REDSHIFTS OF 165 ABELL AND SOUTHERN RICH CLUSTERS OF GALAXIES

H. Quintana ${ }^{1}$ and A. Ramírez ${ }^{2}$
Astrophysics Group, Physics Faculty, Universidad Católica de Chile, Casilla 104, Santiago 22, Chile; hquintana@astro.puc.cl Received 1994 April 4; accepted 1994 July 8

Abstract

We present spectroscopic observations and accurate positions for 286 galaxies in clusters taken over several observing sessions, mostly with the DuPont telescope at Las Campanas Observatory. We derive 165 redshifts of rich clusters of which 130 are apparently new values. Redshifts encompass a wide range out to $z=0.27$.

Subject headings: galaxies: clusters: general —galaxies: distances and redshifts

1. INTRODUCTION

Recent years have witnessed a rapid increase in the interest in southern clusters of galaxies. The availability of large telescopes and the completion of the southern extension of the Abell catalog (Abell, Corwin, \& Olowin 1989, hereafter ACO), giving a convenient, if not totally complete, database and a much needed set of standard names, have meant that optical data on southern clusters can be more readily and systematically obtained and compared. Redshifts of clusters are basic data useful in many types of studies, and for southern clusters they are sparse. The largest compilation is by Struble \& Rood (1991, hereafter SR91). Also, the galaxy catalog by Fairall \& Jones (1991) is very useful, and we use it extensively.

As backups or by-products of several observational programs carried out from telescopes in Chile, we have obtained a number of spectroscopic observations of one or more galaxies in a number of Abell and miscellaneous northern and southern clusters. Most of these are new galaxy redshifts, which we present here with details of the observational and reduction procedures. When velocities are available we compare our results to previous redshifts measurements, as indicated below. As can be expected, in a few cases we find redshifts discordant with those in the literature and indicate, if possible, sources of discrepancies. We point out that redshifts in clusters in the general direction of the Shapley 8 supercluster (approximate R.A. $=$ $13^{\mathrm{h}} 30^{\mathrm{m}}$ and Decl. $=-31^{\circ}$) are being reported elsewhere (Quintana et al. 1994b).

Most clusters observed are Abell clusters of Bautz-Morgan types I, I-II, and II, where these types have been taken from ACO. A small number of clusters come from the Quintana \& White (1990) catalog (hereafter QW90), for which we use QW numbers. In that list we gave preliminary redshifts now superseded by the present values. Finally, a few clusters are from the Zwicky catalog, observed because either they were detected as X-ray sources (by the Einstein Observatory) or because they

[^0]contain central dumbbell galaxies. In fact, many Abell clusters were also observed because they have central dumbbells.

2. SPECTROSCOPIC OBSERVATIONS

The spectroscopic observations were carried out using several telescopes and detectors, over a period of several years. In most clusters we observed the obvious brightest cluster member (BCM, for short), when its appearance showed it to be a cD , dumbbell $\mathrm{BCM}, \mathrm{gE}$, or D galaxy, normally close to the cluster center or at a high galaxy density enhancement in the cluster. If two such galaxies were present, we measured both, observing time and conditions permitting. Most of the observations reported here used either the intensified Reticon or the intensified "2D-FRUTTI" detector at Las Campanas Observatory (LCO). Both are photon-counting devices so that the observer can display the spectra as the observation proceeds and estimate a rough velocity, deciding to observe more galaxies if different redshifts were obtained in any cluster. Thus, occasionally three or more velocities were observed in a cluster.

The telescopes, dates, instrumental setups, and observational parameters are shown in Table 1, which identifies the several observing sessions, as follows.

2.1. Group A, Session 1: LCO Modular Spectrograph

The Dupont 2.5 m telescope at LCO was used on two nights in 1991 February, with the Modular spectrograph attached. A 600 -line grating, blazed at $5000 \AA$, gave of dispersion of $2.4 \AA$ mm^{-1} covering the spectral range $4400-6850 \AA$. The detector was a 1024×1024 thick $12 \mu \mathrm{~m}$ pixel CRAF CCD, giving a 2 pixel resolution of 3-4 At the center of the spectrum. A 185 $\mu \mathrm{m}$-wide slit, or $2^{\prime \prime}$ on the sky, was used for all the observations, providing a 6 pixel resolution along the slit and an approximate useable field of 10^{\prime}. The dispersion axis, showing small distortions, was carefully aligned along the columns. However, on the CCD the slit shape showed a noticeable distortion due to the transfer lens. To correct for pixel-to-pixel sensitivity and large-scale detector and illumination variations we obtained flat fields off the dome and exposures of the twilight sky on both nights. To correct for the slit-image geometrical distortions, we also took long exposures of both helium and hollow cathode comparison lamps. To calibrate each exposure in wavelength we recorded comparison exposures

TABLE 1
Summary of Observing Sessions

Group and Session	Dates	Telescope	Instrument ${ }^{\text {a }}$	Grating Line/Blaze (A)	Range (A)	Resolution (Å)	Image (pixels)	E-W Rotator Angle
A:								
$1 \ldots$.	1991 Feb 22-23	LCO 2.5 m	Modular	600/5000	4400-6850	4	1024×1024	180
B:								
2	1989 Jan 01-06		$2 \mathrm{DF}+\mathrm{B} \& \mathrm{C}$	600/5000	3600-7000	4-7	1520×256	
3	1988 Oct 10-11							
4	1987 Jun 01-04							
5	1987 Jan 02-07						3040×256	
6	1986 Dec 19-24					5-6	3040×256	
$7 \ldots$.	1986 Jul 26-31						3040×256	
$8 \ldots$	1985 Dec 18-21			1200/5000	3870-5950	3-4	3040×256	
C:								
9	1984 Mar 07-10		I.Reticon + B\&C	600/5000	3400-7000	5	3744×2	
10	1983 Feb 12-17							
$11 \ldots$	1982 Dec 20-23							
$12 \ldots$.	1982 Apr 27-31							
D:								
13	1983 Jan 19-23	CTIO 4 m	SIT Vidicon $+\mathrm{B} \& \mathrm{C}$	KPGL No. 1	3700-5540	3.5	1024×250	90
$14 \ldots$	1982 Jul 26-29				3850-5790	3	1300×140	

${ }^{\text {a }}$ 2DF: 2D-FRUTTI detector. B\&C: Boller \& Chivens spectrograph. I. Reticon: intensified Reticon detector.
with both lamps before and immediately after each object exposure. Below, we give the rotator angle of the slit, which in the DuPont telescope is measured from north to west (clockwise), with 90° taken in the north-south orientation. The standard position angle is then equal to 270 minus the rotator angle.

To calibrate the zero point of the velocity scale and to secure suitable templates, a number of standard velocity stars were observed, of spectral types G8 to K2 (HD 55229, HD 55434, and HD 71370), as were a few nearby galaxies, particularly with known internal velocity dispersions (NGC 2217, NGC 2784, and NGC 2775). In order to calibrate the system response we also observed a few spectrophotometric standards (LTT 2415, LTT 2511, LTT 1788, LTT 3218, and L74546A). The observations were carried out under photometric conditions the first night. However, on the second night conditions deteriorated from clear skies at sunset to heavy clouds in the last hours of the night. We had a quarter moon in the first halves of both nights.

2.2. Group B, Sessions 2-8: LCO 2D-FRUTTI Detector

The 2D-FRUTTI detector (Shectman 1989) was used on the 2.5 m Dupont telescope, in all the sessions at LCO between 1985 and 1989. The Boller \& Chivens spectrograph was fitted with the same 600 line $/ 5000 \AA$ grating and the angle adjusted to give a spectral coverage between 3600 and $7000 \AA$, approximately, in all the runs but the first. The image size on the detector was chosen to be either 1520 or 3040 pixels along the dispersion axis and 256 or 128 pixels along the single slit direction, depending on the session (as indicated in Table 1), corresponding to a spectral resolution of 9 or $5 \AA$ and a spatial resolution of $5^{\prime \prime}$ along the slit, which had a useful projected length on the sky between 4.5 and 9 ! in the first of these sessions, a grating with 1200 lines blazed at $5000 \AA$ was used, providing a
wavelength coverage from 3870 to $5960 \AA$ and a resolution of $5 \AA$ on the 1520 pixel-long image.

Calibration of the sensitivity variations of the 2D-FRUTTI was achieved by exposures of a low-intensity quartz lamp off the inside of the dome taken every other day, using several grating angles to secure a fairly even illumination of the whole detector (up to 500-1000 counts pixel ${ }^{-1}$). Similarly, to map the distortions along the dispersion direction, exposures of the same lamp, with several grating angles, were taken through a hole pattern of the slit. On some nights, when there was a fair amount of moon, we also took spectra of stars, placing them at regular intervals along the slit. In this way it was confirmed that no change in the spectra shape, along the dispersion, occurred between different grating angles. To correct for any illumination effects due to slit imperfections, field vignetting, or other causes, exposures of the twilight sky were taken every night.

Objects were observed until the display of their spectrum showed signs of several absorption or, occasionally, emission lines. Usually, the H and K lines and the G band appear first on the early-type galaxies. If the observed galaxy appeared on the finding chart to be clearly a BCM and a rough screen estimate of the redshift agreed with the range corresponding to the distance class and cluster appearance, no other galaxy was observed in the Abell clusters. When a second BCM was present, particularly at a separate density enhancement, then a second spectra was normally taken. In a few cases, these were clearly discrepant, which led us to observe further galaxies. Typical exposures were from 10 to 60 minutes. Most clusters observed have Abell distance classes 5 and 6, so long exposures are needed to get an adequate signal-to-noise spectrum. Then the above procedure was not always feasible, because we run out of time, or because of clouds. Helium and argon comparison lamp exposures were taken immediately before and after an object exposure, unless we observed other galaxies in the same cluster, in which case comparison lamps were taken be-
fore and after the first and last exposures. Between both no more than 2 hr elapsed. To calibrate the zero point of the velocity scale and secure templates, a number of standard velocity stars were observed, of spectra types G8 to K2, as well as a number of nearby galaxies with well-known internal velocity dispersions, selected from the catalog of Whitmore, McElroy, \& Tonry (1985).

2.3. Group C, Sessions 9-12: LCO Shectograph Detector

These sessions were mainly devoted to obtaining galaxy velocities in a few rich clusters in an effort to determine cluster dispersions. However, at times we observed a number of additional galaxies. The Dupont telescope was used with the Boller \& Chivens spectrograph fitted with the Reticon spectrometer two-channel detector (Shectman 1981). The same $600-l i n e$ grating as above was used in the spectrograph, giving a similar spectral range and resolution in the 3744 pixel-long channels. Further details of the observational technique and instrumental setup are given in Quintana \& Ramírez (1990, hereafter QR90). A few of these new redshifts were quoted in QW90, without details of observations and galaxy identifications, which we give here, together with a new reduction and crosscorrelation measurement of the data.

2.4. Group D, Sessions 13 and 14: CTIO 4 m Telescope

The 4 m telescope at CTIO was used with the SIT Vidicon detector on the sessions indicated. The main objects observed were central dumbbell galaxies in clusters. Some of these velocities provide new cluster redshifts and are included here for completeness. The Boller \& Chivens spectrograph was fitted with the KPGL No. 1 grating, giving a wavelength coverage between 3700 and $5540 \AA$. The slit was set at $225 \mu \mathrm{~m}$. The image sizes were 1024 and 1300 pixels along the dispersion axis, and 140 or 250 pixels across, giving a resolution of approximately $3.5-3 \AA$ in wavelength and a projected spatial resolution of 1.12 pixel $^{-1}$, along the slit. A white spot was used to obtain flat fields to correct for detector small-scale variations. Exposures taken through a decker with a hole pattern served to correct for S-distortions in the image tube. Long zenith exposures were used to correct for distortions along the slit. Helium-argon lamps were taken before and after each exposure at the position angle adjusted to record both dumbbell components. Session 14 was heavily affected by clouds, and a further session in April 1983 with this instrument was completely wiped by clouds. At the CTIO 4 m telescope, the rotator angle of the slit directly indicates the position angle, from 0° in the north-south orientation, measured from north to east (counterclockwise).

3. POSITIONS OF OBSERVED GALAXIES

Some of the positions given in the literature for Abell clusters (north and, to a lesser extent, in the south) can differ somewhat from the positions of the central galaxies or are rough averages of the general cluster regions. For identification purposes we provide for each of the observed galaxies their 1950.0 epoch coordinates. When available, these positions were taken from the literature as indicated in the Table below. A number of them were measured from the SRC/ESO (B or J) or PSS glass
copies, using the Optronics machine at ESO, Garching, with reference to some 20-30 SAO or Perth astrometric standards. Many of the values from the literature were measured with this same machine. For a large majority, positions were measured from PSS prints or ESO/SRC J or R films, with a simple digitized $x-y$ light table at Santiago, with reference to 12-15 SAO stars in the vicinity of each cluster. In the first case the external error is estimated to be $1^{\prime \prime}-2^{\prime \prime}$, while in later cases this value is estimated at $6^{\prime \prime}-10^{\prime \prime}$. In Table 3 we indicate the source of the given positions. Some of these are from the ESO/Uppsala catalog (Lauberts 1982) or are Parkes radio source positions.

4. REDUCTION PROCEDURES AND VELOCITY MEASUREMENTS

All reductions were done within the IRAF ${ }^{3}$ environment, ver. 2.9 and 2.10.2. Some preliminary work has been done using other reduction packages, but for homogeneity all the data was later reduced again with IRAF.

4.1. Modular Spectrograph Data

The CCD image has little distortions, with the spectra running along the columns. The spectra was extracted using the task APSUM, fixing the apertures to be $2-3$ pixels by selecting the peaks of the fiber images from a cut across the dispersion axis. Object, sky, and comparison spectra were extracted following third-order Legendre functions. Spline-3, order-7 functions were used for wavelength calibrations, resulting in rms errors of $0.2 \AA$. We checked the calibration with the $5577.35 \AA$ night-sky line, which showed errors no larger than $0.5 \AA$.

4.2. 2D-FRUTTI Spectra

Due to the nature of the 2D-FRUTTI system we have the typical S-shaped distortions inherent to this instrument. Therefore the first step was to transform our curved spectra to straight via the transform algorithm in the LONGSLIT package, using the multihole frames and a zenith long comparison lamp exposure. The response along the slit was normalized using the frames of sky taken at twilight. Sky subtraction was done extracting two parallel 8 pixel apertures on each side of the galaxy spectrum, all three following an order-3, spline-3 curve, to catch discontinuities that are caused by the microchannel and image intensifiers of the 2D-FRUTTI. The mode of both sky spectra was retained to check wavelength calibration from the positions of sky lines. Comparison spectra were extracted following curves with the same parameters as object spectra. The wavelength solutions for $24-30$ points using a fourth- or fifth-order Legendre typically yielded residual values less than 0.3 rms Å.

4.3. Intensified Reticon (Shectograph) Data

The two channels were switched on and off between galaxy (object + sky) and sky several times during the exposures. Sky subtraction is straightforward. Together with wavelength cali-

[^1]bration procedures, comparison with other data is described by QR90.

4.4. SIT Vidicon Data

The image has similar distortions, but much milder, than the 2D-FRUTTI two-dimensional spectra. Thus the same methods were used to extract the one-dimensional spectra from the image and perform sky substraction and wavelength calibration.

4.5. Velocity Measurements

For most of the data (excepting the older Vidicon spectra for which no cross-correlation method was applied) three different methods were used to measure the redshift of the objects. The first method applied was a line-by-line Gaussian fitting to the strongest lines, such as the H and K Ca II bands, G band, Mg I, and/or Balmer jump. For normal early-type spectra we were able to use two different cross-correlation algorithms now currently supported inside of IRAF (RV and RVSAO), with correlation peak fitting done by a parabolic adjustment. However, for non-early-type spectra (i.e., emission lines, $\mathrm{E}+\mathrm{A}$, etc.) we resorted to the line-by-line Gaussian fit. Additionally, when a low Tonry \& Davis (1979) R-value ($R \leq 4$) was obtained, this would indicate that the cross-correlation result was acceptable only if it agreed with the Gaussian line fitting. If the fitting method showed credible lines and the R number was particularly low or, on occassion, extremely poor (i.e., below 2 or 2.5), we kept those values derived from at least five lines. However, in Table 3 we quote all R-values.

To apply the correlation algorithms, spectra were contin-uum-subtracted and filtered with a ramp function in Fourier space, to remove high-frequency noise and low-frequency trends that persisted after the continuum subtraction. The Shectograph data were rebinned in log-linear scale with resolution $1.4 \AA$ pixel $^{-1}$, the 2D-FRUTTI spectra had a resolution of $2 \AA$ pixel $^{-1}$ (with the exception of session 8 which had $2.4 \AA$ pixel ${ }^{-1}$), and the corresponding value for the Modular data was $2.4 \AA \mathrm{pixel}^{-1}$. For object and template Shectograph spectra, initial and ending wavelengths were 3510 and $6800 \AA$, respectively. For the 2D-FRUTTI corresponding values were 3890 and $5900 \AA$, while for the Modular they were 4000 and $6850 \AA$, respectively. As templates, we used stars and galaxies which had high signal-to-noise ratios (S/N). For the Shectograph data, we used the spectra of HD 22663 and HD 23319, of types K0 and K2, while for the 2D-FRUTTI data we used spectra of 21 stars of types K0, K2, and G5. The template stars and galaxies used for the Modular data included HD 55229, HD 55434, and HD 71370 and NGC 2217, NGC 2775, and NGC 2784.

Similarly, spectra of galaxies NGC 1700, NGC 596, and NGC 1426 and 13 galaxies of types E0, E2, E4, E6, SB0 nuclei, and S0 were used as templates. All templates were correlated between them and were retained only if consistent solutions were found. Also, a synthetic spectrum, constructed from the library of stellar spectra of Jacoby, Hunter, \& Christian (1984), was used (details in Quintana, Ramírez, \& Way 1994c, hereafter QRW94). Different combinations of radial velocity templates served to derive Shectograph, 2D-FRUTTI,
and Modular velocities. Cross-correlation of the Shectograph data was performed with six templates, retaining the velocity produced by the correlation with the highest R-value if the velocities from all templates were consistent, had dispersions lower than individual errors, and agreed with the traditional line-fitting procedure, done previously. If there was no complete consistency, usually for $R \leq 4$ values, the cross-correlation procedures were performed interactively, searching for a peak at the position suggested by the line-fitting value. When no clear peak was present (very low values of R), the original line-fitting velocity was adopted. For the 2D-FRUTTI and Modular data we used all available templates running the XCSAO program in batch mode. If most templates (30 or more) gave consistent results, in the sense described, we adopted as final velocities the mean of the three values with highest R numbers. Otherwise, the interactive procedure was followed and we adopted the velocity corresponding to the highest R-value.

A detailed comparison of both cross-correlation and linefitting procedures, using more than 400 velocities with $R>5$ values, showed consistent results between all methods. However, the velocity values of both correlations have a mutual dispersion which is smaller by a factor of 2 than the dispersion of any of the correlation results with the line-fitting velocities (further details in QRW94). On this basis we decided to retain the velocities obtained from the XCSAO program within RVSAO, which allows greater flexibility in its use and is likely to be more widely used. These are the values given in Table 3.

We could check the accuracy of our results by comparing the derived velocities with those known velocities for the template galaxies and dispersion calibrators, as well as the velocities of the star templates. Additionally, there is a large number of observed galaxies in some clusters that have numerous published velocities. These comparisons are presented in the papers quoted above (QRW94, QR90, Quintana et al. 1994b), and they will not be repeated here. Overall, they show that our errors are consistent with those published. Moreover, we discuss below our data consistency and give a comparison with values in the literature.

5. RESULTS

The heliocentric redshifts of 165 clusters are given in Table 2, where we show their positions from the ACO, QW90, or Zwicky catalogs, respectively, Bautz-Morgan types (BM), Abell richness (R) and distance (D) classes, the adopted z, and the number of measured velocities retained in its calculation $\left(N_{g}\right)$. Cluster numbers within parentheses are used to indicate redshift values for galaxy concentrations some distance from the main cluster density enhancement. Finally, in column (9), we give a comment concerning uncertainties of membership, either of our measured galaxies or the literature values. These are mostly taken from the compilation of SR91, which are corrected to the centroid of the Local Group. We also give other names given to these clusters and references for galaxy velocities, when these were different from ours. We have not included in Table 2 those clusters for which a sizeable number of galaxy velocities are known already, but we give in Table 3 below a few additional velocities from our data.

TABLE 2
Cluster Redshifis

Abell (1)	$\begin{gathered} \alpha(1950) \\ (2) \end{gathered}$	$\begin{gathered} \delta(1950) \\ (3) \end{gathered}$	BM (4)	$\begin{gathered} \text { R D } \\ (5)(6) \end{gathered}$	$\begin{gathered} z \\ (7) \end{gathered}$	N_{g} (8)	References and Comments (9)
2	$00^{h} 05^{m} 9$	$-19^{\circ} 55^{\prime}$	II	16	0.1225	1	
3	0006.7	0345	II:	15	0.1012	1	
13	0011.1	-19 47	II:	25	0.0949	2	
17	0014.4	0831	I-II	16	0.0882	1	
34	0024.7	-09 05	I-II	26	0.1315	1	Schneider83: 0.041
37	0025.4	-10 48	II	16	0.1668	1	
38	0025.8	1339	II:	16	0.1408	1	
44	0027.0	1145	II	15	0.1394	1	SR: 0.0559 (0); foregr., Sp
47	0028.1	-24 26	II	16	0.1381	1	
49	0028.9	-1142	II	16	0.1571	1	
50	0028.9	-22 30	II:	26	0.0882:	1	likely foregr.
67	0034.4	1859	II	26	0.1367	1	foregr. gal at $\mathrm{z}=0.0584$
91	0040.7	-10 54	II	16	0.1275	1	
101	0045.0	-0111	II:	25	0.1172	1	
102	0046.1	0106	III	03	0.0631	1	SR: 0.0632 (2)
122	0055.0	-26 33	I:	15	0.1127	1	
123	0055.9	-1440	II:	15	0.0957	2	
126	0057.3	-1429	I-II:	15	0.0555	2	
129	0058.5	-10 14	II	26	0.1507	1	
144	0103.9	-21 08	II	16	0.2046	1	
145	0104.2	-0243	II	26	0.1909	1	
146	0105.0	-1131	I	16	0.1876	1	
153	0107.1	0458	II:	26	0.1262	1	
172	0114.4	0259	II:	15	0.1247	1	
178	0119.1	1949	II:	15	0.1930	1	
192	0121.7	0413	I:	26	0.1215	1	
211	0130.3	-0416	II:	25	0.1382	1	
214	0132.0	-26 21	I	16	0.1598	1	
227	0137.1	1756	II	16	0.1763	1	
242	0139.5	-1434	I-II	16	0.2495	1	
261	0148.9	-02 29	I	15	0.0477	2	SR: 0.0467 (1)
289	0158.4	-24 52	II	16	0.2048	2	
294	0159.6	0510	I-II	16	0.0780:	1	possible foregr.
295	0159.9	-0119	II:	15	0.0428 :	3	probable foregr.(3 gal)
306	0204.7	-1202	II	16	0.2165	1	
319	0209.4	-1220	I-II:	16	0.1446	1	foregr. gal at $\mathrm{z}=0.076$
326	0211.2	-07 21	II:	05	0.0558	3	db comp. vel. from VC88 and Schneider83
353	0225.2	-22 17	II:	16	0.1638	1	
360	0228.7	0646	I	26	0.2203	1	
371	0238.7	-1126	II:	15	0.0962	2	
374	0240.9	0402	II:	26	0.0757 :	1	possible foregr.
389	0249.1	-2507	II	24	0.1139	2	SR: 0.1160 (1)
394	0251.5	-14 51	I	16	0.2062	1	
395	0252.1	-10 35	II:	26	0.1479	2	
411	0302.0	0049	II	16	0.1567	1	
432	0321.6	-05 59	II	26	0.2027	2	
438	0326.2	-10 01	I-II:	15	0.1763	1	foregr. gal at $\mathrm{z}=0.031$
447	0335.5	-05 17	I	16	0.1124	1	
464	0347.2	-1758	II:	26	0.1465	1?	
510	0444.6	-21 06	I	16	0.1818	2	another at $\mathrm{z}=0.199$
(514)	0445.5	-20 31	II-III:	13	(0.0646)	2	SR: 0.0731 (2); here extention to E ?
516	0447.7	-0854	II:	16	0.1411	2	SR: 0.1407 (2); 1 Ciardullo85
543	0528.5	-22 27	II	15	0.1754	3	
548	0545.0	-25 38	III	11	0.0408	6	-•
658	0821.0	1550	III	15	0.0921	2	
720	0852.3	1549	I-II	16	0.1334	1	foregr. group at $\mathrm{z}=0.0747$ (3 gal)
734	0857.8	1628	I	16	0.0723	2	
775	0913.7	0605	II:	16	0.1340	1	
830	0932.8	0744	II	16	0.2160	1	
838	0934.6	-0447	III	03	0.0511	2	SR: 0.0498 (3)
882	0948.6	0829	I	05	0.1412	2	SR: 0.1408 (2); 2 spectr ea.
883	0948.7	0544	II:	15	0.0745	2	2 spectra ea.

TABLE 2-Continued

Abell (1)	$\begin{gathered} \alpha(1950) \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} \delta(1950) \\ (3) \end{gathered}$	BM (4)	$\begin{gathered} \text { R D } \\ (5)(6) \end{gathered}$	$\begin{gathered} z \\ (7) \end{gathered}$	$\begin{aligned} & N_{g} \\ & (8) \end{aligned}$	References and Comments (9)
919	1002.4	-00 27	II:	15	0.0961:	2	2nd at $\mathrm{z}=0.085$
941	1007.1	0356	II	15	0.1049	1	
994	1020.1	1935	I:	16	(0.0395)	1:	foregr.
1024	1025.7	0401	II:	15	0.0743	2	
1038	1030.4	0230	I-II	16	0.1246	1	
1047	1032.2	0440	II	15	0.1524	1	foregr. at $\mathrm{z}=0.0969$
1113	1048.4	0854	II:	16	0.0839:	1	likely foregr. (another at $\mathrm{z}=0.0657$)
1119	1050.1	1058	II	16	0.0879	1	
1126	1051.3	1707	I-II:	14	0.0850	3	SR: 0.0852 (3), 1 Smith85
1142	1058.3	1049	II-III:	03	0.0364	3	
1205	1110.8	0247	II:	15	0.0759	3	
1206	1111.0	-05 20	II	16	0.1446	1	
1271	1126.4	-09 19	II	16	0.1711	2	
1277	1127.4	1311	I	06	0.2435	2	
1307	1130.2	1448	II	15	0.0831	3	2 Rhee88
1317	1132.6	-1315	I-II:	25	0.0702	4	2 Rhee88
1358	1140.2	0830	II:	15	0.0813	2	
1386	1145.8	-0140	I-II:	15	0.1023	1	
1391	1147.2	-1201	I	26	0.1555	1	
1407	1151.0	-01 28	II	15	0.1363	1	
1505	1213.1	1858	I-II:	16	0.1798	1	another cluster at $\mathrm{z}=0.112$
1508	1213.6	1746	I	15	0.0968	1	
1583	1237.9	-15 41	I-II:	16	0.1389	1	
1584	1238.2	-1818	II:	15	0.1199	2	
1595	1240.0	-16 09	II:	16	0.1388	1	
1601	1241.0	0915	II	15	0.1639	1	
1662	1260.0	0835	II	15	0.0928	1	
1663	1300.2	-02 15	II:	15	0.0847	1	
1668	1301.4	1932	II	15	0.0644	2	SR: 0.0649 (1); 1 Rhee88
1853	1402.8	-1932		16	0.1379 :	1	
1864	1405.8	0541	II	15	0.0871	2	
1924	1428.7	-22 09		25	0.1118	2	SR: 0.1110 (0); (3 spectra, em+abs)
1950	1438.1	1317	II:	15	0.1955	1	foregr. at $\mathrm{z}=0.064$
1964	1444.1	-08 34		05	0.0712	2	
2023	1503.3	0303	I-II:	15	0.0547	2	
2026	1506.0	-00 05	II:	15	0.0876	4	SR: 0.0874 (4); 2 Rhee88
2030	1508.7	0006	I-II	15	0.0919	1	
2128	1546.3	-02 54	I-II	05	0.1019	1	PHG92: 0.1005 (2); another at $\mathrm{z}=0.0574$
2333	2058.0	-19 26	II	15	0.1119	1	
2334	2101.3	-25 27	III	16	0.1852	1	
2357	2133.8	-23 28	II	15	0.1232	1	
2362	2138.0	-14 30	II	15	0.0610	2	SR: 0.0609 (2); 1 Kirshner87, another backgr?
2364	2139.2	-20 32	I:	16	0.1469	1	
2376	2143.2	-09 40	I-II	15	0.0891	1	
2381	2148.4	0203	I:	15	0.0719	1	
2394	2152.9	-19 28	I-II:	15	0.0811	1	
2401	2156.1	-20 20	II	15	0.0563	1	PHG92: 0.0576 (2)
2416	2202.2	-25 28	I	16	0.2130	1	
2428	2213.6	-09 36	II:	15	0.0846	1	another at $\mathrm{z}=0.0385$
2452	2231.1	-09 03	II	16	0.1337	1	
2456	2232.4	-15 33	I	15	0.0762	1	
2457	2233.2	0113	I-II:	14	0.0591	1	SR: 0.0597 (1)
2462	2236.4	-17 37	I-II:	04	0.0749	1	SR: 0.0698 (3)
2468	2238.0	0757	II:	16	0.1414	1	
2480	2243.4	-1757	II	15	0.0711	1	
2490	2246.7	-04 03	II	15	0.0694	2	
2512	2257.1	0950	II	15	0.1596	1	another at $\mathrm{z}=0.1001$
2516	2257.5	1815	II	15	0.0785	1	
2522	2259.4	1347	I-II	16	0.1554	1	
2529	2303.7	-13 31	II:	25	0.1101	1	
2533	2304.6	-15 29	I	15	0.1110	1	
2543	2307.4	-15 11	II:	15	0.1063	2	

TABLE 2-Continued

Abell (1)	$\begin{gathered} \alpha(1950) \\ (2) \end{gathered}$	$\begin{gathered} \delta(1950) \\ (3) \end{gathered}$	BM (4)	$\begin{aligned} & \text { R D } \\ & (5)(6) \end{aligned}$	(7)	N_{g} (8)	References and Comments (9)
2553	2309.7	-25 13	I-II:	16	0.1494	2	
2571	2316.0	-0232	II	16	0.1080	1	
2577	2318.1	-23 14	I	16	0.1249	1	
2579	2318.5	-21 50	I:	15	0.1115	1	
2590	2321.8	0149	II:	16	0.0784	1	
2613	2328.6	-13 13	II	25	0.1166	1	
2708	0004.0	-1712	II:	06	0.1467	1	
2710	0004.1	-15 39	I-II:	05	0.1001	2	
2789	0031.2	-69 32	I	05	0.0956	2	
3151	0338.4	-28 52	I-II	14	0.0677	2	
3157	0341.5	-30 06	I-II?	26	0.2128	1	
3158	0341.7	-53 48	I-II	24	0.0602	10	
3165	0344.8	-29 11	III	05	0.1404	2	
3186	0353.1	-74 09	I-II	15	0.1281	2	
3323	0509.4	-29 03	I	04	0.0640	2	
3342	0524.0	-30 38	I-II	25	0.1994	1	
3392	0625.3	-35 27	I	13	0.0546	1	
3667	2008.5	-56 58	I-II	23	0.0554	8	
3695	2031.6	-36 00	I	24	0.8888	2	
3744	2104.3	-25 41	II-III	12	0.0385	4	
0191S	0144.1	-73 12	II	04	0.0780	2	
0393S	0346.7	-4542	I	04	0.0671	8	Peterson86 (7)
0463S	0428.0	-53 56	I-II	03	0.0399	2	
0535S	0531.6	-36 23	II	03	0.0473	2	
0546S	0546.7	-32 41	II	05	0.0703	3	
0574S	0611.1	-45 03	I	03	0.0461	2	
0639S	1038.1	-46 04	I-II	02	0.0191	2	
(0726S)	1312.4	-33 23	II	05	0.0500	2	uncertain gal. membership
0820S	1930.0	-39 47	I	05	0.0771	2	
cl0017	0017.1	-20 43			0.2720	1	
Zw\#0802-01	0802.7	-01 03			0.0879	2	
Zw\#1006+12	1006.1	1202			0.2245	1	
QW\#64S	2059.2	-24 44			0.1899	1	

References.-Ciardullo85 = Ciardullo, Ford, \& Harms 1985. Kirshner87 = Kirshner, Feigelson, \& Newberry 1987. Peterson86 = Peterson et al. 1986. PHG92 = Postman, Huchra, \& Geller 1992. Rhee88 = Rhee \& Katgert 1988. Schneider83 = Schneider et al. 1983. Smith85 = Smith et al. 1985. SR = Struble \& Rood 1987 (SR1) or 1991 (SR2). VC88 = Valentijn \& Casertano 1988.

Velocities for the individual galaxies and details concerning each observation are given in Table 3. Here we include galaxies for a number of clusters with well-known redshifts, though some galaxies observed have no previous velocities measured. Columns (2), (3), and (4) show the 1950.0 epoch equatorial coordinates of each measured galaxy and a code (P) indicating their sources, as described in $\S 3$ and listed in the notes to this table. Usually, we give only one position for close dumbbells, identifying each component by its relative orientation. Columns (5), (6), and (7) show the independently measured heliocentric velocities of each galaxy, their errors, and TonryDavis R numbers or, if an integer appears, number of lines measured (the latter for sessions 13 and 14). Uncertain values are preceded by a colon. An asterisk in front of a velocity indicates an entry from the literature, as emphasized by the entry "lit" in column (8). In columns (8), (9), and (10) we give information concerning the observations: our identification code for galaxies, session and telescope code S (according to Table 1), and exposure times t in minutes. Finally, column (11) shows comments and slit rotator position (r), as used in each telescope and described in $\S 2$. Rotator values correspond-
ing to the standard east-west orientation are not indicated (values 180° at LCO 2.5 m and 90° at CTIO 4 m). The comment also may include other common names for clusters or galaxies, comments on the galaxy rank or position within the cluster, presence of emission lines, or other characteristics. Also, in brackets we note observing conditions, in particular moon phase, clouds, and seeing, with the following conventions: No comment is given if an observation was performed in dark and clear skies, with good seeing (between $1^{\prime \prime}-1 " 5$), taken as default condition. We indicate as excellent seeing below $1^{\prime \prime}$ (es), fair seeing $1^{\prime \prime} 5-2^{\prime \prime}$ (fs), bad seeing $2^{\prime \prime}-3^{\prime \prime}$ (bs), and very bad seeing worse than $3^{\prime \prime}$ (vbs). Presence of varying amounts of moonlight (m) and clouds (cld or cirrus) are marked. Comments for literature velocity lines indicate references listed in the notes (some authors give velocities corrected for galactic rotation, as marked). We stress that we quote literature values if we think these are for the same galaxy (other velocities in the clusters are reflected in the redshifts of Table 2). However, it is not unusual that galaxy identifications are given without exact positions (or without their accuracies) or no finding charts instead. This leaves, at times, some uncer-

TABLE 3
Galaxy Velocities: Abell Clusters

$\stackrel{\square}{\circ}$	Abell (1)	$\begin{gathered} \alpha(1950) \\ (2) \end{gathered}$	$\delta(1950)$ (3)	P (4)	Vel. ${ }^{\text {a }}$ (5)	Error ${ }^{\text {a }}$ (6)	R (7)	Gal. (8)	$\begin{gathered} S \\ (9) \end{gathered}$	$\begin{gathered} t^{b} \\ (10) \end{gathered}$	Comment (11)	
$\stackrel{\leftrightarrow}{\sim}$	2	$00^{h} 05^{m} 45{ }^{s} 0$	$-19^{\circ} 55^{\prime} 51 "$		36720	57	3.7	1	3	8	1st db (es)	
の	3	000652.5	034241		30337	46	5.4	1	6	25	member	
\checkmark					43031	100	1.6	1w	6	25	backgr. group; same slit	
13		001106.4	-19 4645		29761	65	3.5	1	6	11	(es)	
		001101.6	-19 4546		27140	47	5.9	2	6	10	(es)	
	17	001431.1	083302		26440	61	5.1	1	6	20		
	34	002500.4	-09 0946		39422	52	4.1	2	3	13	(es)	
	37	002513.4	-10 4908		50011	48	3.4	1	6	15	(es)	
	38	002543.9	133820		42217	64	4.1	1	3	20	(es)	
	44	002711.4	114732		:41782	105	1.6	1	6	15	z lit 0.0559 foregr. Sp: Shectman85	
	47	002805.1	-24 2746		41389	40	2.8	1	2	22	(cld)	
	49	002854.6	-114115		47100	87	3.2	1	2	15	(cld)	
	50	002855.6	-22 2822		26430	55	3.5	1	2	15	likely foregr.	
67		003421.3	190032		40989	91	2.4	2	3	7	D gal in cl dens. center (es)	
		003414.9	185728		17525	38	3.6	1	3	7	foregr. Sp (es)	
				17517	63	3.8	1	3	7	(es) independent exposure		
	91		004040.6	-10 5623		38226	51	5.0	1	6	12	(es)
	101	004457.8	-01 0916		35135	51	4.7	2	7	20	cl. center (bit m, fs)	
102		004555.6	010457		18914	49	4.7	E	8	40	r193; db; UGC 00496, K18 (strong m)	
				*19003	65		lit			Tifft82 (galactocentric v, E comp.)		
				*19021	50		lit			Shectman85 (no position)		
	122		005456.8	-26 3307		33787	31	7.7	S	7	30	(bit m, fs)
123			005556.6	-14 4044		28492	44	6.6	1	7	17	(some m)
					28504	42	5.9	1	6	10	(cld)	
		005552.5	-14 4154		29089	50	3.5	2	6	10	(cld)	
126		005708.4	-14 2806		16840	37	6.4	2	2	30	seems member (cirrus, bs)	
		005723.5	-14 3045		16462	35	7.7	1	2	20	seems member (cirrus, bs)	
	129	005830.4	-10 1325		45175	81	3.3	1	2	20	diffuse (bs)	
	144	010351.4	-21 1009		61323	57		1	2	30	(bs)	
145		010419.9	-02 4458		57236	78	3.0	2	2	30	cluster center (bs)	
		010358.5	-02 4333		20013	49	5.3	1	2	5	foregr. group (bs)	
	146	010445.6	-11 3337		56255	66	2.2	1	3	13	(es)	
151		010622.2	-15 4029	a	15392	44	7.4	S	7	40	db; E gals. (m, cld, v bs)	
					*15432	37		lit			Proust92(1.5m)	
					*15447	63		lit			Proust92 (Optopus)	
					*15445	60		lit			Proust88, Note	
					*15404	21		lit			Smith85	
		010622.8	-1540 20	a	15922	23	12.6	N	7	60	db; D gal; IC0077 (m, cld,v bs)	
		*16046			36		lit			Proust92(1.5m)		
		*15963			73		lit			Proust92 (Optopus)		
		*15980			60		lit			Proust88, Note		
		* 15954			30		lit			Smith85		
		010621.3	-154121	a	16175	52	5.7	1	2	10	(cirrus)	
				*16094	51		lit			Proust92 (Optopus)		
				*16166	100		lit			Proust88		
		010625.1	-15 4255		14347	100	3.0	2	2	15	(cirrus)	
	153		010654.4	045828		37842	59	3.6	1	3	20	D gal? (es)
	172		011431.1	025621		37384	92	2.9	1	3	25	cluster center (es)
	178	011858.8	194956		:57864	114	1.1	1	3	20	cluster center (es)	
	192	012142.5	041155		36436	100	2.1	1	3	10	(es)	
	211	013007.1	-0415 57		41428	74	3.8	1	3	15	(es)	
	214	013201.8	-26 2139		47910	114	3.2	NW	6	30	db (m, cld)	
	227	013711.8	175457		52839	150	2.5	1	3	13	(es)	
	242	013923.7	-14 3339		:74785	47	3.4	1	2	50	cl. center	
		013928.4	-14 3144		12128	92	2.9	F	2	5	foregr. Sp, em	
	261	014854.3	-02 3019		14010	47	6.9	1	2	4	cl. center; ok low z 0.0467 lit?	
					*14010	50		lit			Malumuth85 (BCM in cluster)	
	289	015830.4	-24 5223		61340	123		1 s	5	40	S comp. of binary	
					61460	145	2.6	1	3	25	(es)	
	294	015942.0	051045		23377	34	4.2	1	5	20	low z for $\mathrm{D}=6$: poss. foregr. (strong m)	
	295	020011.4	-01 2019		12848	35	6.7	3	6	10	poss. foregr. (es)	
		020004.4	-01 2024		12747	29	4.3	4	6	10	poss. foregr. (strong m, es)	
		015943.7	-01 2206		12858	43	7.0	1	6	10	MCG +00-06-025; poss. foregr. (strong m,es)	
					*12837	50		lit			Shectman85 (no position)	

TABLE 3-Continued

TABLE 3-Continued

$\stackrel{\text { ® }}{ }$	Abell (1)	$\begin{gathered} \alpha(1950) \\ (2) \end{gathered}$	$\delta(1950)$ (3)	$\begin{gathered} P \\ (4) \end{gathered}$	Vel. ${ }^{\text {a }}$ (5)	Error ${ }^{\text {a }}$ (6)	$\begin{gathered} \mathrm{R} \\ (7) \end{gathered}$	Gal. (8)	$\begin{gathered} \mathrm{S} \\ (9) \end{gathered}$	$\begin{gathered} t^{b} \\ (10) \end{gathered}$	Comment (11)
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$					21771	37	3.4	2	5	15	close to cD to SE (cirrus)
岕	775	091346.1	060547		40170	69	2.0	1	5	20	
の	830	093248.0	074347		64755	44	3.9	cD	5	30	
$\checkmark 838$		093439.4	-04 4841	a	15674	32	6.0	W	8	60	db; 2x30 exp (vbs); East is Ep in D80
					*15160			lit			Batuski84
		093438.4	-04 4843	a	14990	29	4.5	E	8	60	
					*14860			lit			Batuski84
882		094842.5	083320		42901	27		W	13	40	r99; central db (night 1)
					42803	59		W	13	45	r94 (cld, bs night 2)
					*42290	100		lit			Schneider83
					41923	35		E	13	45	r99, 10" East
					41916	55		E	13	45	r94
					*42210	100		lit			Schneider83
883		094837.6	054329		21727	47	5.2	NE	5	20	r176; central db (es)
					22148	14		NE	5	20	r22
		094837.4	054318		22722	57	5.1	SW	5	10	r176; db comp, bright nucleus (es)
					22725	28		SW	13	40	r22; (m, fs)
919		100221.9	-00 2756		25397	43	6.5	1	5	15	
		100218.9	-00 2600		28810	64	5.2	2	5	20	
	941	100707.2	035207		31454	124		cD	5	15	
994		102021.4	193732		36917	71	3.7	1	8	30	foregr., $\mathrm{D}=6$ (vbs)
					11854	43	6.2	7	5	12	
1024		102547.4	040054		21916	46	6.5	1	5	15	r112; D gal
		102546.5	040115		22677	51	3.8	2	5	15	r112; N to D gal
	1038	103022.2	023013		37384	54	3.8	cD	5	20	
1047		103212.2	043952		45717	47	3.4	1	5	20	r186; gE in cluster
		103133.1	043701		29070	58	4.2	W	5	30	r178; 2nd cluster W to A1047: foregr.
1060		103415.0	-2715 30	c	4083	26	13.6	09	11	6	NGC3309 (twilight)
					4077	27	13.4	09	10	6	(twilight)
					4088	21	17.2	09	9	6	(bs)
					4068	29	12.6	09	9	10	(es)
					4100	16		lit			RC3
		103422.0	-271606	c	3792	36	9.0	11	9	10	NGC3311 (bs)
					3785	20		lit			RC3
1066		103644.0	052349		20684	55	5.3	2	5	7	(fs)
					*21180	30		lit			Owen88:
		103630.6	052813		20310	68	5.0	3	5	6	(fs)
					*20370	90		lit			Owen88
		103702.5	052612		20946	97	4.3	4	5	6	db , density center (fs)
					*21450	90		lit			Owen88:
		103655.6	052207		8163	53	4.3	1	5	6	foregr. (fs)
1113		104832.2	085927		25161	45	5.9	1	5	10	likely foregr. group (es)
		104819.8	085330		19717	54	4.7	2	5	10	Sp?; likely foregr. group (es)
	1119	105010.3	105729		26344	69	4.0	1	5	10	
1126		105110.4	170702		25133	63		W	13	30	r120; central db (cld, vbs)
					*25303	100		lit			Hu85
					*25031	28		lit			Smith85
					26642	51		E	13	30	r120
					*26693	100		lit			Hu85
					*26330	40		lit			Smith85
1142		105820.4	104622	a	11116	63		SW	13	10	r66; Note; db+3rd (triple), Geller84
		105820.9	104627	a	10433	19		SE	13	10	r66; (twilight)
					10392	45		SE	13	10	r169; (vbs)
					*11000	33		lit			Geller84
		105820.9	104634	a	11065	35		N	13	10	r169; NGC492
					*10970	46		lit			Geller84
1205		111045.7	024907		22219	87	4.3	W	5	30	r156; VV145 ABC; db (with 3rd to N),(fs)
					22179	46	7.0	W	9	20	(es) MGC +01-29-019
					22363	24		W	13	30	r115 (cld, vbs)
		111046.7	024859		23380	59	7.2	SE	5	30	r156; db component ($2 \times 15 \mathrm{~min}$)
					23218	38	8.8	SE	9	12	(es)
					23370	35		SE	13	30	r115 (same slit with W)
					23374	66	5.5	E	5	15	r107 (same slit with E)
		111045.9	024931		23251	40	5.5	N	5	15	r107; 3rd in central group

TABLE 3-Continued

$\stackrel{\text { ® }}{ }$	Abell (1)	$\begin{gathered} \alpha(1950) \\ (2) \end{gathered}$	$\begin{gathered} \delta(1950) \\ (3) \end{gathered}$	$\begin{gathered} P \\ (4) \end{gathered}$	Vel. ${ }^{\text {a }}$ (5)	Error ${ }^{a}$ (6)	$\begin{gathered} \mathrm{R} \\ (7) \end{gathered}$	Gal. (8)	$\begin{gathered} \mathrm{S} \\ (9) \end{gathered}$	$\begin{gathered} t^{b} \\ (10) \end{gathered}$	Comment (11)
$\stackrel{\square}{0}$					23337	25	11.7	N	9	24	(es)
欯					21834	61	4.4	3	5	24	
の					21698	62	3.8	4	5	24	
$\xrightarrow{-1}$	1206	111103.5	051633		43345	173	1.5	1	5	25	(bit twilight, es)
1271		112629.1	-09 1956	d	50558	26		W	13	45	r79; db (fs)
					50731	37	6.0	W	1	90	r184
		112629.8	-09 1955	d	51862	45		E	13	45	r79
					52036	58	4.8	E	1	90	r184
1277		112724.0	131006		72660	164	3	W	13	30	r43; db (fs)
					73326	250	3	NE	13	30	r43 (fs)
	1307	113013.7	144747		24509	71	4.7	D	5	10	D gal (Note)
1317		113241.6	-131626		21624	38		W	13	30	r75 ; db; central very close db (fs to bs)
					21769	35		E	13	30	r75
					*21646	100		lit			Rhee88 (position within 6")
1358		114012.2	082933		24281	49	6.6	NW	5	17	r146; db
					24476	57	6.0	SE	5	17	r146
	1386	114540.5	-014217		30655	93	3.0	1n	5	6	N db comp of BCM
	1391	114712.2	-120207		46614	31	2.0	1 s	4	30	S db comp of BCM (moon, clouds)
	1407	115056.8	-01 2721		40852	52	3.8	1	4	30	central D gal (some m)
1505		121259.7	185928		53909	84	3.0	2	4	30	2 cls in CCD- Sp in N group (some m)
		121255.1	185335		33607	39	5.8	1	4	20	(some m)
	1508	121317.9	175411		29025	50	6.3	1	1	30	(cld)
1541		122457.5	090609		26834	64		W	13	20	r98 ; central db BCM (fs)
					*26760	100		lit	13		Hoessel80 (W db comp.?)
					27246	25		E		20	r98
	1583	123746.0	-154251		41655	52	5.9	1	1	40	D gal, double (cld)
1584		123808.7	-1816 37		36677	37	8.0	E	1	60	r120; db E comp
					35202	53	5.5	W	1	60	r120; db W comp.
	1595	123953.7	-16 0919		41611	45	6.3	1	1	60	
	1601	124050.4	091616		49130	42	6.3	1	1	60	
	1662	130001.3	083443		27822	44	5.7	1	4	30	central gal
	1663	130019.4	-021531		25386	36	9.4	1	1	20	
	1668	130124.9	193205		19170	38	9.2	1	1	20	agrees with Rhee88 close z (diff. gal)
	1853	140248.0	-19 3200		41336	61	3.9	1	10	6	QW1402-195=ipc9091 (es)
1864		140535.1	053959		26032	52	4.9	1	4	16	central gal (cld)
					26190	33	10.6	1	1	30	
1924		142844.4	-22 1007	e	33157	55	5.4	C	10	6	QW1428-221=ipc9093 (es)
					33908	20	3	ser5	12	16	vel from absorp.: quasi-stellar image
					33882	20	6	ser5	12	16	vel from very strong em. (same spectrum)
					33729	70	6	ser5	12	20	abs.; differ. night (cirrus,fs)
					33880	20	9	ser5	12	20	em.; (same spectrum)
					7248	34	8.2	D	12	20	Sp foregr. (cirrus,fs)
1950		143813.4	131543		58607	49	4.6	2	4	30	E : cluster center
		143754.6	131448		19223	40	5.9	1	4	15	foregr.
1964		144355.0	-08 3342		21421	51	6.5	N	7	20	central db BCM: PKS1443-085
					21274	67	4.9	S	7	30	
2023		150318.8	030437		16651	41	6.7	1	4	10	
		150322.5	030423		16149	48	5.5	2	4	15	
2026		150550.9	-00 0434		26401	57	5.6	1W	4	30	r213
					*26323	100		lit			Rhee88, West
					27104	42	6.3	1E	4	30	r213
					*27042	100		lit			Rhee88, East
	2030	150849.2	000743		27536	36	7.0	1	4	15	r213; PA to avoid star in slit (cld)
	2128	154608.6	-03 0018		30551	86	3.1	2	4	30	cluster or backgr.? (cld)
		154605.9	-02 5027		17215	59	5.2	1	4	25	cD/D if in cl (cld)
	2333	205802.9	-19 2710		33532	76	2.5	1	7	40	(m)
	2334	210117.9	-25 2802	e	:55516	73	2.7	1	12	20	QW2101-255=ipc3452; central (es)
	2357	213354.0	-23 28.37		36920	41	5.9	1	7	30	
	2362	213822.1	-14 3441		22467	59	4.1	2	7	25	poss. member, E of cluster (m)
		213730.3	-14 2731		18342	46	6.6	1	7	15	brightest (m)
	2364	213912.9	-20 3255		44051	58	4.2	1	7	30	em 3727
	2376	214323.9	-09 4057		26725	39	6.6	1	7	25	
	2381	214845.5	020405		21549	34	7.8	1	7	30	(m)
	2394	215245.5	-19 2912		24307	35	7.8	1	7	25	

TABLE 3-Continued

$\stackrel{6}{\circ}$	Abell (1)	$\begin{gathered} \alpha(1950) \\ (2) \end{gathered}$	$\begin{gathered} \delta(1950) \\ (3) \end{gathered}$	$\begin{gathered} \mathrm{P} \\ (4) \end{gathered}$	Vel. ${ }^{\text {a }}$ (5)	Error ${ }^{\text {a }}$ (6)	$\begin{gathered} \mathrm{R} \\ (7) \end{gathered}$	Gal. (8)	$\begin{gathered} S \\ (9) \end{gathered}$	$\begin{gathered} \boldsymbol{t}^{\mathrm{b}} \\ (10) \end{gathered}$	Comment (11)
$\stackrel{\square}{\circ}$	2401	215602.0	-20 2106		16902	41	7.1	2	7	15	
峊	2416	220202.9	-25 2905		63860	78	3.3	1	7	30	D gal
のু	2428	221327.5	-09 3559		11554	30	8.6	2	7	15	foregr. (CCD) (fs)
$\stackrel{-}{7}$		221336.3	-09 3456		25368	50	5.8	1	7	15	cD (fs)
					*25363	150		lit			Allen91
	2452	223106.5	-09 0535		40096	61	2.4	1	3	15	(es)
	2456	223232.8	-15 3343		22859	28	8.0	1	7	20	
2457		223306.3	011525		17529	68	4.9	cD	7	10	
					*17910	100		lit			Hoessel80
2462		223630.1	-17 3607		22294	37	7.6	1	7	20	(some m)
					*22635	200		lit			Schneider83 (galatocentric v)
	2468	223808.3	075404		42378	50	4.6	1	7	30	(some m)
	2480	224319.0	-175708		21318	41	6.4	1	3	6	2nd brightest (es)
2490		224645.6	-04 0741		21025	41	3.8	1	3	5	(es)
		224643.3	-04 0254		20563	145	1.7	2	3	6	(es)
2512		225707.9	094952		30036	46	4.5	1 e	3	10	(es)
		225701.7	095030		47851	76	2.6	2	3	15	(es)
	2516	225745.7	181856		23530	96	2.1	1	3	8	(es)
	2522	225930.5	134541		46593	111	2.5	NE	3	10	db; (es)
	2529	230343.0	-13 3204		33015	80	2.2	1	3	12	(es)
	2533	230435.6	-15 2942		33270	63	4.4	cD	3	10	soft (es)
2543		230724.1	-15 1415		31709	118	1.6	S	3	7	db ; (es)
					32010	46	4.1	N	3	10	(es)
2553		230944.2	-25 1329		44826	57	3.3	1E	3	15	CCD shows pair SO's in contact (es)
					44760	63	3.3	1W	3	15	
2571		231558.8	-02 3259		32411	94	2.4	1	3	5	r172; Rot to avoid star in slit(es)
					*32336	50		lit			Shectman85 (no position)
	2577	231807.2	-23 1555		37447	52	5.4	1	3	8	(es)
	2579	231836.6	-21 5131		33422	57	5.2	S	7	30	db-S (some m, fs)
	2590	232128.2	014906		23490	95	2.3	1	3	10	3rd brightest (es)
	2613	232809.1	-131539		34946	72	3.4	1	3	7	D gal (+faints?) (es)
	2708	000400.2	-171300		43990	69	3.7	1	2	40	(fs)
2710		000406.8	-15 3657		30066	80	3.2	1	2	10	(cld)
		000409.4	-15 3925		29953	107	2.3	2	2	12	(cld)
2789		003111.4	-69 3148		29284	83	2.9	D	11	10	QW0031-695, ipc9088; D gal soft n (m)
		003103.7	-69 3109		28031	76	4.7	2	11	10	(m)
3151		033821.5	-285017		20342	37	8.6	W	9	20	db; QW0338-285 (strong m,fs)
					20418	32		W	13	60	r86; (m)
					*20287			lit			Cappi91
		033823.2	-28 5015		20368	44		E	13	60	r86
					*20127			lit			Cappi91
	3157	034134.5	-30 0437	e	63788	74	3.4	1	10	30	QW0341-300,ipc3450, N gal in nest(cirrus)
3158		034159.2	-53 5122	d	18204	33	8.7	LC1	10	14	SC0340-53 cluster
		034141.1	-53 5043	d	17875	52	4.8	LC2	10	10	
		034141.5	-53 4843	d	17278	78	4.0	LC3	10	16	
		034158.4	-53 4636	d	17529	53	5.3	LC4	10	14	
		034211.2	-535055	d	18762	60	5.4	HQ1	10	6	
					*18433	160		lit			Havlen78 HQ\#1
					*18683	130		lit			Chincarini81 CH\#26
		034158.0	-53 4656	d	16500	57	4.9	HQ19	10	12	
					*16438	37		lit			Havlen78 HQ\#19
		03426.9	-53 4921	d	19452	48	5.1	HQ21	10	12	
					*19562	121		lit			Havlen78 HQ\#21
		034156.1	-53 5029	d	20143	37	6.3	CH22	10	12	
					*20544	130		lit			Chincarini81 CH\#22
		034133.7	-53 4718	d	17400	65		W	13	30	r110; db W; 2×15 exp (strong m, fs)
					*17227	56		lit			Havlen78 HQ\#3
					*17210	130		lit			Chincarini81 CH\#38
		034141.7	-53 4743	d	17690	30		E	13	30	r110; db E
					*17239	200		lit			Havlen78 HQ \#2
					*17512	130		lit			Chincarini81 CH\#37
3165		034457.9	-29 0943		42548	41	5.4	E	6	50	db BCM; QW0345-291 (cirrus, fs)
					*42652	115	3.6	lit			Metcalfe89 (GSP040, assumed east)

TABLE 3-Continued

Abell (1)	$\begin{gathered} \alpha(1950) \\ (2) \end{gathered}$	$\delta(1950)$ (3)	$\begin{gathered} \mathrm{P} \\ (4) \end{gathered}$	Vel. ${ }^{\text {a }}$ (5)	Error ${ }^{a}$ (6)	$\begin{gathered} \mathrm{R} \\ (7) \end{gathered}$	Gal. (8)	$\begin{gathered} \mathrm{S} \\ (9) \end{gathered}$	$\begin{gathered} \boldsymbol{t}^{\mathbf{b}} \\ (10) \end{gathered}$	Comment (11)
3186	$\begin{gathered} 035316.3 \\ 03532.2 \end{gathered}$		e	41554	54	5.8	W	6	50	(slit E-W)
		-74 1052		37322	73	4.13.9	1	11	20	QW0352-741, ipc8385 (strong m,cld) (es)
		-740845		39463	61		F	10	10	
3266	043032.4	-61 3335	d	17865	70		W	13	30	r68; db BCM; Sersic 40/6 (strong m, bs)
				17884	62	3.8	W	8	20	r110 (bs); v lit: Note
				17639	49	4.9	W	5	15	r92
	043033.6	-61 3332	d	18240	50		E	13	30	r68; db BCM; v lit: Noter110r92
				18191	39	7.2	E	8	20	
				18080	37	8.7	E	5	15	
	043037.2	-61 3626	d	15776	43	6.2	3	8	20	(bs); 5 v in lit: QRW94 \#25746
	042942.5	-61 3824	d	16659	44	6.1	4	8	20	db; ESO422-G43 (m, cld)(slit E-W)
3323	050925.0	-29 0312	c	19235	40	6.9	E	6	30	
				19125	38	8.1	W	6	30	
3342	052355.8	-30 3830		59774	55	2.8	E	5	30	r131;BCM db 0524-30 east comp.
3392	062518	-35 2700		16367	42	6.9	E	6	15	r159; Culgoora 0625-36 (m, cirrus)
3571	134435.5	-32 3657	d	11653	128	5	cD	14	90	```r5; soft n, 3x30 exps (m,cld) QdS93 (Optopus 3.6 m) ESO383-g76 QdS93 (CTIO 4 m) da Costa86 Dressler91a (Modular) Fairall89```
				*11410	100		lit			
				*11380	120		lit			
				*11679	50		lit			
				*11285	100		lit			
				*11440	40		lit			
3667	200827.3	-56 5836	f	16542	68	5.7	$1=$ D	12	5	SC2008-56, D = IC4965 (cirrus) (cld)
				16725	40	7.5	1	3	6	
				16590	62	4.5	1	4	7	
				*16490	150		lit			Melnick81 MQ\#1 (cirrus) Sodre92 \#106
	200821.9	-56 5710	f	16566	48	8.5	4b	12	12	
				*18040	90		lit			
	20098.1	-56 5732	f	18045	54	8.0	6	12	13	(cirrus) Sodre92 \#142
				*17909	89		lit			
	200833.4	-565149	f	15665	46	6.9	43	12	. 15	(cirrus) Sodre92 \#118
				*15664	60		lit			
	200840.6	-565849	f	17094	53	7.1	72	12	10	
				*17240	70		lit			Sodre92 \#124
	200815.8	-570702	f	17328	63	4.9	73	12	15	
				*17350	80		lit			Sodre92 \#102 (cld) Melnick81 MQ\#12 (cld) Melnick81 MQ\#13
	200822.7	-56 5924	f	14703	42	6.3	12	4	10	
				* 7010	50		lit			
	200823.2	-56 5918	f	14878	92	3.5	13	4	20	
				*16820	120		lit			
	200811.3	-5659 59	f	15217	52	4.9	101	4	20	(cld)
	200759.0	-56 5900	f	15810	129	2.7	102	4	20	(cld)
	200756.1	-56 5331	f	17100	32	5.6	103	4	19	(cld)
				*17176	53		lit			Sodre92 \#85
3695	203133.7	-35 5949	d	26590	123	4	S	14	120	r160; db; QW2031-360 (m,cld,bs)
	203132.9	-35 5923	d	26765	250	5	N	14	120	$\begin{aligned} & \text { r160 } \\ & \text { Vettolani89 } \end{aligned}$
				26500	72		lit			
3744	210424.5	-25 4122	g	10387	23	13.7	W	7	20	r177; db; ESO529-ig26 (f.ch. $=\mathrm{db} 2$) Garilli93 \#C ;
				*10329	150		lit			
	210425.3	-25 4123	g	12892	28	7.9	E	7	20	$\begin{aligned} & \text { r177; (ESO529-ig26) NGC7017 } \\ & \text { Garilli93 \#D } \end{aligned}$
				*12895	150		lit			
	210429.1	-25 3751	g	11694	21	14.9	1W	7	30	$\begin{aligned} & \text { r186; ESO529-ig27 (f.ch.=db1) } \\ & \text { Garilli93 \#F } \end{aligned}$
				*11258	150		lit			
	210429.9	-25 3750	g	11517	21	14.3	1E	7	30	$\begin{aligned} & \text { r186; (ESO529-ig27: contact) } \\ & \text { Garilli93 \#G; NGC7018 } \end{aligned}$
				*11387	150		lit			
0191S	014312.8	-731004		23417	60	3.8		8	60	$\begin{aligned} & \text { r233; db; QW0144-731 (m) } \\ & \text { r233 } \end{aligned}$
				23339	37	5.4	N	8	60	
0393S	034639.0	-45 2347	e	20605	53	6.6	D	11	12	QW0346-454;ipc8384 serend.(m,cld)
0463S	042758.6	-53 5607	a	11970	25		NW	13	30	r112; db BCM IC2082; PKS0428-53 Carter81 Ellis84 DS88
				*11812	100		lit			
				*11869	95	4.1	lit			
				*11768	100		lit			
	042759.8	-53 5611	a	12100	25		SE	13	30	r112; $2 \times 15 \exp$ (strong m, cld, bs) Ellis84 DS88
				*12051	95	17.1	lit			
				*12005	50		lit			

TABLE 3-Continued

Abell (1)	$\begin{gathered} \alpha(1950) \\ (2) \end{gathered}$	$\begin{gathered} \delta(1950) \\ (3) \end{gathered}$	$\begin{gathered} P \\ (4) \end{gathered}$	Vel. ${ }^{\text {a }}$ (5)	Error ${ }^{\text {a }}$ (6)	$\begin{gathered} \mathrm{R} \\ (7) \end{gathered}$	Gal. (8)	$\begin{gathered} S \\ (9) \end{gathered}$	$\begin{gathered} t^{b} \\ (10) \end{gathered}$	$\begin{aligned} & \text { Comment } \\ & (11) \end{aligned}$
0535S	05313.06	-36 2300		14076	35	7.2	S	8	40	r245; db; db0531-3623
				14297	25	8.4	N	8	40	r245
0546S	054643.2	-32 4026		20749	40		N	13	30	r156; db0546-3240 (strong m, cld, bs)
				20711	57	4.2	N	5	40	r93
	054644.3	-32 4055		21615	26		S	13	30	r156, both comp. in slit
				20923	71	4.6	knot	9	16	2x2 slit, knot between comp.(strong m)
				20782	35	8.3	knot	5	40	r93 (exp with N in slit)
0574S	061106.0	-4503 36	c	14181	38	8.7	W	4	15	r156; ESO254-ig37 (m,cirrus)
				*4467	366		lit			Lauberts82 (E?, W?), discrepant
				13454	26	12.1	E	4	15	r156
0639S	103807.0	-46 0354	c	6105	32	8.9	W	4	30	db; ESO264-ig30 (m, cld)
				*5929	250		lit			Lauberts82 (Fairall91 v=6190)
				*6214	150		lit			Garilli93 \#A
				5373	40	6.6	E	4	30	(same slit)
				5422	34	7.2	E	4	20	centered in slit (cld)
				*5261	150		lit			Garilli93 \#B
0726S:	131119.0	-33 3500		14909	235		E	14	45	r70; db; SC1311.2-3337 (m)
				15068	90		W	14	45	r70
0805S	184234.6	-63 2304	a	4495	92	6	D	14	145	r120; D gal (m,cld)
				4535	29	12.1	D	3	4	IC4765; ESO104-g6
				*4440	65		lit			Proust88
				*4400	300		lit			Quintana75
				*4790	210		lit			Fairall79
				*4467	100		lit			Dressler91b
				*4465	50		lit			Lucey88 (mean of two)
				*4551	40		lit			Sadler84
0820S	192959.0	-39 4700	b	22504	27	10.9	SE	7	90	r225; db BCM; ESO338-ig11 PKS1929-39 (m)
				22557	32	9.0	SE	7	60	r225 (bs)
				22545	30	9.6	SE	7	50	r225 (bs)
				23611	41	5.0	NW	7	60	r225 (m)
				23733	50	5.9	NW	7	30	r225 (bs)
				23665	37	6.4	NW	7	30	r225 (bs)
CL0017	001708.0	-20 4303		81624	55	3.0	W	3	60	nucleus of nest of galaxies
				84010	82	1.5	E			
Zw0802-01	080242.4	-01 0235		26199	13		S	13	40	r6; db; Zw 0802.6-0104
				26502	34		N	13	40	r6; db; PKS0802-01 (fs)
Zw1006+12	100607.0	120223		67300	48	4	1	12	45	BCM, Zw 1006.1+1201(cirrus,fs)
QW64S	205914.6	-24 4353	d	56918	97	3.7	cD	12	20	QW2059-247 (cirrus,fs)

Note.-A151: E and W components interchanged in Proust88. A447: Central complex, has db with E bright nuclei, W lsb extended component, together with two stars. Clear view of complex structure with CCD image (Quintana et al. 1994a). Three spectra of same galaxy. A514: We give data for central db of concentration to E of main cluster (SR1 quotes $z=0.0646$). A1142: Triple galaxy, positions from Dressler 1980. Velocities in literature from Geller et al. 1984: they quote AD42 a lsb galaxy with no velocity. For AD40 they give $11,000 \mathrm{~km} \mathrm{~s}^{-1}$, while we have that velocity for AD42. For AD41, N component we agree. A1205: Triple at the center, well separated even when they have bridge between SW and SE components: db. 0546S: Two compact nuclei in a common long lsb N-S envelope, that shows a higher brightness hot spot or knot between them. Spectra are from the three components, taken in pairs. A3266: Literature velocities reviewed in QR90 and QRW94.
${ }^{\mathrm{a}}$ Units are $\mathrm{km} \mathrm{s}^{-1}$.
${ }^{\mathrm{b}}$ Units are minutes.
References for Position (P).-a: Positions and numbers from D80 catalogue. b: Parkes Radio Source catalog. c: Position and identification from ESO/ Uppsala Catalogue (Lauberts 1982). d: Optronic measurements. e: Einstein IPC positions. f: Positions from Sodre 1992.g: Positions from Garilli 1993.

References.—Allen91 = Alen et al. 1991. Batuski84 = Batuski et al. 1984. Cappi91 = Cappi et al. 1991. Carter81 = Carter et al. 1981. Chincarini81 = Chincarini, Tarenghy, \& Bettis 1981. Ciardullo85 = Ciardullo et al. 1985. Colless87 = Colless \& Hewett 1987. D80 = Dressler 1980. da Costa86 = da Costa et al. 1986. Dressler91a = Dressler 1991. Dressler91b = Dressler, Faber, \& Burstein 1991. DS88 = Dressler \& Shectman 1988. Ellis84 = Ellis et al. 1984. Fairall79 = Fairall 1979. Fairall89 = Fairall, Vettolani, \& Chincarini 1989. Fairall91 = Fairall \& Jones 1991. Garilli93 = Garilli, Maccagni, \& Tarenghi 1993. Geller84 = Geller et al. 1984. Havlen78 = Havlen \& Quintana 1978. Hoessel80 = Hoessel, Gunn, \& Thuan 1980. Hu85 = Hu, Cowie, \& Wang 1985. Lauberts82 $=\mathrm{ESO}=$ Lauberts 1982. Lucey88 = Lucey \& Carter 1988. Malumuth85 = Malumuth \& Kirshner 1985. Melnick81 = Melnick \& Quintana 1981. Metcalfe $89=$ Metcalfe et al. 1989. Owen $88=$ Owen, White, \& Thronson 1988. Proust $88=$ Proust et al. 1988. Proust $92=$ Proust et al. 1992. QdS93 = Quintana \& de Souza 1993. QR90 = Quintana \& Ramirez 1990. QRW94 = Quintana et al. 1994c. Quintana75 = Quintana \& Melnick 1975. RC3 = de Vaucouleurs et al. 1991. Rhee $88=$ Rhee \& Katgert 1988. Sadler84 = Sadler 1984. Schneider83 = Schneider et al. 1983. Shectman85 = Shectman 1985. Smith85 = Smith et al. 1985. Sodre92 = Sodre et al. 1992. SR1 = Struble \& Rood 1987. SR2 = Struble \& Rood 1991. Tifft82 = Tifft 1982 . VC88 = Valentijn \& Casertano 1988. Vettolani89 = Vettolani et al. 1989.
tainty on cross-identifications. Other notes point out special circumstances, galaxy configurations, or discrepancies.

A total of 330 independent velocities were obtained for 286 galaxies. We give two velocities for 22 galaxies, three for eight, and four for two. From these we can evaluate our internal consistency. If we disregard two very discrepant values (of 950 km s^{-1} in A720 and $420 \mathrm{~km} \mathrm{~s}^{-1}$ in A883) we have a rms dispersion of $69 \mathrm{~km} \mathrm{~s}^{-1}$. This dispersion is similar to the mean of individual velocity errors. Therefore, in spite of different instruments, we feel that the common reduction and measurement procedures give satisfactory values.

The external comparison reflects the varying quality of literature redshifts. There are some large discrepancies, as noted in Table 3. Some of these discrepancies may just reflect very old (and/or weak) spectra (such as some of the ESO/Uppsala values, which have a quoted error of $300 \mathrm{~km} \mathrm{~s}^{-1}$ or larger). If we restrict our comparison to data of similar quality, we have a total of 62 common velocities. From them we derive a mean difference of $10 \pm 211 \mathrm{~km} \mathrm{~s}^{-1}$. Though the scatter is larger than the internally deduced value, this result is consistent with expected errors and there is no zero-point shift of the velocity scale.

6. DISCUSSION

It has become clear that in the direction of some clusters one can expect to find a rich superposition of structures, sometimes at not too dissimilar redshifts. This could be due to the superposition, along the line of sight, of two or more clusters, clusters and groups, or even, several groups that mimic a cluster concentration. Thus, it is no surprise to find a number of examples (i.e., A295, A720, A919, A1505, A2128, and A2512) where it is difficult or impossible, with the present data, to ascertain a definitive cluster redshift, or even, in one or two examples (such as A720), to decide whether there is a cluster at all. How-
ever, the majority of this sample have Bautz-Morgan types I, III, and II, with one or two dominant galaxies. Thus, in general, we can expect that the derived redshifts will be the actual cluster redshifts in the large majority of cases.

A small number of discrepant velocities for some galaxies remained after the analysis, which could be due to misidentification at the telescope or to other causes. Particularly worrisome are such discrepancies in certain dumbbell components, which should be clarified by further observing.

7. SUMMARY

We give 130 new cluster redshifts, mostly for Abell clusters of Bautz-Morgan types I, I-II, and II. Therefore, most of the velocities reported are of galaxies of type $\mathrm{cD}, \mathrm{cD} / \mathrm{db}$, or outstanding ellipticals, leaving little room for membership and redshift uncertainties. We also confirm 32 values previously determined. However, two of them seem to be discordant with our values; most likely, they correspond to foreground galaxies superimposed on the clusters. For nine clusters, however, there are two possible redshifts. Only a larger sample of velocities can settle these ambiguities.

We would like to thank the directors of the Observatories of the Carnegie Institution of Washington and the Cerro Tololo Inter-American Observatory for the generous allocation of telescope time at Las Campanas and CTIO, and the staffs of these observatories for friendly support, in particular night assistants F. Peralta and A. Guerra at LCO. We thank A. Fairall and H. Rood for providing their catalogs in computer form, J. Melnick for discussions and help with the first Reticon observations, X. Cardenas for help in handling the Vidicon data, and C. Rios and G. Hertling for measuring some of the galaxy positions. This project was partially supported by FONDECYT grants 88-362, 90-371, and 193-0572 to H. Q.

REFERENCES

Abell, G. O., Corwin, H. G., \& Olowin, R. P. 1989, ApJS, 70, 1 (ACO)
Allen, D. A., Norris, R. P., Meadows, V. S., \& Roche, P. F. 1991, MNRAS, 248, 528
Batuski, D. J., Burns, J. O., Newberry, M. V., Hill, J. M., Deeg, H., Laubscher, B. E., \& Elston, R. J. 1991, AJ, 101, 1983
Cappi, A., Focardi, P., Gregorini, L., \& Vettolani, G. 1991, A\&AS, 88, 349
Carter, D., Efstathiou, G., Ellis, R. S., Inglis, I., \& Godwin, J. 1981, MNRAS, 195, 15p
Chincarini, G., Tarenghi, M., \& Bettis, C. 1981, A\&A, 96, 106
Ciardullo, R., Ford, H., \& Harms, R. 1985, ApJ, 293, 69
Colless, M., \& Hewett, P. 1987, MNRAS, 224, 453
da Costa, L. N., Nunes, M. A., Pellegrini, P. S., Willmer, C., Chincarini, G., \& Cowan, J. J. 1986, AJ, 91, 6
de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Jr., Buta, R. J., Paturel, G., \& Fouqué, P. 1991, Third Reference Catalogue of Bright
Stars (New York: Springer Verlag)
Dressler, A. 1980, ApJS, 42, 565
——. 1991, ApJS, 75, 241
Dressler, A., Faber, S. M., \& Burstein, D. 1991, ApJ, 368, 54
Dressler, A., \& Shectman, S. A. 1988, AJ, 95, 284 (DS88)
Ellis, R. S., Gray, P. M., Carter, D., \& Godwin, J. 1984, MNRAS, 206, 285
Fairall, A. P. 1979, MNRAS, 188, 343
Fairall, A. P., \& Jones, A. 1991, Southern Redshifts and Plots, Pub. Dep. Astronomy, Univ. of Cape Town, No. 11
Fairall, A. P., Vettolani, G., \& Chincarini, G. 1989, A\&AS, 78, 269

Garilli, B., Maccagni, D., \& Tarenghi, M. 1993, A\&AS, 100, 33
Geller, M. J., Beers, T. C., Bothun, G. D., \& Huchra, J. P. 1984, AJ, 89, 319
Havlen, R., \& Quintana, H. 1978, ApJ, 220, 14
Hoessel, J. G., Gunn, J. E., \& Thuan, T. X., 1980, ApJ, 241, 486
Hu, E. M., Cowie, L. L., \& Wang, Z. 1985, ApJS 59, 447
Jacoby, G. H., Hunter, D. A., \& Christian, C. A. 1984, ApJS, 56, 257
Kirshner, R. P., Feigelson, E. D., \& Newberry, M. V. 1987, PASP, 99, 1261
Lauberts, A. 1982, The ESO/Uppsala Survey of the ESO(B) Atlas (Garching: ESO)
Lucey, J. R., \& Carter, D. 1988, MNRAS, 235, 1177
Malumuth, E. M., \& Kishner, R. P. 1985, ApJ, 291, 8
Melnick, J., \& Quintana, H. 1981, AJ, 86, 1567
Metcalfe, N., Fong, R., Shanks, T., \& Kilkenny, D. 1989, MNRAS, 236, 207
Owen, F. N., White, R. A., \& Thronson, H. A., Jr. 1988, AJ, 95, 1
Peterson, B. A., Ellis, R. S., Efstathiou, G., Shanks, A., Bean, A. J., Fong, R., \& Zen-Long, Z. 1986, MNRAS, 221, 233

Postman, M., Huchra, J. P., \& Geller, M. J. 1992, ApJ, 384, 404
Proust, D., Mazure, A., Sodre, L., Capelato, H., \& Lund, G. 1988, A\&AS, 72, 415
Proust, D., Quintana, H., Mazure, A., da Souza, R., Escalera, E., Sodre, L., Jr., \& Capelato, H. V. 1992, A\&A, 258, 243
Quintana, H., \& de Souza, R. 1993, A\&A, 101, 475 (QdS93)

Quintana, H., Infante, L., Fouque, P., Nuñez, I., \& Cuevas, H. 1994a, in preparation
Quintana, H., \& Melnick, J. 1975, PASP, 87, 863
Quintana, H., \& Ramirez, A. 1990, AJ, 100, 1424 (QR90)
Quintana, H., Ramírez, A., Melnick, J., Raychaudhuri, S., \& Slezak, E. 1994b, AJ, submitted
Quintana, H., Ramirez, A., \& Way, M. 1994c, AJ, submitted (QRW94)
Quintana, H., \& White, R. A. 1990, Ap\&SS, 173, 265 (QW90)
Rhee, G. F. R. N., \& Katgert, P. 1988, A\&AS, 72, 243
Sadler, E. 1984, AJ, 89, 23
Schneider, D. P., Gunn, J. E., \& Hoessel, J. G. 1983, ApJ, 264, 337
Shectman, S. A. 1981, Carnegie Yrb., 80, 586

- 1985, ApJS, 57, 77

Shectman, S. A. 1989, Carnegie Yrb, 89, 25
Smith, R. M., Efstathiou, G., Ellis, R. S., Frenk, C. S., \& Valentijn, E. A.
1985, MNRAS, 216, 71p
Sodre, L., Jr., Capelato, H. V., Steiner, J. E., Proust, D., \& Mazure, A. 1992, MNRAS, 259, 233
Struble, M. F., \& Rood, H. J. 1987, ApJS, 63, 543 (SR1)
-_. 1991, ApJS, 77, 363 (SR2 or SR91)
Tifft, W. G. 1982, ApJS, 50, 319
Tonry, J. L., \& Davis, M. 1979, AJ, 84, 1511
Valentijn, E. A., \& Casertano, S. 1988, A\&A, 206, 27
Vettolani, G., Cappi, A., Chincarini, G., Focardi, P., Garilli, L., Gregorini, L., \& Maccagni, D. 1989, A\&AS, 79, 147

Whitmore, B. C., McElroy, D. B., \& Tonry, J. L. 1985, ApJS, 59, 1

[^0]: ${ }^{1}$ Guest Observer, Las Campanas Observatory of the Carnegie Institution of Washington; Visiting Astronomer, Cerro Tololo Inter-American Observatory which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.
 ${ }^{2}$ Present address: Instituto Astronômico e Geofísico, Universidade de São Paulo, Caixa Postal 9638, São Paulo, SP 01065, Brazil; aramirez@ vax.iagusp.usp.br.

[^1]: ${ }^{3}$ IRAF is distributed by NOAO, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

