are earlier than A0 or later than F0.

Note in Table 5 that the mean rotational velocities of the λ 4481-weak stars are similar to those of the other dwarfs, and their dispersions are only slightly larger. We conclude that the

No. 1, 1995

INDLL J	TA	BL	E	5
---------	----	----	---	---

						λ 4481			
	v	IV	III	II	I	Ap	Am	Weak	Shel
				A0-A	1				
n	188	60	45	4	11	43	3	58	5
Percent	45	14	11	1	3	10	1	14	1
$\langle v \sin i \rangle$	142	62	52	20	29	32	30	145	212
s.e	±65	48	55	15	10	22	30	85	24
				A2-A	4				
n	242	84	25	0	6	29	9	31	3
Percent	56	20	6	0	1	7	2	7	1
$\langle v \sin i \rangle$	131	62	68		26	41	42	122	200
s.e	62	51	68	•••	7	38	33	76	23
				A5-F	0				
n	234	79	54	6	8	17	116	23	0
Percent	44	15	10	1	1	3	22	4	0
$\langle v \sin i \rangle$	125	89	73	23	23	30	46	134	
s.e	50	44	36	13	14	21	29	64	

Frequencies of Various Kinds of Stars in a Sample Limited by Apparent Magnitude

 λ 4481-weak peculiarity is not dependent upon rotational velocity. Therefore we will group the λ 4481-weak stars together with the normal stars of class V and compare them with the Ap+Am stars.

For each range in spectral type we will deconvolve the class $V + \lambda 4481$ -weak stars and the Ap+Am stars. The results are given in Figures 4–6.

FIG. 4.—Distributions of equatorial rotational velocities, V, for two samples of A0-A1 stars. The right distribution is for 188 normal class V stars plus 58 stars with weak λ 4481 lines plus five shell stars; the distribution on the left is for 46 Ap+Am stars whose peculiar abundances are thought to be due to diffusion. The areas under the curves are proportional to their relative frequencies in the BSC.

In Figure 4 we see the distributions for 46 Ap+Am stars (crosses) and for 188 normal A0+A1 V plus 58 λ 4481-weak plus five shell stars (circles). The proportions are 15:85. Please note that all of the rapid rotators ($V > 120 \text{ km s}^{-1}$) are normal stars or ones in which rotation-dependent diffusion effects are not acting while most of the stars that rotate more slowly are peculiar stars in which diffusion is occurring. But there is an overlap of 9%, namely, about 26 stars that are rotating slower than 120 km s⁻¹ and that seem to have normal spectra. Let us discuss the other two spectral ranges before trying to explain this lack of a complete dichotomy.

In Figure 5 we show the distributions in V for 38 Ap+Am stars (crosses) and for 242 A2-A4 V plus 31 λ 4481-weak plus three shell stars (circles). The proportions are 12:88. The only stars labeled Ap or Am and with V sin i > 120 km s⁻¹ are HR 8464 and HR 8890, each with V sin i = 160 km s⁻¹; they are called peculiar because their Ca II K lines are too strong. Such stars are neither regular Ap nor Am stars that always have very weak Ca lines due to diffusion, but we do not know what they are. Otherwise all stars with V > 120 km s⁻¹ are normal or λ 4481-weak, and most of the stars rotating more slowly are Ap or Am. There is an 7% overlap, corresponding to 21 too many normal stars with sharp lines.

In Figure 6 we show the distributions in V for 133 Ap+Am stars (crosses) and for 234 A5-F0 V plus 23 λ 4481-weak stars (circles). The proportions are 34:66. Here the only star labeled as Ap or Am and with V sin i > 120 km s⁻¹ is HR 3798 = S Ant, a SB1 with a period of 0.648345. Its rotational velocity of 155 km s⁻¹ indicates likely synchronism of rotational and orbital motions. But it is a marginal Am star. Aside from that star, all the rapid rotators with V sin i > 120 km s⁻¹ have normal or λ 4481-weak spectra, and most of the stars that rotate more slowly have Ap or Am spectra. There is an 10% overlap, corresponding to 39 too many normal stars with sharp lines.

FIG. 5.—Distributions of equatorial rotational velocities, V, for two samples of A2–A4 stars. The right distribution is for 242 normal class V stars plus 31 stars with weak 4481 lines plus three shell stars; the distribution on the left is for 38 Ap+Am stars whose peculiar abundances are thought to be due to diffusion. The areas under the curves are proportional to their relative frequencies in the BSC.

These three figures show consistently that whereas all the rapid rotators (well-mixed stars) have normal spectra or the accreted metal-poor material called λ 4481-weak, not all the slow rotators (relatively unmixed stars) have peculiar spectra. We are left with three possible explanations: (1) rotation is not the only criterion that determines whether a star has a normal or abnormal spectrum, (2) rotation is the sole criterion but there is a time lag, particularly in the case of tidally interacting

FIG. 6.—Distributions of equatorial rotational velocities, V, for two samples of A5–F0 stars. The right distribution is for 234 normal class V stars plus 23 stars with weak λ 4481 lines; the left distribution is for 133 Ap+Am stars whose peculiar abundances are thought to be caused by diffusion. The areas under the curves are proportional to their relative frequencies in the BSC.

binaries, between the first occurrence of a slow rotation and the appearance of the abundance peculiarities, or (3) we have not isolated all of the peculiar stars with our MK classification. If we find that explanations (2) and (3) are invalid, we will be forced to accept explanation (1).

3.3. Alternate Explanations for the Overlap in Rotational Velocity Distributions

Let us consider the time-lag explanation first. In spectroscopic binaries of relatively short periods there is a tidal interaction that gradually slows the stellar rotational velocities until they are synchronized with the orbital periods. For Atype stars (Levato 1976) that are not young, synchronization has occurred in essentially all binaries with periods less than 2– 3 days, while most of those with periods less than 20 days or more have rotational velocities less than 120 km s⁻¹. A related effect, namely, the time it takes to achieve orbital circularization in binaries, has received considerable attention recently (e.g., Goldman & Mazeh 1991). Although there remain large discrepancies between theoretical models and the observations, the latter imply times of the order of 5×10^9 yr for a 10 day binary.

Among the known data in the BSC for the A0–A1 V stars and λ 4481-weak stars, there are 17 known spectroscopic binaries with periods less than 20 days and rotational velocities of $V \sin i < 100$ km s⁻¹. That already goes a long way toward accounting for the 29 excess sharp-lined normal stars that produce the overlap in the rotational-velocity distributions. That is a minimal number because most of the fainter BSC stars lack sufficient published radial-velocity measures to detect all the binaries, let alone to determine their orbital periods. Therefore Abt and Willmarth are currently conducting a study of the fraction of short-period binaries among the sharp-lined normal A-type stars.

However, this mechanism to reduce the rotational velocities will not explain the excess of sharp-lined normal stars for the simple reason that the timescale for the diffusion process to produce Ap and Am spectra is considerably faster than the timescale for the production of slow rotators. For instance, Michaud et al. (1976) found that the separation of He takes 10^{5} -10⁶ yr, and observations show that the Orion OB1 Association with an age of 5×10^6 yr has Am stars (Smith 1972), as does the Orion Nebulae cluster (Levato & Abt 1976) with an age of 5×10^5 yr. These should be compared with a time of the order of 10⁹ yr to reduce the rotational velocities below 120 km s⁻¹ by tidal interactions for orbital periods of roughly 10 days. Thus as soon as the rotational velocity of a star in a binary has dropped below the 120 km s⁻¹ limit, the star quickly develops the Am characteristic with the result that we should see very few normal spectra with rotational velocities below that limit.

Let us turn now to the third possible explanation for the overlap of the rotational velocity distributions of peculiar and normal stars, namely, that we have failed to discover all of the peculiar stars in our sample.

Among the standards (Morgan et al. 1978) at A0 are HR 7001 = α Lyr at A0 Va and HR 5291 = α Dra at A0 III. However the equivalent widths of their λ 4481 lines are 0.31 and 0.32 Å, respectively, which are considerably lower values than for other normal stars of those types (see Fig. 2). Furthermore,

No. 1, 1995

..99..135A

1995ApJS

Adelman & Gulliver (1990) have shown that those two stars are underabundant in Mg II relative to the Sun by factors of 4.9 and 2.5, respectively. Also many other metals and He I are underabundant in these two stars by factors up to 10 relative to the Sun, so they are abnormal stars, rather than normal ones. In Table 2 these two stars are now labeled "standard," implying that we used them as standards in our classifications but we no longer consider them to be normal.

The realization that two of our primary standards are not normal means that many of our program stars are also abnormal but have been misclassified as normal. If that were the end of it, we could reclassify the stars near A0 for which we used α Lyr and α Dra as standards. But how many others of our standards are really abnormal if they were studied spectrophotometrically? Some have broad lines, and for those it would be very difficult to obtain good abundance measures. However we did relook at the strengths of λ 4481 by using as standards only HR 343, 403, 669, 4033, 4359, 7906, and 8641. Thus at least the identification of " λ 4481-weak" stars has been revised using the better standards. The results for the A0-A1 stars are shown in Figure 7 where nearly all the stars with λ 4481 equivalent widths larger than 0.4 Å are normal, essentially all the stars with λ 4481 equivalent widths less than 0.3 A are Ap or λ 4481weak, and the region between 0.3 and 0.4 Å contains normal and peculiar stars, perhaps because of the ± 0.062 Å accuracy of our measures (see § 2.3). Because both the λ 4481 equivalent width measurements and the visual classifications have errors in them, there will be marginal cases in which one criterion says that a star is normal and another says that it is abnormal.

The realization that many of the sharp-lined "normal" stars might really be abnormal stars tells us that visual MK classification may not be a complete way to discover all the abnormal stars, while full spectrophotometric studies for many stars are

FIG. 7.- The numbers of A0-A1 stars with various equivalent widths cf the λ 4481 Mg II lines. The blank area marked "V" represent normal class V stars; the star Vega, thought to be a standard but recently found to be an Am star, has W = 0.31 Å. The values for the Ap+Am stars have single hatching while those representing the λ Boo plus λ 4481-weak stars have cross-hatching. The prototype star λ Boo has W = 0.11 Å.

not practical; an intermediate technique that might work is to measure one or a few lines on CCD spectra as we have done for λ 4481 or to make photoelectric measures as Henry & Hesser (1971) did for the Ca II K line.

A related effect is that discovered for many stars classified A2 IV (plus some at A1 IV and A3 IV). Whenever we classified a star as such, we usually noticed that it had sharp lines. Whereas A2 V stars have a mean rotational velocity of 132 km s^{-1} (Table 4), those of type A2 IV average only 51 km s^{-1} . That difference is too large to be explained by the small evolutionary expansion between those types. Furthermore the equivalent widths of λ 4481 are substantially lower for A0-A3 IV than for the A0-A3 V stars (see Table 3 and Fig. 2). When we looked at the strengths of the Ca II K line in the photometry of Henry & Hesser for those stars in our list that also occurred in theirs, we found that the A2 IV stars had weaker K lines than the A2 V stars by an amount that corresponds to a difference of one spectral subclass. So perhaps roughly half of the stars classified as A2 IV seem to be like other peculiar stars in having low rotational velocities and weak Mg II and Ca II lines; the other half may be the normal evolutionary descendents of the normal class V stars. Here we have a possible class of peculiar stars that has not been recognized before but with Mg underabundances of the order of a factor of about 5.

We now return to the problem mentioned in § 3.1 on mean rotational velocities, namely, the effect shown in Figure 3 where the class V and IV stars of types A4-A6 have rather high mean rotational velocities. Or those curves can be viewed as having dips around A2, just where we found the admixture of stars with weak λ 4481 and K lines. Most Ap stars occur among the early As and most of the Am stars occur among the late As; if there are similar peculiar stars that we missed and called them normal, their low rotational velocities would depress the means for the early As and late As, leaving a maximum between them.

A final question is that if members of relatively closely spaced binaries are partly or completely synchronized in rotational velocities, why are not their primaries invariably peculiar stars due to diffusion? We considered the 34 A0-F0 known double-lined spectroscopic binaries because for those we can estimate their orbital inclinations by assuming normal masses for their primaries. Of the 34, 16 have Am primaries, one is a λ Boo star, two are of luminosity class III (the Am effect disappears after a star leaves the main-sequence region), two have periods of 72 and 9890 days for which we would expect no tendency toward synchronization, two have derived rotational velocities of 189 and 199 km s⁻¹ (much too large for diffusion to occur), three have rather weak λ 4481 lines (0.19–0.32 Å) and are probably peculiar in abundance, and two have marginally long periods of 16–20 days for synchronization to occur; that leaves only six binaries to explain, and four of those are of types A1-A3 IV that we suspect to be marginally peculiar. Therefore the "normal" close binaries do not provide a strong objection to our conclusion that if the rotational velocities of A-type stars are less than about 120 km s^{-1} , the stars definitely or probably have peculiar abundances.

To summarize, we tentatively conclude that the overlap in rotational velocity distributions between peculiar and normal stars is due to our failure to detect all of the peculiar-abundance stars and that if we had detected them, the rotational velocity

172

of a star would be adequate to determine whether its spectrum would be peculiar or normal. The evidence is the following (1) some of our primary standards, such as Vega and Thuban (α Dra), have now been found to be peculiar: therefore other stars labeled normal by us are also probably peculiar, (2) part, at least, of the stars classified A2 IV and of neighboring types are peculiar in having unusually low rotational velocities, weak Mg II λ 4481 lines, and weak Ca II K lines, implying a previously unrecognized kind of peculiarity, and (3) the mean rotational velocities of class V and IV stars shows excessive scatter that could be explained by undetected peculiar stars that have a spectral distribution similar to the Ap+Am stars.

One final effect should be mentioned. van den Heuvel (1968) found that among many types in the B's and A's there are bimodal distributions in rotational velocities with a maximum near zero and a second maximum near 150 km s⁻¹. We do not find such bimodal distributions in the A's, perhaps because our new classifications, based on hydrogen types that more nearly represent the stellar effective temperatures, do not put the sharp-lined Ap and Am stars at the wrong types.

REFERENCES

- Abt, H. A. 1957, ApJ, 126, 503
- ——. 1958, ApJ, 136, 658
- ------. 1961, ApJS, 6, 37
- _____. 1979, ApJ, 230, 485
- Abt, H. A., Chaffee, F. H., & Suffolk, G. 1972, ApJ, 175, 779
- Abt, H. A., & Hunter, J. H., Jr. 1962, ApJ, 136, 381
- Abt, H. A., & Moyd, K. I. 1973, ApJ, 182, 809
- Abt, H. A., & Snowden, M. S. 1973, ApJS, 25, 137
- Adelman, S. J., & Gulliver, A. F. 1990, ApJ, 348, 712
- Aitken, R. G. 1932, New General Catalogue of Double Stars Within 120° of the North Pole, Carnegie Institution of Washington Publ. 417
- Allen, C. W. 1973, Astrophysical Quantities (3d ed.; London: Athlone), 206
- Babcock, H. W. 1958, ApJ, 128, 228
- Baschek, B., & Searle, L. 1969, ApJ, 155, 537
- Batten, A. H. 1967, in On the Evolution of Double Stars, ed. J. Dommenget, Comm. Obs. Roy. Belgique, Ser. B, 68
- . 1973, Binary and Multiple Systems of Stars (Oxford: Pergamon), 68
- Blaauw, A. 1963, in Basic Astronomical Data, ed. K. Aa Strand (Chicago: Univ. Chicago Press), 401
- Charbonneau, P. 1991, ApJ, 372, L33
- Conti, P. S. 1969, ApJ, 156, 661
- Cowley, A., Cowley, C., Jaschek, M., & Jaschek, C. 1969, AJ, 74, 375
- Dommenget, J. 1988, in IAU Colloq. 97, Wide Components in Double and Multiple Stars, Ap&SS, 142, 171
- Goldman, I., & Mazeh, T. 1991, ApJ, 376, 260
- Gray, R. O., & Garrison, R. F. 1987, ApJS, 65, 581
- ------. 1989a, ApJS, 69, 301
- ------. 1989b, ApJS, 70, 623
- Henry, R. C., & Hesser, J. E. 1971, ApJS, 23, 421

- Hoffleit, D., & Jaschek, C. 1982, The Bright Star Catalogue (4th rev. ed.; New Haven: Yale Univ. Observatory)
- Huang, S.-S., & Wade, C., Jr. 1966, ApJ, 143, 146
- Levato, H. 1976, ApJ, 203, 680
- Levato, H., & Abt, H. A. 1976, PASP, 88, 712
- Michaud, G. 1970, ApJ, 160, 641
- ——. 1982, ApJ, 258, 349
- Michaud, G., Charland, Y., Vauclair, S., & Vauclair, G. 1976, ApJ, 210, 447
- Michaud, G., Tarasick, D., Charland, Y., & Pelletier, C. 1983, ApJ, 269, 239
- Morgan, W. W., Abt, H. A., & Tapscott, J. W. 1978, Revised MK Spectral Atlas for Stars Earlier than the Sun (Yerkes Obs., Univ. Chicago, and Kitt Peak National Obs.)
- Morgan, W. W., Keenan, P. C., & Kellman, E. 1943, An Atlas of Stellar Spectra (Chicago: Univ. Chicago Press), 20
- Oke, J. B. 1967, ApJ, 150, 513
- Oke, J. B., & Greenstein, J. L. 1954, ApJ, 120, 384
- Slettebak, A., Collins, G. W., II, Boyce, P. B., White, N. M., & Parkinson, T. D. 1975, ApJS, 29, 137
- Smith, M. A. 1972, ApJ, 175, 765
- Strom, S. E., Gingerich, O., & Strom, K. M. 1966, ApJ, 146, 880
- Sweet, P. A. 1950, MNRAS, 110, 548
- Tassoul, J.-L., & Tassoul, M. 1982, ApJS, 49, 317
- Titus, J., & Morgan, W. W. 1940, ApJ, 92, 256
- van den Heuvel, E. P. J. 1968, Bull. Astron. Inst. Neth., 19, 309
- Venn, K. A., & Lambert, D. L. 1990, ApJ, 363, 234
- Wolff, S. C., & Preston, G. W. 1978, ApJS, 37, 371
- Worley, C. E. 1967, in On the Evolution of Double Stars, ed. J. Dommenget, Comm. Obs. R. Belgique, Ser. B, 221

1995ApJS...99..135A