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AN EXACT SOLUTION FOR STEADY STATE MAGNETIC RECONNECTION IN THREE DIMENSIONS
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ABSTRACT

An exact three-dimensional solution is derived for the steady state magnetic reconnection of incompressible,
resistive plasmas. The analysis provides a natural extension of the analytic, two-dimensional reconnection
solution of Craig & Henton. The solution shows how advective motions through the separatrix “spine-curve” lead

to global current sheets aligned to the separatrix “fan.”

Subject headings: MHD — plasmas

1. INTRODUCTION

In a recent paper, Craig & Henton (1995) constructed an
exact analytic solution for steady state, incompressible mag-
netic reconnection in two-dimensional planar geometries. The
solution includes previous magnetic-annihilation models—
which are restricted to the merging of antiparallel field
lines—in the limiting case of vanishing shear flows across the
neutral point (see, e.g., Phan & Sonnerup 1990; Besser,
Biernat, & Rijnbeek 1991; Jardine et al. 1992). However, when
the conventional stagnation-point flow symmetries are relaxed
to include shear, curved field lines can be rapidly reconnected
across an X-type neutral point. The reconnection rate is
independent of the plasma resistivity, yet the bulk of the
magnetic energy is released as ohmic heating as opposed to
the kinetic energy of mass motion.

The purpose of this Letter is to indicate the extension of the
Craig-Henton solution to three-dimensional geometries. The
properties of the reconnective system are outlined in § 2,
where we construct the general three-dimensional solution. A
discussion of the two- and three-dimensional reconnection
topology is given in § 3. Our findings are summarized in § 4.

2. THE STEADY STATE SOLUTION
2.1. The Reconnective System

The reconnective system is governed by the steady state
momentum and induction equations for an incompressible,
resistive plasma. The system can be written in the nondimen-
sional form

(Voo — (o Vo= (B-V)]— (J-V)B, 1)
(v-V)B — (B-V)v = nV*B, 2)
where the magnetic and velocity fields satisfy
V:B=0, V:v=0 3)
and the current density and fluid vorticity are given by
J=VXB, o=VXno. @)

It is clear that energy losses from the system can occur only
through the ohmic heating of the plasma. Since the dimen-
sionless resistivity 1 is typically very small, of order 107,
resistive effects are significant only in localized regions of high
current density. It is the finite resistivity that allows topological
change in the global magnetic field via magnetic reconnection,

a process involving the cutting and rejoining of field lines at
null points of the field.

2.2. Preliminary Observations

We note that the symmetry in the B- and »-fields is broken
only by the resistive term. It follows that simple potential field
solutions exist in which irrotational flows (e = 0), supported
by gradients in the plasma pressure, are constrained to poten-
tial field lines.

Another special case occurs when the field lines are straight.
Consider, for instance, the simple one-dimensional field
B = Y(x)p. The right-hand side of the momentum equation
vanishes, so any velocity field that reduces the left-hand side to
zero—such as a potential flow—provides a possible solution.
This construction is central to magnetic-annihilation models in
which straight field lines are advected into a global current
sheet layer by stagnation-point flows (Sonnerup & Priest
1975).

2.3. Reconnective Solutions

We now consider solutions in which one-dimensional fields
are superposed onto “background” potential field solutions.
From Craig & Henton (1995), we know that the three-
dimensional stagnation-point field, namely

P = of—xt + kyp + (1 — K)zZ], %)

where « and k are constant, is the only admissible potential
field. It is sufficient therefore to consider the forms

B=)\P+Q®kx), Q=Yx§+ Z(x)3, (6)
v=P+q(x), q=0vxP+wk)y, 7

where A is some constant.
Substituting these forms into equations (1) and (2) gives the
solution

v(x) = AY(x) + vix, wx) = AZ(x) + 71, ®

where Y(x) and Z(x) satisfy respectively the differential equa-
tions

a(l = A2) (kY +xY7) + nY" = ay, Ak + Dx, )

a(l = A1 — K Z +xZ']+ nZ" = ay, M2 — K)x, (10)
subject to the conditions

Yok = v, (1 — k) =0. (11)
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The solution comprises five internal parameters, a, k, A, v,
and v,, but only three can be chosen independently in any
concrete application. Obviously, a and k determine the mag-
nitude and direction of P. A three-dimensional solution re-
quires 0 <k <1, and the choice k=3 corresponds to
axisymmetry. No flow ever crosses the plane x = 0, but for
positive « there is material inflow through all other planes
|x| > 0. The solution degenerates to planar by taking either
k =0 or k = 1; in such cases vy; or y, can be chosen to be
nonzero.

More significant, in terms of magnetic reconnection, is the
role of A. For A > 0 the stagnation-point symmetry is lost,
shear flows develop, and curved field lines reconnect across
the neutral point.

3. INTERPRETATION OF THE SOLUTION
3.1. Two-dimensional Solutions

Before discussing the fully three-dimensional analysis we
outline the simpler planar reconnection solutions. Suppose z is
the ignorable coordinate. Then we must take k = 1 and specify
a, A, and vy;. In the case y; = 0 we can integrate equations (9)
and (10) to yield

v=P+\Q(x), B=AP+ Q(x), (12)

where
0(x) = % daw (ux)p + [E/—E 7/(0) erf (ux) + Z(O)]i, (13)
dawx = Jx exp (> —x*)dt, p*= % (1-2%, (14)

and E is a constant of integration.

The planar reconnection solution of Craig & Henton (1995)
is obtained on setting Z(0) = Z'(0) = 0. A global current sheet
of amplitude O(n™") is centered on the plane x = 0. Strong
shearing motions are associated with the reconnection region
close to the neutral point. The shear layer vanishes in the
special case A = 0, and the solution reduces to the annihilation
of straight field lines advected by stagnation-point flow
v =P = a(—x£ + y§). However, in all cases the width of the
current layer is determined by the behavior of the Dawson
function: specifically, daw (ux) is an odd function that peaks
when px ~ 0.92—i.e., when x is O(/n)—and declines as 1/2ux
for large arguments. It follows that the influence of the
disturbance field Y(x) rapidly diminishes outside the current
layer.

Consider now the case Q = Z(x)z. If |Z(0)| > 0, there is only
a planar null, rather than a true null of the field. To determine
the flux-annihilation rate we take Z(0) =0 and scale
Z'(0) ~ w ~ ™2 to normalize the field amplitude |Z| on the
boundary plane x=1 (say). The rate is slow since
W = nZ'(0) ~ n"”.

More generally, the pressure distribution required to sustain
the flow is given by

P(x,y) = Py — 3[u} + Y(x)* + Z(x)*] — alyY(x), (15)

where uy = (—ax, ay). The pressure is clearly dominated by
the buildup in the planar field amplitude, Y ~ 02, Specifi-
cally, P > 0 implies the scaling P, ~ n~'. Thus, in the outer
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field where B = O(1), the plasma B must be huge, B =3P,/
B* ~ q7, to sustain fast planar reconnection.

Finally, we mention the effect of taking vy, to be nonvanish-
ing. As discussed by Craig & Henton, a global shearing flow is
superposed onto the intrinsic solution. In this case equation
(12) provides a solution of the homogeneous problem.

3.2. Three-dimensional Solutions

The previous analysis shows that the three-dimensional
solution has the generic form

v=Px) + \Q(x-%), B=AP(x)+Qx-%), (16)

where x = x;%;,. In our present representation with Q = Q(x),
there are three independent internal parameters, namely, , K,
and A. Constants of integration arising from the solution of
equations (9) and (10) can be regarded, in common with E in
equation (13), as external control parameters of order unity.

How does three-dimensional reconnection differ from the
planar two-dimensional model? Perhaps the most significant
change is the impact of the nonremovable null point on the
separatrices of the field. Close to the origin, the field-line
equations reduce to

dx dy dz

_?=Ky+a1x=(1—:<)z+a2x’ a7

where a; = E;/aAn and the E; are integration constants (as in
eq. [13]). These integrate to yield

K al — 1-« a2 —
x(y+1+Kx)—c1, x (z+2_Kx>—c2 (18)

for the y(x) and z(x) dependencies. The separatrices, defined
as the totality of field lines threading the neutral point, are
determined by setting ¢; = ¢, = 0. We obtain the plane x = 0
plus the line y = —awx/(1 + k), z = —ax/(2 — k). Following
Priest & Titov (1995), we call these the “fan” and “spine,”
respectively. Equation (17) now gives z(y) = c;y® ™ for the
field lines on the fan.

Figure 1 details the fan and spine structure for a typical
calculation. Figure 2 shows how curved field lines are advected

Fic. 1.—Spine curve plus separatrix fan in the plane of the current sheet
x = 0. The rays of the fan are straight because of axisymmetry. Parameters are
«=2 k=3 A=09, E;=E,=0.1, and n=0.05. The neutral point is
assumed to lie at the center of the cube —2 =x, y,z<2.
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F1G. 2.—Diagram of a curved magnetic field line carried by a fluid element
(asterisks) reconnecting at the neutral point (cross). Reconnection occurs as the
particle passes through the spine curve before exiting along a ray in the plane
of the current sheet. Solution parameters as in Fig. 1.

into the current plane x = 0—across which there is no
flow—by the motions of a fluid element. The field line
reconnects at the neutral point as the fluid particle crosses the
spine curve.

Consider now the separatrices of the two-dimensional field.
By setting dz =0, E, = E, E, =0, and k = 1 we obtain two
separatrix planes, x = 0 and y = —ax/2. These intersect at
the neutral line and define a narrow X-point of angle
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2/a; = 2aAn/E. The three-dimensional solution shows that
although the plane of the current sheet survives the transi-
tion from two to three dimensions, the advection plane
“collapses” into the spine curve (see also Lau & Finn 1990).

4. SUMMARY

The development of magnetic-merging theory over the last
30 years has undoubtedly been hampered by the absence of
exact reconnection solutions and by the difficulty of perform-
ing two- and three-dimensional reconnection simulations at
realistic plasma resistivities (see, e.g., Biskamp 1994). We have
shown, however, that the two-dimensional analysis of Craig &
Henton (1995)—which provides the only exact, analytic, non-
linear reconnection solution yet known—can be naturally
extended to three dimensions. In this case, reconnection
involves fan surfaces and spine curves as opposed to intersect-
ing X-point planes. The present solution shows explicitly that
advection across the spine curve leads to a global current sheet
aligned to the fan—in other words, to “fan current reconnec-
tion.”

The solution also suggests a further possibility, that recon-
nection may be driven by advection through the fan generating
currents aligned to the spine. In fact, exact solutions for “spine
current reconnection” can be obtained by a natural extension
of the present analysis (Craig & Fabling 1996).
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