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ABSTRACT

We present a detailed analysis of the evolution of the size distribution of fast-moving interstellar dust par-
ticles decelerating in a dusty plasma. The physical processes considered in this paper include sputtering by
gas-grain collisions, and partial and complete evaporation, fragmentation, and cratering by grain-grain colli-
sions. We find that the final distribution of grains, initially characterized by a power-law distribution in grain
sizes, exhibits an excess of small-to-large particles, compared to the initial distribution. This excess depends on
the initial grain velocity and should be detectable by infrared observations of low- and intermediate-velocity
clouds with the Infrared Space Observatory scheduled for launch around 1996.

Subject heading : dust, extinction

1. INTRODUCTION

The shock processing of interstellar grains by sputtering or
grain-grain collisions plays an important role in the recycling
of condensable elements back into the gas phase, and in
modifying the grain size distribution. The physical mechanisms
behind these processes have been investigated by numerous
authors (Burke & Silk 1974; Shull 1977, 1978 ; Barlow 1978a,b;
Draine & Salpeter 1979a; see Dwek & Arendt 1992 for a more
extended list of references), and most recently by Tielens et al.
(1994), who presented a detailed application of the theory of
shock wave propagation in solids to the physics of grain-grain
collisions. Shock processing of interstellar grains has various
important observational consequences, affecting the elemental
depletions in shocked clouds or behind shocks (e.g., Spitzer
1976; Barlow & Silk 1977; Cowie 1978; Shull 1978; Seab &
Shull 1983; Jones et al. 1994; Dwek, Foster, & Vancura 1994);
the UV extinction of stars seen through a shocked gas (Seab &
Shull 1983); the ionization structure and X-ray emission
behind fast shocks (Itoh 1989; Vancura et al. 1994); and the
general evolution of the dust and the depletion of elements in
the interstellar medium (Barlow 1978c; Dwek & Scalo 1979,
1980; Draine & Salpeter 1979b; McKee et al. 1987; McKee
1989). The catastrophic fragmentation of grains in grain-grain
collisions plays a particularly important role in determining
the initial grain size distribution in their formation sites
(Biermann & Harwit 1980) and in the general interstellar
medium (Liffman 1990).

An important tool for studying grain destruction is examin-
ing its effect on the infrared (IR) signature of a shocked gas. In
high-velocity shocks, grain destruction is dominated by
thermal sputtering, which creates a deficiency of small dust
particles compared to the preshock gas. Since small dust par-
ticles are stochastically heated in shocked plasmas (Dwek
1986), the effect of grain destruction should be manifested in
the short-wavelength emission (1 < 25 um) from supernova
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remnants (Dwek & Arendt 1992, and references therein) and
shocks in general (Dwek et al. 1994). In low-velocity shocks
(v <200 km s~ 1), grain fragmentation and vaporization by
grain-grain collisions will be the dominant grain processing
mechanisms. These processes will create an excess of small dust
particles compared to the unshocked gas. These particles will
be stochastically heated by the ambient radiation field (Draine
& Anderson 1985). Preliminary studies of the IR emission from
intermediate-velocity molecular clouds (Heiles, Reach, & Koo
1988) suggest an excess of short-wavelength IR emission over
that expected from unshocked clouds that are heated by the
intestellar radiation field.

The purpose of this paper is to present a quantitative esti-
mate of the evolution of the distribution of a population of
initially fast-moving dust particles as they are decelerated in a
dusty plasma. The grain size distribution evolves due to sput-
tering, complete and partial vaporization, and grain fragmen-
tation. Grain destruction by sputtering is a relatively well
understood theory, and well supported by observations (see
references in Tielens et al. 1994). In comparison, the vapor-
ization and fragmentation of dust in grain-grain collisions is
less understood and suffers from the fact that the experimental
data, which are conducted primarily on macroscopic rocks and
slabs of material, cannot be readily applied to the realm of
submicron interstellar dust particles.

Rather than developing a rigorous, complex theory for the
propagation of shocks to develop a prescription for the vapor-
ization of dust as was done by Tielens et al. (1994), we have
chosen to adopt an empirical approach to the subject. Based
on a variety of experimental and theoretical considerations, we
have adopted criteria, characterized by energy thresholds and
yields, for the complete and partial vaporization of dust par-
ticles, and for their fragmentation as well. An investigation of
the physical processes that modify the grain size distribution is
presented in § 2. Particular emphasis is placed on the fragmen-
tation and cratering of dust particles, both processes that con-
stitute a source of small dust particles behind the shock. In § 3
we present the rates at which these various processes change
the grain size distribution. To do so, we divided the processes
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into two distinct categories: continuous processes—sputtering
and cratering which result in the gradual erosion of the grain
radius, and catastrophic processes—partial and complete
vaporization and fragmentation which result in the total dis-
ruption of a dust particle. The evolution of sizes of a popu-
lation of interstellar dust particles is cast as an integral
equation which is solved for a population of dust particles,
characterized by an initial power law in their size distribution,
which decelerate from an initial velocity v in a dusty plasma (in
§ 4). The dust particles that come to rest in the dusty plasma
consist of surviving dust grains, decelerated fragments, and
very fine dust particles created in cratering collisions, and we
present the resulting grain size distribution for several initial
grain velocities.

With proper modifications, the formalism developed in this
paper can be applied to a variety of astrophysical environ-
ments such as low- and intermediate-velocity shocks and dusty
stellar outflows (Biermann & Harwit 1980; Jura & Kroto
1990).

2. PHYSICAL PROCESSES MODIFYING THE GRAIN SIZE
DISTRIBUTION

2.1. General Considerations

Two physical processes that alter the grain size distribution
in radiative shocks are sputtering and grain-grain (hereafter
g-g) collisions. Sputtering collisions between the grains and the
ambient gas result in the ejection of atoms or molecules from
the grain. Collisions between the grains can result in the total
vaporization of both grains if their relative velocity is high
enough. Most collisions, however, result in their partial vapor-
ization and in their breakup into smaller fragments. We will
distinguish between two types of g-g collisions: cratering colli-
sions and catastrophic collisions. They are distinguished by the
energy deposited in the target grain, the fractional mass in the
target grain that is vaporized or fragmented, and the size dis-
tribution of the fragments.

A fast collision between dust particles generates a strong
shock wave that propagates from the impact site into the solid
material. An elementary description of the propagation of
shock waves in solids is given by Zeldovich & Raizer (1967),
and an application to macroscopic impact cratering is given by
Melosh (1989). The passage of a shock compresses the solid
and also imparts kinetic energy to the shocked material. In the
compression, the molecules (atoms) of the solid are brought
into close proximity, increasing the internal energy of the
shocked material resulting from the repulsive forces between
the atoms. The kinetic and internal energies are about equally
partitioned, so about half the shock energy is actually depos-
ited as internal energy in the solid. If the stresses induced by
the shock exceed the material strength, the grain material is
deformed, crushed, and fragmented. The kinetic energy impart-
ed by the shock to the crushed and fragmented material then
removes it out of the impact site. Since the shock strength
declines with distance from the impact site, the detailed
outcome of the collision will depend (in addition to the proper-
ties of the solid such as its density, equation of state, and its
compressibility) on the energy of the impact. At low energies,
only a limited region around the impact site will be affected by
the shock. The propagation of the shock creates a crater, with
the excavated material partially ejected from the grain and
partially displaced sideways to the crater rim. Most of the mass
of the target material remains intact. We will refer to these
low-energy g-g collisions as cratering collisions. At higher

impact energies, the shock energy imparted to the solid exceeds
the material strength throughout the grain, and the target
grain is broken up into fragments characterized by a wide
range of sizes. We will refer to these collisions in which the
entire target particle is affected by the collision as catastrophic
collisions. The grain lifetime and the outcome between these
two types of collisions are very different: cratering collisions
lead to a gradual decrease in the target grain size, producing a
large number of very small fragments, whereas catastrophic
collisions lead to the disruption of the entire grain in a single
collision, producing fragments with a large range of sizes.
Figure 1 is schematic presentation of the grain destruction
mechanisms considered in this paper.

The distinction between the two types of collisions is conve-
nient for numerical purposes. It is, however, somewhat artifi-
cial, since the transition between these two collision regimes is
of course gradual, with intermediate cases giving rise to craters
that are comparable in size to that of the target grain.
However, cratering collisions constitute an additional source
of very small grains in excess of that produced by catastrophic
collisions alone. Cratering collisions on graphite grains can be
an important source of polycyclic aromatic hydrocarbon
(PAH) molecules, generally believed to give rise to the
observed mid-infrared interstellar emission features
(Allamandola, Tielens, & Barker 1985; Leger & Puget 1984).

A realistic treatment of the process of g-g collisions may
therefore require detailed calculations of the propagation of
shock waves through solids. Such a detailed treatment is
beyond the scope of this paper and premature in light of our
poor understanding of the nature of interstellar dust grains,
their shape, structure, and composition, and their bulk physi-
cal properties. Clearly, grains that are a fluffy aggregate of
smaller particles of different composition as envisioned by
Mathis & Whiffen (1989) will behave differently than pure
spherical graphite or silicate grains. Therefore, our strategy is
to understand the basic physical processes that give rise to the
various grain destruction processes: sputtering, vaporization,
cratering, and catastrophic collisions. Associated with these
processes are physical quantities (relevant binding energies,
critical stresses, and tensile strengths) that will determine their
relative importance. The results of our calculations will there-
fore depend quite critically on our choice of these parameters.
In choosing their values, we will be guided by experimental
data, bearing in mind that the available data are strictly applic-
able to millimeter-size particles, huge by astronomical stan-
dards, requiring an extrapolation by more than 3 orders of
magnitude. This extrapolation must be done carefully, using
theoretical arguments wherever possible. In the following, we
will describe the various grain destruction processes in more
detail, emphasizing the energy requirements and our treatment
of the collision outcome for each case.

2.2. Sputtering

The sputtering yield, Y, defined as the average number of
sputtered atoms (molecules) per incident projectile particle, is
given for projectiles with energy E and normal incidence by
(Sigmund 1981; Bohdansky 1984):

Y(E, pr) = 0.0420(ur)S(E)(in> E), ()

were a is an energy independent function of the mass ratio
upm( = M,/M,) between target atoms in the grain, and incident
projectile atoms, S,(E) is the nuclear stopping power, and {(u,,
E) is a correction factor that gives the energy dependence of the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...454..254B

256 BORKOWSKI & DWEK

g o

Vol. 454

initial
mass

FIG. 1.—A schematic presentation of the various grain destruction mechanisms considered in this paper. Diagrams on the right are sketches of the fragment mass
distribution following the destruction event. The mechanisms, from top to bottom, are sputtering, cratering, and catastrophic fragmentation. Partial vaporization (or

complete vaporization in the last case) can accompany the last two mechanisms.

sputtering yield near the threshold energy (Bohdansky 1984).
The sputtering rate of a dust particle moving with a velocity v
through a hot plasma is derived by integrating the sputtering
yield over a skewed Maxwellian distribution of gas velocities
(Shull 1978). Figures of the sputtering rates in high velocity
shocks are presented by Tielens et al. (1994) and Dwek et al.
(1994). In compression shocks, the sputtering is mostly a result
of the relative motion of the dust through the gas, and the rate
is given by

1
aN _ na’n| 1 — 20kT Y(E) for—mv’>U,, (2
dt my 2

where U is the surface binding energy of the sputtered atom to
the grain, a is the grain radius, v is its velocity relative to the
gas of temperature T, consisting of atoms of mass m, with a
number density n, and E = 1+ mv?> — ¢kT, where ¢ is the elec-
tric potential on the dust in units of kT. Denoting by </ the
atomic number of the atoms (molecules) sputtered off the
grains (& = 12 for graphite grains and &/ ~ 20 for silicates),
we can write the rate at which the mass of the grain is eroded
by the sputtering as

My = —o/my N _ —na’sfmy nv<1 - %?—k—T>Y(E) )

dt mv

Implicit in equation (3) is a summation over the atomic species
in the gas.

2.3. Vaporization

Grain material is vaporized following a collision when the
energy deposited by the shock wave propagating through the
grain exceeds a certain threshold value. Once this threshold

energy for vaporization is exceeded, the number of atoms
vaporized from the target material will be approximately pro-
portional to the collision kinetic energy. Studies of vapor-
ization of silicate rocks and minerals which were conducted by
colliding macroscopic rocks with a large slab of material at
velocities of a few 10 km s~! were summarized by Melosh
(1989). These studies show that the onset of vaporization
(incipient vaporization) in a gabbroic anorthosite (a typical
lunar rock) occurs at pressures of (1.0-1.9) x 103 kbars (1
kbar = 10° dyn cm~2), and complete vaporization starts at
(5.9-7.9) x 10° kbars. In a planar approximation of these colli-
sions, these pressures are exceeded at impact velocities of 7.5
km s™! and 20 km s™!, respectively, which correspond to
kinetic energies of 6 and 42 eV per projectile atoms. Since the
binding energy of this material is 6.7 eV, these studies suggest
that the energies required to completely vaporize the solid
must significantly exceed this value. Numerical simulations of
hypervelocity collisions between gabbroic anorthosite projec-
tiles onto gabbroic anorthosite surface (O’Keefe & Ahrens
1982) revealed that even at velocities of 25 km s~ (65 eV per
projectile atom), only traces of vapor were produced. At 30 km
s~ !, the mass of the vapor produced increased sharply, reach-
ing 3.5 times the projectile mass. Once the collision velocity
exceeded 45 km s~ !, the simulations found that the vaporized
mass M,,, is proportional to the collision kinetic energy and
given by

M,,, = 0007 MpvZ,, @

where M is the mass of the projectile, and v,,, is its velocity
relative to the target material given in units of km s~ . Equa-
tion (4) can be written as

Nvap = %MP vfel/Evap ’ (5)
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where N,,, = M, /«/my is the number of vaporized atoms, .o/
is their mean atomic mass in atomic mass units, and my is the
mass of the hydrogen atom. Equation (5) defines an effective
binding energy E,,, = 0.74% eV, which for &/ = 20, appropri-
ate for gabbroic anorthosite, gives E,,, = 15 eV. Figure 21 in
O’Keefe & Ahrens (1982) shows that the amount of vapor
produced in the collision rises very sharply from its threshold
velocity of 30 km s™!, quickly approaching the asymptotic
form given by equation (4). The vaporization rate may thus be
approximated by a step function, equal to zero below v, = 30
km s, and given by equation (4) for higher velocities. Gener-
alizing the results of these simulations to collisions between
objects with arbitrary masses M, (the mass of the target
material) and M, < M, we write the equation for the amount
of material vaporized in a collision as

N —- 0 U,,1$3Okm S_l,
v %#vfel/Evap Urel > 30 km S-~1 .

where u= MpM,/(Mp+ My) is the reduced mass of the
system, and E,,, = 15¢V.

Equation (6) gives the total number of vaporized atoms N,
including both target and projectile grains. Note that above
the threshold for vaporization, N,,, exceeds the number of
atoms N, in the projectile grain. In this case, the projectile
grain is completely vaporized in the collision, while the target
grain is generally only partially vaporized. The complete
vaporization of the target grain occurs if the number of vapor-
ized atoms calculated with the help of equation (6) is larger
than the total number of atoms present in both target and
projectile grains. Written in terms of velocities, the complete
vaporization of the target grain takes place if the relative veloc-
ity v, exceeds the critical velocity v,,,,

Uyap = max {30 km s™%, [2(N + NpE,,/ul"?}, (7)

where N and N, denote the number of atoms in the projectile
and target grains, respectively.

Note that the concept of the effective binding energy E,,, in
equations (6) and (7) has a meaning only for fast (v,,; > 30 km
s™!) collisions. No significant vaporization occurs in lower
velocity collisions, even if the kinetic energy per atom exceeds
E,,,. For example, according to our criteria a silicate projectile
dust grain is not vaporized if it collides with the target grain
with the relative velocity just below 30 km s~!, although the
collision kinetic energy per projectile atom exceeds 90 eV.

Our vaporization criteria are based on numerical calcu-
lations by O’Keefe & Ahrens (1982) and involve extrapolation
to collision velocities higher than considered by these authors.
A question arises as to how reliable these calculations are and
whether extrapolation according to equation (4) is valid for
velocities in excess of 100 km s ™. A recent thorough analysis
of grain vaporization in g-g collisions by Tielens et al. (1994) is
in good agreement with the O’Keefe & Ahrens calculations,
confirming the validity of equation (4) in the velocity range
considered by these authors. Tielens et al. (1994) also find an
approximate agreement between their analytical value of the
velocity threshold for vaporization, equal to 16 km s~ %, and
the threshold derived from these numerical calculations. As
mentioned above, the numerical calculations actually suggest a
somewhat higher value of 30 kms ™!,

The linear scaling of the vaporized mass on the projectile
kinetic energy in equation (4) is only an approximation valid
over a limited energy and velocity range. The reason is the

(©)
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same as for macroscopic cratering processes; the reader is
referred to a review by Holsapple (1993) for an in-depth dis-
cussion of a scaling analysis in this context. The approximate
nature of equation (4) is demonstrated by Tielens et al. (1994),
who discuss grain vaporization using a theory of blast-wave
propagation into a solid. An inspection of their Figure 8a
shows that equation (4) is a reasonable (better than 30%)
approximation for g-g collisions with velocities not exceeding
200 km s~ 1. For still higher velocities, more accurate formulae
given by Tielens et al. (1994) should be used. Because we do not
consider such high-velocity grains in this work, we use an
approximate equation (4) hereafter. Note that similar con-
straints apply as well to our criteria for catastrophic fragmen-
tation and cratering, which are discussed next.

2.4. Catastrophic Fragmentation

A grain will fragment catastrophically if the collision energy
exceeds a critical threshold value. We define the critical specific
energy E, (€V atom ™) for grain destruction (rupture energy)
as the collision kinetic energy per one atom of the target grain
at the threshold for catastrophic fragmentation. We expect E,
to be approximately equal to «/my J /p, where  (dyne cm ~2?)
is the tensile strength of the target material, p is its density, and
&/ denotes the mean atomic mass in atomic mass units. The
tensile strength depends in general on how the stresses are
generated within the solid material. If the forces are applied
slowly, then once they exceed the static tensile strength of the
material, they will open the weakest crack. This crack will
propagate through the grain leading to its fracture. The static
tensile strength 7, depends on the density and the size dis-
tribution of flaws in the object. As a result, large objects will
tend to be the weakest since statistically, they are more likely
to have the largest flaws. Small grains are therefore expected to
be relatively strong. In order to estimate their strength, con-
sider a single crack in an otherwise flawless crystal lattice. This
crack will open if the solid is subjected to a stress exceeding a
critical value. This critical stress ¢ is a function of the crack
length [:

o =K )™, ®

where the fracture toughness K, depends on the solid struc-
ture. (In eq. [8], o is measured far away from the crack; stresses
near the crack are position dependent and exceed o near the
crack tips). For typical brittle materials, K;. = 100 bars
cm'/? = 10® dyn cm ™2 cm'/2, so for a crack of length I = 0.1
um the stress ¢ must exceed 20 kbars (2 x 10'° dyn cm ~2)for a
break to occur. (These values of I and ¢ are appropriate for the
largest interstellar grains; obviously, ! must be smaller and ¢
higher for grains with radii less than 0.1 um.) If we now equate
this critical stress o to the static tensile strength of a grain, we
arrive at I, = 2 x 10'® dyn cm™2. This value is orders of
magnitude higher than for macroscopic bodies such as rocks,
conglomerates, comets, or asteroids, the difference being pri-
marily a result of the size dependence in equation (8).

Collisions between grains are dynamic processes in which
forces are applied rapidly to the material, and the growth of
cracks is not just limited to the weakest flaw (largest crack). As
a result, many cracks can grow during the collision process,
leading to the catastrophic fragmentation of the grain once the
collision energy exceeds the dynamic tensile strength of the
material. The dynamic tensile strength can be much larger than
the static one; for example, in rocks it can exceed the static
tensile strength by 1 order of magnitude. Using our estimate
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for the grain static tensile strength, that suggests that the
dynamic tensile strengths are in excess of 100 kbars (10'* dyn
cm™?). But this value is comparable to the ideal material
strength. The required pressures to fragment a dust grain are
so high that even ideal grains without any preexisting flaws can
be fragmented. The fragmentation of grains is therefore quanti-
tatively quite different from the breakup of macroscopic
objects like asteroids which proceed at low pressures.

Consider a dynamical tensile strength of 100 kbars (10!! dyn
cm~2). For silicates with a density of p=3 g cm~2 and
&/ = 20, this corresponds to E, of 0.7 eV. Because the binding
energy of a silicate atom is 6.7 eV, catastrophic fragmentation
can therefore proceed when collision energies are about an
order of magnitude smaller than the binding energy of the dust.
Energies required for the complete vaporization of the grain
are about 15 eV, so that in low-velocity shocks, the evolution
of the grain size distribution is primarily controlled by the
fragmentation of the dust and not their vaporization. Adopting
a critical energy E, for the catastrophic fragmentation of the
dust that is equal to 0.1 Ey;,4, we find that the threshold veloc-
ity for catastrophic collision can be written, in a similar fashion
to the criteria for complete vaporization (eq. [7]), as

Ve = [2(N7 + Np)Ey/u]'? ©

where as in equation (7), Ny and N, are, respectively, the
number of atoms in the target and projectile grain, and p is the
reduced mass of the system. A target grain will fragment if the
relative velocity of the collision exceeds the threshold velocity
given in equation (9) above. (Note that this velocity may be
much lower than the threshold velocity of 30 km s~ ! for the
vaporization to occur. For such low velocities, fragmentation
and cratering are the only processes modifying the grain size
distribution. This regime is not relevant in our present context
but might be important in other physical situations.)

While we take E; = 0.1 E;,4 to describe the catastrophic
fragmentation of the interstellar dust grains, the reader should
be aware that E; actually increases with the decreasing grain
size. Smaller grains are expected to be stronger than larger
grains, and more energy per each grain atom is needed to
break them apart. This is explicitly demonstrated by recent
experimental data and molecular dynamics simulations of the
fragmentation of the molecular-sized carbon cluster Cg,
(Campbell et al. 1993; Schulte 1995). Approximately 4 eV of
kinetic energy. per each carbon atom must be involved in the
collision in order to disrupt the cluster, several times as much
as suggested by our criterion for E,. This does not contradict
our estimates for much larger grains of interest in this work,
but it clearly shows that E, increases with the decreasing grain
size. By assuming constant E; = 0.1 Ey;,4, we have chosen to
describe the strength of the interstellar dust grains in terms of a
mean grain strength, averaged over the grain size distribution.

The size and velocity distribution of fragments produced in
grain-grain collisions depend on the details of the shock propa-
gation within grains. Experimental data in the parameter range
of interest to grain-grain collisions are lacking, and any theo-
retical investigations are likely to be difficult and involve
poorly known physical properties of interstellar dust grains. In
view of these difficulties, we restrict ourselves to param-
eterizing the fragment size distribution in terms of universal
power laws which have been found to hold in a variety of
physical situations.

The size and velocity distribution of fragments can be
described by the conditional probability f(m, v |y, u, &', u')dmdv
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that particles with masses between m and m + dm and veloci-
ties between v and v + dv are formed in the breakup of a grain
with mass p and velocity u in a collision with a grain with mass
' and velocity u'. We will assume that the fragmentation func-
tion f does not depend explicitly on the velocities of the target
and the projectile grain or on the projectile mass y’. However,
we allow for the partial vaporization of the target grain, which
does depend on these quantities. We denote the vaporized
mass fraction of the target grain by r. The mass fraction depos-
ited into fragments is then equal to s = 1 — r. We assume a
simple and common power-law distribution foc m~**V for
these fragments. (For example, fragmented rocks obey this
power law; Hartmann 1969). With these assumptions, f inte-
grated over velocities can be written as (Hellyer 1970, 1971)

X

Flml w0, ) = (1 = x)5* K (10)

with [ fmdm = su the total mass of the fragments. Note that
equation (10) implies that there is a small but finite probability
that the mass of the largest fragment is only a little less than sp.
The parameter x in equation (10) was found to be in the range
of 0.5-1 from experiments on rock fragmentation (Hartmann
1969). The actual distribution of fragments is more compli-
cated, as reviewed recently by Fujiwara et al. (1989), but it still
may be described by power laws in different ranges of fragment
sizes. A recent theoretical study by Melosh, Ryan, & Asphaug
(1992) accounts for these features of the fragment size distribu-
tion. However, these experimental and theoretical results
cannot be easily extrapolated to microscopic grains of interest
in this work. Likewise, it is hard to extrapolate very recent
results on the fragmentation of the molecular-sized carbon
cluster Cg to 0.01-1 um grains. Both experiment and theory
(Schulte 1995) show a power-law distribution of fragments at
small fragment sizes and a more complicated distribution for
large fragments, a situation analogous to that encountered in
rock fragmentation. It is remarkable that these studies indicate
that the power-law index x of the fragment size distribution for
such a small cluster is only slightly smaller than that derived
from experiments on rock fragmentation. This supports our
use of equation (10) for the fragmentation of the interstellar
dust grains. We note that parameter x is related to the power-
law index p of the grain size distribution through relation
x = [(p + 2)/3] — 1. For p = 3.5, the Mathis, Rumpl, & Nor-
dsieck (1977, hereafter MRN) grain size distribution, x is equal
to 0.833; this value of x is of particular interest.

While the velocity distribution of fragmentation products is
not known, we expect that the mean fragment velocity is much
smaller than the initial impact velocity. Note that this state-
ment holds in the frame of reference at rest with respect to the
target grain, or more precisely in the center of mass of colliding
grains. For simplicity, we will assume that fragments are sta-
tionary in the center of mass of the colliding grains.

2.5. Cratering

Above a certain energy threshold, collisions with small
grains can excavate a crater in a larger (target) grain. In this
work, we are interested in the amount of material ejected from
a crater and in the distribution of fragment sizes. For macro-
scopic craters, it is possible to estimate the crater size and the
amount of ejected matter using a scaling analysis (see Holsap-
ple 1993 for a recent review). This scaling analysis presumes the
knowledge of physical processes relevant for the fragmentation
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and the excavation flow leading to the crater formation. Again,
while relevant physical processes have been studied extensively
in the context of macroscopic hypervelocity collisions, little is
known about microscopic cratering events of interest in this
work. Quantities such as the material strength, the kinetic
energy and momentum of the projectile grain, and viscosity in
the excavation flow are likely to be important. There have been
only a few experimental studies on microcraters with diameters
of interest here, less than 0.1 um. Katakuse et al. (1992) studied
formation of nanometer-sized craters by bombarding graphite
with CslI clusters. They found that the crater diameter depends
primarily on the cluster energy, and not on its mass and
momentum. This is in agreement with the results obtained for
macroscopic craters, in which the projectile kinetic energy was
found to be the most important parameter determining the
crater size. This can be understood by noting that the well-
known solutions for a propagation of a strong blast wave in a
uniform medium do indeed scale with the explosion energy.
The evolution of the hemispherical shock wave propagating
from the impact site can be modeled to the first order by these
spherically symmetric solutions. Katakuse et al. (1992)
observed nanometer-sized (6 nm in diameter) craters upon
bombardment of the graphite surface with ~ 180 atom CsI
clusters with velocity of 15 km s~! and energy 30 keV. The
observed crater site implies removal of ~6000 carbon atoms
from the impact site, requiring an expenditure of E,, = 4.7 eV
atom ™ !. Note that this value is larger than the mean energy
per atom required for catastrophic fragmentation of the grain
but less than the value needed for grain vaporization. The
exact number is, of course, uncertain. For example, the Csl
clusters in experiments done by Katakuse et al. (1992) are quite
large, 2.5 nm in diameter, and comparable to the observed
crater sizes. Therefore, it is likely that in these experiments the
crater size depends sensitively on events occurring right after
the impact. A proper understanding of this early postimpact
phase requires molecular dynamics simulations in view of the
small (~180 atoms) sizes of CsI clusters (Cleveland &
Landman 1992). This makes an extrapolation to higher ener-
gies and velocities of interest to us uncertain.

The destruction of grains by cratering can be regarded as a
slow and continuous erosion process, not unlike sputtering.
Therefore, we will express the grain erosion rate by cratering
collisions in a form similar to the rate of grain erosion by
kinetic sputtering, with small projectile grains assuming the
role of incident gas atoms, and the ejected fine dust assuming
the role of the atoms (molecules) that are sputtered from the
grain surface. We will refer to these projectile grains as station-
ary (field) grains, because the case of most interest involves a
dust grain moving with respect to the dusty ambient
(stationary) medium. The erosion rate due to cratering colli-
sions by dust particles of mass m, and number density n(m )
impinging on the target grain of mass m and radius a with a
relative velocity v can then be written as

the, = —sfmyn(myna*vY . = —n(mna*vf,m, (11)

where & is the mean atomic mass in amu of a constituent atom
in the fine dust, and Y, is a dimensionless cratering yield taken
to be equal to m,v?/2E,,, where E,, is the specific energy (eV
atom ') for the ejection of one atom in a cratering event. The
product &/my Y, defines the average mass excavated in each
collision, which can be written as f, m, where £, is the fraction of
the mass m of the target grain that is ejected from the crater.
Since the ejected atoms are clustered together forming a large
number of fragments, E,, is expected to be less than the dust
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binding energy, E,;,4, but larger than the critical energy for
grain destruction, E,;. For convenience, we will adopt the geo-
metric mean of E; and E,;,4 as the standard value for E_,, ie.,
E,, = (E; Ey;n0)'/*. Note that the difference in the specific ener-
gies between catastrophic and cratering collisions reflects our
previous comments about the relative strength of small and
large grains; given the same amount of available energy per
atom in the whole grain or in the crater, it should be easier to
disrupt the whole grain than to eject a proportionally high
amount of material from a much smaller crater. The reader
should also realize that the two discrete quantities E, and E,,
merely serve as a convenient parameterization of the contin-
uous distribution of the grain strength as a function of size; on
average, craters are much smaller than whole grains under-
going catastrophic collisions. Adopting a maximum value of
J., beyond which cratering collisions will be regarded as
catastrophic collisions, we can calculate the erosion rate of a
given grain of mass m resulting from collisions with all dust
particles that produce craters with a mass less than f, m. The
mass of these field grains must be less than 2E,, f, m/s/my v2.
The total erosion rate of a given grain is obtained by inte-
grating equation (11) over all impinging dust particles with
masses < m. .

For an extended MRN grain size distribution with the
maximum grain size a,,,, extending down to very small dust
grains with the power-law index p, the spatial mass density
pA<my) of dust grains with masses less than m, is equal to
(a7/me)* "Ppa (for p < 4), where p, = Z, p is the total spatial
mass density of dust, p is the mass density of the gas, and Z, is
the dust-to-gas mass ratio. Then we can write the erosion rate
of a grain of radius g, resulting from collisions with a popu-
lation of test grains with an a~? distribution in grain sizes, as

Zipstmyna®v’ ((a, \*°P
= ZaPTTWTAY (4 ) 7 12
mcr 2ch amax ( )
with a, defined as
a 2E_.f. \'/3
;’E(m) : (13)

There is some ambiguity as to which impacts should be con-
sidered as cratering events because of a somewhat artificial
distinction between the catastrophic fragmentation and the
formation of a crater comparable in size to the target grain.
For example, approximately 15% of the target grain mass
would be ejected from a crater with radius equal to two-thirds
of the target grain radius. Such collision would not lead to the
catastrophic fragmentation according to our criteria discussed
in §2.4, but it can hardly be classified simply as an eroding
event. In principle, this dilemma can be resolved successfully
with a suitable definition of the fragmentation function f(§ 2.4).
However, in view of considerable uncertainties in our under-
standing of the fragmentation and cratering processes, we did
not attempt to resolve this problem, and instead of construc-
ting a self-consistent, elaborate scheme to distinguish between
such collisions, we chose a practical alternative and assumed
that collisions which eject less than 10% of the target grain
mass are cratering events. The grain erosion rate is then calcu-
lated by taking into account only such collisions, which is
equivalent to setting f, = 0.1 in equation (12). Because of
poorly known thresholds for cratering and fragmentation, we
consider such an approximate algorithm adequate for our pur-
poses, particularly in view of a weak dependence of the erosion
rate m_, onf, (eqs. [12] and [13]).
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As a result of the cratering process, a larger number of small
fragments is ejected from craters. In order to find their size
distribution in the present case, for the power-law distribution
of field grains, we assume that in each cratering event fragment
sizes are also described by a power-law distribution with the
same index p. Then we find that a fraction of the total fragment
mass contained in fragments with dimensionless radii less than
a, is equal to ag"P(1 — Inat~P). Here fragment radii are mea-
sured relative to the radius of the largest fragment produced in
all cratering collisions. (Note that the mass of the biggest frag-
ment must be smaller than the maximum mass removed from a
crater, equal to 10% of the target grain mass for f, = 0.1.) This
result differs from.the power-law distribution by the presence
of the logarithmic ferm. This extra term makes the distribution
much steeper, with a strong excess of small over large grains as
compared to the initial power-law distribution. For example,
consider a 0.25 um grain slowing down in a dusty medium. The
largest fragment size ejected from any cratering event cannot
by definition exceed 0.1\um. If fragment sizes were distributed
according to the exten&ed MRN distribution with p = 3.5,
one-half the total fragment mass would be contained in grains
larger than 0.025 um. But because of the presence of the
logarithmic term, only 15% of mass is contained in such large
grains, and more than 50%.\is deposited in very small (<0.004
um) fragments (we took p = 3.5 for these estimates).

3. DESTRUCTION OF DUST GRAINS

3.1. Grain Erosion by Sputtering and Cratering

A dust grain moving through the ambient gas is decelerated
in collisions with atoms and ions within the gas. This deceler-
ation is given by

2 .2

d_v=__ﬂ7tapv, (14)

dt m
where v is the grain velocity, m and a are its mass and radius, p
denotes the gas density, and f is the enhancement of the col-
lisional drag in a plasma relative to that in a neutral medium.
This enhancement is substantial in ionized gases (Shull 1978;
Draine & Salpeter 1979a), where f§ is a function of the grain
velocity and may be much larger than unity. In this work, we
are concentrating our efforts on grains moving at high speeds
through neutral gas, where § = 1. This situation is relevant for
radiation pressure—accelerated dust grains in red giant winds,
and for those grains in shock waves which penetrated into the
cold and neutral postshock region. We took f =1 in most
calculations presented in this paper; our numerical results are
valid only for the neutral gas. The reader should be aware that
grain destruction decreases with increasing B as can be
deduced from our discussion below. In particular, this will
affect small dust grains moving through ionized gas. (Note also
that f may be somewhat different from unity for low grain
velocities, comparable with the mean thermal velocity of the
gas; Baines, Williams, & Asebiomo 1965.)

A decelerating grain also undergoes collisions with station-
ary (field) grains, which results in grain erosion through crater-
ing or in a complete disruption of the grain as discussed above.
The latter process either completely vaporizes the grain or
redistributes its mass into a large number of fragments, while
erosion leads to a gradual decrease in grain radius and mass.
Excluding catastrophic events, any grain can be regarded as
moving in its mass-velocity {m, v} space, from an origin given
by its initial mass and velocity. The trajectory may terminate
either “ peacefully ” as the grain decelerates and joins the popu-
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lation of stationary field particles, or catastrophically, when it
completely vaporizes or fragments at a given point along the
trajectory. The decrease in grain mass along its trajectory is
given by

dm

E=ms+mc,, (15)

or
dm __ mis, + 1)

dv Bra?pv? (16)

where the sputtering and the cratering rates, m, and m,,, are
given by equations (3) and (12), respectively. Equations (14)
and (15), or equation (16), together with the initial grain mass
and velocity, determine the grain motion in {m, v} space.

We will define a dimensionless quantity, dInm/dInv, that
measures the relative importance of grain erosion and deceler-
ation. From equation (16) we obtain

dinm (i, + 1)
dinv ~ Prapv

_ & Zd i -1 f_c 1/6
= 0'935<1 * mc,)(o.oms)(l.o) (0.1
v 5/3 Ecr -5/6 a 4-p
x (100 km S—1> (2 eV) (amax) ‘ (17)

In Figure 2, we plot dInm/dInv as a function of grain velocity
for two very different grain radii, 0.02 and 0.25 um, with a
cratering threshold E_, =2 eV, f. = 0.1, and decelerating in
neutral gas (f = 1). The stationary dust particles are character-
ized by an MRN dust grain size distribution with a,,,, = 0.25
um, extended to small grain sizes and a standard dust-to-gas
mass ratio Z, = 0.0075. These are our standard model param-
eters, which we list in Table 1 for future reference. Because
dIinm/dInv is of order of unity for velocities and grain radii of
interest, the grain erosion is substantial, particularly for large,
fast-moving grains. Both cratering and sputtering are impor-
tant, as can be seen in Figure 2. In Figure 3 we present the
sputtering/cratering rate ratio, r1/m,, as a function of grain
velocity for a number of grain radii. The curves show that at
velocities above ~70 km s™! the sputtering to cratering rate
ratio is roughly constant, independent of grain velocity.
(Analysis of its dependence on modal parameters shows that it
scales linearly with E_, and inversely with Z,.) This results from
the fact that above this velocity both the sputtering and the
cratering yields increase linearly with energy in the velocity
range considered in the figure. At velocities below ~70 km
s~ the ratio falls rapidly as the sputtering threshold is
approached. Since, by definition, cratering occurs by collisions
of the fast-moving grain with smaller size field particle, the
relative importance of cratering increases with grain size, as
a~% P =g Y2 for p = 3.5 (MRN distribution); see equations
(12) and (13). The larger the fast-moving grain, the more it
encounters smaller stationary grains that exceed the cratering
threshold. This is in contrast with sputtering, where the sput-
tering rate per unit area is independent of grain size.

For grains moving through a homogeneous ambient
medium, the right-hand side of equation (17) does not depend
on time t. The grain mass is then a function of its velocity v
alone and can be found by solving equation (17). The grain
trajectory m(v) in {m, v} space is completely determined by the
combined effects of sputtering, cratering, and the collisional
drag. Consider fast grains with velocities larger than 70-80 km
s~ ! so that ri /., may be assumed to be independent of the
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F1G. 2—Ratio dInm/dInv (eq. [17]) is shown as a function of grain velocity v and grain radius a. Solid curves depict the ratio for grain erosion as a result of
combined effects of cratering and sputtering, and dashed curves are for the case when grains are eroded as a result of cratering alone. Dotted curves show the
production rate of fine dust particles in cratering events, which is less than the cratering rate because of the partial vaporization of the grain material in the cratering

process. Model parameters used for the calculations are described in the text (§ 3.1).

grain velocity v (Fig. 3). This sputtering/cratering rate ratio
depends then on the grain size alone. If § is constant, equation
(17) can be solved analytically to give the grain mass as a
function of velocity

m(v) = m0|[

O 6
(1 + ao) exp {0.1Rg ap[1 — (v/v)*"*]} — 1]]
v>70kms™', (18)

for the grain trajectory passing through m, and v,. The param-
eter R, is defined as the logarithmic ratio of cratering and
deceleration rates (eq. [17] with i, set to zero), evaluated at
a =a, and v =v,, while «, is the sputtering/cratering rate
ratio m/m, also evaluated at a, and v,.

At velocities below the sputtering threshold, less than 50 km
s~!, m, can be set to zero in equation (17). If B is constant,
equation (17) can be also solved analytically to give

m(v) = mo{o-lRo[l - (0/00)5/3] + 1}_6

Figure 4 shows representative grain trajectories in {a, v}
space. These trajectories were calculated numerically with the
help of equation (17) and for the standard model parameters.
The trajectories can be accurately represented by

0.227 2

a) =\ 73 0.227a;¢4%) exp {0.0467 (20)
[1 — (©/100 km s~ Y%7} — 1
for 50kms™ ! <v <200kms™?!, and by
av) = ~50 1)

{0.0589a%2[1 — (v/50 km s~ 1)°7°] + 1}?

for v < 50 km s~ !, where as, and a,q, are the points on the
trajectory that correspond to the grain radius (um) at velocities
of 50 km s~* and 100 km s ™!, respectively.

The figure shows that the erosion of large, fast-moving
grains is substantial because of high cratering and sputtering
rates. For example, a 0.25 um grain injected with velocity of

-1
»<30kms™", (19) 200 km s~ ! into ambient gas comes to rest with its final radius
for the grain trajectory passing through m, and v, . of only 0.11 um (Fig. 4). This means that 91% of its original
TABLE 1

STANDARD MODEL PARAMETERS

Parameter Abbreviation Value
Ambient Medium
Dust-to-gas mass 1atio .............ccoveviniriiiininiiiiininannn. z, 0.0075
Deceleration parameter ....................ceeuvniuiiiinennnnen.... B 1.0
Power-law index of the initial grain size distribution ........... p 35
Maximum grain radius ..............ocooiiiiiiiiii Qpax 0.25 ym
Collision Parameter

Cratering threshold ..........................con E, 2eV
Critical TUpture energy ................c..ceeveiuivniunineennnnnnn.. E, 0.67 eV
Effective binding energy ......................coooiiiiiine., E..p 15 eV
Threshold velocity for vaporization ............................... 30kms™!
Maximum excavated mass fraction in cratering collisions...... A 0.1
Power-law index of the fragment size distribution .............. p 3.5
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F1G. 3.—The ratio of the sputtering rate to the cratering rate as a function of grain velocity. Curves are labeled by the grain radius a (um). Model parameters are

identical to those used in Fig. 2.

mass was lost by either sputtering or cratering, before the grain
had decelerated, and only 9% of its mass is contained in the
surviving grain. For all practical reasons, large, fast-moving
grains are efficiently destroyed by cratering and sputtering.
This point is further illustrated in Figures 5 and 6, in which we
plot separately the mass fraction removed from grains by cra-
tering and sputtering, respectively. For a 0.25 um grain with
the initial velocity of 200 km s~!, 56% of grain mass is
removed by cratering and 35% by sputtering. Both rates are
steep functions of grain velocity, with cratering being more
important than sputtering for large initial grain sizes. The
opposite is true for small grains: cratering becomes negligible
in comparison with sputtering.

As discussed in § 2.5, the grain material is ejected from
craters in the form of tiny dust particles, with velocities much

smaller than the grain velocity v in the frame of reference com-
oving with the grain. They can then be considered stationary
with respect to the grain, but not with respect to the ambient
gas or dust. They are effectively injected into gas with the
velocity of the grain at the time of impact. Because of their
small sizes, they are quickly decelerated in collisions with elec-
trons, atoms, and ions. However, if v is sufficiently large, a
significant amount of grain material can be sputtered during
this deceleration process. Therefore, the total sputtered mass
depicted in Figure 6 includes not only direct sputtering from a
decelerating grain, as given by riy in equation (17), but also
sputtering of fragments ejected from craters. The sputtered
mass fraction is almost independent of the grain size in the
limit of small grain radii where cratering is not important; we
plot this fraction in Figure 6 for a dust particle 0.002 um in
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F1G. 4—Grain trajectories in the grain radius-velocity space, for standard model parameters. The trajectories depict the evolution of particles with any initial

radius a, and velocity v, in {a, v} space, starting from an initial location at {a,, v,}. Each trajectory is labeled by its value of a, 44, grain radius in ym at 100 km s

-1
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FIG. 5—Mass fraction removed from grains by cratering vs. initial grain velocity. Curves are labeled by the initial grain radius (um).

radius. Because of this invariance with respect to the grain size,
the total sputtered mass fraction does not depend on the size
distribution of fragments ejected from craters, and consequent-
ly it does not depend on the initial grain size. Similarly, after
accounting for partial vaporization of grain material as
described in § 3.3, we find that the total mass returned to the
gas phase through vaporization and sputtering (shown in Fig.
6 by dashed curve, with sputtering dominating over
vaporization) is also independent of the initial grain size.
Figure 7 shows the relative distribution between sputtered
and vaporized grain mass, mass deposited in small particles,
and the final grain mass, as a result of sputtering (including the
sputtering of fragments ejected from craters) and partial vapor-
ization of the grain material. As discussed above, the sputtered
and vaporized mass fraction are independent of the initial

grain radius and increase with the initial grain velocity. The
mass fraction left in the surviving remnant of the grain doee
depend on the initial grain radius and is smaller for larger
grains because cratering is efficient for large grain sizes. For a
0.25 um grain with the initial velocity of 200 km s ~*, 60% of its
mass is returned to gas through sputtering and vaporization,
31% is deposited into fine fragments, and only 9% is contained
in the grain remnant, 0.11 um in size. This partition does not
take into account catastrophic fragmentations which will be
discussed next. While catastrophic fragmentations reduce the
number of surviving grains, the total mass fraction returned to
the gas phase (shown in Fig. 7) should not be affected because
of the invariance of the sputtered mass on the grain radius.

We have modeled cratering as a smooth process which con-
tinually erodes the grain, and which together with sputtering
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FIG. 6.—Mass fraction removed from grains by sputtering vs. initial grain velocity. Curves are labeled by the initial grain radius (um). Dashed line is the sputtered
mass fraction to which we have added both the mass sputtered from the fragments that were ejected in the cratering process and the mass vaporized from grains

during cratering collisions. This mass fraction does not depend on the grain radius.
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F1G. 7—The relative distribution between sputtered and vaporized grain mass, mass deposited in small dust particles, and the final mass of the grain. The
sputtered and vaporized mass fraction does not depend on the grain mass. Solid lines show the mass fraction contained in surviving grains, labeled by their initial
grain radii (um). The region between solid and dashed lines contains fine dust particles. Catastrophic fragmentation is not included.

and plasma drag determines its motion along the trajectories
in {m, v} space. While this appears to be a good approx-
imation, cratering is a truly stochastic process, in which finite-
sized craters are produced in collisions with field particles.
Such collisions appear as discontinuities in the grain trajectory,
where the grain jumps from one trajectory to another. In other
words, grains not only move (drift) along their trajectories, but
they also diffuse across these trajectories. The trajectories
shown in Figure 4 should then be considered as mean trajec-
tories, averaged over many grain paths. The diffusion across
these mean trajectories is a second order effect which we
neglected in this work. Before proceeding further, we just make
a few statements about this diffusion.

The average mass excavated in cratering events, (m.), is
equal to | mZ n(m;)dm/{ m. n(m)dm, where n(m,) is the dis-
tribution of field grains as a function of their mass m, m, is the
mass ejected from the crater, and the integration is carried over
all cratering collisions. For a power-law distribution of field
grains with index p, (m,,) is equal to (4 — p)/(7 — p) f. m, where
f.mis the maximum crater mass according to our discussion in
§ 2.5. Because this is a small fraction of the target grain mass, a
description in terms of the mean erosion rate 1 and a fluctuat-
ing component ¢&(t) seems appropriate, so that the eroded
mass is equal to mt + a&(t). Here a&(t) is a Gaussian stochastic
process with zero mean and variance o2t. Stochastic process
&t) is defined as a Gaussian process with zero mean and
variance t, i.e., a standard Brownian motion, while ¢2 is given
by

2 _ <mcr>m _ (4 - p)j:: mi
1+ ing/ring, (7 — p)1 + rirgfring,)

The factor 1 + my/m,, in the denominator of equation (22)
accounts for the effects of sputtering, which does not produce
appreciable diffusion. In order to study the diffusion effects,
equation (15) should not only include the mean erosion rate ri
but also the fluctuating component ¢&(t). The resulting sto-
chastic differential equations or an associated Fokker-Planck

22

equation can be studied numerically. However, as was just
mentioned, we neglect diffusion in this exploratory work.

3.2. Grain Destruction by Catastrophic Fragmentation

Dust grains are not only losing their mass through sputter-
ing and cratering, but they can be destroyed by complete
vaporization and catastrophic fragmentation as a result of
grain-grain collisions. The destruction rate C (s™!) of grains
with mass m moving through ambient medium with velocity v,
as a result of catastrophic fragmentation, can be written as

C(m, v) = J

Mthr

n(w)o(m, W)y, (23)
where n (w)dy’ is the number density of stationary (“field”)
dust grains with masses between y' and u' + dy', o(m, y) is
the geometrical cross section for grain-grain collision
{=n[a(y) + a(m)]?}, my, is the mass threshold for a disruptive
collision at the velocity v, and m,,,, is the upper limit on the
grain size distribution. At high velocities, where the mass
threshold m,,, is much smaller than m, my, is simply equal to
2NE,/v? (N denotes the number of atoms in the target grain).
At lower velocities, we use our criterion for the catastrophic
fragmentation (eq. [9]) and find m,;,, by setting v,,, = v in this
criterion.

For a power-law size distribution of field grains, the destruc-
tion rate C can be written as

(24)

where F is a factor of order of unity and n(ay,, a,,,) is the
number density of field grains bigger than the velocity-
dependent threshold size a,,, for catastrophic fragmentation. F
is given by

C(m, v) = F(m, v)na®on (A, Gmay) »

2 = Damalg? " (@mar/af "2 — 1]
(P — 2)alg” ™ " (apar/ay’ ! — 1]
} ., (29)

F(m, v) = {1 +

(p - l)arlnax[g(p—3)/3(amax/a)p—3 _ 1]
(P - 3)a2[g(p_1)/3(amax/a)p_l - 1]
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with The solution of equation (29) is then

g=2[z-2~(z*—42"?]7! (26) 1y, = Ny €Xp [7(v) — 7o] , (31)

and where n,, = n,(v,) denotes the initial number density of dust

5 grains and 7, = 7(vy). The function 7 can be interpreted as an

7= Hmy v~ Q7 “optical depth” for grain destruction, since the fraction of

2E; °’ grains with an initial radius a,, injected with the initial velocity

while v, into ambient medium, that escape any catastrophic collision

is equal to exp (—1,), after they have completely decelerated

g® ™ 3n (a)a and 7(v) - 0 for v — 0. It is not surprising that the concept of

NGy Amax) = T -1 optical depth is useful in the context of catastrophic g-g colli-

p sions; exactly the same probabilistic framework is widely used

x[1—g " W3q/q P 1]. (28) for a more familiar photon absorption. We plot 7, as a func-

The catastrophic fragmentation is comparable in importance
to cratering. This can be seen in Figure 8, in which we plot
C(m, v)(dInv/dt)~! for grain radii of 0.02 and 0.25 um, for the
standard model parameters.

Since catastrophic collisions are a noncontinuous grain
destruction process, they can be best formulated in a statistical
sense; that is, the way they attenuate a beam of dust particles
moving through a distribution of stationary field particles.
Consider then a beam of dust grains with an initial velocity v,
and an initial mass m, that is injected into an ambient medium.
The equation describing the evolution of n, in a homogeneous
medium is

dn,,

— = —C(m, v)n, ,
—2 = —Clm, opn,
where the grain mass m and its velocity v are evolving from
their initial values m, and v, according to equations (14) and
(15). It is convenient to define the function t

_ v C(m, v)
o) = _L dojdt

where the integration is carried along a trajectory in the grain
{m, v} space from the origin {m,, vy} as depicted in Figure 4.

(29)

(30)

tion of the initial grain velocity v, in Figure 9, for grains
moving along the trajectories given by equations (20) and (21)
(some of which are shown in Fig. 4), and with E; = 0.67 eV.
The optical depths shown in Figure 9 scale with the initial
grain radius as a3#”. The destruction rate is substantial, partic-
ularly for large, fast-moving grains. For example, 7, = 1.38 for
a grain with the initial radius of 0.25 um and the initial velocity
of 200 km s~ . This means that only 25% of such grains will be
able to decelerate intact, albeit eroded, with the remainder
destroyed by catastrophic collisions.

The grain number density n, changes with velocity accord-
ing to equation (31), where 7 is evaluated along the grain trajec-
tory. In Figure 10, we plot optical depth t along grain
trajectories shown in Figure 4. Together with equation (31),
these curves give solutions for n, as a function of grain velocity,
the initial grain radius a, and the initial velocity v,.

3.3. Partial and Complete V aporization

Vaporization of grain material in g-g collisions occurs in
both cratering and catastrophic collisions. We have already
implicitly taken vaporization into account in our calculations
of the grain destruction rate C (eq. [23]), by including all colli-
sions above the catastrophic fragmentation threshold. That
includes completely vaporizing collisions. But in order to find
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FiG. S.fThe dimens.ionless destruction rate C(m, v)(dInv/df)~! as a function of grain velocity v and grain radius a. Solid lines depict the destruction rate by
catgstr_ophlc fragmentations. _Catastrophic fragmentation is comparable in importance to cratering (see Fig. 2). Dashed lines show the fragment production rate,
which is less than the destruction rate because of complete and partial vaporization of the grain material in the collision process.
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F1G. 9.—Optical depth 7, (see eqs. [29]-[30]) for grain destruction vs. initial grain velocity, for standard model parameters. Curves are labeled by the initial grain

radii (um).

the amount of material returned to the gaseous phase, or alter-
natively the fragment production rate, we need to estimate the
partial and complete vaporization rate in g-g collisions.

The rate of completely vaporizing collisions, C,(m, v), can be
found in the same fashion as the destruction rate C, with the
help of equations (24)—(28). The only difference is that the criti-
cal rupture energy E, in equation (27) is replaced by the effec-
tive binding energy E,,,. According to our discussion in § 2.3,
vaporizing collisions occur only for velocities in excess of 30
km s~ !. Above this velocity threshold, the fraction of com-
pletely vaporizing collisions is approximately constant, with
C./C ~ 11%~13%.

Partial vaporization appears to be somewhat more effective
than complete vaporization. According to equation (6), an

effective destruction rate for partially vaporizing collisions,
C,(m, v), for a grain with mass m moving with velocity v
through the ambient medium, can be written as

myap 2

uv
Cym, v =J n(Wo(m, W)y,
om, 0) o 2E.,N 7

vap

(32)

where N is the number of grain atoms, u = my'/(m + )
denotes the reduced mass, and m,,, denotes the mass threshold
for completely vaporizing collisions. Again, at high velocities,
where the mass threshold m,,, is much smaller than m, m,,, is
simply equal to 2NE,, /v>. At lower velocities, we use our
criterion for the completely vaporizing collisions (eq. [7]) and

find m,, by setting v,,, = v in this criterion. For a power-law

vap vap

1.5
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0.0 L . s . 1
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100 50 0
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F1G. 10.—Optical depth < for grain destruction along the trajectories shown in Fig. 4. Each trajectory is labeled by its value of a,0, grain radius in ym at

100kms™!.
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size distribution of field grains, C,, can be written as
C,(m, v) = G(a,,,/a)na*vn (a)a , (33)

where a,,, is the radius of a field grain at the complete vapor-
ization threshold, and function G is defined by

_ C(F A+
Glx = d,up/a) = b P31 + 1)
(LX)t 2(4 — p) 4—p ,
= 4—p 1+ 5—p x+6_px
4-p 5 24-p ,
— — AU I 4
7_px 8 p x* + (34)

The series solution is valid for p #+ 4 and converges rapidly
because generally a,,, < a for partially vaporizing collisions.
The effective destruction rate for partially vaporizing colli-
sions, evaluated with the help of equations (33) and (34) for
p = 3.5, is typically 3 times as large as the rate for completely
vaporizing collisions.

The rate of fragment production in catastrophic collisions is
less than destruction rate C, since C includes the complete and
partial vaporization of the grain material. It can therefore be
found by subtracting from C the rate for completely vaporizing
collisions C,, and that fraction of partial vaporizations that
occur during catastrophic collisions. The latter contribution
can be found by setting the lower limit of integration in equa-
tion (32) to the catastrophic fragmentation threshold and using
the expansion series solution (eq. [34]). The results are present-
ed in Figure 8, where we plot the fragment production rate
divided by dInuv/dt, for grains with radii of 0.02 um and 0.25
um. The fragment production rate is approximately 75% of the
grain destruction rate above the threshold for vaporization,
this percentage being only weakly dependent on grain radii
and their velocities, and it is of course equal to the grain
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destruction rate below the vaporization threshold. Thus, about
one-fourth of the grain material is vaporized on average in
catastrophic collisions, and the remaining three-fourths is
deposited into fragments.

For collisions below the catastrophic fragmentation thresh-
old, but above the threshold for vaporization (i.e., for v > 30
km s~ 1), the effective vaporization rate can be found by setting
the upper limit of integration in equation (32) to the catastro-
phic fragmentation threshold and again using the series expan-
sion solution (eq. [34]). The vaporization in such collisions
reduces the amount of fine dust ejected in cratering events. In
Figure 2, we plot the production rate of fine dust (divided by
dlIn v/dt), for grains with radii of 0.02 um and 0.25 ym. The fine
dust production rate is 17% lower than the grain cratering rate
for our standard model parameters, but this is offset by the
reduced role of sputtering because a smaller amount of fine
dust particles undergoes sputtering following their ejection
from a crater. Therefore, the total amount of dust mass
returned to the gas phase in cratering collisions (Figs. 6 and 7)
is not affected by partial vaporizations. :

3.4. Combined Effects of Grain Erosion,
Fragmentation, and V aporization

The grain destruction processes just described redistribute
grain mass into tiny dust particles ejected from craters and
larger fragments resulting from catastrophic fragmentation
and transform solid material into gas through sputtering and
vaporization. Just as was done in § 3.1 for erosion and sputter-
ing alone, we can now describe this redistribution process more
fully by taking into account catastrophic fragmentations.

The mass in surviving grains can be found by following the
grain along its trajectory in {m, v} space, from its initial mass
m, at v, to its final mass m; at rest, and then multiplying m, by
exp (—1o) (7o is the optical depth for grain destruction). The
mass fraction in surviving grains is then exp (—1t,) times
smaller than shown in Figure 7, with 7, as plotted in Figure 9.
We show this fraction in Figures 11 and 12 for a large (a, =
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FiG. 11.—The relative distribution between sputtered and vaporized grain mass, mass deposited in small dust particles and in bigger catastrophic fragmentation
products, and the final mass in surviving grains, for the initial grain radius a, = 0.25 um. The sputtered and vaporized mass fraction includes vaporization in
catastrophic collisions (the region between dotted and dashed lines). Erosion and destruction of fragments is not included.
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F1G. 12—Same as Fig. 11, but for small grains (a, = 0.02 um)

0.25 pum) and a small (@, = 0.02 um) grain, respectively. By
comparing with Figure 7, it can be seen that large grains are
particularly strongly affected by catastrophic collisions. Half
the grain mass is lost at velocities as low as 70 km s ™! for the
initial grain size of 0.25 um, and only 2.5% remains if the grain
started with v, = 200 km s~ *. This further reinforces our con-
clusion about the effectiveness of the large grain destruction in
g-g collisions. At large velocities, most of the grain mass is
removed through sputtering and cratering; relative contribu-
tions of sputtering, vaporization, and cratering (resulting in the
production of fine dust particles) are also plotted in the figures.
These contributions were evaluated by integrating relevant
rates along the grain trajectories, as in § 3.1, but these rates
were weighted by exp (t — 1) in order to take into account
destruction of grains by catastrophic collisions.

The fraction of mass removed by catastrophic fragmenta-
tions can be found by evaluating the integral i m(t) exp (c
— 19)dt/my, where m(t) is the grain mass along its trajectory in
{m, ©(v)} space. The result is shown in Figures 11 and 12 as the
region between dotted and dash-dotted lines. As shown in
§ 3.3, approximately one-fourth of the grain mass removed by
catastrophic collisions is vaporized, except at low velocities.
This is depicted by dotted lines in Figures 11 and 12, where the
region between dashed and dotted lines is the mass fraction
vaporized in catastrophic collisions. The mass deposited into
fragments is still an appreciable fraction of the grain mass over
a large range in velocities, particularly for larger grains. Note
that the mass fraction deposited into fragments is not equal to
the final mass in surviving fragments, because fragments also
undergo erosion and destruction as they are slowing down.
The fate of fragments depends on their size distribution and
will be discussed next.

4. THE EVOLUTION OF THE FRAGMENT SIZE DISTRIBUTION

4.1. Rate Equations for Grain Size Distribution

Let n(m, v, t)dmdv be the number density of dust fragments in
the mass interval (m, m + dm) with velocities between v and
v + dv. The equation describing the evolution of n(m, v, t) in a

homogeneous medium is given by

on(m, v, t) _ omn(m, v, t) _ aon(m, v, t)
ot N om ov

— C(m, v)n(m, v, t)

+ K(m, v|my, vy)n, + j f n(u, u, )K(m, v| p, uydudp .
m 0

(35)

The first term on the right-hand side of this equation rep-
resents grain erosion caused by cratering and sputtering, with
the (negative) erosion rate m = my + m,, being the sum of the
sputtering and cratering rates. We discussed these rates in § 2
(see eqgs. [3] and [12]). The second term on the right-hand side
describes how the fragment population evolves in the presence
of the net acceleration v on dust grains, which is given by
equation (14). These two terms together form the divergence of
the grain flux in {m, v} space; without subsequent terms on the
right-hand side equation (35) would simply be a conservation
law for the grain number density in the divergence form. In
accordance with our discussion in § 3.1, we neglected diffusion
across grain trajectories caused by the stochastic nature of the
cratering process.

The next three terms on the right-hand side of equation (35)
account for catastrophic g-g collisions; they are an equivalent
of the collision integral on the right-hand side of the collisional
Boltzmann equation. In the third term on the right-hand side,
C(m, v) is the removal rate of grains with mass m and velocity v
resulting from complete vaporization and catastrophic frag-
mentation, given by equation (23). The two source terms
(fourth and fifth terms in eq. [35]) represent fragments with
masses m and velocities v, which are produced in catastrophic
collisions and which must be added to the distribution func-
tion. Fragments may be produced either in disruptions of
primary (beam) grains, with mass my(t), velocity v,(t), and
number density ny(t) (see § 3.2) leading to creation of
“primary ” fragments (fourth term), or in the subsequent frag-
mentation cascade (fifth term). In the latter case, the double
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integration must be performed over fragment velocities u and
over grain masses larger than m. Both source terms do not
include the fine fragments produced in cratering events. The
function K(m, v|u, u)dmdv is the probability (s~!) that frag-
ments with masses (m, m + dm) and velocities (v, v + dv) will be
produced in a disruption of a grain with mass u and velocity u.
It can be written as

K(m’ v I H, u) = J nf(ﬂ/)ua(ﬂs ﬂl)f(m’ v I H, U, ”,)dtul > (36)
Mthr

where f(m, v| u, u, i) is the fragmentation function discussed in
§ 2.4. If, according to the discussion presented there, velocities
of fragments are set to zero in the frame of reference moving
with the center of mass velocity v, = uu/(u + ') of colliding
grains, then fragments with velocities between v and v + dv
result from collisions with stationary field grains with masses
between u' = p(u/v — 1) and u' + dy’ = p(u/v — 1) — (u + §)*
dv/uu. Equation (36) then becomes

K(m, vl p, u) = n(uW)o(u, 1) f(m|pu, @)+ w)/un, (37)

with f given by equation (10) and ¢’ = u(u/v — 1). In the limit of
high grain velocities, the fast-moving grain is disrupted mostly
in collisions with much smaller grains, and a useful approx-
imation for K is

K(m, v|u, u) = o(v — u)

X J n(Wuo(p, W) f(m|p, u, W)y ,

Mthr

(38)

because fragments are then injected into the gas with velocity v
nearly equal to u.

We solved rate equation (35) using a combination of analyti-
cal and numerical methods described in the Appendix. Briefly,
this equation was solved analytically by an iterative method
analogous to a hierarchy solution of the Boltzmann equation.
Fragments were divided into “primary” fragments resulting
from shattering of beam dust grains, “secondary” fragments
resulting from shattering of “primary” fragments, and sub-
sequent fragment generations. The result for the number
density n, of primary fragments,

o dmy,
no(m) = f exp [ —1t(mo, v,)]n,f(mq|m,) am dt,, (39)
0 m
has a simple interpretation. The destruction rate of beam
grains in the optical depth interval (z,, 7, + dt;) along their
trajectory is equal to n,dt,. The production rate of fragments
with mass m, is found by multiplying this rate by the fragmen-
tation function f(m, | m;). The optical depth ©(m,, v,) measures
the destruction of these fragments through the exponential
term in equation (39). Finally, the derivative dm,/dm measures
the shift and distortion of the distribution function caused by
fragment erosion. The integration over velocities has been
replaced by integration along the beam particle path. Equation
(39), with the help of equation (31), can also be written as

no(m) = ny €xp (—1o)

o dm,
X _[ exp [t(my, vy) —t(mo, v,)1f (Mo | my) d—o dr, .
o m

(40)

While the primary fragment distribution can be easily obtained
from these equations by a simple numerical integration, the
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solution for subsequent fragment generations is considerably
more difficult, as described in the Appendix.

4.2. Results

The primary fragment size distribution depends on the slope
chosen for the fragmentation function, and the initial grain
radius and velocity. The distribution has the same slope at
small fragment sizes as the fragmentation function; small frag-
ments are unlikely to be destroyed in catastrophic collisions
because of their small optical depths for grain destruction,
while sputtering and cratering merely grind them to smaller
sizes without changing the slope of the distribution. Note that
this result is very different than in cratering collisions, since we
found a strong excess of small to large fragments in cratering
collisions (§ 2.5). This result is intuitively obvious because
smaller grains are expected to be produced predominantly in
more frequent and less energetic cratering events rather than in
rare catastrophic collisions.

There are two major departures from the distribution
assumed for the fragmentation function. First, the primary
fragment size distribution is noticeably steeper, particularly for
grains with large initial velocities. Second, the maximum frag-
ment size is significantly smaller than the initial grain radius.
For example, for the initial grain radius of 0.25 ym and the
initial velocity of 200 km s~! (and p =3.5), we find the
maximum fragment radius to be equal to 0.10 um. At this
fragment radius, the primary fragment size distribution is
down by a factor of 3.5 relative to the MRN distribution,
normalized at small fragment sizes. These departures from the
MRN distribution may be traced to the destruction of frag-
ments through sputtering, cratering, vaporization, and
catastrophic fragmentation, as they slow down to rest follow-
ing the breakup of the parent grain. Just as for beam grains,
these effects are less pronounced for smaller parent grains; if
we take the initial grain radius of 0.02 um instead of 0.25 um,
the maximum fragment radius is equal to 0.012 uym, and the
reduction in the primary fragment distribution is only 30%.

The mass fraction in primary fragments is shown in Figure
13 as a function of the initial grain velocity, for a number of
grain radii. Also plotted is the mass fraction initially deposited
in fragments, as shown in Figures 11 and 12. The difference
between the final mass fraction and the fraction initially depos-
ited into fragments is caused by destruction of fragments as
they slow down to rest. This destruction is not nearly as effec-
tive as the destruction of the beam grains, but the mass fraction
in surviving primary fragments is much reduced for high grain
velocities.

The contribution of secondary fragments to the total frag-
ment population is expected to be most significant for large
beam grains with high initial velocities because of their large
optical depths for grain destruction (Fig. 9). In Figure 14, we
plot the secondary fragment size distribution for large beam
grains, 0.25 um in size, injected with the initial velocity of 200
km s~ !. Also shown is the primary fragment size distribution,
and the sum of primary and secondary fragments. The second-
ary fragment distribution is obviously steeper than the primary
fragment distribution, which was already shown to be steeper
than the MRN distribution assumed for the fragmentation
function. The maximum radius of secondary fragments is also
less than that of primary fragments. Such steepening of the
distribution function and the reduction in the maximum frag-
ment size are expected in the fragmentation cascade, as frag-
ments are broken into smaller and smaller pieces. The total
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F1G. 13.—Mass fraction in primary fragments vs. initial grain velocity (solid lines). This fraction is less than the total mass fraction initially deposited in fragments
(dashed lines) because of the fragment erosion and destruction. Curves are labeled by the initial grain radius (um).

mass in secondary fragments larger than 0.005 um is equal to
1.5% of the initial beam grain mass, about 25% of the mass
contained in primary fragments. This modest contribution
brings the total mass in surviving fragments to over 7% by
mass. As seen in Figure 14, the contribution of secondary frag-
ments is substantial at small fragment radii, making the total
fragment distribution much steeper than the MRN distribu-
tion. (The effective power-law index p of the distribution shown
in Fig. 14 is equal to 4 in the size range from 0.005 um to 0.1
pm.)

While results presented in Figure 14 demonstrate that pro-
duction of secondary fragments is important for the largest
grains with high velocities, we find that secondary fragments
contribute little to the total fragment population throughout

most of our parameter space. For example, the production rate
of secondary fragments for 0.25 um beam grains injected with
100 km s~ ! is virtually identical to the case discussed above, in
terms of the total mass contained in secondary fragments.
However, this comprises less than 10% of the mass contained
in primary fragments. Nearly as large a reduction in relative
production of secondary fragments occurs if, instead of
decreasing the initial beam grain velocity from 200 km s~* to
100 km s~ !, we decrease the initial beam grain radius from 0.25
um to 0.10 um. We conclude that for our model parameters
(Table 1) the production of secondary fragments is important
only for large (ao > 0.2 um) grains with initial velocities near or
in excess of 200 km s~ . The subsequent fragment generations
are, of course, of even less significance.
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F1G. 14.—Size distribution of fragments created from v, = 200 km s~ %, a, = 0.25 um beam grains. The secondary fragment distribution (dotted curve) is steeper
than the primary fragment distribution (dashed curve) and contributes noticeably to the total fragment population at small grain radii.
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curve) and the final distributions.

Interstellar dust consists of grains with a continuous dis-
tribution of sizes, so that we should also consider a continuous
distribution of beam grain sizes. Consider then an ensemble of
beam grains with the MRN grain size distribution, injected
with the initial velocity v into an ambient, dusty medium. What
is the final distribution of these beam grains and their frag-
ments after they have been decelerated? On the basis of calcu-
lations reported above, we can now provide an answer to this
question. First, the beam grains undergo grain erosion and
grain destruction through catastrophic fragmentations. This
will shift the initial distribution to smaller grain sizes and
reduce the grain number density. Because large grains are
more susceptible to processing by g-g collisions, the final dis-
tribution of surviving grains is expected to be steeper than the

original distribution. This is demonstrated in Figure 15, in
which we show the results for v = 200 km s~ . Also shown is
the fragment size distribution and the final grain size distribu-
tion, which includes both fragments and surviving grains. (In
accordance with the discussion presented above, only primary
fragments are taken into account; we neglected a small contri-
bution from subsequent fragment generations.) This distribu-
tion is much steeper than the orignal MRN distribution; the
effective power-law index in the 0.01-0.1 um grain radius range
is equal to 4.4, instead of 3.5. Grain destruction is clearly
accompanied by steepening of the grain size distribution and a
reduction in the maximum grain size. These effects are, of
course, less pronounced at lower velocities, as demonstrated in
Figure 16 for grains with initial velocities of 100 kms ™.
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phase, which escaped sputtering or vaporization, was deposited into fine (a < 0.005 um) dust.

We would like to emphasize that a significant fraction of the
beam grain mass is deposited into fine dust. Its importance can
be seen in Figures 17 and 18, in which we show the cumulative
mass distribution (the total mass contained in grains smaller
than radius a, normalized to the mass of the initial
distribution) corresponding to distributions shown in Figures
15 and 16, respectively. For a high velocity of 200 km s~ ! (Fig.
17), the fine (a < 0.005 um) dust is the dominant component of
grains which survived sputtering and vaporization. However,
even at 100 km s~ ! (Fig. 18), the fine dust constitutes a sizable
fraction of the total grain mass, comparable to the sputtered
and vaporized fraction. The steepening and a reduction in the
maximum grain size seen in Figures 15 and 16 is thus accom-
panied by an efficient production of fine dust grains.

The grain mass redistribution strongly depends on the injec-
tion velocity of an initial MRN distribution of grain sizes. This
is shown in Figure 19, in which we plot the fractional mass in
various dust components for the two cases discussed above,
with injection velocities of 100 km s ™! and 200 km s %, and for
an additional case with 50 km s~ . The height of each bar gives
the grain mass which escaped sputtering or vaporization.
While only several percent of the dust mass was returned to gas
at 50 km s~!, the sputtered and vaporized mass fraction
increased to 64% at 200 km s~ 1. This is accompanied by a
pronounced reduction in the mass fraction of surviving orig-
inal dust grains. More than half the grain mass was processed
for the initial velocity of 100 km s !, and a scant 11% survived
at 200 km s~ L. In addition to sputtering and vaporization, the

1.0 "1 T

0.8 v = 100 km s™

0.6

final distribution

0.4

CUMULATIVE MASS DISTRIBUTION

0.2

0.0

fragments

7

e 17

sputtered and 5
putterec an . 247%
vaporized fraction’

0.10

GRAIN RADIUS (um)

F1G. 18.—Same as Fig. 17, but for velocity of 100 km s~

1
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F1G. 19.—Final grain mass redistribution vs. grain initial velocity, for an initial MRN distribution of grain sizes. The height of each bar gives the grain mass which
escaped sputtering or vaporization. Note strong dependence on the initial grain velocity and a high efficiency of fine dust production across the whole velocity range.

processed grain mass ended mostly in fine dust particles. The
production rate of larger (a > 0.005 um) fragments is modest,
less than 10% of the grain mass, depending weakly on the

injection velocity in the range from 50 kms ™! to 200 km s~ *.

5. SUMMARY

In this paper we studied the various grain destruction pro-
cesses operating on fast-moving dust particles slowing down in
a dusty gas. We divided these processes into two categories:
continuous processes, sputtering and cratering, that result in
the gradual erosion of the dust particle; and catastrophic pro-
cesses, vaporization and fragmentation, that result in the total
disruption of the dust particle. The rate of grain erosion
resulting from sputtering and cratering, respectively, is given
by equations (3) and (11). Catastrophic processes are character-
ized by a threshold velocity for their occurrence and effec-
tiveness (see §§ 2.3 and 2.4).

The destruction of grains by continuous processes can be
described by a trajectory in the {m, v} plane, where m is the
mass of the dust particle and v is its velocity. Both m and v are
gradually decreasing from some initial value {m,, v,} as the
dust particle is gradually eroded and decelerated by the
ambient gas. Figure 4 describes the trajectories of dust par-
ticles for various initial values of {m,, vy} as they slow down by
collisional drag in a dusty gas. The relative importance of these
two processes depends on the initial grain velocity and size and
is shown in Figure 3. Figure 7 summarizes the fraction of the
initial mass of a dust particle that is eroded in the form of fine
dust particles by cratering collisions and the fraction that is
returned to the gas phase by sputtering, as a function of initial
grain size and velocity.

At any point along the trajectory, a dust particle may be
subjected to a catastrophic collision, which will terminate the
particle trajectory. The probability for such an event is equal to
1 — exp (—1), where 7 is a function of grain mass and velocity
along the trajectory. The parameter t is an effective optical
depth with which we can measure the diminution of a beam of

dust particles moving through a dusty gas. Figure 9 presents
the optical depth for grain destruction by a catastrophic colli-
sion. A catastrophic collision terminates the trajectory of the
original particle in {m, v} space and generates new trajectories
for the fragments created in the collision. These trajectories
may also terminate with a catastrophic collision, generating
new fragment trajectories as well. The cascade continues until
the velocity of the original dust particle or any of its
“offspring” fragments slow down to velocities below the
threshold for any grain destruction process. The dust particle
then becomes a “field” particle, which may be further
destroyed by catastrophic collisions with fast-moving “test”
particles. This cascade of grain destruction and fragment gen-
eration was cast as an integro-differential equation in § 4.1, and
the numerical solution was described in § 4.2. The evolution of
the distribution of grain sizes, initially characterized by a
power law following their injection in a dusty gas, is presented
in Figures 17 and 18. Figure 19 depicts the final mass redistri-
bution of a population of fast-moving dust particles initially
characterized by an MRN size distribution. The figures show
that in contrast to population of dust particles subjected to
thermal sputtering, the final grain size distribution is charac-
terized by an excess of small relative to large particles, com-
pared to the initial size distribution. Small dust particles are
stochastically heated by the ambient radiation field, generating
an excess of short-wavelength IR emission over that expected
from larger dust radiating at the equilibrium dust temperature.
Grain destruction by grain-grain collisions should therefore
have an observable signature that can be characterized by a
correlation between the short-to-long wavelength IR emission
and shock velocity. Such correlation has already been hinted at
by observations of intermediate velocity molecular clouds
(Heiles et al. 1988).

We would like to thank Mike Shull for an illuminating dis-
cussion and for many useful comments following his thorough
reading of our manuscript.
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APPENDIX

SOLUTION OF RATE EQUATIONS FOR GRAIN SIZE DISTRIBUTION

Rate equation (35) is a linear, partial integro-differential equation for n(m, v, t), with fragments moving along trajectories given by
equations (14) and (15), and shown in Figure 4 in {a, v} space. Just as in the case of the Boltzmann equation, it is convenient to
transform equation (35) to its Lagrangian form, with the Lagrangian derivative defined as D/Dt = 8/0t + md/0m + ©0/0v. Along
each grain trajectory, ’

D , U, t a‘ a 7 Mmax ]
Do, B _ 190, O™ Clm, ) [otm, 0, )+ K(m, ol my, vgn(®) + Mo u, OKGm, ol idud . (AD
Dt ov  Om m 0

Equation (A1) can be solved analytically by a method analogous to a hierarchy solution of the Boltzmann equation. We
transform the linear, partial integro-differential equation (A1) into an infinite set of partial differential equations (PDEs). First, we
denote the number density of “primary” fragments, resulting from shattering of beam dust grains, by ny(m, v, t). From equation
(A1), we obtain the following linear PDE for n,:

Dny(m, v, t) v Om
Dt = —I: % + am + C(m, v) |no(m, v, t) + K(m, v|m,, vy)n, . (A2)
Next, we denote number densities of subsequent fragment generations by n(m, v, t). Their evolution along each grain trajectory is
given by
Dn L0, t o0 om Mmax (" ©
Do r —[a—z +22 4 Clm, v)]ni(m, 01+ f f - 0, OKGm, o1, W (A3

for i = 1, co. The infinite set of linear PDEs (A2) and (A3), with

0

nim, v, )=y nfm,uv,1), (Ad)

i=0

is equivalent to the rate equation (A1).
Linear PDEs (A2) and (A3) can be reduced to quadratures. Let

oo om

F(@m, v, t) = J {-— + — + C[m(t"), v(t’)]} dr', (A5)
o0V Om

where the integration is performed along a grain trajectory, from (m,, v,) at a reference time ¢, to (m, v) at time ¢. The number density

no(m, v, t) of primary fragments is then

no(m, v, t) = exp (—F){"o(mo’ Vo, to) + JI K[m(t"), v(t') | my, vy]n, exp (F) dt'} . (A6)

to

But
exp (—F) = (det J)~ ! exp [t(m, v)—1(m,, vo)] » (A7)

where J(¢) is the Jacobian of the transformation from the grain mass m, and its velocity v, at reference time t,, to its mass m and
velocity v at time ¢, whose determinant measures volume changes in {m, v} space along the grain trajectory, while t(m, v) is the
optical depth for grain destruction along this trajectory, defined by equation (30). We can then write equation (A6) as

no(m, v, t) = [det J(m, v, )]~ exp [t(m, v)—1(my, vo)]{no(mo, 0o, to)

+ J tK(m, v|my, vyn, det J(t') exp [t(my, vo)—1(m, v)]dt’} . (A8)

0

Similarly,

n{m, v, t) = [det J(m, v, t)] ! exp [t(m, v)—1(my, vo)]{n,-(mo, o, o)

t Mmax [ ©
+J j J‘ n;_1(u, u, )K(m, v|u, ududu det J(t') exp [t(my, vo) —1(m, v)]dt’} , (A9)
to Jm 0

where the integrations in ¢’ in equations (A8) and (A9) are again performed along the same trajectory as in equation (A5), passing
through (my, v,) at t, and (m, v) at ¢.

The fragment number density n(m, v, t) can now be found iteratively, first by solving for n, from equation (A8), they by using
equation (A9) to find n; for i =1, 2, ..., and finally by summing all n; values according to equation (A4). This iterative scheme
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converges quickly for small optical depths t; n; becomes negligible in comparison with the lower members of the series in equation
(A4) after several iterations. In addition, by relatively simple quadratures, we obtain not only the total number density of fragments,
but also the relative contribution of subsequent fragment generations. Our hierarchical, iterative method is expected to break down
for fast-moving large grains when the optical depth for grain destruction is much larger than one. In the asymptotic limit of 7 — oo,
the grain will be fragmented into a multitude of very small fragments. This is the regime of the extreme dust destruction, where most
of the grain material is expected to be returned to the gas phase.

Equation (A8) for the number density of primary fragments assumes a particularly simple form in the limit of high grain velocities,
when the function K can be approximated by equation (38). In this case, the integral in equation (A8) is equal to zero, because
fragments with mass m and velocity v are produced only at the intersection of their trajectory with the trajectory of beam grains at
time t,. The fragment velocity at this intersection is equal to the velocity v,(t,) of beam grains. The number density of primary
fragments at time ¢, is

Clmy, vp)nyf(mo |my) _ nyf(mg|my) dry,

no(my, vy, to) = — = s A10
o> %0 t0) = = = Jay — 1) dvfdr ~ (aylao — ) do (A10
so that the number density ny(m, v, t) of primary fragments at any time ¢ is then
: d
nolm, , 1) = [det Jm, o, 6] " exp [x(m, v)— clmo, vo)] 2L 70l A% (A1)

(ay/ao — 1) dv,’

according to equation (A8). This explicit expression is particularly useful in calculations of the next (secondary) fragment generation
from equation (A9).

We are particularly interested in finding the primary fragment distribution, integrated over velocities, at large times ¢ when
fragments are at rest. This can be done by integrating equation (A11) over velocities and noting that t(m, v) — O for large t. The
result, ‘

o) = [ oxp L, oo ma ) 9 (A1)
0 m

with the help of equation (31), can also be written as

10 d
no(m) = nyo €xp (—10) J; exp [t(my, vp)—t(mo, vy)]f(mo | my) % dr, . (A13)

In the limit of high grain velocities, when function K can be approximated by equation (38), equation (A9) for the number density
of subsequent fragment generations simplifies to

n{m, v, t) = [det J(m, v, t)] ! exp [t(m, v)—1(my, vo)]

t (Mmax(t’)

x f f ni—1(u, v, )C(, v) f(m| Wy det J(t') exp [w(mo, vo)—t(m, v)] dt’ . (A14)
to Jm(t')

Note that except for the primary fragments, fragment densities at the intersection of their trajectories with that of the beam grains

are equal to zero. Equation (A 14) completes our formal solution for the evolution of the fragment size distribution.

The rate equations for the grain size distribution discussed above are in general difficult to solve numerically, even with a formal
reduction to quadratures accomplished above. The numerical solution becomes somewhat easier in the limit of high grain velocities
when function K can be approximated by equation (38). Because our efforts are focused on fast-moving grains, we take advantage of
this approximation. The primary fragment size distribution is then given by equation (A13), which can be easily evaluated
numerically by standard integration algorithms. We calculated the primary grain size distribution according to equation (A13), with
the fragmentation function given by equation (10). Our standard value for parameter x in this equation is 0.833, corresponding to
the power-law index p = 3.5 of the fragment size distribution (Table 1). According to our discussion in § 3.3, approximately
one-fourth of the grain mass removed by catastrophic collisions is vaporized, except at low velocities. Therefore, above the threshold
for vaporization (v > 30 km s '), we set s in equation (10) equal to 0.75, so that the maximum fragment size is 90.9% of the original
grain size. Below the vaporization threshold, we adopted a nearly identical fragmentation function, with the same maximum
fragment size, but with the total fragment mass equal to the mass of the disrupted grain.

The numerical calculation of subsequent fragment generations according to equation (A14) is substantially more difficult. Its
solution for the secondary (i = 1) fragment generation requires first the evaluation of the primary fragment distribution n, as a
function of fragment mass p, its velocity v, and time t according to equation (A11). The next step involves the nontrivial multiple
integration of n, as given by equation (A14), followed by an additional integration of n,(m, v, t) over velocities to obtain the final
distribution of secondary fragments as a function of their mass m at t - co. Instead of performing these integrations directly using
equation (A14), we found it more convenient to integrate the original PDE (A3) along each grain trajectory, using standard ordinary
differential equation solvers. Our solution strategy is then to evaluate n, according to equation (A11), perform a quadrature over
primary fragments to obtain the source term for production of secondary fragments (second term on right-hand side of eq. [A3]),
numerically integrate equation (A3) for n,(m, v, t), and then integrate n, over velocities. Because our results show that the fragment
population is strongly dominated by the primary fragments in most cases, with the subsequent fragment generations contributing
only a small fraction of the total mass contained in fragments, we provide here only a brief sketch of our solution method,
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highlighting the most salient points. For the same reasons, we terminated our calculations at the second fragment generation,
although our solution method can be in principle used to find the number density of subsequent fragment generations.

The evaluation of n, from equation (A11) requires the knowledge of det J, the fragment and beam grain masses (radii) at the
intersection of their trajectories where the fragment was produced, the location of the intersection, and the difference in optical
depths from the current location of the fragment to this intersection. All these quantities can be found by solving a set of ordinary
differential equations (ODEs) along the fragment trajectory. A coupled set of three ODEs for the fragment and the beam grain radii,
and for the fragment velocity, was integrated as a function of the beam grain velocity from the current time ¢t backward, until the
fragment velocity was equal to the beam grain velocity. (We used an ODE solver SDEROOT from a public domain package ODE
to accomplish this task.) Instead of solving for the volume changes in {m, v} space along the fragment trajectory, as measured by det
J, and for the optical depth difference along the trajectory, we solved directly for function F (eq. [A5]) along the trajectory and then
used equation (A7) in combination with equation (A11) to evaluate n,. After finding n,, we evaluated and stored in a tabular form
the source function for production of secondary fragments, using the same fragmentation function as for the primary fragments.
This task is also nontrivial because of the variable integration rage (as explicitly noted in eq. [A14]) and requires a solution of a
two-point boundary value problem involving the set of three ODEs mentioned above. With the source function known, we
integrated equation (A3) along the fragment trajectory, starting at the intersection with the beam grain trajectory at which the
number density n, of secondary fragments must vanish. The final integration over the velocity distribution of secondary fragments

completed our numerical calculations.
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