THE RELATION BETWEEN ROTATIONAL VELOCITIES AND SPECTRAL PECULIARITIES AMONG A-TYPE STARS

Helmut A. Abt
Kitt Peak National Observatory, NOAO, ${ }^{1}$ Box 26732, Tucson, AZ 85726-6732; apj@noao.edu
AND
Nidia I. Morrell ${ }^{2}$
Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, La Plata, Argentina
Received 1994 July 18; accepted 1994 December 6

Abstract

We obtained new data to determine whether the spectral appearance of A-type stars is entirely determined by their rotational velocities. For this purpose we derived rotational velocities for 1700 northern A-type stars from CCD coudé spectra, calibrated with the new Slettebak et al. system, and new MK classifications based on wide photographic Cassegrain spectra for 2000 northern and some southern stars in the Bright Star Catalogue. In addition we determined the equivalent widths of the $\lambda 4481 \mathrm{Mg}$ II lines in the coude spectra. Tables and graphs show the variations of rotational velocities and $\lambda 4481$ line strengths as functions of type and luminosity, and frequencies of the normal and abnormal stars.

After deconvolutions of the rotational velocities, assuming random orientations of rotational axes, we find that all rapid rotators have normal spectra and nearly all slow rotators have abnormal spectra (Ap or Am). Those abnormalities are generally attributed to diffusion and can occur only with little rotational mixing. However at all types there are overlaps of these distributions, implying that a given intermediate rotational velocity is insufficient to determine whether the star should have a normal or abnormal spectrum. However, we realized that (1) some of our "standards," such as Vega and α Dra, are really abnormal, causing us to classify similar peculiar stars as "normal," (2) many of the "normal" stars near A2 IV have the characteristics of peculiar stars such as low rotational velocities and weak 4481 Mg II and K lines, and (3) the mean rotational velocities of "normal" stars are depressed just at those types where the Ap and Am stars are most frequent. Therefore we conclude that the overlaps are due to our failure to detect all the abnormal stars and that a specific rotational velocity is probably enough to determine whether a star will have a normal or abnormal spectrum.

Subject headings: stars: chemically peculiar — stars: early-type - stars: fundamental parameters stars: rotation

1. INTRODUCTION

Among the A-type main-sequence stars there are several types of peculiarities. First, the metallic-line (Am) stars (Titus \& Morgan 1940) are mostly very obvious because they have metallic lines as in early F-type stars, strong hydrogen lines as in late A-type stars, and very weak $\mathrm{Ca}_{\text {I }}$ ($\mathrm{\lambda} 4427$) and Ca II K lines as in early A-type stars. There are also similar peculiarities among the early A's, of which Sirius (Strom, Gingerich, \& Strom 1966) is a good example. Such stars show a smaller range in types, for example, for Sirius: $\mathrm{Am}(\mathrm{K} / \mathrm{H} / \mathrm{M}=\mathrm{B} 9.5$ / A0/A1). They are difficult to identify without abundance studies or high-quality classification spectra. The Am stars do not have significant magnetic fields: Conti (1969) found that they are less than 50 G . Am stars are usually found in spectroscopic binaries (Abt 1961).

A second class of peculiar stars are the peculiar A stars (Ap) that have much more extreme abundance anomalies, ranging

[^0]up to factors of 10^{4} or more above or below normal solar abundances, rather than the factors of 10 or so found in the Am stars. Although many of these stars have temperatures and masses of B stars, their underabundances of He has caused spectral classifiers to call them A stars, hence Ap. They have strong magnetic fields (Babcock 1958), except in the case of the HgMn stars. The magnetic Ap stars are infrequently found in close binaries (Abt \& Snowden 1973).
The explanations for both kinds of peculiarities seem to be in the occurrence of radial diffusion of ions between the two outer convective zones in the absence of meridional circulation associated with rapid rotation (Michaud 1970). For Atype stars the effects are calculated to show up (Michaud et al. 1976) in $10^{4} \mathrm{yr}$ for $\mathrm{Sr}, 10^{5}-10^{6} \mathrm{yr}$ for He , and longer for heavy metals. The occurrence of such stars in open clusters of various ages (Abt 1979) are consistent with those times of formation.

Based on meridional circulation models of Sweet (1950) and Tassoul \& Tassoul (1982), Michaud (1982) found that diffusion in Ap stars should occur only for rotational velocities less than about $90 \mathrm{~km} \mathrm{~s}^{-1}$ and in Am stars (Michaud et al. 1983) with less than about $120 \mathrm{~km} \mathrm{~s}^{-1}$. Observationally Wolff \& Preston (1978) found a maximum rotational velocity of 90 $\mathrm{km} \mathrm{s}^{-1}$ for HgMn stars; for magnetic Ap stars they note a few
with $100<V \sin i<200 \mathrm{~km} \mathrm{~s}^{-1}$. For the Am stars the upper rotational limit is about $120 \mathrm{~km} \mathrm{~s}^{-1}$ (Abt \& Moyd 1973). Therefore this agreement between theory and observations is quantitatively excellent.

A third kind of abundance peculiarity is the λ Bootis stars that show underabundances of the metals (Morgan, Keenan, \& Kellman 1943; Oke 1967; Baschek \& Searle 1969). These stars occur at all rotational velocities (see below). The current best explanation (Venn \& Lambert 1990; Charbonneau 1991) involves, rather than a diffusion mechanism, the accretion of gas that has been depleted of certain elements during the process of grain formation. Such a process may not depend upon the stellar rotational velocity except that the metal-underabundant material accreted onto the photosphere will gradually be mixed inward by meridional circulation and diluted. Therefore the effect is a temporary one that shows only as long as the accretion is occurring. The λ Bootis stars would be difficult to distinguish from weak-lined or Population II A-type dwarfs, if there are such stars in the solar vicinity. However of the 23 A5F2 stars listed below that have λ Bootis or $\lambda 4481$-weak spectra and with radial velocities given in the Bright Star Catalogue (Hoffleit \& Jaschek 1982, hereafter BSC), the mean absolute radial velocity is $12 \mathrm{~km} \mathrm{~s}^{-1}$ and the range is from -22 to +22 $\mathrm{km} \mathrm{s}^{-1}$. Such stars do not seem to be Population II stars. Also, their mean rotational velocity is $120 \mathrm{~km} \mathrm{~s}^{-1}$, which is normal for Population I stars (see § 2.2) but does not sound likely for Population II stars. However, we are not sure that among the F-type stars the ones called λ Bootis or " $\lambda 4481$-weak" are different than the ones called "wl" or weak-lined.

The final type of peculiarity to be mentioned below is the shell stars. Those have hydrogen emission lines or sharp metallic absorption lines produced in shells or disks; those lines are superposed on stellar spectra that generally show no abundance anomalies. Most, but not all, such stars have very broad lines, indicating the maximum rotational velocities observed among the A stars.

We have found only one star in the BSC of the HR 4049 peculiarity, so we will not discuss that further.

The study by Abt \& Moyd (1973) of normal and Am stars showed a nearly complete dichotomy in that all the rapid rotators (after allowance for random inclination effects) have normal spectra and all the slow rotators are Am stars; the overlap was only 1.3% of the stars. They left us with the thought that if one had both excellent measures of the rotational velocities of a statistically large sample of stars and good MK classifications to isolate the peculiar-abundance stars, would there be no overlap? That is, is the stellar rotational velocity the only parameter that determines whether a star will have a normal or abnormal (Ap or Am) spectrum? To answer that question is the primary goal of this project.

The published rotational velocities in compilations such as the BSC come from many different sources, and it is not clear that all those sources succeeded in calibrating consistently to the same system. Therefore we proposed obtaining good quality spectra (with coudé dispersions and CCD detectors) of a large sample of A-type stars and calibrating those against the new standards by Slettebak et al. (1975). We decided to observe all the stars from A0 to F0, inclusive, in the BSC (we used the third edition in selecting the stars) observable from Kitt Peak with the coude feed telescope, namely, all the stars between declinations -30° and $+70^{\circ}$. This sample, which is larger
than is necessary to obtain good statistical results, was observed partly as a service to provide a large set of consistent rotational velocities for others to use. This sample includes about 1700 stars.

Similarly, the published MK classifications come from many different observers using a variety of equipment, some of which was incapable of detecting subtle peculiarities, such as the HgMn stars that require fairly high dispersions to show the $\lambda 3984 \mathrm{Hg}$ II line. Therefore we obtained a separate set of spectra that are especially suited for visual classification, namely, $39 \AA \mathrm{~mm}^{-1}$ Cassegrain spectra that are 1.2 mm wide and on fine-grain emulsions. We used the 2.1 m Kitt Peak telescope, which can reach to the north pole; with the CTIO 1.5 m Cassegrain spectrograph we observed some of the stars south of -30°. There are about 2000 stars in this set.

In the course of getting the rotational velocities from Gaussian fittings to line profiles (mostly from $\lambda 4481 \mathrm{Mg}$ II), we decided to obtain the equivalent widths of that line. That turned out to be important in distinguishing some peculiar stars because $\lambda 4481$, being the strongest non-Balmer line in the optical spectra of early A stars and having an equivalent width that is relatively insensitive to spectral type, is an excellent tool for detecting abnormal Mg abundances.

2. THE MEASURED PARAMETERS

2.1. MK Classifications

The photographic spectra were classified by the first author on a Boller \& Chivens binocular spectracomparator against standards mostly by Morgan, Abt, \& Tapscott (1978). We used Kodak IIa-O emulsions, wide (1.2 mm) spectra, and a technique of overexposure and underdevelopment to reduce contrast. Most of the details about our classification terminology are given in Table 1. We did not attempt to distinguish between luminosity classes Va and Vb among the early A's for these field stars because the latter occur only among extremely young stars (Abt 1979).

For normal stars our classifications agree very well with those by Gray \& Garrison (1987, 1989a, b); our types are 0.11 ± 1.12 (rms error per measure) subclasses earlier than theirs and 0.06 ± 0.76 luminosity classes less luminous. The systematic differences are not significant, because the estimated errors in the means are ± 0.16 and ± 0.11, respectively. The random rms differences are one subtype and three-quarters of a luminosity class per star. A comparison of normal stars with the classifications by Cowley et al. (1969) shows our types to be 0.41 ± 0.82 subclass earlier and 0.41 ± 0.75 luminosity classes brighter. In this case the systematic differences are significant because the estimated errors in the means are ± 0.12 and ± 0.11, respectively. The random errors between our and Cowley et al.'s classifications are about the same as in the comparison with Gray and Garrison.

We used only standards by Morgan and his collaborators. One difficulty with those is that there are insufficient broadlined standards. To remedy that, Gray \& Garrison (1987, 1989a, b) derived new broad-lined standards ($V \sin i=150-$ $275 \mathrm{~km} \mathrm{~s}^{-1}$), partly by using other known data about those stars. Thus the question naturally arises as to whether our classifications for the broad-lined stars differ systematically from those by Gray \& Garrison; we can expect that the random er-
rors will be larger because broad-lined stars are more difficult to classify than sharp-lined stars.

We therefore selected the 63 A0-A2 stars in common with Gray \& Garrison (1987) and with $V \sin i>150 \mathrm{~km} \mathrm{~s}^{-1}$. We find that our types are systematically earlier by 0.27 ± 0.16 (mean error in the mean) subclasses, which is less than 2σ and is not significant, but 0.55 ± 0.10 (mean error in the mean) luminosity classes less luminous, which is significant. Thus our temperature classifications are in agreement with those of Gray \& Garrison for both sharp- and broad-lined stars, but our luminosities differ for the broad-lined stars.

However, the larger differences are in that we have detected many more peculiar stars than either Gray \& Garrison or Cowley et al. Of the stars we call peculiar, both other sets of authors detected only 45% as peculiar. Many of the remainder have weak $\lambda 4481$, and because we have the equivalent width measures to confirm our visual estimates, we tend to accept our classifications. We used a higher dispersion ($39 \AA \mathrm{~mm}^{-1}$) than did Gray \& Garrison (67 and $120 \AA \mathrm{~mm}^{-1}$) and Cowley et al. ($125 \AA \mathrm{Am}^{-1}$) so we could see faint lines better. Also, the latter authors ignored 4481 because it gave erratic results (private communication).

Detailed explanations about our classification terminology are given in Table 1.

The classifications are given in the fourth column of Table 2. The first three columns give the stellar identifications as BSC numbers (HR), Henry Draper numbers (HD), and other designations. The last gives constellation names and double-star names, usually taken from Aitken (1932). The component ob-

TABLE 1
Explanation of the Classification Terminology

Designation	Meaning
(standard) .	Classification standard star
S	Sharp lined
n	Broad lined
nn	Very broad lined
ksn	The Ca II K line has both sharp and broad components.
st	Strong
wk	Weak
v.	Very
入 Boo	A star in which many of the metals are weak, indicating underabundances.
4481 weak	The 4481 Mg it line is weak. Measures may indicate that other lines are also weak. This may be a mild version of the λ Boo stars.
Am(A3/A7/F0)	A metallic line star in which the spectral type based on the Ca II K line is A3, on the Balmer lines is A7, and on the metallic lines is F 0 . This is an abbreviation of the form $\operatorname{Am}(\mathrm{K} / \mathrm{H} / \mathrm{M}$ $=\mathrm{A} 3 / \mathrm{A} 7 / \mathrm{F} 0$).
$\mathrm{p}(\mathrm{SrEuCr} s t, \mathrm{CaMg} \mathrm{wk})$.......	An Ap star in which the Sr is strongest relative to the standards, Eu is next strongest, etc.; the lines of Ca and Mg are weak relative to those in standards. The type is based on the hydrogen lines.
shell (Ti, Ca)	A shell spectrum that has sharp Ti and Ca absorption lines.
(:)	Uncertainty in the previous symbol

Fig. 1.-Rotational velocities in Table 2 are plotted vertically against those by Slettebak et al. (1975) for 26 B9-A4 stars (above) and 14 A5-F0 stars (below) that they have in common. The least squares line (ignoring the last point) in the upper panel is given by $2+0.979 V \sin i$ (Slettebak et al.) and in the lower panel by $7+0.958 V \sin i($ Slettebak et al.).
served (e.g., A, B, or $A B$) applies to both the classification spectra and the rotational velocities unless indicated otherwise; for example, see HR 526 where A was observed for the classification and $A B$ for the rotational velocity. Dots indicates that spectra were not available.

2.2. Rotational Velocities

The rotational velocities were derived by the second author from the coude spectra, using the CCD spectra collected by the first author. The CCD coudé spectra were obtained with a dispersion of $10 \AA \mathrm{~mm}^{-1}$, pixel size of $25 \mu \mathrm{~m}$, resolution of 1.3 pixels, and $\mathrm{S} / \mathrm{N}=100-200$; these gave a resolution of $0.33 \AA$ or $22 \mathrm{~km} \mathrm{~s}^{-1}$. Because the instrumental and rotational widths add as squares, we cannot resolve rotational velocities smaller than about $10 \mathrm{~km} \mathrm{~s}^{-1}$. In an IRAF reduction scheme the continuum intensity was selected, the spectral slope was tilted to zero, Gaussian profiles were fitted to the two lines used ($\lambda 4481$ Mg II, $\lambda 4476 \mathrm{Fe}$ I), and half-widths were determined. For stars with $V \sin i>220 \mathrm{~km} \mathrm{~s}^{-1}$ the Gaussian fits become inadequate, and the half-widths are underestimated.

All of the northern stars measured by Slettebak et al. (1975) were included in this program. They measured line profiles on high-resolution scanner spectra and compared them with profiles computed from model atmospheres by Collins. For the stars that we have in common with them the relation between their rotational velocities and our measured half-widths were plotted. The plots of the resulting rotational velocities from $\lambda 4481$ are shown in Figure 1 for the B9-A4 and the A5-F0

HR	HD	Other		Classification	$\mathrm{Vm}_{\mathrm{km}}^{\mathrm{sin}^{-1}} \mathrm{i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$	HR	HD	Other	MK Classification	$\mathrm{km}_{\mathrm{s}^{-1}} \sin ^{i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$
1	3	ADS 46A		$\mathrm{Vn}(\lambda \mathrm{BoO})$	210：	0.32	184	4058	20 Cas	Am（A3／F1／A5）		$0.28 p$
${ }^{9}$	203				155	． 52	184	4058	20 Cas	Am（A3／F1／A5）	40p	$\begin{array}{r} 0.28 \mathrm{p} \\ .273 \end{array}$
10	256			Vn＋shell（Ca II K + HI cores）	220 ：	． 31	191	4150	η Phe	AO IV	．．	． 27
11	315			+ HI cores） IVp（Si st）	70	． 27	192	4161	YZ Cas ADS $625 A$	A3 IVs A1 V	25	$.4 i$
12	319	ADS 89A		$\mathrm{Vp}(4481 \mathrm{wk})$	45	． 31	198	4293	ADS 625A	A9 IV－V	25	．41
20	431	$A D S 102 A B$			86	． 49	204	4321		A3 IVp（4481 wk）	15	． 38
41	905	23 And		IVs	36	． 47	206	4338	ADS 636A	F1 IV	98	． 68
44	952			III	65	.43	214	4490	59 Psc	F0 Vn	170	． 67
49	1048			IV－V	20	． 40	230	4757	65 Psc	F2 IV	95	． 59
50A	1061	$\begin{aligned} & 35 \text { PsC } \\ & \text { ADS 191A } \end{aligned}$			$\begin{aligned} & 66 \mathrm{p} \\ & 48 \mathrm{~s} \end{aligned}$	$\begin{aligned} & .31 p \\ & .16 s \end{aligned}$	231	4758	ADS 683B 65 Psc	F0 III	95	． 59
							231	4758	65 Psc ADS 683A	F0 III	98	． 60
50B	－．${ }^{\text {a }}$	ADS 191B			．．．	．						
53	1083				215 ：	． 49	232	4772			150	． 53
56	1185	ADS 215A			115	． 56	233	4775		AO V ＋F5 V	25p	． 33 p
63	1280	24θ And			90	． 56	23	4775		A0 $\mathrm{V}+\mathrm{FS}$	24s	． 18 s
66	1343				13	． 28	234	4778		A3 Vp（SiSrCrEu st，CaMg	33	.33
68	1404	250 And		V	110	． 45	240	4853		A2．5k， V K sn）		
71	1439			III	30	． 43	241	4881		B9．5 IV	65	． 32
76	1561				50	． 43					65	． 32
81	1663	ADS 287AB		IIIs	20	． 36	246	5066		A1 IV	110	． 47
100	2262	κ Phe			．．	．．．	250	5128	ADS 735A	Am（A8／A6／F3）	28	． 59
104	2421			IVs	10	． 38	254	5267	$66 \text { Psc }$	B9．5 V	130	． 42
114	2628	28 And			18	． 39	261	5357	ADS 746AB	F1 V	48	． 58
		ADS 409A					262	5382	67 Psc	A5 IV	130	． 50
118	2696				150	． 55						
125	2834 2885	${ }_{1}{ }^{2}$ Phe			\cdots	\cdots	269	5448	37 μ And	A6 V	65	． 54
127	2885	β^{2} Tuc			．．	．．	277	5641	ADS 805AB	A0 Vp（ $4481 \mathrm{wk}, \mathrm{K} \mathrm{sn}$ ）	35	． 19
128	2888				170	． 39	278	5715		A3 V	90	． 50
129	2904		A0	$\operatorname{Vnn}(\lambda$ Boo）	225 ：	.31	288	5788 5789	ADS 824 B ADS	A2 Vn ${ }^{\text {B9 }} 5 \mathrm{Vnn}(\lambda$ BOO）	250：	． 47
132	2913	$\begin{aligned} & 51 \mathrm{PsC} \\ & \text { ADS } 449 A B \end{aligned}$	．．．		165	． 49	283	5789	ADS 824A	B9．5 Vnn（ λ Boo）	230：	． 33
133	2924			IVp（Ca st，Sr wk）s	20	． 46	287	5914			$\stackrel{8}{8}$.49
136	3003				．．	．．	289	6114	ADS 862AB	A9 V	135	． 58
146	3283		A3	III	100	． 49	290	6116	39 And	Am（A4／F0／F2）	35	． 55
149	3322		B8．	5 IIIp（HgMn st，Mg wk）	15	． 21	292		ADS 863A	F1 TIT	23	51
151	3326		Am	（A4／F1／F0）	98	． 73	292	6130	ADS 868A	F1 III	23	． 51
178	3883		Am	（A5／F1／F2）	18	0.51	293	6178	$\sigma \mathrm{Scl}$	A2 V		
183A	3980	ξ Phe	A3	$\mathrm{Vp}(\mathrm{SrCr}$ v．st；K sn）	－••	－••	301	6288	$\begin{aligned} & 26 \text { Cet } \\ & \text { ADS } 875 A \end{aligned}$	F1 V	91	． 68
							305	6314		F0 Vn	150	． 57
							309	6416		A5 Vn	150	0.54

TABLE 2-Continued

TABLE 2-Continued

HR	HD	Other	MK	Classification	$\mathrm{km} \sin _{\mathrm{s}^{-1}}{ }^{i}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$	HR	HD	Other		Classification	$\mathrm{V}_{\mathrm{km}} \sin _{\mathrm{s}^{-1}} 1$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$
634	13372	5 Tri	Am	(A1/A6/A7)	15p	0.26 p	797	16861		A2	IVp(?)s	15	0.42
					10 s	. 25 s	803	16955	ADS 2082A	A2	V	160	. 50
641 655	13476 13869		A2	Iab	20	. 60	804	16970	$86 \gamma \mathrm{Cet}$	A2	Vn	170	. 52
655 658	13869	7λ Tri	A0		ㅂ․				ADS 2080A				
658 664	13936 14055		A0	$\mathrm{Vp}(4481 \mathrm{wk}) \mathrm{n}$	235:	. 29	812	17093	38 Ari	A7	III	75	. 52
664	14055	$9 \gamma \operatorname{Tri}$	A0	Vn	235:	. 40	813	17094	87μ Cet	F0	III-IV	53	. 66
668	14171		A0	$\mathrm{Vp}(\mathrm{SiSr}$ st, Ca wk)	20	. 30	815	17138		A3	V	60	. 48
669	14191	22θ Ari	AO	Vn (standard)	170	. 40	816	17163		A9	III	108	.75
670	14212	62 And	A1	III	75	. 44	825	17378		A5	Iab	25	. 64
671	14213		A3:	$\mathrm{Vp}(4481 \mathrm{wk})$	60	. 33	837	17566	ζ Hyi	A2	IV		
673	14221		F3	V	15	. 25 :	839	17581	$\zeta \mathrm{HY}$	Am	(A1/A6V/A9)	18	.44
675	14252	$\begin{aligned} & 10 \mathrm{Tri} \\ & \text { ADS } 1770 \mathrm{~A} \end{aligned}$	A2	IVs	15	. 38	845	17729	γ^{2} For	A0	V	135	. 42
676	14262		F1	IV	110	. 58	852 859	17848 17943	\checkmark Hor			125	52
682	14392	63 And	B9	Vp(Si st, CaMg wk)	70	. 27	873	18296	21 Per	A8	Vp(SiEu st, CaMg wk) s	125 10	. 18
684	14417		A3	IV	50	. 51	875	18331	21 Per	A1	Vn	220 :	. 44
685	14489	$\begin{aligned} & 9 \text { Per } \\ & \text { ADS } 1802 \mathrm{~A} \end{aligned}$	A1	Ia	25	. 66	879	18411	22π Per	A2		170	
							883	18454	4 Eri	A8	III	95	. 70
691	14690	70 Cet	F0	Vn	185	. 63	887	18519	48ع Ari	A3	IVs	50	. 46
692 701	14691		F1	V	105	. 58			ADS 2257B				
704	15004	71 Cet	B9	III:nn + shell (HI)	200 :	. 29	888	18520	48E Ari	A2	IV	50	. 47
705	15008	$\delta \mathrm{Hyi}$	A2	V	200	. 29	891	18538	ADS ADS 2277A			155	. 50
707	15089	1 Cas	A2:	$\mathrm{Vp}(\mathrm{SrCr}$ st, K sn)	40	. 43	892	18543					
710	15144	ADS 1849A	A3	$\mathrm{Vp}(\mathrm{Sr}$ v.st, CrEu st)	23	. 42	895	18557			(A2/A6:/F0)	15	. 39
716	15253	ADS 1878A	B9.	$5 \mathrm{Vn}+$ shell (TiFeCaHI)	160	. 25	897	18622	$\theta 1$ Eri	A3	V 3
717	15257	12 Tri	F1	Vwl(met: A3, Ca: A2)	83	. 65	898	18623	θ^{2} Eri	A2	V	...	
723	15385		A9	IV	21	. 64	901	18692	ζ For	F3	IV	98	. 67
724	15427	ϕ For	A2.	5 V			905	18769	49 Ari		(A2/A6/A7)	43	. 59
729	15550	26 Ari	A9	V	170	. 63	906	18778	$4 \mathrm{Ar1}$	A7	III	43	. 59
730	15588	ADS 1906A	F0	IV	41	. 73	909	18866	β Hor	A6	III		
732	15633		A6	III	31	. 51	916	18928	β Hor		Vn	160	. 50
733	15634		F0	IV	141	. 72	919	18978	$11 \tau^{3}$ Eri	A2.	5 V	120	. 49
769	16350		A0	III	15	. 39	925	19107	$10 \rho^{3} \mathrm{Eri}$	A5	V	170	. 56
773	16432	32v Ari	A6	V	120	. 66	932	19275		A1	Vn		
778	16555	η Hor	A7 V	V			933	19279		A2	V	285 :	. 46
782	16628	$\begin{aligned} & 33 \text { Ari } \\ & \text { ADS } 2033 \text { A } \end{aligned}$	A3 V	V	95	. 55	943	19545		\cdots	V'	280	. 63
789	16754		A1	V	. \cdot	.	945	19600			III	60	. 44
791	16769		Am	(A4/A5V/F0)	30	. 50	954	19832	56 Ari	B9.	$5 \mathrm{Vp}(\mathrm{Si}$ st, CaMg wk)n	85	. 16
793	16811	34μ Ari	A0	Vn	160	0.40	961	19978	ADS 2424A	A7	V	25	.6
		ADS 2062AB					967	20104	ADS 2436 AB	A2	V	145	0.51

TABLE 2-Continued

HR	HD	Other	MK Classification	$\underset{\mathrm{km} \mathrm{~s}^{-1}}{ }{ }^{i}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$	HR	HD	Other	MK Classification	$\underset{k m}{V} \sin ^{-1}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$
1329	27045	$50 \omega^{2}$ Tau	Am（A5／F0／F2）	68	0.67	1445	28929	ADS 3304A		40	0.27
1330	27084		A7 IV	138	． 58	1448	28978	ADS 3304A	A2 IVp（ ？）	15	． .40
1331	27176	51 Tau	F0 V	83	． 65	1456	29116	\checkmark Men	F2 III		
1334	27236		A5 III－IV	85	． 59	1458	29140	88 Tau	Am（A4／A6／A7）	28	． 41
1339	27295	53 Tau	B9 Vp（ 4481 wk）s	10	． 28			ADS 3317A	が（スイ／A6／A7）		
1341	27309	56 Tau	AO Vp（Si st，Mg wk）	35	． 29	1460	29173	ADS 3318A	A2 IIIs	18	． 48
1342	27322	56 Tau	A2 IV－V	130	． 52	1465	29305	α Dor	B9．5 Vp（Si v．st，Sr st，		
1351	27397	57 Tau	F0 IV（standard）	98	． 68	1465	29305	a Dor	CaMg wk）	－	．
1352	27402	ADS 3146A	A2：V	165	． 53	1466	29316	2 Cam	F2 V	125	． 66
1353	27411		Am（A7／F0／F2）	18	． 46			ADS 3358AB		125	
						1472	29375	89 Tau	F2 V	145	． 66
1356	27459		F0 IV	78	． 64	1473	29388	90 Tau	A6 V	78	． 58
1361	27505		A4 V	120	． 53	1474	29391	51 Eri	FO IV	73	． 59
1367	27616		A0 V	155	． 53	147	29391	51 Eri	FO IV		
1368	27628	60 Tau	Am（A6／F0／F2）	25	． 41	1477	29459		A3 Vn	180	． 48
1376	27749	63 Tau	Am（A2／F0／F2）	15	． 38	1478	29479	9101 Tau	Am（A4／A5／A7）	53	． 61
						1479	29488	920 ${ }^{2}$ Tau	A6 V	115	． 64
1380	27819	$64 \delta^{2} \mathrm{Tau}$	A8 V	45	－ 55	1480	29499		A9 III	75	． 83
1381	27820	66 Tau	A3：IV	70	． 48	1482	29526		B9．5 V	90	． 44
1382	27855	ADS 3203A	B9．5 III	120	． 43						
1383	27861	42ξ Eri	A2 V	165	． 47	1483	29573		Am（A1／A3V／A3）s	31	． 52
1385	27901		F2 V	145	． 64	1486	29606	ADS 3391AB	A8 V	105	． 56
						1490	29646	ADS 3379A	A1 V	120	． 54
1387	27934	$\begin{aligned} & 65 K^{\perp} \text { Tau } \\ & \text { ADS, } 3201 \mathrm{~A} \end{aligned}$	A6 V	83	． 62	1494 1501	29722 29867	59 Per	A0 Vn F1 V	195 73	.45 .50
1388	27946	$67 \kappa^{2}$ Tau	A6 Vn	175	． 65	1501	29867			73	． 50
		ADS 3201 B				1507	30034		A9 IV	98	． 58
1389	27962	$68 \delta^{2}$ Tau ADS 3206A	A2 IV	15	． 46	1511	30121	$\begin{aligned} & 4 \text { Cam } \\ & \text { ADS } 3432 A \end{aligned}$	Am（A3／A7／F2）	65	． 73
1392	28024	69 u Tau	A8 Vn	225：	． 58	1513	30127		A2 Vn	180	． 49
1394	28052	71 Tau	A6 Vn	205：	． 60	1515	30144		F2 V	66	． 68
1401	28204	ADS 3267A		23	． 46	1519	30210		Am（A3／A7／F0）	63	． 72
1403	28226	AB	Am （ $\mathrm{A} 6 / \mathrm{A} 9 / \mathrm{FO}$ ）	93	． 73						
1408	28294	76 Tau	F2 V	88	． 60	1522	30422		A1 IV ${ }_{\text {A }}$	120	57
1410	28312	ADS 3230AB	A5 V	145	． 51	1528	30453		Am（A7／F0／F2）	15	． 41
1412	28319	7802 Tau	A7 III（standard）	80	． 62	1530	30478	k Dor	A5 III	15	． 43
1414						1544	30739	$2 \pi^{2}$ Ori	AO Vp（ λ Boo）n	195	． 33
1414	28355	79 Tau	A7 V	93	． 64						
1422	28485	80 Tau	F0 Vn	165	． 63	1546	30752		A1 V	90	． 44
		ADS 3264A				1547	30780	97 Tau	A9 V	165	． 66
1427	28527		A7 V	75	． 61	1550	30823		A1 IVn＋shell（Ti，Ca K）	215 ：	． 45
1428	28546	81 Tau	Am（A7／A8／F2）	31 135	． 51	1555	30958	5 Cam	B9．5 IV	90	． 39
1432	28677	85 Tau	F2 V	135	． 63			ADS 3508A			
1438	28763	ADS 3284A	A2．5 V	85	． 54	1559	31093		A2 V	－．	－••
1440	28780		A1 III	20	． 38	1560	31109	61ω Eri	A9 IVn	170	． 62
1444	28910	86p Tau	A7 V	130	0.59	1561	31134		A1 Vp（4481 wk）	45	0.26

TABLE 2-Continued

HR	HD	Other	MK Classification	$\mathrm{Vm}_{\mathrm{km}}^{\mathrm{s}^{-1}} \mathrm{sin}^{i}$	$\begin{aligned} & 4481 \\ & \text { W(A) } \end{aligned}$	HR	HD	Other	MK Classification	$\mathrm{Vm}_{\mathrm{km}} \mathrm{sin}^{\mathrm{i}} \mathrm{i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$
1563	31203	Pic A	F0 IV	250.	0.35	1675	33266		A2 IV	10	0.40
1565	31209		A0 Vp(4481 wk)n	250 :	0.35	1678	33296	14 Cam	A7 Vn	290:	. 50
1566	31236		F1 V	111	. 64	1683	33541			<10p	. 23 p
1568	31278	7 Cam	B9.5 V	25	. 38					10 s	. 16 s
		ADS 3536AB				1689	33641	$11 \mu \mathrm{Aqr}$	Am (A3/A8V/A8)	81	. 59
1569	31283	6 Ori	A3 V	160	. 52	1692	33654	11μ	A0 III	50	. 38
1570	31295	$7 \pi^{1}$ Ori	AO Vp($\lambda \mathrm{BOO})$	105	. 22	1701	33883	ADS 3799AB	A4 V + F2 III:	28p	. 26 p
1575	31362		F2 V	65	. 55			ADS 3799B	A $V+\mathrm{F}$ (1)	13 s	. 16 s
1578	31411		B9.5 V	95	. 30	1702	33904	5μ Lep	\cdots	<10	. 28
1583	31517		FO V	45	. 67	1704	33948	5	B5 V		
1589	31590		A0.5 V	1706	33959	14 Aur	Am (A9/A9/F2)	21	.43
1590	31592	98 Tau	Am (B9.5/A0/A1)			1711	34053	108 Tau	A1 IV	100	. 47
	31592	ADS 3547A	Am (B9.5/A0/A1)	.	.	1714	34109		AO V		
1592	31647	4ω Aur	A1 V	95	. 53	1718	34203	18 Ori	A0 III	60	.37
		ADS 3572A				1724	34317		Am. (B9/A0V/A1)	65	. 33
1596	31739	ADS 3570A	A5 V	125	. 56	1732	34452		B5 Vp(Si v. st, Fe II st,	40	. 42
1605	31964	7ε Aur ADS 3605A	FO Ia	45	. 76	1734	34499		$\begin{aligned} & \text { He wk) } \\ & \text { AV } \end{aligned}$	111	. 57
1609	32039	ADS 3597B	B9 Vnn	320:	. 39			ADS 3893A		11	
1610	32040	ADS 3597A	B9 Vp(λ Boo) nn	$320:$. 32	1736	34533	ADS 3903A	Am (A2/F0/F3)	15	. 33
1611	32045	64 Eri	A8 IV	195	. 67	1738	34557		A2 Vn	200 :	. 50
1613	32115		A9 V	15	. 42	1740	34578	19 Aur	A5 Ib-II	10	. 46
1615	32188		A3 III	15	. 39	1745	34653		A6 IV	.	
1616	32196		Am (A4/F0/F2)	. .	-••	1751	34787	16 Cam	B9.5 Vp(λ Boo) n	200 :	. 26
1619	32273	ADS 3623A	B7 V	90	. 22	1752	34790	$A B$	$\mathrm{A} 1 \mathrm{~V}+\mathrm{A} 1 \mathrm{~V}$	43	. 19
1620	32301	102ı Tau	A7 V	118	. 63	1758	34868		A1 IV	90	. 48
		$A B$				1760	34904		A2 V	140	. 47
1627	32428		Am (A7/A9/F2)	68	. 72	1762	34968	ADS 3930A	B9 III	70	. 43
1632	32480		A9 V	130	. 61	1774	35189	110 Tau	A2 IV	10p	. 28p
1637	32537	9 Aur ADS 3675A	F1 Vp(4481 wk)	23	. 32				A2	15 s	. 17 s
						1777	35242		A1 Vp(4481 wk)	75	. 26
1638	32549	11 Ori	A1 Vp(SiCr st, CaMg wk)	30	. 26	1792	35505		A0 V	135	. 52
1639	32608		A5 IV	75	. 58	1795	35520		A1 III	80	. 43
1642	32642	ADS 3672AB	A7 IV	53	. 68	1807	35656		B9.5 V	. .	
1643	32650		B9.5 Vp(Si st, CaMg wk)	15 130	. 17	1809	35693		A1 III	80	. 46
1645	32667		-	130	. 59						
						1819	35909		A4 V	150	. 46
1658	32977	106 Tau	A5 IV	100	. 70	1821B		ADS 4068B	A0 Vn
1661	32996		A1 Vp(Si st, Ca wk)	15	. 38	1827	36060		Am (A5/A9V/F2)	.	
1664	33054	14 Ori	Am (A2/F2/F3)	35	. 50	1832	36162		A2 V	200 :	. 49
		ADS 3711AB				1835	36187		A1 V		.
1666	33111	67ß Eri	A3 III	190	. 54						.
1670	33204	ADS 3730A	Am (A9/A9/F2)	45	. 66	1849	36473	10 Lep	AO V	45	. 31
1672	33254	16 Ori	-••••	13	0.42	1850	37484	10	A1 IIs	41	0.52

TABLE 2-Continued

TABLE 2-Continued

HR	HD	Other	MK Classification	$\mathrm{Vm}_{\mathrm{km}}^{\mathrm{sin}^{-1}} 1$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$	HR	HD	Other		Classification	$\mathrm{V}_{\mathrm{km}} \sin _{\mathrm{s}^{-1}} 1$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$
2175	42126	41 Aur	A7 III-IV	120	0.68	2345	45557				. .	
		ADS 4773B				2346	45560		A1			
2176	42127	41 Aur	A2 V	125	. 60	2350	45618			(A5/A7/A7)	.	
		ADS 4773A				2351	45638			IV	35	0.49
2179	42278		F0 III	18	. 29	2362	45927			IVp(4481 wk)	55	. 33
2180	42301		AO Vn	225 :	. 39					IVp(4481 wk)	5	.
2181	42303	$\pi^{2} \mathrm{Col}$	A0 V		.	2371	46031	19 Gem	F0		115	. 57
						2372	46052			(A2/A5/A7) SB2	35p	. 35p
2182	42327		B9.5 IVnn	355 :	.31					(A2/a5/a7) SB2	55 s	. 27 s
2195	42536		A1 Vp(SrCr st, CaMg wk)	25	. 37	2375	46089			Vp(4481 wk)	110	. 40
2206	42729		B9.5 V	20	. 36	2383	46251		A2	V V	145	. 51
2209	42818		A0 Vnn	220:	. 37	2385	46300	13 Mon		Ib	10	. 44
2210	42824		A2 V	120	. 51	2386	46304	A	A6	Vp(4481 wk)n	200 :	. 47
						2402	46590	11 Lyn	A1		80	. 44
2214	42954		A4 III	15	. 27							
2228	43244	42 Aur	A6 Vp(4481 wk)n	210:	. 55	2404	46642	14 Mon	AO	IV	40	. 41
2234	43319	ADS 4865A	A3 V	65	. 66			ADS 5211A				. 41
2238	43378	2 Lyn	A2 V	35	. 44	2414	46933	$5 \xi^{2} \mathrm{CMa}$	AO	\checkmark	85	. 42
2247	43525	75 Ori	225 :	. 50	2417	47020			V	190	. 47
		ADS 4890AB				2421	47105	24γ Gem A		IV	10	. 41
						2425	47152	53 Aur AB	A2	$\mathrm{Vp}(\lambda \mathrm{BOO})$	25	. 20
2255	43683 43760	ADS 4901A 6 Mon	A1 1 IVn F 1 l	180	. 51	2448						
2257	43812	4 Lyn	A2 Vp(4481 wk)	150	. 34	2449	47575	ADS 5302A	A2.	5 V	75	.42 .53
		ADS 4950AB				2455	47827	$A B$	B9	$\mathrm{Vp}(4481 \mathrm{wk})$	15	. 26
2258	43819		B9.5 V:p(SiSrCr st)	10	. 34	2457	47863		${ }^{\text {A }} 0$	III	25	. 41
2262	43847		A5 II	2466	48097	26 Gem	A2		90	. 54
2265	43940		A2 Vn			2470	48250	12 Lyn	A2.	5 V	125	. 47
2272	44092		A1 IV	45	. 44			ADS 5400A				
2280	44333	ADS 4971AB	A9 V	175	. 59	2470	48250	ADS 5400B			140	. 51
2285	44472	ADS 5039A	A6 ${ }^{\text {V }}$	95	. 56	2471	48272		A1	III	150	. 47
2287	44497		F1 V	95	. 58	2481 2489	48501 48843	ADS 5377A 32 Gem		Vw1 (met: A9)	38 13	.41 .45
2291	44691		Am(A3/A8/A6)	21	. 42							
2295	44756		A1 IV-V	-	-••	2491	48915	9a CMa	Am	(B9.5/A0/A1)s	15	. 42
2298	44769	8ε Mon ADS 5012A	A7 V	135	. 59	2498	49048	ADS 5423A	A1		190	. 46
2300	44793		$\mathrm{B8} \mathrm{Vn}+$ shell ($\mathrm{Hi}, \mathrm{Ca} \mathrm{K}$)	270:	. 40	2499	49050	ADS 5447AB	A2		80	. 52
2304	44927		AO Vp(4481 wk)s + A?n	20	. 21	2502	49147		B9.	5 IV	120	. 44
						2528	49891	ADS 5498A	A1	IV	30	. 45
2312	45050	AB	B9 V	115	. 37							
2320	45229	ν Pic	Am (A2/A7V/A7)	-	- \cdot	2529	49908	36 Gem	A1		105	. 46
2321	45239		A2 Vp(4481 wk)	135	. 44			ADS 5511A				
2324	45320		A2 Vp(4481 wk)n	250 :	. 43	2532	49949		A5	$\mathrm{Vp}(4481 \mathrm{wk}) \mathrm{n}$	225 :	. 50
2327	45357		AO Vn	210:	. 47	2534 2539	49976 50018	59 Aur	A7:	Vp(SrCr st, CaMg wk)	23 150	.39 0.68
2328	45380	ADS 5070A	B9.5 V	220:	. 43			ADS 5534 A			150	0.68
2330	45394	16 Gem	A2 IV	15	0.39							

TABLE 2-Continued

HR	HD	Other	MK Classification	$\underset{\mathrm{km}_{\mathrm{s}}}{\mathrm{~s}} \mathrm{sin}^{i}$	$\begin{aligned} & 4481 \\ & \text { W(A) } \end{aligned}$	HR	HD	Other	MK Classification	$\mathrm{Vm}_{\mathrm{s}^{-1}} \sin ^{\mathrm{i}}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$
2540	50019	$\begin{array}{ll} 34 \theta & \text { Gem } \\ \text { ADS } & 5532 A \end{array}$	A2 IV	120	0.56	2776 2777	56963 56986		$\begin{aligned} & \mathrm{Am}(\mathrm{~A} 9 / \mathrm{F} 2 / \mathrm{F} 3) \\ & \mathrm{A} 9 \mathrm{~V} \end{aligned}$	83 130	0.61 .54
2543	50062	ADS 5532A	A2 IV	40	. 48	2777	56986	$\begin{array}{ll} 55 \delta & \text { Gem } \\ \text { ADS } & 5983 A B \end{array}$	A9 V	130	. 54
2551	50277		A8 Vn	215:	. 53	2780	57049		AO V	210:	. 59
2557	50420		F1 IV	28	. 48	2783	57102	ADS 6012B	B9 Vn	255:	. 42
2564	50635	38 Gem ADS 5559A	A8 V	145	. 56	2784	57103	$\begin{aligned} & 19 \text { Lyn } \\ & \text { ADS } 6012 \text { A } \end{aligned}$	B4 V (SB2)	60	. 27
2565	50644		F1 IV	13	. 45	2785	57118		FO Iab	15	. 57
2566	50643		Am (A5/A9/F0)	13	. 47	2810	57744	58 Gem	AO V	155	. 50
2570	50700	ADS 5557AB	A5 V	145	. 62	2816	57927	59 Gem	F3 V	93	. 65
2572	50747		A3 V	51	. 50	2818	58142	21 Lyn	A0. 5 Vs	15	. 38
2578	50853		A1 IV	180	. 48	2820	58187	1 CMi	A3 Vn	145	. 56
2584	50931		AO V	55	. 37	2831	58439	A	A2 Ib	20	. 58
2585	50973	16 Lyn	A0 Vn	215 :	. 44	2832	58461			15	. 26
2588	51055	17 CMa	A. 2 IV	35	. 48	2836	58552		A1 IIIs	10	. 42
		ADS 5585A				2837	58579	61 Gem	FO Vp(4481 wk)	130	. 54
2597	51330		F2 V	28	. 50	2839	58585	A	F0 V	13	. 47
2606	51693		A2 V	140	. 54						
						2850	58907		A0 V	70	. 41
2607	51733	ADS 5629AB	F2 V	110	. 60	2851	58923	5n CMi	F0 IV	45	. 59
2620	52100	ADS 5680A	A8 V	115	. 62	2852	58946	62ρ Gem	FO V	63	. 43
2629	52479		A2 V	25	. 42			ADS 6109A			
2644A	52859	ADS 5746A	A2 IV-V	35	. 50	2853	58954	ADS 6093A	A9 Vn	165	. 60
2644B	. .	ADS 5746B	A2 V	135	. 59	2857	59037	64 Gem	A2.5 V	160	. 54
2647	52913		A2.5V	85	. 58	2863	59256		B9 IV	75	. 43
2700	54801	47 Gem	A4 IV	90	. 57	2872	59507		A1. 5 V	115	. 51
2705	54958	A	F4 V	10	. 28	2874	59412	A	A5 II	21	. 54
2707	55057	21 Mon	F1 IV	125	. 68	2880	59881	$7 \delta^{1} \mathrm{CMi}$	FO IV	61	. 61
2710	55111		B9.5 V + A0 (SB2)	95	. 40	2886	60107	68 Gem AB	A1 Vp(4481 wk)	140	. 33
2714	55185	$\begin{array}{ll} 22 \delta & \text { Mon } \\ \text { ADS } & 5864 A \end{array}$	AO V	140	. 47	2887 2890	60111	$8 \delta^{2} \mathrm{CMi}$ $66 \alpha \mathrm{Gem}$	$\begin{array}{ll}\text { F2 } & \mathrm{V} \\ \text { A2 } \\ \text { IV }\end{array}$	101	.83 .52
2716	55344		B9.5 III	135	. 58			ADS 6175B			
2724	55595		A6: V	155	. 48	2891	60179	66a Gem	Am (A0/A2:/A1IV)s	10	. 40
2751	56169		A3 Vn	225:	. 51			ADS 6175A	Am (a0/a2:/ailv)s		
2753	56221	64 Aur	A4 Vn	195	. 54	2898	60335	ADS 6191AB	F2 V	10	. 44
						2900	60345		A6 V	85	. 60
2755	56341		A0 V	35	. 37						
2757	56386		B9.5 Vn	iis	56	2901	60357	$9 \delta^{3} \mathrm{CMi}$	AO $\operatorname{Vp}(4481 \mathrm{wk}) \mathrm{nn}$	240 :	. 24
2758	56405		A2 V	145	. 56	2904	60489		Am ($\mathrm{A} 8 / \mathrm{F} 1 / \mathrm{FO}$)	15	. 36
2763	56537	54 λ Gem	A3 V (standard)	140	. 59	2912	60629		A0.5 III	40	. 44
2768	56731				. 44	2914	60652		Am ($\mathrm{A} 7 / \mathrm{A} 8 / \mathrm{F} 2$)	63 133	. 69
	56731	A	\cdots	15	. 44	2926	61035		F1 V	133	. 51
2772	56820	47 Cam	Am (A7/F1/F2)	28	0.58	2931	61219		A2 V	125	. 49
		ADS 5995A				2933	61227			10	0.46

TABLE 2-Continued

HR	HD	Other	MK Classification	$\mathrm{vm}_{\mathrm{km}}^{\mathrm{s}^{-1}}{ }^{i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$	HR	HD	Other		Classification	$\mathrm{vm}_{\mathrm{km}} \sin ^{-1}{ }^{i}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$
3361	72208		B9.5 Vp (HgMnEu st, CaMg wk)	15	0.20	3519	75698	$51 \sigma^{1} \mathrm{Cnc}$ ADS 7057A	A5	V	73	0.55
3367	72310	ADS 6862AB	B9 Vp(4481 wk)	40	. 26	3523	75737	15 Hya		(A4/A9/F2)	21p	. 38 p
3372	72359	34 Cnc	AO $\operatorname{IIIp}(\mathrm{Sr}$ st)	10	. 34			ADS 7050AB			15 s	.17s
3374	72462	${ }^{\text {AB }}$	${ }^{\text {A } 6 ~ V n ~}$	180	. 55	3526	75811	ADS 7061A		(A4/A6/A7)	10	. 36
3377	72524	33 Lyn	AO Vn	275:	. 40	3528	75896		A2	IV	70	. 49
3380	72617	A	F2 V	78	. 51	3552	76369	${ }_{\text {ADS }} 17 \mathrm{Hya}$	Am	(A4/F1/F2)	55	. 54
3381	72626	ADS 6871AB	F0 V	88	. 60							
3383	72660		A1 II	10	. 45	3553	76370	17 нуа		(A1/F2/F3)	13	. 44
3394	72943		F0 Vp? (Sr st)	71	. 58			ADS 7093A				
3398	72968	3 Hya	A1 $\mathrm{Vp}(\mathrm{SrCr} \mathrm{v}$. st, CaMg $\mathrm{v} . \mathrm{wk})$	10	. 36	$\begin{aligned} & 3555 \\ & 3556 \end{aligned}$	$\begin{aligned} & 76398 \\ & 76483 \end{aligned}$	$\begin{gathered} \text { } 59 \mathrm{o}^{2} \text { Cnc } \\ \text { Pyx } \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & (\mathrm{~A} 2 / \mathrm{A} 9 / \mathrm{FO}) \end{aligned}$	$\begin{array}{r} 120 \\ 60 \end{array}$.61 .56
3401	73029		A1 Vn	230:	. 47	3559	76512	ADS 7095A	A5		120	. 63
3402	73072		A2 V + F8 III	30p	. . .	3561	76543	$620^{1} \mathrm{Cnc}$	A6	V	90	. 63
				13 s								
3406	73143	36 Cnc	A3 V	35	. 47	3565	76582	$630^{2} \mathrm{Cnc}$	A7	v	95	. 71
3410 3412	$\begin{aligned} & 73262 \\ & 73316 \end{aligned}$	48 Hya 37 Cnc	${ }_{\text {A } 0.50 \mathrm{Vnn}}^{\text {Vs }}$	265:	. 50	3566	76595		A1	v	85	. 44
3412	73316		A0. 5 Vs	20	. 41	3569	76644	91 UMa ADS 7114A		IV (standard)	140	. 65
3416	73451		A1 V + F5 II	$\begin{aligned} & 68 \mathrm{p} \\ & 15 \mathrm{~s} \end{aligned}$	$\begin{aligned} & .52 p \\ & .16 s \end{aligned}$	3572	76756	65α Cnc ADS 7115AB	Am	(A5/A9/F0)	65	. 54
3420	73495	n Pyx	B9.5 Vn	220:	. 44	3573	76757	A	A2	IV	105	. 56
3429 3437	$\begin{aligned} & 73731 \\ & 73997 \end{aligned}$	41ε Cnc	A5 III	$\begin{array}{r} 51 \\ 185 \end{array}$.59 .43	3586 3587	77093		${ }^{\text {A } 6}$	V	170	. 50
3446	74190		A ${ }^{\text {A }} 7 \mathrm{~V}$	185	.43 .51	3587	77104	66 Cnc	A2	v
3449	74198	43γ Cnc	A1 IV	65	. 48	3589	77190	67 Cnc	A6	V		
3450	74228	45 Cnc	A0 V F8 III	$65 p$. 34 p	3592	77309	67 cne	A1	v	. \cdot	\ldots
				60s	.27s	3594	77327	$\begin{array}{ll} 12 \kappa & \text { UMa } \\ \text { ADS } & 7158 A B \end{array}$		$\mathrm{Vp}(4481 \mathrm{wk}) \mathrm{n}$	185	.37
3465	74521	49 Cnc	A1 Vp(HgMnSiEu st, CaMg	wk) 10	. 32							
3469	74591	10 Hya	${ }^{\text {A } 6} \mathrm{~V}$	115	. 55	3595	77350	69v Cnc	B9	Vp (SrHgMn)	<10	. 33
3473	74706		${ }^{\text {A } 5 ~} \mathrm{~V}$	115	. 54	3601	77537		A0	Vn		
3474	74738	481 Cnc ADS 6988B	A1 V	155	. 56	3606	77660		F0	v		
3481	74873	ADS 6988B 50 Cnc	A1 $\mathrm{Vp}(4481 \mathrm{wk})$	10	. 32	3608 3619	77692 78209	15	A1	III		
3483	74879		A3: V	55	. 52	3623	78316	76k Cnc	B8	IIIp(HgMnEu	10	. 22
3486	74988		A2 V	135	. 50	3624	78362	141 UMa	Am	(A4/F1/F3)s	13	. 47
3492	75137	$\begin{aligned} & \text { 13p Hya } \\ & \text { ADS } 7006 \text { a } \end{aligned}$	B9.5 IV	115	. 45	3635	78661	ADS 7211A		Vwl (met. A8)	71	. 44
3500	75333	14 Hya	B8 IIIp(HgMn)	20	. 24	3637	78676			(A6/A9/F0)	45	. 51
3504	75469		A1 III	10	. 39	3638	78702		AO	v	205:	. 57
						3644	78922	ε Pyx	A6	III-IV	100	. 59
3505 3507	75486 75495	5 UMa	$\begin{aligned} & \text { FO IV } \\ & \text { I5 } \mathrm{V} \end{aligned}$	103	0.60	3645	78935		A8	v	115	. 68
						3646	78955		A0	v	75	0.43

TABLE 2-Continued

HR	HD	Other	MK Classification	$\mathrm{V} \sin _{\mathrm{s}^{-1}} \mathrm{i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$	HR	HD	Other	MK Classification	$\mathrm{vm}_{\mathrm{km}}^{\mathrm{s}^{-1}}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$
4021B	88850	ADS 7705B	Am ($\mathrm{A} 9 / \mathrm{F} 1 / \mathrm{F} 3$)		\cdots	4214	93397		Am (A4/A6 V/A6)	85	0.54
4024	88960	23 LMi	A0 Vp(4481 wk)n	235:	0.35	4218	93526	ADS 7930A	B9.5 IIp (4481 wk)	10	. .29
4026	88983	32 UMa	A5 V	120	. 51	4227	93702	53 Leo	AO V (1p 4481 Wk)	205 :	. 46
4031	89025	365 Leo		81	. 61	4229	93742	40 Sex	A2 III-IV	51	. 54
4033	89021	33λ UMa	A2 IV (standard)	40	. 48			ADS 7936AB			
4041	89239			135	. 44	4230	93765	44 LMi	F2 Vp(4481 wk)	15p	. 21 p
4047	89343		A7 III ${ }^{\text {a }}$	160	. 64					10 s	.19s
4055	89455		A9 V	155	. 63	4237	93903	41 Sex	Am (A3/A7 V/A9)	18	. 39
4062	89571		A9 V					ADS 7942A	Am (A3/A) V/Ag)	18	. 39
4070	89774	42 Leo	A1 IV	50	. 43	4244	94180	A	A3 V	55	. 49
4071	89816		A5 Vn	180	. 57	4248	94334	45w UMa	A0 III	35	. 39
4072	89822		A1: Vp(SiSrHg st, CaMg wk)	<10	. 31	4254 4259	94480 94601	48 LMi	F2 IV	135 150	.76 .34
4073	89828	ADS 7739	A: A1 Vnn AB:	: 255:	. 54	425	94601	ADS 7979A			. 34
4075	89904	27 LMi	A5 V	180	. 50						
4076	89911		Am (A0/A1/A2)s (SB2)	$\begin{aligned} & 10 p \\ & 10 s \end{aligned}$	$\begin{aligned} & .29 p \\ & .11 s \end{aligned}$	4260	94602	54 Leo B ADS 7979B	AO Vn	200 :	. 42
4082	90044	25 Sex	A2: IVp(SiCrSrHgMn st,	15	. 34	4286 4288	95256 95310	49 UMa	Am (A3/A5/A7) FO V	53 75	.60 .71
			CaMg wk)			4294	95382	59 Leo	A6 IV	71	. 59
4083	90071		F2 Vp(λ Boo; met: $F 0$, $4481 \mathrm{wk})$	15	. 30	4295	95418	ADS 8019A $48 \beta \mathrm{UMa}$	A1 IV	35	. 43
4090	90277 90470	30 LMi	Am (F0/F2/F2)	33	. 54						
4101	90470 90569		A3 V	105	. 57	4300	95608	60 Leo	Am (A1/A2/A3)	13	. 42
4101	90569	45 Leo	A2: Vp(SiSr st, CaMg wk)	<10	. 30	4302	95698	ADS 8028AB	FO V	33	. 45
4108	90745		A6 V	120	. 63	4303 4309	95771			135	. 59
4109	90763		Am (A0/A2/A2)	120 30	. 636	4309	95934	51 UMa ADS 8046A	A3 Vp(4481 wk)	75	. 40
4113	90840	32 LMi	A3 IV	70	. 50	4315	96220		F0 Vn	200 :	. 55
4124	91130	$\begin{aligned} & 33 \text { LMi } \\ & \text { ADS } 7813 \text { A } \end{aligned}$	A0 Vp(λ Boo)	190	. 21	4320	96441		A1 V	125	
4131	91311		AO V	160	. 36	4322	96528	64 Leo	Am (A3/A6/A6)	+85	.59 .56
4132	91312	ADS 7826A	A6 V	115	. 54	4330 4331	96707		A7 $\operatorname{IVp}(\mathrm{Sr})$	33	. 46
4137	91365	34 LMi	A0 V	165	.46	4331 4332	96723		A1 IVs	15	. 43
4148	91636	$\begin{aligned} & 49 \text { Leo } \\ & \text { ADS } 7837 \mathrm{AB} \end{aligned}$	A2 IV	15	. 40	4332	96738	$\begin{aligned} & 67 \text { Leo } \\ & \text { ADS } 8071 \text { A } \end{aligned}$	A2.5 V	60	. 49
4152	91790		A5 V	105	. 46	4334	96819		A2 Vn	230 :	. 52
4155	91858		A7 III-IV	145	. 59	4340	97138		A3 V	115	. 56
4160	91992		A7 Vn			4341	97244		A6 V	75	. 56
4172	92245			200:	. 48	4343	97277	11B Crt	A2 IV	40	. 55
4189	92769	40 LMi	A3 Vn ${ }_{\text {A }}$	235:	. 30	4344	97302		A2 IV-V	145	. 54
		ADS 7899A				4347	97411	ADS 8086AB	AO IVp(4481 wk)	25	. 28
4191	92787	A	F0 V	65	. 51	4356	97585	69 Leo	B9.5 Vn	175	. 54
4192	92825	41 LMi	A1 V	185	. 45	4357	97603	688 Leo	A4 Vn	165	. 54
						4359	97633	700 Leo	A1 IV (standard)	15	. 40
4197	92941		A4 V	195	0.44	4366	97937		A9 Vp(4481 wk)	120	0.54

TABLE 2-Continued

HR	HD	Other	MK Classification	$\mathrm{V} \sin \mathrm{~s}^{-1}{ }^{i}$	$\begin{aligned} & 4481 \\ & \text { W(A) } \end{aligned}$	HR	HD	Other		Classification	$\mathrm{Vm}_{\mathrm{km}}^{\mathrm{s}^{-1}} \mathrm{sin}^{i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$
4778	109238		FO V	85	0.65	4917	112486	ADS 8710AB		(A2/A8/A7) (SB2)	10p	
4780	109307	22 Com	Am (A5/A7/A7)	13	. 48	4917	112486	ADS 8710AB	Am	(A2/A8/A7) (SB2)	$10 p$ 10 s	$\begin{array}{r} 0.27 p \\ .20 s \end{array}$
4781	109309	21 Vir	B9.5 V	115	. 41	4921	112846	$44 \text { Vir }$	A. 4	V	95	. 42
4789	109485	23 Com	A0 Vs	50	.35		112846	ADS 8727A			9	. 42
4797	109585		F0 V	91	. 54	4936	113436		A1	$\mathrm{Vp}(4481$ wk)n	215 :	. 44
4799	109704	25 Vir	A2 V	140	. 56	4937	113459	48 Vir ADS 8759AB	F0	V	140	. 62
4805	109860		A1 IVs	60	. 40	4948	113865	ADS 8759AB	A3	V	75	. 64
4809	109931		F0 Vn	200 :	. 52	4948	113865	ADS 8777A	A3	\checkmark	75	. 64
4811	109980	9 CVn	A6 Vp($\lambda \mathrm{BOO})$	255 :	. 39	4950	113889	ADS 8772AB	Am	(A5/A9/F0)	115	. 67
4816	110066		AO III:p(SrCrEu v. st)	21	. 54	4963	114330	510 Vir	A2	IVs	<10	.67 .35
4824	110377	27 Vir A	A6 Vp($\lambda \mathrm{Boo})$	160	. 48	4971	114447	ADS 8801AB 17 CVn	F0	V	71	. 51
4825	110379	$\begin{aligned} & 29 \gamma \text { Vir } \\ & \text { ADS } 8630 A \end{aligned}$	FO IV	28	. 36	4971	114447	ADS 8805A	Fo	\checkmark	71	. 51
4826	110380	ADS 8630B	FO IV	15	. 30	4978	1114576	${ }^{\text {A }}$ A ${ }^{\text {a }}$	A3	$\stackrel{\text { IV }}{\mathrm{V}}$	80 185	.47 .56
4828	110411	30p Vir	A0 Vp(4481 wk)	140	. 21							
4833	110462	76 Vir	A2 IV	40	. 47	4990A	114846	$54 \text { Vir }$	B9	V	90	. 43
4847	110951	32 Vir	Am (A5/F0/F2)	28	. 42	4990B		ADS 8824B	A2			
4852	111112		A7 V	10	\cdots	5003	i15227	ADS 8824B	A2	V (Sr st, Cang wk)	ii0	.39
4854	111133	EP Vir	AO Vp(SrCrEu v. st, Ca, met wk)s	10	. 38	5004 5005	115271 115308	19 CVn	${ }_{\text {Am }}$	(A6/A6/A8) $\mathrm{Vp}(\mathrm{CaMg}$ Wk)	98 75	.67 .49
4855	111164	34 Vir	A3 $\mathrm{Vp}(\lambda \mathrm{BOO})$	175	. 53	5005	115308			Vp(CaMg wk)	75	. 49
4859	111270		A7 V	93	. 57	5010	115365	A	A6	V	165	. 52
4861	111308	28 Com	AO Vp(4481 wk)	175	. 30	5014	115488	${ }^{\text {AB }}$	A6	V	120	. 48
4865	111397	29 Com	A1 V	150	. 52	5021	115604	20 CV n	F3	IV	15	. 46
4866	111421	11 CVn	A7 V	48	. 58	5023	115735	21 CVn		. V	55 90	. 49
4869	111469	$\begin{aligned} & 30 \mathrm{Com} \\ & \text { ADS } 8674 \mathrm{~A} \end{aligned}$	A1 V	195	. 53	5025	115810	ADS 8861D	A7	IV	101	. 41
4875	111604		A5 $\operatorname{Vp}(\lambda \mathrm{BoO})$	180	. 36	5031	115995	ADS 8864AB	A1	III	58	.56 .45
						5033	116061		A2	V	165	. 56
4881	111786 111893		F0 Vp(λ B00, met: A1)	135:	.14 .44	5037	116160		A1	V V ${ }^{\text {V }}$	205 :	. 49
4886	1118914	ADS 8682B	A0 V V + AOV (SB2)	215:	. 44	5040	116235	64 Vir	Am	(A3/A6/A7)	18	. 46
4893	112028	ADS 8682A	A0 IIp(MgSi wk)s	ii	-	5045	116303		Am	(A4/F0III-IV/A9)	28	. 27
4900	112097	41 Vir	F0 Vp(λ Boo, met:A7)	61	. 54	5054	116656	$79 \zeta \mathrm{UMa}$	A1	IVs	25p	. 26 p
4901	112131		A2 V	115	. 48	5055	116657	ADS 8891A			25 s	. 24 s
4904	112171		A7 V	120	. 58	5057	116706	ADS 8891B	A3	Vs	45	. 56
4905	112185	77 UMa	AO Vp(SiSr, met: st, CaMg wk)	25	. 30	[5059	1116831		A8	V V	45 135	. 48
4911	112304		B9.5 Vn	180	.44	5062	116842	80 UMa	A5	Vn	210:	. 58
4914	112412	$\begin{aligned} & 12 \alpha^{1} \mathrm{CVn} \\ & \text { ADS } 8706 \mathrm{~B} \end{aligned}$	Am (A9/F4/F3)	10	. 34	5074 5075	117200 117201	A ${ }^{\text {B }}$	F5	VWl (met: FO V)	21 10	.33 .31
4915	112413	$12 \alpha^{2} \mathrm{CVn}$	AO Vp(SiEu, met st, CaMg	. \cdot	-••	5076	117242	B	F29	V	10 95	.31 .56
		ADS 8706A	Wk)			5079	117281		A8	V	71	0.58
4916	112429	8 Dra	F2 Vwl(met: A7)	130	0.60							

TABLE 2-Continued

HR	HD	Other	MK Classification	$\frac{V}{k m} \sin ^{i-1}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$	HR	HD	Other	MK Classification	$\mathrm{Vm} \sin _{\mathrm{s}^{-1}} \mathrm{i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$	
5085	117376	A	A0 V	140	0.41	5280	122866		A1 V	80	0.51	
5088	117436	$\begin{aligned} & 72 \text { Vir } \\ & \text { ADS } 8924 \mathrm{~A} \end{aligned}$	F1 V	155	. 58	5284	122958		A1. 5 V	160	. 47	
						5290	123255	95 Vir	F0 IV	165	. 71	
5090	117558		A2 V	140	. 54	5291	123299	11α Dra	AO III (standard:)	15	. 32	
5094	117661	73 Vir AB	A7 III	51	. 65	5303	123998	η Aps	Am (A1/A8V/F0) (SB2)	*	-••	
5097	117716		V	180	. 53							
						5305	124063	3 UMI	A8 V	58	. 65	
5105	118022	78 Vir	A7 Vp(CrEusr st, CaMg wk)	13	. 41	5313	124224	ADS 9152A	B8.5 Vp(Si)	115	. 29	
5106	118054	ADS 8954AB	A1 Vp(SrSi)	50	. 37	5324	124576		AO V	100	. 46	
5107	118098	79ζ Vir	A2 IVn	205:	. 45	5329	124675	$17 \mathrm{k}^{2} \mathrm{BOO}$	A7 V	115	. 57	
5108	118156	ADS 8956A	A8 V	101	. 75			ADS 9173A				
5109	118214	81 UMa	B9.5 V	135	. 45	5332	124683		B9.5 V	95	. 44	
5112	118232	24 CVn	A5 V	145	. 61	5333	124713		A7 V	73	. 55	
5116	118295		A9 V	135	. 71	5341	124915		Am (A8/F1/F1)	68	. 48	
5120	118349	ADS 8966A	A8 V	103	. 62	5342	124931		B9.5 V	55	. 47	
5127	118623	$\begin{aligned} & 25 \mathrm{CVn} \\ & \text { ADS } 8974 \mathrm{AB} \end{aligned}$	$\mathrm{Vp}(\lambda \mathrm{BOO}) \mathrm{n}$	190	. 45	$\begin{aligned} & 5343 \\ & 5345 \end{aligned}$	$\begin{aligned} & 124953 \\ & 125019 \end{aligned}$		AmA 2 V	85150	. 62	
5129	118660		A8 V	83	. 60							
5138	118889	ADS 8987AB	F2 V	130	. 63	5349	125158		Am (A5/F1/F2)	\cdots		
5142	119024	82 UMa	A2 Vp(4481 wk)n	240 :	. 48	53505351	125161	211 Boo	A6 V	130	. 65	
5144	11.9055	$\begin{aligned} & 1 \text { BOO } \\ & \text { ADS } 8991 \text { A } \end{aligned}$	A1.5 V	45	. 42		1251	$\begin{aligned} & \text { ADS } 9198 \mathrm{~A} \\ & 19 \lambda \text { Boo } \end{aligned}$				
5146	119086	ADS 8994AB	A1.5 V	95	. 45	5351 5355	125248			110 10	.11 .32	
						5357	125283		A2 Vn	
5153	119213		A2 IVp(Sr v. st, Cr st)	25	. 38							
5163	119537		A1 IVs	140	.48 .38	5359	125337	100入 Vir	Am (A1/A3 V/A4)	$31 p$ 13 s	. 34 p	
5167	119752		AO V	165	. 51	5360	125349		A1 IV	75	. 56	
5169	119765		V	120	. 43	5364	125442		FO V	
						5367	125473	ψ Cen	B9.5 V	145		
5170	119786	85 Vir AB	A0 V	205:	. 43	5368	125489		FO Vp(λ Boo, met: A5)		. 54	
5179	120047		A5 Vn	220:	. 56				A4 V			
5187	120198	84 UMa	$\mathrm{Vp}(\mathrm{SrCrEu}$IIIs	45..	. 41	$\begin{aligned} & 5372 \\ & 5373 \end{aligned}$	125632			150.61		
5197	120455						125642125658		A2 V	$\begin{array}{r} 145 \\ 18 \end{array}$. 51	
5204	120600		V	113	. 58	$\begin{aligned} & 5374 \\ & 5379 \end{aligned}$			A5 IVs			
							$\begin{aligned} & 125835 \\ & 126129 \end{aligned}$		A1 Ib			
5214	120818		A4 V	115	. 53	5386		ADS 9247A	AO V	120	.44	
5216	120874		A2 V	70	. 52							
5220	120934		A1. 5 V	70	. 51	5388	126200		A2 III	130	. 63	
5229	121164		A8 IV	65	. 63	5392	126248		A3 V	185	. 53	
5238	121409	86 UMa	B9.5 Vp(4481 wk)n	$\begin{aligned} & 5397 \\ & 5401 \end{aligned}$	$\begin{aligned} & 126367 \\ & 126504 \end{aligned}$	ADS 9258A	A2 2 IVAm($1 / \mathrm{F} 1 / \mathrm{F} 2) \mathrm{s}$	45	. 46	
5244	121607	92 Vir	A7 V	130	. 60	5405	126661	22 Boo	Am (A7/F1/F1)	33	. 52	
5255	121996	10 Boo	A0 V	65	. 46							
5262	122365		A3 V	115	. 56	5406	126722	104 Vir	A2 IV	90	. 55	
5263	122405	11 Boo	A7 V	110	. 58	5411	126943		F2 V	78	0.45	
5264	122408 93ρ Vir ADS 9085A		A3 V	170	0.38	$\begin{aligned} & 5413 \\ & 5414 \end{aligned}$	$\begin{aligned} & 126983 \\ & 127043 \end{aligned}$	ADS 9277B	A2 VsA 0 V	
			-							.		

TABLE 2-Continued

TABLE 2-Continued

TABLE 2-Continued

HR	HD	Other	MK Classification	$\frac{\mathrm{km}}{\mathrm{sin}^{-1} i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$	HR	HD	Other		Classification	$\operatorname{vm}_{\mathrm{km}^{-1}} \mathrm{sin}^{i}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$
6074	146738	18 u CrB	A3 IV	100	0.60	6218	150894	A	A3	V	115	0.48
		ADS 9990A				6222	151087	A	F2	V	+88	. .66
6081	147084	190 Sco	A5 II (standard)	15	. 44	6226	151199			$\operatorname{IIIp}(\mathrm{Sr}$ v. st, Ca wk)	48	. 40
6088	147321 147365		$\mathrm{A} 2.5 \mathrm{~V}$	115	. 56	6232	151431	19 Oph	A3	V (Imp(Sx V (145	. 50
6091 6093	147365 147449	A. 50% Ser	$\begin{array}{ll} \text { F3 } & \text { V } \\ \text { F1 } & \text { IV } \end{array}$	93 83	. 61	623	15	ADS 10207A				
						623	15152	45 Her A		-	5	29
6095	147547	20y Her ADS 10022A	FO IV	145	. 73	6235	151527			$5 \mathrm{Vp}(4481 \mathrm{wk}) \mathrm{n}$	225 :	. 40
6110	147835	ADS 10031A	A2 Vn	190	. 49	6240	151676 151862	ADS 10225A	A5	$\begin{aligned} & \text { Vn } \\ & \text { IV } \end{aligned}$	155 70	. 59
6111	147869	21 Her	A1 III	55	. 46	6250	151956	47 Her	Am	(A3/A5/A7)s	38	. 49
6116	148048	η UMi	F2 V			6254	152107	52 Her	A5	p(SrCrEu st, Ca wk)	35	. 43
6117	148112	24ω Her ADS 10054A	A2 Vp(Crsr st, CaMg wk)	35	.34	6254	152107	ADS 10227A	A5	p(SrCrEu st, Ca wk)	35	. 43
6123	148283	25 Her	A3 Vn	260 :	. 40	6255	152187	21 Oph	A2	Vp(Si st, Ca wk)	55	. 49
6127	148330		A2 III	10	. 44	6268		ADS 49 Her (${ }^{\text {a }}$				
6129	148367	$3 \cup$ Oph A	Am (A2/A5V/A5)	18	. 48	6277	152569	${ }_{\text {A }}{ }^{\text {a }}$	F0:	Vn $\mathrm{IVp}(\mathrm{Sr}$ st, CaMg wk)	95 185	. 37
6144	148743		A9 Ib-II	43	. 60	6278	152585		Am	($\mathrm{A} 2 / \mathrm{A} 7 / \mathrm{A} 5$)	81	. 60
6149	148857	$\begin{aligned} & 10 \lambda \text { Oph } \\ & \text { ADS } 10087 \mathrm{AB} \end{aligned}$	A1 V	125	. 41	6279	152598	53 Her A	F0	V	73	. 54
6153	148898	9w Oph	A2 Vp(SrCrEu st, K sn)	51	. 49	6291	152849	24 Oph ADS 10265 AB	AO	Vn	190	. 42
6156	149081	34 Her	A1 IV	65	. 50	6317	153653		A5	V	155	. 56
6161	149212	15 Dra	B9.5 IV	140	. 50	6319	153697	ADS 10279AB	F0	V	88	. 62
6168	149630	σ Her	AO IVn			6324	153808	$58 \varepsilon \mathrm{Her}$	AO	$\operatorname{IVp}(\lambda \mathrm{BOO})$	50	. 39
6169	149632		A1 IV	$\begin{aligned} & 40 \mathrm{p} \\ & 50 \mathrm{~s} \end{aligned}$	$\begin{aligned} & .27 \mathrm{p} \\ & .13 \mathrm{~s} \end{aligned}$	66324	153808 15382	58¢ Her ADS $10310 A$	A0	Vp(SiSrCrEu st, Ca wk)	50 15	.39 .46
6170	149650		A2 V	90	. 48	6329	153914	ADS 10312AB	A1	V	120	. 50
6173	149681		A9 V	90	. 48	6332	154029	59 Her	A2	III	21	. 52
6176	149822		A2 $\mathrm{Vp}(\mathrm{SiSrCr}$ st, CaMg wk)	55	.33	6335 6341	154099 154228	A	A7	Vn	165 30	.63 .43
6179	149911		A2 $\mathrm{Vp}(\mathrm{SrCr} \mathrm{v}$. st)	45	. 58	6350	154418	A	${ }_{\text {Am }}$	(A2/A7/A6)	78	. 58
6184	150100	$\begin{aligned} & 16 \text { Dra } \\ & \text { ADS } 10129 \mathrm{C} \end{aligned}$	B9.5 V	60	. 35	6351	154431		A6	V	110	.58 .53
6185	150117	17 Dra A	AB: B9.5 V	215 :	. 44	6352	154441 154481	ADS 10326A	B9	V	260.	35
		ADS 10129A				6354 6355	154481 154494	60 Her	B9	V	260:	.25 .56
6186	150118	17 Dra B ADS 10129B		195	. 44	6361		ADS 10334A				
6193	150366		Am (A5/A9/A7)	38	. 44	6	154660	ADS 10347A	A4	Vn	250:	. 48
6194	150379	36 Her ADS 10149B	Am (A1/A6/A6)	81	. 59	6362 6347	154713 154895		A2	$\mathrm{IV}^{\text {V }}$	30 650	. 42
6195	150378	$37 \text { Her }$	B9.5 V	145	. 48	6347	154895	ADS 10355AB	A2	V	65 p 75 s	.37p
						6376	155102		A2	IV	30	. 48
6201	150451			65		6377	155103	ADS 10360AB	Am	(A3/F0/F0)	71	. 55
6203	150483		A1 Vn	235 :	. .47	6378	155125	35n Oph ADS 10374 AB	A2	IV	15	. 36
6216	150768	ADS 10173A	A2 Vn	165	0.61	6379	155154		A9	V	145	0.53

HR	HD	Other	MK Classification	$\underset{\mathrm{km}}{\mathrm{v}} \mathrm{sin}^{-1}{ }^{i}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$	HR	HD	Other	MK Classification	$\mathrm{Vm}_{\mathrm{km}}^{\mathrm{sin}^{-1}}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$
6380	155203	η Sco	F3 IVn	-••	.	6533	159139	78 Her	AO Vn		
6381	155259		A1 V	-	. .	6534	159170	78 Her	A3: Vn	22i5:	0.54
6383	155328	ADS 10369A	AO V	- ${ }^{-1}$	\cdots	6545	159376	52 Oph	B9 V: $\mathrm{p}(\mathrm{Si}$ st, Mg wk)	35	. 30
6385	155375		A2 IIIs	25	0.49	6548	159480	53 Oph	A2 IVs	40	. 44
6386	155379		B9.5 Vp(HgMnSrSi)	15	. 36	6548	15940	ADS 10635 A	A2 IVs	40	. 44
6391	155514	63 Her	A9 V	160	. 58	6551	159503		A5: Vn	205 :	. 60
6399	155860	ADS 10397A	A3 V	90	. 53	6554	159541	$24 \nu^{1}$ Dra	Am (A3/FO/FO)	75	. 49
6410	156164	$\begin{aligned} & 65 \delta \text { Her } \\ & \text { ADS } 10424 \mathrm{~A} \end{aligned}$	A2 Vn	230 :	. 49	6554 6555	159541 159560	ADS, 10628B $25 v^{2} \text { Dra }$	Am (A3/F1/F0)	58	.49 .65
6412	156208		A1 IV	35	. 37	6555	159560	ADS 10628A	Am (A3/E1/F0)	58	65
6421	156295		A7 V	95	. 74	65.56	159561	55α Oph AB	A3 Vn	210:	. 53
6432						6559	159834	ADS 10655A	A5: V	28	. 43
6432 6434	156697		$\begin{array}{ll}\text { A1 } \\ \text { F0 } & \text { Vn }\end{array}$	30 185	. 41	6561	159876	55ξ Ser	Am (A7/A9/F3)	45	. 55
6435	156717	ADS 10465AB	AO Vp(4481 wk)n	210	. 28	6562	159877		Am (A9/F1/F2)	35	. 43
6436	156729	69 Her	A1 IV	145	. 54	6570	160054		A6 IV	100	. 58
6445	156897	$\xi \mathrm{Oph}$	F1 IV	6571	160181	79 Her	A1: Vp(4481 wk)n	150	. 32
						6581	160613	560 Ser	A3 IV	95	. 40
6446	156928	$\begin{aligned} & 53 V \text { Her } \\ & \text { ADS 10481A. } \end{aligned}$	A2 V	110	. 51	6589	160765		A1 V	110	. 43
6449	156971	A	F3 VWl:(met.: F1)	18	. 39	6593	160839		Am (A3:/F1/F2)	51	. 51
6455	157087		A3 IVs	10	. 42	6609	161270	61 Oph	A0 III	100	. 41
6457	157198	70 Her A	A1 IV	95	. 43			ADS 10750A			
6473	157546		B9 Vp(4481 wk)n	215 :	. 34	6610	161289	ADS 10750 B	AO V	125	. 47
6480	157728	73 Her				6611	161321	ADS 10749A	Am (A2/A6/A6)	38	. 36
6481	157740	73 Her	A3 III	81 25	. 65	6618	161693		AO V	155	. 47
6482	157741	ADS 10528A	B9 Vp(4481 wk)nn			6619	161695		AO Ib	25	. 46
6484	157778	$75 \rho \text { Her B }$	B9.5 IVn	270:	. 47	6627	161833	ADS 10795AB	AO Vp(4481 wk)	90	. 33
		ADS 10526B				6629	161868	62γ Oph	ג̇O $\mathrm{Vp}(4481 \mathrm{wk}) \mathrm{n}$	185	. 31
6485	157779	$\begin{aligned} & 75 \rho \text { Her A } \\ & \text { ADS } 10526 \text { A } \end{aligned}$	AO IIIp(HgMn)	65	. 35	$\begin{aligned} & 6633 \\ & 6641 \end{aligned}$	$\begin{aligned} & 161941 \\ & 162132 \end{aligned}$	62 γ Oph	B9 V A2 IIIs	35 40	.37 .44
6486	157792	44 Oph	Am (A3/F0/F3)	68	. 74	6642	162161		B9.5 Vp(4481 wk)	60	. 31
6490	157864		B9 IV	115	. 48	6655	162570		A6 Vn ${ }^{\text {V }}$	190	. 56
6494	157955		B9.5 III	60	. 47	6656	162579	30 Dra	A2 V	110	. 61
6497	157978		G0 III + A1 IVs + A2 Vs	- ${ }^{\text {a }}$	- ${ }^{\text {- }}$	6664	162732	88 Her	B6 IIIp(4481 wk)n + shell	145	. 24
6499	158067	A	A7: V	35	. 48	6679	163245	88 Her	A1 Vn	175	. 50
6506	158261		A1 III	10	. 38	6680	163318		A8 V	145	52
6507	158352		A8 V	165	. 60	6681	163336	ADS 10891A	A2 IV	45	. 50
6509	158414	77 Her	A2 V	135	. 49	6689	163624	ADS 10912AB	A5 III-IV	38	. 51
6511	158460		AO Vnn	275:	. 41	6690	163641	ADS 10912AB	B9 Vp(4481 wk)	45	. 31
6514	158485		A3 V	175	. 56	6696	163772		AO V	155	. 49
6519	158643	51 Oph	B9.5 Vn	210:	. 41	6700	163955	4 Sgr	B9.5 II-III	135	. 42
6521	158716		A2 IV	35	. 47	6709	164258		A6 Vp(SrCr st, Ca wk)	50	. 50
6532	159082		A0 $\operatorname{IVp}(\lambda \mathrm{BOO})$	30	0.26	6718	164429		A2: Vp(SiSrCr st, Ca wk)	85	0.48

TABLE 2-Continued

HR	HD	Other	MK Classification	$\mathrm{Vm}_{\mathrm{km}}^{\mathrm{s}^{-1}} 1$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$	HR	HD	Other	MK Classification	$\mathrm{Vm}_{\mathrm{km}}^{\mathrm{s}^{-1}} \mathrm{sin}^{1}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$
7340	181577	$44 \mathrm{p}^{1} \mathrm{Sgr}$	A9 IV	83	0.59	7500	186340	ADS 12789A	A5 V	140	0.51
7342	181615	46 u Sgr AB	B2-5p(HI v. wk $)+$ shell	35	. 74	7501	186357	ADS 12789A	F1 III	98	. 69
			(A2 Ia, HI v. wk)			7502	186377		A6 III	15	. 44
7351	181960		A1 V	100	. 45	7505	186440			125	. 48
7357	182239		A9 V	48	. 56	7510	186543	\checkmark Tel	A 7 IV
7362	182369	$47 \chi^{1}$ Sgr $A B$	A8 V	45	. 54	7510	18654	\checkmark rel	A7 IV
						7519	186689	490 Aql	A7 V	33	. 45
7366	182475		F2 V	135	. 78	7528	186882	188 Cyg	B9.5 IV	140	. 44
7369	182490	2 Sge A	A1 III	35	. 45			ADS 12880A			
7371	182564	58π Dra	A2 IV	15	. 44	7529	186901	ADS 12893A	B9.5 III		
7377	182640	30才 Aql A	A9 III	85	. 60		186902	ADS 12893B	AO $\operatorname{Vp}(4481 \mathrm{wk}) \mathrm{n}$..	
7379	182678		AO V	75	. 50	7531	186957	ADS 12893B	Am (A0/A2/A2)
7384	182761		A0 III	170	. 50	7532	186984			91	. 83
7390	182919	5 Vul	AO III	140	. 44	7533	186998		FO V		
7392	183007		Am (A1/A4:/A3)	.	\cdots	7545	187340		A2 III	33	.46
7395	183056	4 Cyg	B9.5 II	20	. 15	7546	187372		A2 Vn	190	. 41
7400	183324	35 Aql	AO $\operatorname{IVp}(\lambda \mathrm{BOO})$	105	. 16			$\text { ADS } 12973 \mathrm{AB}$,		
7408	183534	$71^{1} \mathrm{Cyg}$		40	. 36	7552	187474		A2 Vp(SiEuCr)	-	. .
7410	183545		A2 Vn	185	. 54	7553	187532	51 Aql	F1 IV	95	. 57
7411	183552		Am ($\mathrm{FO} / \mathrm{FO} / \mathrm{F} 2$)	i70	\cdots			ADS 13017A			
7415	183656		```B7 IIIn + shell (HI, Ca K```	K, 170	. 27	7557	187642	$\begin{aligned} & 53 \alpha \text { Aql } \\ & \text { ADS 13009A } \end{aligned}$	A5 IVn	200 :	. 54
7416	183806		AO Vp(SrCr)	-	-••	$\begin{aligned} & 7562 \\ & 7563 \end{aligned}$	$\begin{aligned} & 187753 \\ & 187764 \end{aligned}$		$\begin{aligned} & A m(A 1 / A 5 / A 5) \\ & F 0 \vee \end{aligned}$	51 85	.52 .47
7420	184006	101 ${ }^{2} \mathrm{Cyg}$	A4 Vn	220 :	. 50	7573	187982		A1 Iab	45	. 67
7422	184035		A2 IV	i ${ }^{\circ}$	\cdots						
7423	184102		A2 Vn	165	. 57	7575	188041		FO Vp(SrCrEu v. st)	40	. 48
7425	184146		A2 V	i3	$\cdots{ }^{\text {• }}$	7579	188097		Am (A3/A6/A7)		
7431	184552	51 Sgr	Am (A2/A7V/F0)	13	. 46	7580 7587	188107 188162		$\mathrm{B9} .5 \mathrm{Vn}$ AO IV	210:	. 30
7436	184603		A1 Vn	175	. 46	7590	188228	ε Pav	AO IV	. \cdot	-
7439	184705		FO V	108	. 69			av	A0 IV
7441	184759	9 Cyg AB	A0: V + G0 III	7	-••	7592	188260	13 Vul A	B9.5 III	55	. 37
7444	184875		A1 V	75	. 42	7596	188350	58 Aql	B9.5 V	105	. 43
7445	184884	ADS 12660A	130	. 49	7598	188385 188485	ADS 13093A	A1 V B9.5 IV	105 110	.50 .40
7453	184977		A9 V	73	. 56	7610	188728	61ф Aq1	A1 IV	15	. 44
7470	185404	$\begin{aligned} & 53 \mathrm{Sgr} \\ & \text { ADS } 12741 \mathrm{AB} \end{aligned}$	AO V	150	. .	7611	188793	A	A2 V	120	43
7480	185762	$\begin{aligned} & 45 \text { Aql } \\ & \text { ADS } 12775 \mathrm{~A} \end{aligned}$	A2.5 IV	65	. 47	7614	188899 188971	61 Sgr	A2 V	55	.49
7481	185859			55	.43	7619	189037	24ψ Cyg	A2 Vn	190	0.40
7483	185872	14 Cyg	B9.5 Vp(Si)	25	. 38			ADS 13148A			
7489	186005	55 Sgr	FO IV	140	. 66	7624	189118	$\theta^{2} \mathrm{Sgr}$	A4 IV	.	-••
7498	186219		A4 IV	7630	189198		A8 III	. .	
7499	186307	$A B$	A6 V	90	0.52	7632	189253		AO V	. .	

TABLE 2-Continued

HR	HD	Other	MK Classification	$\mathrm{V}_{\mathrm{km}} \sin _{\mathrm{s}^{-1}} i$	$\begin{aligned} & 4481 \\ & \text { W(A) } \end{aligned}$	HR	HD	Other		Classification	$\mathrm{vm}_{\mathrm{km}} \sin i$	$\begin{aligned} & 4481 \\ & \text { W(A) } \end{aligned}$
7634	189296		A2 Vnn	\cdots	\cdots	7827	195066	ADS 13870A	AO	V	145	0.48
7638	189377	ADS 13186AB	A1 V	\cdots	\cdots	7828	195068	43 Cyg	F2	V	43	. 52
7641	189410	14 Vul	F1 Vn	\cdots	\cdots	7829	195093		A6	V	125	. 59
7646	189684		A8 V	7829	195093	ADS 13902B				
7649	189741	63 Sgr	A2 V	7830	195094	120 Cap A	A2	Vn	250:	. 57
7650	189763	62 Sgr	A1.5 V	. ${ }^{\text {a }}$		7832	195206	ADS 13902A	A9	IV	85	. 61
7653	189849	15 Vul	Am (A8/A9/F3)	10	0.41	7832	195206		A9	I		
7654	189900		A2.5 V	\cdots	\cdots	7833	195217		Am	(A3/A7/A7)	63	. 57
7677	190590		A5 Vn	240:	. 56	7835	195324	42 Cyg	A1	Ib	15	. 53
7684	190781		A1 IV	15 p 15 s	.26p	7836	195325	$\begin{aligned} & 1 \text { Del } \\ & \text { ADS } 13920 \mathrm{AB} \end{aligned}$	A1:	III + shell	200:	. 32
7694	191110					7839	195479	A	Am	($\mathrm{A} 1 / \mathrm{A} 9 / \mathrm{F} 2)$	18	. 47
7694	191110		(HgMn)	$<10 \mathrm{~s}$	$.12 \mathrm{~s}$	7840	195483	ADS 13946A	B8	V	140	. 46
7695	191174	ADS 13371A	A3 V	32	. 55	7842	195549		AO	V	140	. 49
7702	191329		A2 V	190	. 54	7848	195627	ϕ^{1} Pav	F0	V	.	
7711	191747	18 Vul	A2 IV	30 p 50 s	. 23 p	7849	195692	ADS 13964AB	Am	($\mathrm{A} 2 / \mathrm{F} 1 / \mathrm{FO}$)	65	. 53
7717	191984	ADS 13506A	AO Vn	50 s 150	. 19 s	7850	195725	2θ Cep	${ }_{\text {Am }}$	(A7/F1/F2)	51 185	. 55
7717	191984	ADS 13506A	A0 Vn	150	. 43	7857	195922		A0	Vp(4481 wk)n	185	. 37
770	i9is	ADS 13506B	A2 IV:p(SrCrEu st, Ca wk)	20	. 38	7858	195943	3 n Del	A2	IV	55	. 51
7723	192342	ADS 13543A	Am (A2/F2/F2)	15	. 41	7865	196078	3 l Del	A7	V	83	. 52
7724	192425	67ρ Aql	A1 V	165	- 50	7871	196180	45 Del	A2	V	85	. 39
7730	192514	$\begin{aligned} & 30 \mathrm{Cyg} \\ & \text { ADS } 13554 \mathrm{D} \end{aligned}$	A2 V	160	. 56	7874	196362	26 Vul	A5	IIIs	10 21	.46 .48
7731	192518	21 Vul	A5 Vn	205:	. 55	7876	196379	A				
						7877	196385		F3:	: V	10	. 35
7734	192538		B9.5 Vp(4481 wk) : A1,	220:	. 39	7879	196502	73 Dra	A9:	: Vp(CrSrEu st, Ca v	wk) 10	. 46
7736	192640	29 Cyg	4481 wk) A7 Vp(λ Boo, met.: A1,	35	. 07	7883	196544	$5_{4} \mathrm{Del}$	A1	IV	30 150	.50 .56
7740	192696	33 Cyg	A2 IVn	225 :	. 51	7891	196724	29 vul	AO	IV	40	. 37
7752	192934		AO III	i90	\cdots		196724					
7755	192983		A1 Vn	190	. 44	7903	196821		A0	$\operatorname{IIIp}(\lambda \mathrm{BOO}) \mathrm{s}$	10	. 31
7764	193281	ADS 13702A	A2.5 V	75	. 46	7906	196867	$9 \alpha \mathrm{Del}$	B9	IV (standard)	125	. 41
7769	193369	36 Cyg		90	. 51	7913		ADS 141	A8	V		
7774	193472		Am (A4/F0/F2)	93	. 63	7916	197101	Pav	F2	V	150	.70
7776	193495	β Cap	A0 V + G1 II	\cdots		7917	197120	ADS 14149A	A1	$\mathrm{Vp}(4481 \mathrm{wk})$	125	. 40
7781	193592	ADS 13692A	A2 IV	20	.46		19712	ADS 14149				
						7920	197157	η Ind	A9	IV (standard)		,
77982	193621	ADS 13692B	B9.5 Vp(4481 wk) + shell	270:	.44	7924	197345	$50 \alpha \mathrm{Cyg}$	A2	Ia (standard)	30	. 65
7784	193702	ADS 13728AB	A1 V	175	. 44	7928	197461	118 Del	Am	(A7/F2/F0; 4481 wk)	28	. 30
7787	193807	$\mathrm{K}^{2} \mathrm{Sgr}$	A6 V	$\stackrel{0}{0}$	-	7930	197508		Am	(A3/F1/F0)		
7803	194244	ADS 13811A	B9 IVn	205 :	. 43	7937	197725	17 Cap	A2	V	130	. 49
7818	194882	ADS 13850AB	A2 IV	30	. 47	7938	197734		A1	IV	25	. 43
7826	195050	40 Cyg	A2 V	120	0.52	7945	197950	4 Cep	A7	Vn	160	0.61

TABLE 2-Continued

HR	HD	Other	MK Classification	$\operatorname{km}_{\mathrm{sm}^{-1}} \sin ^{i}$	$\begin{aligned} & 4481 \\ & \text { W(A) } \end{aligned}$	HR	HD	Other	MK Classification	$\mathrm{km}_{\mathrm{km}^{-1}} \sin ^{i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$
7950	198001	2ε Aqr	A1. 5 V	90	0.47						
7953	198069	13 Del ADS 14293A	A1 IV	155	. 47	8130	202444	$\begin{array}{lc} 65 \tau & \text { CYg } \\ \text { ADS } & 14787 A \end{array}$	F2 IV	98	0.57
7954	198070	ADS 14293A	B9.5 IVn	235 :	. 50	8134	202606		Am (A1/A2/A3)s	40	. 45
7958	198151	AB	A2 V	125:	. 54	8135 8139	202627	ε Mic 31 Cap	A2 IV F1 IV	125	. 68
7974	198391	14 Del	A1. 5 IV	15	. 42	8139 8140	$\begin{aligned} & 202723 \\ & 202730 \end{aligned}$	$\begin{aligned} & 31 \text { Cap } \\ & \theta \text { Ind } \end{aligned}$	$\begin{aligned} & \text { F1 IV } \\ & \text { A6 V } \end{aligned}$	125	. 68
7981	198552		A1 V	40	. 44	8147				100	. 37
7984	198639	56 Cyg A	${ }^{\text {A6 }} \mathrm{V}$	63	. 56	88151	203006	$\theta^{1} \mathrm{Mic}$	A7 $\mathrm{Vp}(\mathrm{SrCrEu}$ st, Ca wk)	100	. 37
7990	198743	$6 \mu \mathrm{Aqr}$	Am (A5/A9/F3)	63	. 66	88155	203096	ADS 14849A	Am (A5/A6/A7)s	10	.35
7998 8002	198949		F2 V A0. 5 V	73	. 53	8162	203280	5α Cep	A7: Vn	180	. 54
		76 Dra	AO. 5 V	. \cdot	...			ADS 14858A			
8004	199099		B9.5 Vp(4481 wk)	95	. 34	8169	203439		A1 IV	20	. 34
8006	199124		A9 V ${ }^{\text {V }}$	145	. 57						
8012	199254	$\begin{aligned} & 16 \mathrm{Del} \\ & \text { ADS } 14429 \text { A } \end{aligned}$	A5 V	145	. 55	8174 8178	203562	10β Equ	A3 II	40	.48
8018	199443		A6 V	78	. 67			${ }_{\theta}^{\text {ADS }} 14920 \mathrm{~A}$			
8024	199603		Am (A4/F0/F0)	91	. 66	8180 8186	$\begin{aligned} & 203585 \\ & 203696 \end{aligned}$	$\theta 2$ Mic AB	AO Vp(Si st, Camg wk)	115	. 46
8025	199611	ADS 14460A	F1 V	140	. 62	8187	203705	18 Aqr A	FO IV	125	. 60
8028	199629	58 v Cyg	A0 IIIn	200:	. 41						
8033	199728	20 Cap	F0: Vp(Si v. st, met. CaMg v. wk)	60	. 16	8190	203843	${ }^{\text {A }}$ 2 Aqr	A9 III	130 81	.72 .79
8038	199942		A6 $\mathrm{V}^{\text {Wk) }}$	145		8194	203858	ADS 14943A	A1 IV	70	. 56
8045	200052		A5 V:p(SiMg)	145 35	.53 .74	8195	203875	19 Aqr	A7 IV	90	. 66
8058	200496	12 Aqr	A3 IV	23p	. 22p						
		ADS 14592B		55s	. 22 p	8202	204018		Am (A4/F0V/F6)	55	
8059	200497	ADS 14592A	G0 II-III			8203	204041		A3 Vp(λ Boo)	55 35	. 21
8060	200499	22η Cap AB	A3 IV	- 53	.52	8206	204131	ADS 14962A	A0 Vp(Sr CrSiHg)	35 105	.34 .55
8075	200761	23θ Cap	A1 V	80	. 48	8208	204153		F0 IV ${ }_{\text {Am }}$ /A9/F0)	105	. 55
8083	201057		B9.5 V	85	.32	8210	204188		Am (A6/A9/F0)	31	. 45
8087	201184	25x Cap A		195		8216	204411		A4 Vp(SiCrHg)	15	. 37
8094	201433	ADS 14682A	B9 ${ }^{\text {Vp(Si) }}$	195 10	. 37	8217	204414	35 Vul	A2 IV	70	. 61
		ADS 14682B	Am (A2.5/A7V/A9)n	10	. 37	8230	204854	6 PsA	A2 V	9	- ${ }^{\text {b }}$
8098	201616	6 Equ	AU (A2.5/aiv/ag)n	$\stackrel{5}{5}$.51	8235 8237	$\begin{aligned} & 204943 \\ & 204965 \end{aligned}$		A7 V A2 $\mathrm{Vp}(4481 \mathrm{wk})$	98 85	.65 .40
		ADS 14702D			. 51	8237	204965		A2 Vp(4481 wk)	85	. 40
8101	201671	ADS 14710A	Am ($\mathrm{A} 0 / \mathrm{A} 2 \mathrm{~V} / \mathrm{A} 2)$	115	. 57	8240	205087		AO Vp(SiSr st, CaMg wk)	15	. 19
		ADS 14710B	A4			8246	205314		B9.5 Vn	175	. 37
8102	201707	ADS 14710B	A8 III		\ldots	8253	205471	8 PsA A	Am (A5/F0V/F2)	15	. 41
8106	201834		B8 IIIp(SiSr st, He wk)	15	.22	8257	205539		F2 IVp(Ca I, Mg II wk)	10	. 20
8114	202103	AB	A2.5V ${ }^{\text {V }}$ (St	15	. 22	8258	205541		A3 Vn	205:	. 47
8116	202128	ADS 14761AB	A7 Vn	190	. 66	8263	205765	ADS 15142A	A1 V	175	. 53
8120	202240					8264	205767	$23 \xi \mathrm{Aqr}$ AB	A6: V	155	. 65
8120	202240		A7 II	18	0.49	8265	205811	3 Peg	A2 V	90	0.57

TABLE 2-Continued

HR	HD	Other	MK Classification	$\mathrm{Vm}_{\mathrm{km}} \sin ^{-1} i$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$	HR	HD	Other	MK Classification	$\underset{k m}{v} \sin ^{-1}$	$\begin{aligned} & 4481 \\ & W(A) \end{aligned}$
8585	213558	7α Lac ADS 16021A	A1 V	115	0.46	8781	218045	54 α Peg	A0 IV	130	0.44
8586	213617	39 Peg	F2 V	83	. 58	8790	218108	\cup Gru	A6 Vn	\cdots	.
8588	213660	ADS 16031A	A2.5 V	115	. 55	8798	218395	ADS 16519A	A3 V	180	50
8591	213798	$29 \rho^{2}$ Cep	A2 V	120	. 51			ADS 16519B	Am (A1/A3:/A7)s
8598	214019	ADS 16062A	AO V	225 :	. 42						
						8799	218396		FO Vwl (met.: A5)	40	. 33
8599	214035		AO V	115	. 44	8806	218525		A3 V	60	. 49
8602	214150		A2 IV-V		...	8816	218639		AO Vn	235 :	. 44
8605	214203		A2 IV	25	. 44	8817	218640	89 Aqr	G0 II-III + A3 V:	...	
8607	214279		A1 V	170	. 41	8822	218753	2 Cas	Am A5/A7/F0)	<10	. 46
8613	214454	9 Lac	FO Vp(λ Boo; met.: A6)	93	. 48			ADS 16556A			
8616	214484	$A B$	A2 IIIs	-	\cdots	8826	218918	59 Peg	A3 IIIn	245 :	. 56
8624	214698	41 Peg	A1 IV	25	. 46	8830	219080	7 And	FO IV	63	. 52
8627	214734	30 Cep	A2 V	155	. 52	8837	219290		A1 IV	45	. 45
8630	214846	β Oct	A7 IV	i	-.	8840	219402		A2 V	145	. 51
8641	214994	430 Peg	A1 III (standard)	10	. 40	8844	219485		A1 IV	15	. 38
8645	215114	ASDS 16208A	A3 Vn	145	. 51	8848	219571	γ Tuc	F2 III	iis	\cdots
8647	215143	67 Aqr	B9.5 V	\cdots	. ${ }^{\text {c }}$	8851	219586		A9 V	145	. 60
8666	215664		F0 Vn	170	. 64	8856	219659		AO Vn	180	.49
8675	215789	ε Gru	A2 Vn	\cdots	-•	8861	219749		AO Vp(Sisr st, CaMg wk)	65	. 18
8676	215874	70 Aqr	F1 V	98	. 59	8864	219815	9 And	Am (A9/F1/F3)	70	. 59
8677	215907		B9.5 V	120	. 43	8865	219832	$95 \psi^{3} \mathrm{Aqr}$	B9.5 V	130	. 53
8681	216048		F0 V	155	. 58			ADS 16671A			
8695	216336	γ PsA	A0 $\mathrm{Vp}(\mathrm{SrCrEu})$	-	- ${ }^{\text {c }}$	8867	219841		AO IV	65	. 40
8708	216608	ADS 16345A	Am (A2/F1/F2)	46	. 64	8870	219891		A4 III	175	. 61
8709	216627	76δ Aqr	A3 Vp(4481 wk)	70	. 41	8880 8884	220061	$\begin{array}{ll} 62 \tau & \text { Peg } \\ \text { ADS } & 16685 A \end{array}$	A5 $\mathrm{Vp}(\lambda \mathrm{BOO})$ A3 Vn	135 $240:$.39 .51
8715	216701	1 Psc	A6 III	80	. 59						
8717	216735	$50 \rho \mathrm{Peg}$	A0 IV	95	. 48	8890	220278	97 Aqr	A3 Vp(Ca II st, Mg wk)	160	. 40
8722	216823	$\tau^{3} \mathrm{Gru}$	Am (A5/A7/F2)	\bigcirc	\cdots		220278	ADS 16708AB	AJ Vp(Ca II st, Mg wk)		
8724	216900	ADS 16389A	A3 V	60	. 56	8902	220575		B8 IIIs	15	. 26
8728	216956	24 α PsA	A3 V (standard)	85	. 67	8911 8915	220825	8K Psc 69 Peg	A2 Vp(SrCrSi st, Ca wk) AO $\operatorname{IIIp}(\mathrm{Hg})$	30 25	.46 .35
8738	217186		A1 V	50	. 42	8918	220974		A5 III	90	. 50
8739	217232	52 Peg ADS 16428AB	F0 V	125	. 56	8919	221006		AO Vp(Si)		
8740	217236		F2 IV-V	80	. 63	8932	221357	100 Aqr	A9 III-IV	110	. 56
8753	217477	ADS 16443A	B9.5 Vp(HgMn st, CaMg wk)	20	. 28	8933	221394	100 Aq	AO Vp(SrCrSiHg)	35	. 39
8755	217491		A3 V	55	. 48	8936 8937	221491	$\beta \mathrm{Scl}$	B9 Vn B9.5 IIIp(HgMnSi)	180	. 44
8756	217498		A3 V	70	. 54				B. 5 IIP(HgMnSI)	.	-.
8765	217754		F2 IV	18	. 46	8938	221525		A8 III		
8766	217782	2 And ADS 16467A	A1 V	195	0.48	8939 8944	$\begin{array}{r} 221565 \\ 221675 \end{array}$	101 Aqr 14 Psc	$\begin{aligned} & A 0 \mathrm{~V} \\ & A m(A 3 / A 9 V / F 2) \end{aligned}$	165 70	.42 .67
8767	217792	π PsA	Am (F0/F1/F2)	-••	-••	8947	221756	15 And	A1 Vp(4481 wk)	75	0.27

TABLE 2-Continued

HR	HD	Other	MK	Classification	$\mathrm{vm}_{\mathrm{km}}^{\mathrm{s}^{-1}} \mathrm{i}$	$\begin{aligned} & 4481 \\ & \mathrm{~W}(\mathrm{~A}) \end{aligned}$
8949	221760	1 Phe	AO	$\mathrm{Vp}(\mathrm{SrCrEu})$	\cdots	
8954	221950	16 Psc	F2	$\mathrm{Vp}(\mathrm{G-band} \mathrm{st})$	16	0.19
8959	222095		A2 V	V		
8960	222098	74 Peg	A2	IV	15	. 44
8963	222133	75 Peg	AO	V	215:	. 49
8968	222345	ω^{1} Aqr	A9 V	V	93	. 62
8970	222377		Am	(A1/A9/F0)	50	. 66
8971	222386		A2 V	V	-	
8973	222399	ADS 16913A	F0	III	46	. 20
8931	222570		A4	III	85	. 60
8983	222602		A2	V	195	. 47
8984	222603	18入 psc	A7	IV	60	. 54
8988	222661	$\begin{aligned} & 105 \omega^{2} \text { Aqr } \\ & \text { ADS } 16944 \mathrm{~A} \end{aligned}$	B9. 5	5 IV	130	. 44
9002	223024	107 Aqr A	A9	III	60	. 68
9013	223274		AO V	V	165	. 50
9016	223352	$\begin{aligned} & \delta \text { Scl } \\ & \text { ADS 17021A } \end{aligned}$	A0	$\mathrm{Vp}(\lambda \mathrm{Boo}) \mathrm{n}$	280:	. 26
9017	223358	ADS 17020AB	AO	$\mathrm{Vp}(\mathrm{SrSiCrHg})$	68	. 45
9018	223385	6 Cas ADS 17022A	A3	Iat	30	. 62
9019	223386		A0	III	25	. 36
9022	223438	21 PsC	A5	III	78	. 55
9025	223461	79 Peg	A5	II-III	48	. 54
9026	223466	ADS 17029A	Am	(A2/A5/A7)	60	. 57
9028	223552	ADS 17032A	F2	IV-V	80	. 55
9031	223640	108 Aqr	A0	Vp(SiSr st, CaMg wk)	20	. 28
9039	223781	82 Peg	A3	V	165	. 52
9042	223855	25 Psc	B9. 5	5 V	50	. 40
9043	223884		A3	Vn	210:	. 46
9044	223991	ADS 17090AB	Am	(A1/A7/A7)	23	. 42
9048	224103	26 Psc	A0	IIIs	20	. 37
9056	224309		A1	V
9060	224361		A2	V
9062	224392	η Tuc	A2	Vn		
9080	224801		A0	IIp(SiSrHg st, CaMg	wk)s 25	. 16
9085	224903		A8	III	28	. 50
9092	224995	31 Psc	A7:	IV	90	. .
9093	225003	32 Psc	A9	III	46	. 50
9100	225180	9 Cas	A1	IVp(λ Boo)	25	. 35
9102	225200		B9	IVs + A2 n	315:	. 36
9105	225218		A3	$\operatorname{IVp}(\lambda \mathrm{BOO}) \mathrm{s}$	20	0.34

NOTE.-Table 2 is published in computer-readable form in the AAS CD-ROM Series, Vol. 5, but with the "Other" column deleted.
stars; a plot for the early F stars in similar. These plots show a scatter of ± 8.1 and $\pm 9.7 \mathrm{~km} \mathrm{~s}^{-1}$, respectively, which represent our estimated errors. The mean systematic errors are +0.2 and $+1.1 \mathrm{~km} \mathrm{~s}^{-1}$, respectively, which are insignificant. However, for $V \sin i>225 \mathrm{~km} \mathrm{~s}^{-1}$ Slettebak et al. have only one standard, which they marked as uncertain, and we do not know how to extend the calibration curve (Fig. 1, top); our values for velocities greater than $200 \mathrm{~km} \mathrm{~s}^{-1}$ may be uncertain and are marked with colons. However, we note that for the 26 stars with $V \sin i>250 \mathrm{~km} \mathrm{~s}^{-1}$ our values are larger on the average by 19 ± 11 (s.e. in the mean) than those in the BSC; this difference is not significant, so that we agree on the average with previous measures. We rounded off our measures to the nearest $5 \mathrm{~km} \mathrm{~s}^{-1}$.

The $\lambda 4476 \mathrm{Fe}$ I line could be measured only among the late A stars, or about 31% of the stars. We found that those measures give rotational velocities that average $6 \mathrm{~km} \mathrm{~s}^{-1}$ lower than for $\lambda 4481 \mathrm{Mg}$ II. Therefore we added $6 \mathrm{~km} \mathrm{~s}^{-1}$ to the measures from $\lambda 4476$ before averaging them with those of $\lambda 4481$. Thus
measures derived from both lines have means that are usually not rounded multiples of $5 \mathrm{~km} \mathrm{~s}^{-1}$.

The rotational velocities are listed in fifth column of Ta ble 2 .

2.3. $\lambda 4481$ Equivalent Widths

The equivalent widths, W, of $\lambda 4481$ were determined from the Gaussian profile fits for the sharper-lined stars; the values are listed in the last column of Table 2. For the broader-lined stars where Gaussian curves do not fit the wings of the lines, we made pixel-by-pixel integrations, sometimes after performing 2 pixel smoothing first. Our only direct comparison is for HR 7001 = Vega, for which we derived $0.31 \AA$, and Adelman \& Gulliver (1990) give $0.291 \AA$, which is well within our estimated error of $0.062 \AA$ per star.

The equivalent widths range from 0.11 to $0.83 \AA$ and aver-
age $0.54 \AA$. The mean values as functions of spectral type and luminosity class are listed in Table 3. For each of four luminosities we list the mean equivalent widths, the rms scatter per star, and the number of stars (n) included. When there were less than 10 stars in a bin, we grouped together the data for two or more spectral types. The rms scatter per spectrum is ± 0.062 \AA A for the main-sequence stars or 11% of the equivalent width. Of course this scatter is partly cosmic (real differences from star to star) and partly due to measuring errors, such as due to uncertainties in locating the continuum; we do not have the data to separate these sources.

Figure 2 shows these mean equivalent widths as functions of spectral type for four different luminosity classes. The error bars on the symbols are the errors in the means, namely, the rms times $(n-1)^{-1 / 2}$. The curve drawn through the mainsequence (class V) stars is repeated in the lower three panels. Those show that within the errors, the relation fitting class V also fits classes IV-I for the late A stars. However, the early A stars of classes IV and III have lower equivalent widths, and those of classes II and I are higher. In fact, for classes II and I the equivalent widths can be fitted by a straight horizontal line within the error estimates. In all cases the equivalent width of $\lambda 4481$ is relatively insensitive to spectral type, so when that line is seen or measured to be weak, that cannot be attributed to a small classification error and must represent an underabundance.

We do not list or use the equivalent widths of 4476 Fe I. They are generally less than $0.2 \AA$ and vary rapidly with spectral type. And because we did not measure that line in all the late-type stars, the ones measured may be only the cases where

TABLE 3
Mean Equivalent Widths of $\lambda 4481$ Mg ii in Normal Stars

Type	$\mathrm{V}^{\text {a }}$			$I^{\text {a }}$		
	$\langle W\rangle$	rms	n	$\langle W\rangle$	rms	n
A0	0.448	± 0.062	102	0.415	± 0.054	8
A1	0.465	0.059	84	0.450	0.051	53
A2	0.507	0.060	143	0.464	0.062	56
A3	0.522	0.063	84	0.495	0.072	21
A4	0.518	0.058	20	0.518	0.054	18
A5	0.546	0.057	36	0.551	0.081	16
A6	0.573	0.058	44	\}0.598	0.050	19
A7	0.583	0.066	44	\}0.598	0.050	19
A8	0.591	0.058	25	0.577	0.098	18
A9	0.593	0.069	30	\%.577	0.098	18
F0	0.589	0.073	54	0.570	0.105	36
F1	0.561	0.096	21	0.602	0.082	13
	III ${ }^{\text {a }}$			II, $\mathrm{I}^{\text {a }}$		
A0	0.397	0.040	23	0.554	0.090	14
A1	0.415	0.039	24			
A2	0.473	0.062	11			
A3, A4	0.502	0.115	12	0.580	0.071	10
A5	0.538	0.061	14			
A6, A7	0.579	0.063	13		0.099	
A8, A9	0.644	0.111	12	\} 0.563		10
F0, F1	0.494	0.177	8			

[^1]

Fig. 2.-Equivalent widths, W, of the $\lambda 4481 \mathrm{Mg}$ II lines in normal stars of various spectral types (abscissas) for various luminosity classes as marked. The error bars are standard errors in the mean values. Those errors, that average 11% of the equivalent width per star, are due partly to cosmic scatter and partly to measuring errors. The free-hand curve through the data for the class V stars is transferred to each of the lower three panels for a comparison of values.
the line is normal or unusually strong, so mean values might be misleading.

3. DISCUSSION

3.1. Mean Rotational Velocities

The observed mean rotational velocities for normal stars are listed in Table 4 as a function of spectral type (horizontally) and luminosity class (in four vertical sections). In cases of less than 10 stars we grouped together the measures for several types. At each type and class we give the number of stars measured (n), the mean projected rotational velocity ($\langle V \sin i\rangle$), the estimated standard error in those means (s.e./mean), and the dispersions in the velocities (s.e.).

For class V stars the mean projected rotational velocities are shown in the top panel of Figure 3. We see the well-known decrease from large values in the Bs to small values in the Fs. But the scatter seems excessive in view of the numbers of stars included and the standard errors of the means. A least-squares linear regression shows a decrease from $149 \mathrm{~km} \mathrm{~s}^{-1}$ at A0 to $111 \mathrm{~km} \mathrm{~s}^{-1}$ at F0. Relative to that, the scatter is $12.0 \mathrm{~km} \mathrm{~s}^{-1}$, whereas the mean expected error (Table 4 , line 4) is $\pm 7.9 \mathrm{~km}$ s^{-1}. Therefore the scatter is real at the 1.5σ level. It shows up primarily as a unexpected rise for A4-A6. Without those three

TABLE 4
Mean Projected Rotational Velocities ($\mathrm{km} \mathrm{s}^{-1}$) for Normal Stars

A. Class V											
Type	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	F0
n....................	104	86	143	83	21	36	44	43	25	31	46
$\langle v \sin i\rangle \ldots$.	150	131	132	124	147	148	138	112	114	132	106
s.e./mean	± 7	7	5	7	13	8	7	8	11	8	7
s.e.	± 68	61	61	64	56	46	45	54	52	44	50
B. Class IV											
Type	A0			A2	A3	A4-A5		A6-A7		A8-A9	F0
n	10			57	20	21		21		17	36
$\langle v \sin i\rangle \ldots$.	79			51	79	107		104		80	83
s.e./mean	± 11			6	13	12		7		12	7
s.e.	± 34			48	57	53		33		50	40
C. Class III											
Type	A0		A1	A2-A3		A4-A5		A6-A7		A8-F0	
n	24		23		21	20			13		18
$\langle v \sin i\rangle$...........	62		55		66		65		80		64
s.e./mean	± 14		13		16		9		13		7
s.e.	- 67		59		69	40		46		28	
D. Variation with Luminosity and Type											
Type	Class II		Class Ib			Class Ia		Class II-Ia			
	A0-F0		A0-F0			A0-F0		A0-A4			A5-F0
n	10			14		9		20			13
$\langle v \sin i\rangle$..........	20			23		31			27		21
s.e./mean	± 4			3		3			± 2		3
s.e.	± 12			11		7		+10			11

points that scatter is $\pm 9.6 \mathrm{~km} \mathrm{~s}^{-1}$, not much larger than the expected value of $\pm 7.9 \mathrm{~km} \mathrm{~s}^{-1}$. We will discuss below the reason for the high values between A4 and A6.

Skipping momentarily to class III, a least-squares linear regression of the mean velocities shows a small increase from 60 $\mathrm{km} \mathrm{s}^{-1}$ at A0 to $73 \mathrm{~km} \mathrm{~s}^{-1}$ at F0 (see Fig. 3, third from the top). If we use the visual luminosity decrease by 1.3 mag between A0 and F0 (Blaauw 1963), the small change in bolometric corrections (assuming them to be the same as for dwarfs), and the temperature decreases by a factor of 0.74 , we would expect the radii to be smaller by a factor of 0.85 and the rotational velocity to be larger by a factor of 1.17 at F0 relative to A0. This is almost exactly the same as the observed increase by a factor of 1.21. The scatter of $\pm 6.4 \mathrm{~km} \mathrm{~s}^{-1}$ is smaller than the expected value of $\pm 11.9 \mathrm{~km} \mathrm{~s}^{-1}$. Therefore the small change in rotational velocities is entirely as expected, and the scatter is smaller than expected.

Turning now to class IV stars, we see the same peak at types A4-A6 as among the dwarfs and a small increase from A0 to F0 among the remaining stars as among the giants. A linear regression for the remaining stars shows an increase from 66 $\mathrm{km} \mathrm{s}^{-1}$ at A0 to $82 \mathrm{~km} \mathrm{~s}^{-1}$ at F0 and a scatter of $\pm 9.9 \mathrm{~km} \mathrm{~s}^{-1}$ compared with a mean value of $\pm 9.7 \mathrm{~km} \mathrm{~s}^{-1}$. Using the abso-
lute visual magnitudes, bolometric corrections, and temperatures for A0 and F0 stars, we predict a rotational velocity at F0 of 1.24 that at A0, while the above slope gives a factor 1.29 . Thus the agreement is good, and we are left only with explaining the hump at A4-A7.

The results for luminosity classes II-Ia are understandable. The left block in Table 4D shows the variation with luminosity (with all types combined), and the right block shows the variation with type (with all luminosities combined). The limited numbers of stars force these large groupings. The left block shows an increase in line width with luminosity. That had been found earlier by Abt (1957) and interpreted as an increasing contribution from macroturbulence in the stellar atmospheres. At luminosity class II there is a sizeable contribution of rotation to the line widths, which range from 10 to $43 \mathrm{~km} \mathrm{~s}^{-1}$ and have a dispersion of $12.2 \mathrm{~km} \mathrm{~s}^{-1}$. At class Ia the range of line widths is only from 25 to $45 \mathrm{~km} \mathrm{~s}^{-1}$ with a dispersion of only 7.2 , showing that much of the line width is due to turbulence that, unlike rotation, probably does not vary from star to star by aspect effect. The right block in Table 4 shows the decrease in rotation with decreasing temperature at a nearly constant luminosity. For the two mean types (A1.2 and A7.9) and with luminosities (of Ib stars) given by Blaauw (1963) and bolo-

Fig. 3.-Mean projected rotational velocities for normal stars of various spectral types (abscissas) and for various luminosity classes as marked. The error bars are standard errors in the mean values; they average about $\pm 8 \mathrm{~km} \mathrm{~s}^{-1}$.
metric corrections and temperatures given by Allen (1973), we would expect the rotational velocities at the latter type to be 0.71 times those at the earlier type. The discrepancy with the observed factor of 0.79 is probably due to the fact that the line widths are caused partly by turbulence.

We can estimate the atmospheric macroturbulent velocities among the luminous stars if we make three reasonable assumptions. One is that the mean rotational velocities along the upper main sequence do not vary substantially with type, which is true within a factor of 1.2 (Abt \& Hunter 1962). A second is that during evolution off the main sequence, stars conserve their angular momentum in shells, rather than in solid-body rotation, which is true if mass loss does not carry away much of the angular momentum (Oke \& Greenstein 1954; Abt 1958). Third, we will assume a macroturbulent velocity for A5 III stars of $5 \mathrm{~km} \mathrm{~s}^{-1}$, but the results would be trivially different if we selected 2 or $10 \mathrm{~km}^{-1}$.

For A5 stars of luminosity classes III, II, Ib, and Ia the mean line broadenings are $65,20,23$, and $31 \mathrm{~km} \mathrm{~s}^{-1}$. From their mean luminosities we can obtain relative radii, and we assume from the above that their rotational velocities are inversely proportional. This gives rotational velocities of $65,19,7$, and 2 km s^{-1}. Differencing these as squares we derive macroturbulent velocities of $5,7,22$, and $31 \mathrm{~km} \mathrm{~s}^{-1}$, respectively.

3.2. Deconvolution of the Rotational Velocities

Our line widths yield values of the components of the equatorial rotational velocities, V, projected along the lines of sight, namely, $V \sin i$. The values of the inclinations, i, between the lines of sight and the rotational axes are generally not known except in the rare cases of (1) eclipsing binaries (where $i_{\text {orbital }}=$ 90° and strong tidal effects will ensure that the rotational axes are roughly parallel to the orbital axes) and (2) variable Ap and spotted stars where independent determinations of the rotational periods are available. But for the bulk of our stars we will have to make an assumption about i to convert from measured values of $V \sin i$ to V.

We will assume that for a large sample of stars there is a random orientation of rotational axes with respect to the lines of sight. The justifications for this assumption are three. First, Huang \& Wade (1966) explored the frequency of eclipsing binaries as a function of Galactic latitude, reasoning that if there is any preferred orientation of binaries in the Galaxy, it would be such that the orbits would tend to lie in the Galactic plane. They found no dependence upon Galactic latitude, implying a random orientation of axes. Second, as was mentioned above, variable Ap stars yield independent determinations of the rotational periods from the variation of the abundance or temperature spots in their photospheres. Then a comparison of the two period determinations, one of which is dependent upon the unknown inclinations, yields values of the inclinations. That test was made by Abt, Chaffee, \& Suffolk (1972) for 22 stars. They found agreement between observed values of i and a random distribution of such values. Third, for visual binaries one can determine the orientations of the orbits in three dimensions. Batten (1967) found a random distribution of orbital axes plotted in Galactic coordinates. Dommenget (1988) confirmed that, at least on Galactic scales larger than 30 pc . The median distance of our stars is about 60 pc . Another test is to see whether in triple visual systems there is any tendency to have coplanar orbits. Worley (1967; see also Batten 1973) found no such tendency. Of course, the tidal effects in visual binaries are very small, but all these studies strongly imply that a random distribution of the rotational axes of field stars is a reasonable assumption.

Let us divide the stars into three groups with types of A0A1, A2-A4, and A5-F0. The counts of the numbers of stars of various kinds are given in Table 5 for general interest. The group called " 4481 weak" include both the λ Bootis stars and the less extreme cases where only $\lambda 4481$ is noted to be weak. Please note that even if the BSC were complete to a given apparent magnitude, the frequencies given in Table 5 are limited by apparent magnitude, so that the more luminous stars are overrepresented relative to a sample limited to a given volume of space. In this sample of 1383 A0-F0 stars, 48.0% are of class $\mathrm{V}, 27.6 \%$ are of class IV-I, 6.4% are Ap, 9.3% are Am, 8.1% are λ Boo or $\lambda 4481$ weak, and 0.6% are shell stars. Roughly half are dwarfs, one-quarter are normal stars above the main sequence, and one-quarter are peculiar. The remaining stars in Table 2 are earlier than A0 or later than F0.

Note in Table 5 that the mean rotational velocities of the $\lambda 4481$-weak stars are similar to those of the other dwarfs, and their dispersions are only slightly larger. We conclude that the

TABLE 5
Frequencies of Various Kinds of Stars in a Sample Limited by Apparent Magnitude

	V	IV	III	II	I	Ap	Am	$\lambda 4481$ Weak	Shell
A0-Al									
n...................	188	60	45	4	11	43	3	58	5
Percent	45	14	11	1	3	10	1	14	1
$\langle v \sin i\rangle \ldots \ldots . .$.	142	62	52	20	29	32	30	145	212
s.e.	± 65	48	55	15	10	22	30	85	24
A2-A4									
n...................	242	84	25	0	6	29	9	31	3
Percent	56	20	6	0	1	7	2	7	1
$\langle v \sin i\rangle \ldots \ldots . .$.	131	62	68	\ldots	26	41	42	122	200
s.e.	62	51	68	\ldots	7	38	33	76	23
A5-F0									
n..................	234	79	54	6	8	17	116	23	0
Percent	44	15	10	1	1	3	22	4	0
$\langle v \sin i\rangle \ldots \ldots .$.	125	89	73	23	23	30	46	134	...
s.e.	50	44	36	13	14	21	29	64	

$\lambda 4481$-weak peculiarity is not dependent upon rotational velocity. Therefore we will group the $\lambda 4481$-weak stars together with the normal stars of class V and compare them with the Ap+Am stars.

For each range in spectral type we will deconvolve the class $V+\lambda 4481$-weak stars and the Ap+Am stars. The results are given in Figures 4-6.

Fig. 4.-Distributions of equatorial rotational velocities, V, for two samples of A0-A1 stars. The right distribution is for 188 normal class V stars plus 58 stars with weak $\lambda 4481$ lines plus five shell stars; the distribution on the left is for $46 \mathrm{Ap}+\mathrm{Am}$ stars whose peculiar abundances are thought to be due to diffusion. The areas under the curves are proportional to their relative frequencies in the BSC.

In Figure 4 we see the distributions for $46 \mathrm{Ap}+\mathrm{Am}$ stars (crosses) and for 188 normal A0+A1 V plus 58 入4481-weak plus five shell stars (circles). The proportions are 15:85. Please note that all of the rapid rotators ($V>120 \mathrm{~km} \mathrm{~s}^{-1}$) are normal stars or ones in which rotation-dependent diffusion effects are not acting while most of the stars that rotate more slowly are peculiar stars in which diffusion is occurring. But there is an overlap of 9%, namely, about 26 stars that are rotating slower than $120 \mathrm{~km} \mathrm{~s}^{-1}$ and that seem to have normal spectra. Let us discuss the other two spectral ranges before trying to explain this lack of a complete dichotomy.

In Figure 5 we show the distributions in V for $38 \mathrm{Ap}+\mathrm{Am}$ stars (crosses) and for 242 A2-A4 V plus 31 入4481-weak plus three shell stars (circles). The proportions are 12:88. The only stars labeled Ap or Am and with $V \sin i>120 \mathrm{~km} \mathrm{~s}^{-1}$ are HR 8464 and HR 8890, each with $V \sin i=160 \mathrm{~km} \mathrm{~s}^{-1}$; they are called peculiar because their Ca II K lines are too strong. Such stars are neither regular Ap nor Am stars that always have very weak Ca lines due to diffusion, but we do not know what they are. Otherwise all stars with $V>120 \mathrm{~km} \mathrm{~s}^{-1}$ are normal or $\lambda 4481$-weak, and most of the stars rotating more slowly are Ap or Am. There is an 7% overlap, corresponding to 21 too many normal stars with sharp lines.

In Figure 6 we show the distributions in V for $133 \mathrm{Ap}+\mathrm{Am}$ stars (crosses) and for 234 A5-F0 V plus $23 \lambda 4481$-weak stars (circles). The proportions are 34:66. Here the only star labeled as Ap or Am and with $V \sin i>120 \mathrm{~km} \mathrm{~s}^{-1}$ is $\mathrm{HR} 3798=\mathrm{S}$ Ant, a SB1 with a period of 0.648345 . Its rotational velocity of $155 \mathrm{~km} \mathrm{~s}^{-1}$ indicates likely synchronism of rotational and orbital motions. But it is a marginal Am star. Aside from that star, all the rapid rotators with $V \sin i>120 \mathrm{~km} \mathrm{~s}^{-1}$ have normal or $\lambda 4481$-weak spectra, and most of the stars that rotate more slowly have Ap or Am spectra. There is an 10\% overlap, corresponding to 39 too many normal stars with sharp lines.

Fig. 5.-Distributions of equatorial rotational velocities, V, for two samples of A2-A4 stars. The right distribution is for 242 normal class V stars plus 31 stars with weak 4481 lines plus three shell stars; the distribution on the left is for $38 \mathrm{Ap}+\mathrm{Am}$ stars whose peculiar abundances are thought to be due to diffusion. The areas under the curves are proportional to their relative frequencies in the BSC.

These three figures show consistently that whereas all the rapid rotators (well-mixed stars) have normal spectra or the accreted metal-poor material called $\lambda 4481$-weak, not all the slow rotators (relatively unmixed stars) have peculiar spectra. We are left with three possible explanations: (1) rotation is not the only criterion that determines whether a star has a normal or abnormal spectrum, (2) rotation is the sole criterion but there is a time lag, particularly in the case of tidally interacting

Fig. 6.-Distributions of equatorial rotational velocities, V, for two samples of A5-F0 stars. The right distribution is for 234 normal class V stars plus 23 stars with weak $\lambda 4481$ lines; the left distribution is for 133 Ap+Am stars whose peculiar abundances are thought to be caused by diffusion. The areas under the curves are proportional to their relative frequencies in the BSC.
binaries, between the first occurrence of a slow rotation and the appearance of the abundance peculiarities, or (3) we have not isolated all of the peculiar stars with our MK classification. If we find that explanations (2) and (3) are invalid, we will be forced to accept explanation (1).

3.3. Alternate Explanations for the Overlap in Rotational Velocity Distributions

Let us consider the time-lag explanation first. In spectroscopic binaries of relatively short periods there is a tidal interaction that gradually slows the stellar rotational velocities until they are synchronized with the orbital periods. For Atype stars (Levato 1976) that are not young, synchronization has occurred in essentially all binaries with periods less than 23 days, while most of those with periods less than 20 days or more have rotational velocities less than $120 \mathrm{~km} \mathrm{~s}^{-1}$. A related effect, namely, the time it takes to achieve orbital circularization in binaries, has received considerable attention recently (e.g., Goldman \& Mazeh 1991). Although there remain large discrepancies between theoretical models and the observations, the latter imply times of the order of $5 \times 10^{9} \mathrm{yr}$ for a 10 day binary.

Among the known data in the BSC for the A0-A1 V stars and $\lambda 4481$-weak stars, there are 17 known spectroscopic binaries with periods less than 20 days and rotational velocities of $V \sin i<100 \mathrm{~km} \mathrm{~s}^{-1}$. That already goes a long way toward accounting for the 29 excess sharp-lined normal stars that produce the overlap in the rotational-velocity distributions. That is a minimal number because most of the fainter BSC stars lack sufficient published radial-velocity measures to detect all the binaries, let alone to determine their orbital periods. Therefore Abt and Willmarth are currently conducting a study of the fraction of short-period binaries among the sharp-lined normal A-type stars.

However, this mechanism to reduce the rotational velocities will not explain the excess of sharp-lined normal stars for the simple reason that the timescale for the diffusion process to produce Ap and Am spectra is considerably faster than the timescale for the production of slow rotators. For instance, Michaud et al. (1976) found that the separation of He takes $10^{5}-$ $10^{6} \mathrm{yr}$, and observations show that the Orion OB1 Association with an age of $5 \times 10^{6} \mathrm{yr}$ has Am stars (Smith 1972), as does the Orion Nebulae cluster (Levato \& Abt 1976) with an age of $5 \times 10^{5} \mathrm{yr}$. These should be compared with a time of the order of $10^{9} \mathrm{yr}$ to reduce the rotational velocities below $120 \mathrm{~km} \mathrm{~s}^{-1}$ by tidal interactions for orbital periods of roughly 10 days. Thus as soon as the rotational velocity of a star in a binary has dropped below the $120 \mathrm{~km} \mathrm{~s}^{-1}$ limit, the star quickly develops the Am characteristic with the result that we should see very few normal spectra with rotational velocities below that limit.

Let us turn now to the third possible explanation for the overlap of the rotational velocity distributions of peculiar and normal stars, namely, that we have failed to discover all of the peculiar stars in our sample.

Among the standards (Morgan et al. 1978) at A0 are HR $7001=\alpha$ Lyr at A0 Va and HR $5291=\alpha$ Dra at A0 III. However the equivalent widths of their $\lambda 4481$ lines are 0.31 and $0.32 \AA$ Å, respectively, which are considerably lower values than for other normal stars of those types (see Fig. 2). Furthermore,

Adelman \& Gulliver (1990) have shown that those two stars are underabundant in Mg II relative to the Sun by factors of 4.9 and 2.5 , respectively. Also many other metals and He I are underabundant in these two stars by factors up to 10 relative to the Sun, so they are abnormal stars, rather than normal ones. In Table 2 these two stars are now labeled "standard," implying that we used them as standards in our classifications but we no longer consider them to be normal.

The realization that two of our primary standards are not normal means that many of our program stars are also abnormal but have been misclassified as normal. If that were the end of it, we could reclassify the stars near A0 for which we used α Lyr and α Dra as standards. But how many others of our standards are really abnormal if they were studied spectrophotometrically? Some have broad lines, and for those it would be very difficult to obtain good abundance measures. However we did relook at the strengths of $\lambda 4481$ by using as standards only HR 343, 403, 669, 4033, 4359, 7906, and 8641. Thus at least the identification of " $\lambda 4481$-weak" stars has been revised using the better standards. The results for the A0-A1 stars are shown in Figure 7 where nearly all the stars with $\lambda 4481$ equivalent widths larger than 0.4 A are normal, essentially all the stars with $\lambda 4481$ equivalent widths less than 0.3 A are Ap or $\lambda 4481$ weak, and the region between 0.3 and $0.4 \AA$ contains normal and peculiar stars, perhaps because of the $\pm 0.062 \AA$ accuracy of our measures (see $\S 2.3$). Because both the $\lambda 4481$ equivalent width measurements and the visual classifications have errors in them, there will be marginal cases in which one criterion says that a star is normal and another says that it is abnormal.

The realization that many of the sharp-lined "normal" stars might really be abnormal stars tells us that visual MK classification may not be a complete way to discover all the abnormal stars, while full spectrophotometric studies for many stars are

Fig. 7.-The numbers of A0-Al stars with various equivalent widths of the $\lambda 4481 \mathrm{Mg}$ iI lines. The blank area marked " V " represent normal class V stars; the star Vega, thought to be a standard but recently found to be an Am star, has $W=0.31 \mathrm{~A}$. The values for the Ap+Am stars have single hatching while those representing the λ Boo plus $\lambda 4481$-weak stars have cross-hatching. The prototype star λ Boo has $W=0.11 \AA$.
not practical; an intermediate technique that might work is to measure one or a few lines on CCD spectra as we have done for $\lambda 4481$ or to make photoelectric measures as Henry \& Hesser (1971) did for the Ca II K line.

A related effect is that discovered for many stars classified A2 IV (plus some at A1 IV and A3 IV). Whenever we classified a star as such, we usually noticed that it had sharp lines. Whereas A2 V stars have a mean rotational velocity of 132 km s^{-1} (Table 4), those of type A2 IV average only $51 \mathrm{~km} \mathrm{~s}^{-1}$. That difference is too large to be explained by the small evolutionary expansion between those types. Furthermore the equivalent widths of $\lambda 4481$ are substantially lower for A0-A3 IV than for the A0-A3 V stars (see Table 3 and Fig. 2). When we looked at the strengths of the Ca II K line in the photometry of Henry \& Hesser for those stars in our list that also occurred in theirs, we found that the A2 IV stars had weaker K lines than the A 2 V stars by an amount that corresponds to a difference of one spectral subclass. So perhaps roughly half of the stars classified as A2 IV seem to be like other peculiar stars in having low rotational velocities and weak $\mathrm{Mg}_{\text {II }}$ and Ca II lines; the other half may be the normal evolutionary descendents of the normal class V stars. Here we have a possible class of peculiar stars that has not been recognized before but with Mg underabundances of the order of a factor of about 5 .

We now return to the problem mentioned in § 3.1 on mean rotational velocities, namely, the effect shown in Figure 3 where the class V and IV stars of types A4-A6 have rather high mean rotational velocities. Or those curves can be viewed as having dips around A2, just where we found the admixture of stars with weak $\lambda 4481$ and K lines. Most Ap stars occur among the early As and most of the Am stars occur among the late As; if there are similar peculiar stars that we missed and called them normal, their low rotational velocities would depress the means for the early As and late As, leaving a maximum between them.

A final question is that if members of relatively closely spaced binaries are partly or completely synchronized in rotational velocities, why are not their primaries invariably peculiar stars due to diffusion? We considered the 34 A0-F0 known double-lined spectroscopic binaries because for those we can estimate their orbital inclinations by assuming normal masses for their primaries. Of the 34,16 have Am primaries, one is a λ Boo star, two are of luminosity class III (the Am effect disappears after a star leaves the main-sequence region), two have periods of 72 and 9890 days for which we would expect no tendency toward synchronization, two have derived rotational velocities of 189 and $199 \mathrm{~km} \mathrm{~s}^{-1}$ (much too large for diffusion to occur), three have rather weak $\lambda 4481$ lines ($0.19-0.32 \AA$) and are probably peculiar in abundance, and two have marginally long periods of 16-20 days for synchronization to occur; that leaves only six binaries to explain, and four of those are of types A1-A3 IV that we suspect to be marginally peculiar. Therefore the "normal" close binaries do not provide a strong objection to our conclusion that if the rotational velocities of A-type stars are less than about $120 \mathrm{~km} \mathrm{~s}^{-1}$, the stars definitely or probably have peculiar abundances.

To summarize, we tentatively conclude that the overlap in rotational velocity distributions between peculiar and normal stars is due to our failure to detect all of the peculiar-abundance stars and that if we had detected them, the rotational velocity
of a star would be adequate to determine whether its spectrum would be peculiar or normal. The evidence is the following (1) some of our primary standards, such as Vega and Thuban (α Dra), have now been found to be peculiar: therefore other stars labeled normal by us are also probably peculiar, (2) part, at least, of the stars classified A2 IV and of neighboring types are peculiar in having unusually low rotational velocities, weak Mg ii $\lambda 4481$ lines, and weak Ca II K lines, implying a previously unrecognized kind of peculiarity, and (3) the mean rotational velocities of class V and IV stars shows excessive scat-
ter that could be explained by undetected peculiar stars that have a spectral distribution similar to the Ap+Am stars.

One final effect should be mentioned. van den Heuvel (1968) found that among many types in the B's and A's there are bimodal distributions in rotational velocities with a maximum near zero and a second maximum near $150 \mathrm{~km} \mathrm{~s}^{-1}$. We do not find such bimodal distributions in the A's, perhaps because our new classifications, based on hydrogen types that more nearly represent the stellar effective temperatures, do not put the sharp-lined Ap and Am stars at the wrong types.

REFERENCES

Abt, H. A. 1957, ApJ, 126, 503
-. 1958, ApJ, 136, 658
-. 1961, ApJS, 6, 37
-. 1979, ApJ, 230, 485
Abt, H. A., Chaffee, F. H., \& Suffolk, G. 1972, ApJ, 175, 779
Abt, H. A., \& Hunter, J. H., Jr. 1962, ApJ, 136, 381
Abt, H. A., \& Moyd, K. I. 1973, ApJ, 182, 809
Abt, H. A., \& Snowden, M. S. 1973, ApJS, 25, 137
Adelman, S. J., \& Gulliver, A. F. 1990, ApJ, 348, 712
Aitken, R. G. 1932, New General Catalogue of Double Stars Within 120°
of the North Pole, Carnegie Institution of Washington Publ. 417
Allen, C. W. 1973, Astrophysical Quantities (3d ed.; London: Athlone), 206
Babcock, H. W. 1958, ApJ, 128, 228
Baschek, B., \& Searle, L. 1969, ApJ, 155, 537
Batten, A. H. 1967, in On the Evolution of Double Stars, ed. J. Dommenget, Comm. Obs. Roy. Belgique, Ser. B, 68
_68.1973, Binary and Multiple Systems of Stars (Oxford: Pergamon), 68
Blaauw, A. 1963, in Basic Astronomical Data, ed. K. Aa Strand (Chicago: Univ. Chicago Press), 401
Charbonneau, P. 1991, ApJ, 372, L33
Conti, P. S. 1969, ApJ, 156, 661
Cowley, A., Cowley, C., Jaschek, M., \& Jaschek, C. 1969, AJ, 74, 375
Dommenget, J. 1988, in IAU Colloq. 97, Wide Components in Double and Multiple Stars, Ap\&SS, 142, 171
Goldman, I., \& Mazeh, T. 1991, ApJ, 376, 260
Gray, R. O., \& Garrison, R. F. 1987, ApJS, 65, 581
-. 1989a, ApJS, 69, 301
——. 1989b, ApJS, 70, 623
Henry, R. C., \& Hesser, J. E. 1971, ApJS, 23, 421

Hoffleit, D., \& Jaschek, C. 1982, The Bright Star Catalogue (4th rev. ed.; New Haven: Yale Univ. Observatory)
Huang, S.-S., \& Wade, C., Jr. 1966, ApJ, 143, 146
Levato, H. 1976, ApJ, 203, 680
Levato, H., \& Abt, H. A. 1976, PASP, 88, 712
Michaud, G. 1970, ApJ, 160, 641
-_. 1982, ApJ, 258, 349
Michaud, G., Charland, Y., Vauclair, S., \& Vauclair, G. 1976, ApJ, 210, 447
Michaud, G., Tarasick, D., Charland, Y., \& Pelletier, C. 1983, ApJ, 269, 239
Morgan, W. W., Abt, H. A., \& Tapscott, J. W. 1978, Revised MK Spectral Atlas for Stars Earlier than the Sun (Yerkes Obs., Univ. Chicago, and Kitt Peak National Obs.)
Morgan, W. W., Keenan, P. C., \& Kellman, E. 1943, An Atlas of Stellar Spectra (Chicago: Univ. Chicago Press), 20
Oke, J. B. 1967, ApJ, 150, 513
Oke, J. B., \& Greenstein, J. L. 1954, ApJ, 120, 384
Slettebak, A., Collins, G. W., II, Boyce, P. B., White, N. M., \& Parkinson, T. D. 1975, ApJS, 29, 137

Smith, M. A. 1972, ApJ, 175, 765
Strom, S. E., Gingerich, O., \& Strom, K. M. 1966, ApJ, 146, 880
Sweet, P. A. 1950, MNRAS, 110, 548
Tassoul, J.-L., \& Tassoul, M. 1982, ApJS, 49, 317
Titus, J., \& Morgan, W. W. 1940, ApJ, 92, 256
van den Heuvel, E. P. J. 1968, Bull. Astron. Inst. Neth., 19, 309
Venn, K. A., \& Lambert, D. L. 1990, ApJ, 363, 234
Wolff, S. C., \& Preston, G. W. 1978, ApJS, 37, 371
Worley, C. E. 1967, in On the Evolution of Double Stars, ed. J. Dommenget, Comm. Obs. R. Belgique, Ser. B, 221

[^0]: ${ }^{1}$ Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.
 ${ }^{2}$ Visiting astronomer, Kitt Peak National Observatory, on a 1989-1991 fellowship from the Consejo Nacional de Investigaciones Cientificas y Technicas de la Republica Argentina.

[^1]: ${ }^{a}$ Luminosity class.

