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ABSTRACT

We investigate the global stability of a differentially rotating fluid shell threaded by vertical and azimuthal
magnetic fields to linear, axisymmetric perturbations. This system, which models a thick accretion disk in the
vicinity of its midplane, is susceptible to the Velikhov-Chandrasekhar (VC) instability in the absence of the
azimuthal field. In most cases, the azimuthal field tends to stabilize the VC instability, although strong fields
(Alfvén speed of order the characteristic rotational speed in our incompressible model) are required for com-
plete stabilization. Stability diagrams are constructed, indicating critical values of the two fields for instability.
We find an additional strong field instability that arises when the azimuthal Alfvén speed exceeds the charac-
teristic rotational speed. This instability, in the case of a freely bounded configuration, has certain similarities
to the sausage instability for interpenetrating fields in plasma physics, and may be important for very massive
disks or filamentary molecular clouds. An application to the L1641 region in Orion A is briefly discussed.
Finally, we find that the effect of a radially varying vertical field (without an azimuthal field) is mainly stabili-

zing.

Subject headings: accretion, accretion disks — hydrodynamics — instabilities — ISM: magnetic fields —

MHD

1. INTRODUCTION

One of the more interesting recent developments in the
theory of accretion disks was the discovery of virulent insta-
bilities that develop only in the presence of magnetic fields.
Balbus & Hawley (1991, hereafter BH) showed that a
Keplerian disk in a state of pure rotation threaded by a weak
axial field was subject to a local instability whose growth rate
was on the order of the local rate of rotation. In a previous
paper, we examined the global counterpart of this instability,
the Velikhov-Chandrasekhar (VC) instability, showing that
growth persisted at comparable rates (Curry, Pudritz, &
Sutherland 1994, hereafter CPS). There remain serious ques-
tions, however, concerning how the instability is affected as
models are augmented by additional physics. In particular, the
influence of the more complicated magnetic field structures
expected to exist in protostellar, CV, and AGN disks has yet to
be carefully addressed. In this paper, we extend the model of
CPS to include disks with radially varying vertical (B,) and
azimuthal (B) fields.

There are many reasons to expect an azimuthal field to be an
important, sometimes dominant, magnetic field component in
accretion disks. Strong differential rotation can generate B,
from a radial field component B,, which can itself be created
either by dynamo processes or accretion. The BH instability
has been shown to generate strong B, and B, from an initially
weak B, (Hawley, Gammie, & Balbus 1995). If B, is inherited
from the central object or the interstellar medium, disk torques
can convert it directly to B,. Thus, it is most likely that all
three components of B are dynamically important for most
types of disks. Of course, as has been made clear by all work
following BH, one needs very little initial B, in order for that
component to be “dynamically important.”

! Postal address: Department of Astronomy, 601 Campbell Hall, Uni-
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The observational evidence for B, in protostellar disks is at
the present time quite sparse, mainly due to uncertainties
about the nature of the detected disks themselves. Recent mid-
infrared spectropolarimetry of high-mass star-forming regions
by Aitken et al. (1993) revealed a high correlation between
objects with elongated molecular disklike structures
(numbering 10 in their sample) and magnetic fields oriented
along the long axis of the disk (seven of these 10). The authors
claim this as evidence for a predominantly azimuthal field
structure in these regions. One should note, however, that the
objects in question are 103 to 10* AU in extent, with masses
~10% M, and so are not likely to represent Keplerian accre-
tion disks. As evidence for large-scale rotation is lacking, they
may in fact be self-gravitating toroids or “pseudodisks,” sup-
ported to some extent by the field itself (Galli & Shu 1993).

Keplerian disks with magnetic field components in both the
azimuthal and vertical directions have been actively studied as
possible sources of centrifugally driven winds and outflows
(see, e.g., Blandford & Payne 1982; Uchida & Shibata 1985;
Pelletier & Pudritz 1992). This suggests an additional motiva-
tion for the present study: to determine whether the various
equilibria assumed in models of magnetically driven outflows
are stable. A first step in this direction was taken recently by
Lubow, Papaloizou, & Pringle (1994).

In a different context, Galactic center molecular disk obser-
vations (Genzel 1989; Hildebrand et al. 1990) indicate that
B, ~ B, ~ 1 mG, with a somewhat weaker B,. This is in con-
trast to the larger scale field structure (i.e., the inner 70 pc of the
Galaxy), which is almost purely vertical, i.e., perpendicular to
the Galactic plane. Wardle & Ko6nigl (1990) have modeled this
region using a self-similar magnetized disk model, under the
assumption that the inner field structure results from advection
of the large-scale field by inflowing matter, with differential
rotation subsequently leading to a strong azimuthal com-
ponent. As observations of other galactic nuclei and AGNs are
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still not able to resolve the inner disks, much less any associ-
ated magnetic field structure, it would be unwise to speculate
further along these lines. However, since the inner regions of
AGNs are expected to possess “thick” rather than thin
Keplerian disks, we use the same equilibrium sequence as
introduced in CPS; namely, one in which radial pressure gra-
dients oppose the central gravity for non-Keplerian rotation
laws. The situation examined in the present paper is even more
interesting, however, since radial magnetic gradients are also
present.

As a final possible application of the work presented here,
we cite evidence that elongated filaments of gas in molecular
clouds are associated with helical velocity and magnetic fields
(Bally 1989). The latter are indicative of the simultaneous pres-
ence of B, and B,. The model employed in this paper, although
formulated primarily for accretion disks, yields interesting
results in the parameter range expected to hold in such regions.
In particular, we find a new instability that sets in when the
azimuthal Alfvén speed is greater than the rotational speed.

We defer to a later section a detailed description of previous
work on the effect of B, on the VC and BH instabilities, but it
is of use to review here what is known generally about the
stability of rotating configurations with azimuthal field. Since
we do not attempt to account for the vertical structure of the
disk in this study, the following discussion is restricted to
purely radial distributions of angular velocity and magnetic
field. The central question is this: given a rotation profile Q(r)
and field distribution By(r), B,(r), can one predict, even locally,
whether a configuration is stable to infinitesimal perturbations
in the fluid quantities? What is needed is a necessary and suffi-
cient criterion for stability, such as exists for purely vertical and
purely azimuthal fields. These are, respectively,

dQ?

o =0
and
1Ld ,., 1 d(B,)
r? dr(r 9 T dnpar\r =0. (LD

The first criterion is due to Chandrasekhar (1960) and the
second to Michael (1954). For the combined fields, no similar
criterion is known. Sufficient criteria are available, however;
these are (Chandrasekhar 1961; Howard & Gupta 1962; Dub-
rulle & Knobloch 1993; Kumar, Coleman, & Kley 1994)

LBy <0 @=0),

Ld0? 28, d
dr  4npr? dr

Sufficient criteria can only be regarded as incomplete guides to
the global stability of systems; the inherent limitations of cri-
terion (1.2) will be made manifest later on in the paper.

As to the actual distribution of B, and B, across the disk,
there seem to be very few restrictions at this time.! By consider-
ing power-law distributions in these two field components, we
hope to cover a range of plausibility.

It is important to emphasize that the goal of this series of

(rBy) =0 (Q#0). 12)

! Because an equilibrium B, immediately implies a time-dependent,
growing B, (BH), which destroys the time invariance of the resulting equa-
tions, we ignore this field component in the present work.
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papers is not to replace the many local analyses that exist in
the literature. Rather, a model such as we utilize below, while
idealized and unrealistic in many respects, highlights intrinsi-
cally global behavior that will not be discovered in any local
analysis. Examples of this found in the present work and in
CPS are effects that involve coherent motions over large por-
tions of the disk and phenomena modified or even enhanced by
the presence of a disk boundary, imperfectly modeled though it
may be. Thus, the present work complements, not replaces,
existing local analyses.

The format of the paper is as follows. The equilibrium state
is described in § 2, and the perturbations to this state in the
following section. Quantitative results for the combined effect
of azimuthal and constant vertical fields are presented in § 4,
and those for a radially varying vertical field in § 5. In the final
section, our results are compared with those of other investiga-
tors, and we make some additional comments on a new insta-
bility found in § 4 before giving a final summary. Technical
details of the calculations may be found in the four appendices.

2. THE EQUILIBRIUM

2.1. Basic Equations

The equilibrium was described in detail in CPS and has also
been employed in stability analyses of thick, pressure-
supported disks; see, e.g., Blaes & Glatzel (1986), Sekiya &
Miyama (1988), and Jaroszynski (1988). The model is a simpli-
fied form of the “thick torus” model for AGN (see, e.g., Pac-
zynsky & Wiita 1980), supplemented by gradients of magnetic
field pressure, but lacking vertical structure. It should, there-
fore, adequately describe a small region straddling the mid-
plane of a real disk, with radial gas and magnetic pressure
support taken fully into account. Thus, the equilibrium is not
that of a Keplerian disk, although this case is naturally
included in the equilibrium sequence (CPS).

Consider a cylindrical shell of homogeneous, incompress-
ible, ideal MHD fluid, of infinite extent in the z-direction,
rotating about the z-axis in the Newtonian point-mass poten-
tial ¥ = — GM/r. The purely radial dependence of the poten-
tial is justified if, at every radius r, only heights such that z < r
are considered, so that there is little variation of ¥ with z. The
stationary solution of the MHD equations depends only on the
radial coordinate, r. To calculate explicit quantities of interest,
we take the following power-law dependences for the angular
velocity, azimuthal, and vertical magnetic fields, respectively:

—a -b+1
Qr) = Qo(%{;) s B¢(" ) = B¢o<é) s

r —c+1
B(r) = Bzo(;) , 2.1

where Qg, By, B,o,a, b, ¢, and rq are constants. As in CPS, we
consider the effect of both rigid and free boundaries. In the
latter case, B is supposed to permeate the regions both to the
interior and exterior of the shell, as well as within the fluid.
Using equations (2.1), the radial component of the equation of
motion becomes (Appendix A)

’ 1-2a GM
r_ rOQ(2)<L> _GM
p r

0 r

1 [(2 — b)V§,0<—r—>1 7y a- c)Vﬁ(,(L)l_zc] , 2
To To o
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where the prime symbol =d/dr, V3, .o = B} .o/4np are the
azimuthal (¢) and vertical (z) Alfvén speeds at r,, and M is the
mass of the central object (self-gravity is ignored).

Inspection of equation (2.2) shows that the magnetic terms
aid rotation and oppose the central gravity if b > 2 and/or
¢ > 1, and vice versa if b <2 and/or ¢ < 1. As in CPS, we
consider configurations in which the gas pressure vanishes at
the boundaries and identify ry, with the gas pressure maximum,
where p’ = 0. Equation (2.2) then gives

[Q—bV3i+ (1 —Vi]
r3 - o )

2.3)

This is merely a statement of radial magnetostatic equilibrium
at the pressure maximum. In order for r, to be a maximum, we
must have p”(ry) < 0. From equation (2.2), this requires

@b —3)b — 272 + 2c — 3)c — V2% +2a—3>0, (24)

where an overline indicates that the Alfvén speeds are now
scaled with respect to r, Q,, the circular speed at r,. Note that
the above gives a > 3/2 when V,, = 0 and ¢ = 1, as expected.
Condition (2.4) should be satisfied for each equilibrium we
examine.

Integrating equation (2.2) and eliminating GM via equation
(2.3), one obtains the stationary pressure distribution

L S
p 2 r 2a—1)
|1 1—p26-0
—Q-bP - =1+ ——
@0 ""[r TR ]
_ T 1 —p2C-1
—( =V =—1+—F——F— 25
( C) zOI:r + 2(6“'— 1) ]’ ( )
3 T T T T T T T T I T T T T T T T T
ALLOWED -
Veo < Vs 1
" N Voo < Vs
L\\h° |
A\ | L 1 | L l 1 1 1 L
1 i 1 1 1 ] L 1 1
1 1.5 2 2.5 3
a
F1G. la
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where we have chosen our units such that ry = Qy =1, and
where p? is a constant equal to the ratio of thermal to kinetic
energy at r,. We assume, as in CPS, that the gas and magnetic
pressures remain finite as r, — oo ; this implies that a, b, ¢ > 1.

2.2. Special Cases
2.2.1. B, = constant

Much of this paper is based on the particular case of a
constant vertical field; i.e., ¢ = 1. Then equation (2.3) and
inequality (2.4) lead to the inequalities (in dimensionless units)

1-2=-bV3 >0,
@b —3)b—2)V2 +2a—3>0,

where we have dropped the overlines on the Alfvén speeds for
convenience. Considering all possible values of a and b leads to
the conclusion that only certain values of ¥, are permitted for
a given (a, b).

In the case of rigid boundaries, the inner and outer bound-
aries of the fluid are determined by the zeros of equation (2.5).
For free boundaries, this is still true provided that B is contin-
uous across the boundaries, and we shall assume that this is the
case. Thus, a given model is fixed by choosing r,/r,,a, b, and
V40- CPS found a monotonic increasing dependence of the VC
instability growth rate on r,/r,, with a maximum at r,/r; 2
100; thus, we choose r,/r, = 100 as a fiducial value for all
calculations in this paper. The zeros of equation (2.5) can be
positive, negative, or complex. The latter two (unacceptable)
possibilities can occur even for (a, b, Vo) obeying the above
inequalities. We therefore conducted a three-parameter search
for acceptable equilibria; the results are summarized in Figures
laand 1b.

In Figure 1a, various critical values of the azimuthal Alfvén
speed are denoted by V;, V5, V3, ... ; each is a function of a and
b. Although we calculated equilibria for all a, b in the range
1 < (a, b) < 3, Figure 1b shows only 3/2 < (a, b) < 2. We will
restrict consideration for most of the paper to this range, since
it reduces exactly to the equilibrium of CPS when B, = 0. The
upper surface in Figure 1b represents Vs(a > b) and V(a < b).
Note that fora givena, 3/2 <a <2, Vs > V.

FiG. 1b

F1G. 1.—(a) Allowed regions and limiting azimuthal Alfvén speeds in the (a, b) plane, obtained from solution of the equilibrium eq. (2.5) where p = 0, with
r,/ry = 100. Equilibria for values of a and b lying in the shaded region and along dashed lines are not allowed for any V. (b) Three-dimensional plot of allowed
equilibria. Only the range 3/2 < (a, b) < 2 is shown. Permissible V,, for a given a, b lic between the upper and lower surfaces. The upper surface represents Vs(a > b)
and Vg(a < b).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...453..697C

700 CURRY & PUDRITZ

There is another interesting property of the equilibrium rela-
tion (2.5): when b =2 and ¢ = 1, we get the equilibrium of
CPS. It may be checked that, for the power-law fields we
assume, this is the unique solution for which the current
density, J =V x B/u,, vanishes. Hence, the value of a is
restricted to 3/2 < a < 2, just as in that study, and the location
of the inner radius given by equation (2.9) of CPS. Since this
special case allows us to examine the effect of the azimuthal
field without the added complication of a current, we will
assume b=2,c=1 (corresponding to By,~r ', B, =
constant) when considering free boundaries in the sections to
follow.

222. B,=B/r), B,=0
In this case equations (2.3) and (2.4) give
1-(1—-¢9V% >0,
Rc—3)c—1)V3H+2a—-3>0.
As above, these inequalities and equation (2.5) impose
restrictions on allowed equilibria; these are summarized in

Figures 2a and 2b. We now examine perturbations to the
above-described equilibria.

3. THE PERTURBATIONS

3.1. The Perturbation Equations

We now consider the response of the above equilibrium state
to small, axisymmetric, Eulerian perturbations of the form

3X(r, z, t) = 6X(r)e’ =+ (3.1

where X is any physical variable, and k and w are the vertical
wavenumber and frequency of the perturbation, respectively.
Substituting the forms X + 6X along with equation (2.1) into
the ideal MHD equations, linearizing, and eliminating all vari-
ables in favor of the radial velocity perturbation (see Appendix

3 T T T T T T T T T T T T I T T T T
ALLOWED b
Q —
]
i
VzO < VlO )
/ T
%1 T R AR
2 2.5 3

FI1G. 2a
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A for details), one obtains a second-order differential equation
in éu,:

% [r&*(6u,)] + q(r)éu, =0, (3.2

where

VY (V] 4k? (kV,V, 2
q(r) = kzr[(gz - 7;1) - (r_z)] +27 (—;L - wﬂ)

1

g2 L
w(k +r2)’

@? = w? - kK*Vir),

and V, .(r) = B, (r)/(4np)'/* are the azimuthal and vertical
Alfvén speeds. The power-law form of the above (in dimension-
less units) is

q(r) = 2k [bV3er 2 —ar 2 + (c — YWWZr™ %]
4k? 1
+ F (kV¢0 Vzorl_b-c — (m‘—“)2 — d)z(kz + r—2> .

(3.3)

An alternative form of the perturbation equation useful for
analytic purposes is obtained via the transformation

¥ = (@) ou, ,
whence equation (3.2) becomes

v =KW, (34

|:ar_2“ —bVier ® —(c—1)Vir *

2 e iy 1
—_ E (kV;,O V.o ri=b=c _ or )2] + (1 + —k2r2>

1 1 (rd')Z)/Z (rd')Z)//
i) i 35
[2 &% re® @.3)

When discussing free-boundary configurations, one must
consider the form of the vacuum field perturbations in addition

© w
N

s

o

-

FiG. 2b

FI1G. 2—(a) Allowed regions and limiting vertical Alfvén speeds in the (g, ¢) plane. (b) Three-dimensional plot of allowed equilibria. For the range of a shown,
restrictions on V,, apply only for 1 < ¢ < 3/2. The upper surface represents V,,. See text and Fig. 1 caption for details.
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to those within the fluid. We will restrict ourselves to the
current-free case, i.e., b =2, ¢ = 1, since then the perturbed
magnetic field in the interior (r < r,, denoted by subscript i)
and exterior (r > r,, subscript o) regions is completely specified
by a scalar potential y, such that

5Bi,a = BzVXi,o P
@) = ¢ Io(@), x(®) =c, Ko@), (3:6)

where y; , = x:,,(r)e’***“), @ = | k|r, and I, and K, are modi-
fied Bessel functions of order zero.

3.2. The Boundary Conditions

We solve equation (3.2) subject to both rigid and free bound-
ary conditions (BCs). The former are

ou(ry) = oulry) =0.

Free BCs require the continuity of Lagrangian perturbations
of the total normal stresses and magnetic flux across the
boundaries. In the cylindrical geometry we are considering,
both B, and B, are everywhere perpendicular to the surface
normal n; thus B+ n =0, and provided that both fields are
continuous across the boundaries, the appropriate BC is
unchanged from the constant B, case; that is (CPS),

2

1 k .
(6“,.)’ + l:; + E (geﬁ + k2 V:O @)]&t, =0.

The subscript i applies at r, ; subscript o applies at r,.

For general power laws in By(r), B,(r), and in dimensionless
units, the effective gravity is given by

1
Gurr =117 = 5 — Q= B)Vor' P — (1 - Vri 2.

For vanishing current, this becomes identical to the g of
CPS;ie., g =172 — 1/r2.
From equation (3.6) one finds
Xi - i Iy(w,) Xo
X: r=ry |k' Il(wl)

wherew, , = |k|ry ,.

_ _L Ko(@,)
[k| Ky(@,)’

’
XO r=r2

4. RESULTS: CONSTANT VERTICAL FIELD

The majority of our results have been obtained for the
special case V, = constant.

4.1. The Caseofa="b

When a = b, the rotation frequency Q and its magnetic
analog, V,/r, have an identical scaling with radius. Equation
(3.2) with (3.3) becomes

~ D6u)T + Qou, =0, @y
where
O(r) = k*Er~2¢ — 1) — lz , 4.2)

r

2
E= T [ad*(VE — 1) + 2Qu V, — )], 4.3)
Q, = kV, is the Alfvén frequency, and we have dropped the
zero subscripts on ¥, and V, for convenience. The reader
should note that these are constants throughout this section.
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Equation (4.1) with equation (4.2) is identical in form to the
perturbation equation examined in CPS; for rigid BCs, the two
problems are formally identical. The eigenvalue E is a known
function of a and k (see CPS and eq. [4.8]), but here its defini-
tion in terms of w differs. The latter are solutions of the quartic
polynomial obtained from equation (4.3):

Eo* — 2[EQ} + a(V3 — 1) + 2]w* + 8Q, V,
+ Q2[EQ2 +2a(V3— 1) —4V3] =0. (44)

The eigenvalue spectrum for E is infinite and every member is
real and positive. For free BCs, the situation is complicated by
the fact that w appears in the BC itself. The problem is then no
longer a standard Sturm-Liouville one and the introduction of
E is not a particularly useful calculational device. In fact, when
V, # 0, the resulting E is always complex. This leads to some
interesting consequences that will be discussed presently.? For
both sets of BCs, the resulting @ occur in complex conjugate
pairs (Frieman & Rotenberg 1960).

For simplicity, we begin by considering rigid BCs only.
There are two special cases in which the roots of equation (4.4)
have simple analytic forms. One is when ¥, = 1, which will be
examined in the next section. The other is when a = 2. In that
case, two of the roots are always stable, and the other two are

V£ (V3 + EQ} — 2E'2Q,)\
w = El/z .

The critical Alfvén frequency for stability, where the imaginary
part of equation (4.5) vanishes, is then

14+ (1= V32
E1/2 -

Two points are worth noting. First, V,, has a stabilizing influ-
ence here. This could not be predicted from the sufficient cri-
terion (1.2) given in the introduction, since b =2=>
(rB,) = 0. Second, Q, ,; is an explicit function of ¥, and has
two distinct nonzero solutions. That is, the stability criterion is
altered in the presence of an azimuthal field, contrary to the
claims of some recent investigators (see § 6.1). In the local limit,
ie,k— o, V,—0, we have E > r}* =r{ (CPS); then equa-
tion (4.5) gives

4.5)

(4.6)

QA,crit =

o==[V,—(Vi-2Q,r} + Qir})"*]

ol =

for the growing unstable mode.

We solved equation (4.1) numerically, subject to both rigid
and free boundary conditions, for a variety of (a, b, V;) allowed
by the equilibrium. As in CPS, we use the WKB approx-
imation when ¥, < 0.3, since then the eigenfunctions du, are so
sharply peaked that numerical solutions are difficult to obtain.

The principal results are as follows: (1) The VC instability
persists for all V; < 1, 3/2 < a <2, but with reduced growth
rate. This conflicts with the naive prediction based on the suffi-
cient criterion (1.2), since here (rB,) > 0. The growth rate
approaches zero as ¥V, — 1. (2) The presence of the azimuthal
field also changes the stability criterion itself. Growth is
damped at both short and long wavelengths. (3) When ¥, > 1,
a # 2, a new instability sets in, increasing in growth rate as V.

2 When ¥V, =0 and for free BCs, as in CPS, it can be shown that the
problem is still of Sturm-Liouville type, since w? is real and certain required
conditions on the BC coefficients are satisfied ; see Birkhoff & Rota (1989).
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This large-field instability can be stabilized if V, is made suffi-
ciently large. (4) All of the unstable modes propagate; i.e., the
real part of w is wg~ kV,V,. (5) The mode structure is
unchanged from CPS; i.e., there exists a finite, ordered spec-
trum of unstable modes, whose growth rates are inversely pro-
portional to a positive power of E. For the remainder of this
paper, we will restrict consideration to the fastest growing, or
n = 0, mode.

In Figures 3a and 3b, we plot the dimensionless growth rate
as a function of the Alfvén frequency Q, = kV,. These curves
show directly the effect of azimuthal field on the VC instability.
We have chosen a = b = 2, but the curves are similar for other
a=b. To display the effect for both strong and weak axial
fields, Figure 3a has V, = 0.3 and Figure 3b, V, = 0.05. Feature
(1) is apparent in both figures; growth is clearly halted as
V, — 1. In the presence of B, growth rates are reduced due to
vertical motions induced by magnetic pressure gradients (Blaes
& Balbus 1994) (in the absence of By, du, ~ dp; compare eq.
[3.1] of CPS and eq. [A4] in Appendix A). The instability
couples to (stable) inertial modes, reducing its efficacy. The
additional stabilization provided by ¥, at shorter wavelengths
(large Q,) is also apparent in both figures. The physical expla-
nation for this is the same as in CPS; namely, that the restoring
stress on a fluid element is more effective for distortions of
larger curvature, i.e., at short wavelengths (also, see below).

A new effect, the long-wavelength stabilization, is much
more prominent in the weak axial field case (Fig. 3b). Even at
V, = 0.7, one sees stabilization at long wavelengths (small Q,)
for V, = 0.05. This behavior is entirely due to the presence of
toroidal field lines, which provide an additional return force on
a fluid element at long wavelengths. This can be seen by an
explicit calculation of the perturbed magnetic tension, i.e.,

B-V)B 1 2B, 6B, .
AB-VIB_ 1 (isz 6B ——2—23), 4.7
4 4 r
T T T T I T T T T I T 1 T T —’_r T T T I T T T T
- _ a=b=2 A
vV, =0

1.5 = V,=03
I r,/r, = 100 |
L ]

L Rigid BCs
I 0.7 |
1+ .
s F .

~
3 ]
L 0.9 ]
05 -
| 0.97 |
0.999 ]
o 1 .l 1 n 1 1 1) I 1 1L 1 1 | 1 1 1 1 | 1 1 1 1
0 1 2 3 4 5
0,/9,
FI1G. 3a
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where we have assumed without loss of generality that B, ~
1/r. As k — 0 in the B, = O case, the tension vanishes, indicat-
ing that instability persists up to the longest wavelengths.
However, the second right-hand side term is independent of k,
so that for nonzero B, there exists an additional radial tension,
which is always stabilizing. In addition, the effect is enhanced
at small B,. It is this behavior that we observe at small Q, in
Figure 3.

The real parts of all four roots for w are shown in Figures 4a
and 4b, for the same two values of V, and V; = 0.9. The corre-
sponding imaginary parts are shown as dotted lines. The
unstable modes (one growing, one damping) are created out of
two real modes that merge for intermediate values of Q.

Increasing V, to values in excess of 1 with a = b = 2 leads to
no further instability. However, a new instability does occur for
other values of a. The Keplerian case, for example, is shown in
Figure 5. Each curve is labeled by its corresponding field
values V,, V. As V is held fixed at 0.3 and V,, increased, the
peak growth rate increases (solid curves). Were it not for the
equilibrium constraint V, < 1.42 (see Fig. la), this growth
would continue without bound as V¥, is increased. Now
keeping V, fixed and increasing V, from 0.3 (dashed curves)
leads to stabilization, until complete stability is achieved at
V, ~ 0.81, implying (V,/V;)..i = 0.57. We consider this large-
field instability further in § 4.3.

4.2. Critical Stability Curves
In CPS, it was shown that E behaves as

E,(a)
E= ;2

where Ey(a) = r?* and E,(a) = lim,_k?E. Since the longest
wavelength perturbations are always unstable in that case, one
could then calculate the critical field strength for stability,

+--+ Eoa), 4.8)

=T LA N R B T T T T T

I
a
=0
3 — Vz
r r,/r, = 100 ]
I Rigid BCs

J
1
ﬂ

Q,/Q,

FiG. 3b

FI1G. 3—WKB growth rates as a function of Alfvén frequency Q, = kV, for the fastest growing (n = 0) mode, a range of ¥}, and two different vertical field values:

(a) V, = 0.3;(b) V, = 0.05. Other model parameters are shown at upper right.
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FI1G. 4—Real (solid lines) and imaginary (dotted lines) parts of the eigenfrequency w as a function of Alfvén frequency for ¥, = 0.9 and (a) ¥, = 0.3; (b)) V, = 0.05.

Other parameters are the same as in Fig. 3.

V. oi» Dy taking the limit of the dispersion relation as
®—0, k—>0. When V, # 0, the values of (V,, V) for which
marginal stability holds constitute curves in the (V;, V,) plane.
This section will be concerned with the construction of such
curves.

When V, # 0, there is an added complication. Figure 3
shows that the most persistent unstable mode is not always

03 T T T T | T T T T I T T T T ] T T T T I T T T T
Curves labelled 1.4. 0 3_
by V,, V, T
| a=b=15 1
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F1G. 5—Growth rates of the large-field instability as a function of Alfvén
frequency for Keplerian rotation and rigid BCs. Each curve is labeled by its
corresponding V,, V,. Solid curves have V, = 0.3, while dashed curves have
V, = 1.4. The chosen Alfvén speeds are consistent with the equilibrium con-
straint V, < 1.42.

that with k — 0. Rather, the last unstable mode that persists as
¥, — 1 has intermediate k; the precise value is a function of V.
We note here that in the local limit, k — oo, V, = 0, the growth
rate curves are perfectly symmetrical about Q, = 4, which is
the value for peak growth whena =2and V, = 0.

When ¥, = 1, equation (4.4) has the four roots

Qu(twice), +2E7Y2-Q,, 4.9)

all of which are real, provided that E is real. This result is
independent of both V, and k. Thus, the line ¥, = 1 must lie in
an absolutely stable region in the (V,, V,) plane. Further, taking
V, =1+ € with € small and positive, and expanding w in
orders of €, one finds from the first-order correction that as
long as a < 2, instability occurs. Thus, the line V, = 1 consti-
tutes an absolutely stable region in the (V,, V,) plane. We need
not take any special care when considering V, — 0.

For larger values of V,, say V, 2 0.3, the limit k — 0 does give
a reliable estimate of the critical curve (Fig. 3a). Now taking

o = ko, + k2w, + KBo; + -
along with equation (4.8), equation (4.4) becomes, to first order,
E,of —2[E, V2 + a(Vi — 1) + 2]wi + 8V, V, 0,
+VHE,V:+2aVi;—1)—4V3]1=0. (4.10)

Solving equation (4.10) for the loci of w; = 0 in the (V;,V))
plane gives the critical stability curves we seek. These have
been plotted in Figure 6. The V, =0 results, which were
derived in CPS, are obtained where the curves intersect the V,
axis. One sees that as V is increased from zero, smaller values
of V, are needed for stabilization, until at V, = 1 complete
stabilization occurs for all a. For a =2, all ¥, > 1 are com-
pletely stable; this is represented by the heavy line along the
a = 2 curve and continuing along the ¥, axis from V, =1 to
infinity. For a < 2, the plane above V, =1 is divided into an
unstable part (adjoining the V, axis) and a stable part (to the
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F1G. 6.—Critical stability curves, Im w = 0, in the (V,, V,) plane for rigid
BCs and (right to left) a=b = 1.5, 1.7, 1.85, and 2. Growth rates increase
from zero on both sides of each critical curve. The region at lower left is VC
unstable for all a; the similar region at top left is large-field unstable for all a
except a = 2. The dotted lines are the slopes of the LFI found analytically from
eq. (4.11). The large dots indicate upper limits on ¥, from equilibrium con-
straints; the curves are continued to larger V, for purposes of illustration. See
text for details.

right of a given critical curve). The unstable region at ¥V, > 1
extends to infinity and shrinks to zero size as a — 2. Actually,
the size of the unstable region for a # 2 depends on the partic-
ular value of a (and when a # b, on b as well). This is due to the
equilibrium constraints placed on ¥, by Figure 2b. The largest
allowed V, for each a has been indicated in Figure 6 by a large
dot on the appropriate critical curve. We extend the curves to
higher values of V, merely to display their asymptotic behavior
(see below); such large field values will not be attainable in
reality.

'4.3. The Large-Field Instability

The almost linear behavior of the curves in Figure 6 at large
V,, V, is intriguing. In this limit, and again taking k — 0, equa-
tion (4.4) gives

. QRE, Q3 + 2a — 23]
O TE, O + a2)
kV,. This implies

VilVe > (Va/Vgerie = /22 — a)/E; @.11)

for stablllty Values of E, and (¥, / Vg)erit for 3/2 < a < 2may be
found in Table 1. The equality in (4.11) gives the asymptotic
(ie., large V;, V,) behavior of the critical stablllty curves, as
shown by the dotted lines in Figure 6.

The nature of this large-field instability (LFI) is easily under-
stood upon comparison with the equivalent nonrotating
system. The equilibrium pressure distributions are compared
in Appendix B, where it is shown that when V, > r,Q,, the
system reduces to its nonrotating equivalent. For the latter,

where Q, =
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TABLE 1

RATIO OF CRITICAL ALFVEN SPEEDS,
(V2/Vg)erit» AS A FUNCTION OF SHEAR
PARAMETER a FOR THE LFI

a Eya@)  (Vo/Vo)eri
LS., 2.55 0.63
16.0cceiieiiinn... 2.78 0.54
L7 i, 3.01 045
18 i, 3.26 0.35
19, 3.50 0.24
20 i 3.75 0.

Note—See text for the definition of

E,(a).

Chandrasekhar (1961) derived the necessary and sufficient sta-
bility criterion

2

z d
_r2 t—l; (rB4,)2 dr N

1,B > 4.12)

ri

where I, is a positive-definite integral function of r.* Differenti-
ating both sides of this inequality, and assuming that k > d/or
(this is equivalent to considering the longest wavelength radial
perturbations, which should be the most unstable), we obtain
its local version:

1 2B
k*B? >3 (rB¢) = ——;‘2 J,, (4.13)

where J, is the axial current. The left-hand side of equation
(4.13) represents the restoring force exerted on a radially dis-
placed fluid element by the perturbed vertical field, while the
right-hand side is the excess Lorentz force on that element due
to perturbations of B,. The latter is the exact analog of the
destabilizing centrifugal force in the BH instability. Since J, =
(2 — b)B,/r, configurations with V, > r,Q, and b>2 are
stable to the LFI. In essence, the LFI is the result of an imbal-
ance between radial gravity and a radially stratified, buoyant
magnetic field (see also Appendix B).

4.4. Free Boundaries

The only case to be considered here is a = b = 2, since we
restrict consideration to the current-free situation. The critical
stability curve is shown in Figure 7. The most significant differ-
ence is the disappearance of the absolutely stable line at V, = 1.
A glance back at the roots (4.9) of the polynomial (4.4) shows
how this happens. When V,, # 0, E is no longer real, and one of
these roots becomes growing unstable. The actual behavior is
as follows. Consider a line of constant V,, such that0 < V, < 1.
The peak growth rate for a given V, decreases from a
maximum at V, = 0, to some minimum in the vicinity of V, ~
1, and then increases again without bound as ¥, is made larger.
Note also how much more extended is the unstable region in
the free case versus the rigid one.

Global effects must clearly be at work here, since V,, > 1 is
unstable only in the free-boundary case. As rotation is not
likely to be important in this region, it is instructive to consider
the equivalent nonrotating problem. A situation similar,
although not identical, to the latter is that of the plasma

3 Compare criterion (4.12) with that for the VC instability; i.e.,

r2 2
Lv?> —f ey E .
» dr
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curves are for a = 1.5, 1.7, 1.85, and 2. The region to the left of each curve is
unstable; that to the right, stable.

“pinch ” (see, e.g., Chandrasekhar 1961, chap. XII, § 115). This
consists of a filled cylindrical column of plasma, threaded by a
uniform B,, and surrounded by a vacuum region containing
the same B, together with an azimuthal field B, oc r~!. The
entire arrangement is usually encircled by a concentric con-
ducting wall, but we are free to place this at infinity and so
ignore it for our present purpose. For the extended configu-
rations we consider (r,/r, = 100), the (nonrotating) situation is
nearly identical except for the fact that in our problem B, and
B, interpenetrate everywhere, not just in the vacuum region.
However, such interpenetrating fields have been considered by
Tayler (1957), with the finding that such arrangements are
more unstable.

When all fields are continuous across the plasma/vacuum
boundary, the fluid is susceptible to the well-known (m = 0)
sausage instability, which can be stabilized if and only if V2 >
V3/2=(V,/Vy)erie 2 0.707. It is of interest to compare this
figure with the inverse of the slope of the critical curve for
a = b = 2 in Figure 7, which is (V,/V,)..;, = 1.5. The latter situ-
ation is more unstable, we posit, due to the interpenetration of
B, and B, in the fluid region. Since the exterior B, is the cause
of the sausage instability in the first place, it is not hard to
imagine that its presence inside the fluid will inhibit the stabili-
zing effect of B,.

4.5. The General Case: a # b
4.5.1. Rigid Boundaries

When a # b, the reduction of the full eigenvalue problem,
equations (3.2) and (3.3), to a single characteristic polynomial is
no longer possible. Before proceeding to a numerical solution,
however, it is of use to present such analytic formulae as are
available. There are two approaches that have had some
success in this regard, and that lead to identical results. One is
the local analysis of Dubrulle & Knobloch (1993), which
ignores radial variations in equilibrium quantities compared
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with those of perturbed ones [i.e., r(6X)/6X > 1]. The other is
the slender annulus approximation adopted by Kumar,
Coleman, & Kley (1994), which we follow here to preserve the
global character of the analysis (Appendix C).* In the limit
V, = 0, both give the following condition for stability,

2—a—-Q2—-bVila—bV3<0. 4.14)
For example, if 0 < b < 2 and b < g, stability holds if
2—a . _a
2—b<V¢<b’ (4.15)
whereas for b in the same range and a < b, stability holds if
a —a
E< V3,<E—;—b. 4.16)

It is easy to see that both of these inequalities bracket ¥V, = 1.

As regards the (V;, V,) critical stability plane, equations
(4.15) and (4.16) imply the existence of a stable region along the
V, axis bracketing V, = 1. How this limiting behavior is related
to the critical curves for general V,, V,, and r,/r; will now be
investigated.

For configurations with rigid boundaries, all (a, b, V) con-
sistent with Figure 1b may be considered. Qualitatively, there
are some significant differences from the a = b case. These dif-
ferences may be classified according as a > b or a < b. Several
representative critical stability curves are shown in Figure 8.
Beginning at the far right-hand side of the diagram, we have a

“ This approach is actually superficially global, in that although radial BCs
are applied, the authors assume that the boundary separation is proportional
tok'2 k> 1.
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FI1G. 8—Same as Fig. 6, but for a # b. Each curve is labeled by its corre-
sponding a, b. For a > b, unstable regions lie to the left of each curve, stable
regions to the right. For each a < b, there are two branches of the critical
stability curve. One, at ¥, < 1, bounds the VC unstable region from above; the
other, at ¥V, > 1, bounds the large-field unstable region from below. The large
dots indicate upper limits on ¥, from equilibrium constraints. See text for
details.
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stable region at large V,. When a > b, the curves achieve a
minimum value of ¥V, for some V, 2 1, and then display the
linear asymptotic behavior found in the previous section. For
a > b, there exists no stable region (not even V, = 1) at small V.
This result contradicts the local prediction (4.15) of a stable
region as V, —» 0. As a is reduced to values nearer to b, e.g.,
a=17,b=1.6, the “knee” of the curve bends inward to
smaller values of V,; it is easy to imagine what happens in the
limit as a — b from above; the knee of the a > b curve deforms
into the line V, = 1, which extends all the way to ¥, = 0 as in
Figure 6.

If a is decreased further such that a < b, the situation is less
clear. We have been able to confirm numerically the persist-
ence of two. distinct unstable regions, one at V; 21 (LF
unstable) and one at V;, < 1 (VC unstable), down to values of
V, >~ 0.2. Between the two stability curves lies an absolutely
stable region, bracketing V;, = 1. At smaller V,, mode crossing
becomes a significant hindrance to the numerical algorithm,
and precise determination of the critical curves is difficult. For
a=1.7,b = 1.75, we were able to follow the n = 0 mode down
to V, ~0.2 (Fig. 8, solid curves); beyond this, we join the
numerical curves onto the values given by the local relation
(4.16) at V, = 0 (dashed curves).

It should be mentioned that this region of parameter space,
ie.,

I/z_’oa V¢z17 a<b,

is highly restricted by the equilibrium constraints. A glance at
Figure la reveals that we must have a > 3/2. Since the LFI
requires b < 2, we therefore have 3/2 <a <2, a<b as our
region of interest. Widely separated values of a and b in this
range have limiting Alfvén speeds well below unity; e.g., when
a = 1.55, b = 1.95, V5 = 0.46. Hence, the LFI is not a concern.
Less separated values of the two parameters allow larger equi-
librium fields; e.g., a = 1.85, b = 1.95= V; = 2.93. But it is
likely that for such a, b the critical stability curves are qualit-
atively similar to the a = 1.7, b = 1.75 case shown in Figure 8.
To confirm this, we developed an approximation whose valid-
ity depends on the smallness of the parameter a/b, but imposes
no restrictions whatsoever on the global geometry.® The criti-
cal stability curves found by this method always contain a
stable region bracketing V,, = 1.

To explain the existence of a stable region at small V, it
is instructive to look at the dependence of the perturbations
on a and b. The VC instability arises from an imbalance of the
destabilizing stress B,0B,/4n and the stabilizing stress
B, 6B,/4n. When an azimuthal field is present, the ratio of these
as found from equations (A7) and (A8) is

0B, __iv
6B,  kB,®*

The first term in the brackets behaves as r ~%, and the second
term as r~°. Consider unstable modes only, so that w ~ Q,
(this is still true when V; < 1). The relative magnitude of the
two terms then depends on: (1) the relative magnitude of a and
b, (2) the relative magnitude of Q and B,/r, and (3) whether
r<1orr>1(ie, inside or outside the pressure maximum,

[ZkB,Q - f—a")’ (ba* + 29,{)] . @417

5 Specifically, we define a new variable, x = 1 — r*~!, a < b, and expand
the perturbation eq. (3.4) in powers of x. Finding a series solution and sub-
jecting it to rigid BCs, one obtains a fourth-order dispersion relation similar to
eq. (4.10), which can be solved numerically for w.
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respectively). Assume that Q 2 B,/r; i.e., that we are in the VC
regime. Recall from CPS how strongly peaked were the radial
eigenfunctions of the unstable modes interior to the pressure
maximum; this suggests that the region r <1 is far more
important than r > 1 for the linear stage of instability. We
therefore restrict consideration to that region. Now, when
a > b, the first term in the above dominates the second, and
0B,/4B, retains the same sign as it had in the absence of B,,
where its effects were always destabilizing. Thus, while one
would expect a reduction in the growth rate near V, ~ 1, it
should not completely vanish.

On the other hand, when a < b, the second term in equation
(4.17) can be comparable to the first even when B,/r < Q, and
so a change of sign in 6B,/dB, occurs at some V,, < 1, signifying
stabilization. Such stabilization cannot be maintained at
higher values of ¥, however, once the LFI begins to set in.
This gives the upper boundary of the stable region. Physically,
B, overwhelms Q in the inner disk when b > g, leading to
momentary stabilization until the field becomes so strong that
rotation is no longer a viable means of support. At this point,
the LFI takes over. Because the local analysis gives no infor-
mation about the radial dependence of the eigenfunctions,
Dubrulle & Knobloch were not able to detect this interesting
dependence of the stability properties on the relative magni-
tudes of a and b.

4.5.2. Inapplicability of the Local Approximation

There are two particular cases in which the local criterion
predicts qualitatively different behavior than that examined
above. When either a = 2 or b = 2, criterion (4.14) yields the
following results:

Case (i): a=2,b>2; V¢>m.
Case (ii): a=2b<2; V,<./2/b.
Case (iii): b=2a<2; V,>/a2.
Case (iv): b=2,a>2; V¢<\/;1_/_2.

In all these cases, there exists only a single critical curve.
Since cases (ii) and (iv) have a > b, we expect the local predic-
tion to be unreliable by extension of the results of the previous
section; thus, we do not expect a critical stability curve to
extend all the way to V, = 0. In cases (i) and (iii), however, there
is no a priori reason to doubt the local results.

As test cases, consider the physically interesting power law
indices

Case (i):

Case (iii):

a=2b=3=V,>082
b=2a=15=V,>087.

The first case is that of constant angular momentum, with a
rapidly decreasing azimuthai field. The second is a zero-
current, Keplerian configuration. By the results of § 4.3, both
systems should be stable to the LFI. In addition, both the
Michael (eq. [1.1]) and the Howard & Gupta (eq. [1.2]) criteria
are satisfied. The equilibrium constraints place no restrictions
on the value of ¥, for these (a, b). The critical stability curves,
calculated numerically, are shown in Figure 9. Again, it is diffi-
cult to extend the curves much past V, < 0.2, but in case (i) we
have been able (quite remarkably) to follow the curve down to
V, = 0.05. As in the rest of the paper, the results are for n = 0,
which we have always found to be the fastest growing radial
mode.
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F1G. 9—Ciritical stability curves for two special cases examined in § 4.5.2.
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axis at V, = 0.87 and V,, = 0.82, respectively.

The results are surprising in that they bear no resemblance
to the local predictions (the dashed and dotted lines in Fig. 9)
as V,>0. The a=2,b=3 curve, e.g., shows that the VC
unstable region is 5 times as large at V, = 0.1 than the local
prediction, and the curve even appears to be diverging as
V, = 0, instead of approaching a constant value. One reason
why the local approximation fails here can be found via inspec-
tion of the relevant eigenfunctions, a few of which are plotted in
Figure 10. When V, # 0, 6u, has both real (solid line) and
complex (dashed line) components. As V; is increased from
zero, one sees a gradual spreading of the eigenfunction from
the inside regions outward. In the region near the critical
curves as V, - 0, éu, is much more extended than in any other
case examined thus far. The peak of the eigenfunction at
maximum growth is no longer confined to the small region
between r; and ry; €.g., when V, = 0.3, V, = 1.5 (Fig. 10d), it
lies at r/ry = 3, and du, has a nonnegligible amplitude over the
entire shell. This feature alone is enough to show that the local
and thin shell analyses are inadequate to capture the true
behavior of the system in this parameter regime. It also con-
firms one of the main findings of CPS; namely, that the local
and “critical” limits are antipodal: the latter can only be
reached via a global analysis.

4.5.3. Free Boundaries

For b = 2, we plot a variety of a-values in Figure 7. Again, in
contrast to the rigid BC case, there exists no stable region
around V, = 1; this is easily understood in light of the dis-
cussion given in § 4.4. The unstable regions are larger for a # 2
than for a = 2; this is due to the fact that two instabilities, the
current-driven LFI, and the sausage instability, act simulta-
neously. The asymptotic critical values for these curves range
from (V,/Vy)eriw = 1.5 for a =2 to (V,/Vy)erw = 2.3 for a = 1.5.
The V,-axis intercepts of the curves match the values found in
CPS.
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4.6. The Effect of Simulated V ertical Boundaries

In CPS, we calculated the critical V, for several fixed,
nonzero values of k, corresponding to vertical wavelengths,
Acrits Detween 100 and 0.1 in units of the inner radius r,. The
intent was to gauge the probable effect of vertical disk bound-
aries on V, ., under the hypothesis that the longest unstable
wavelength could not exceed the disk thickness. The inter-
esting result was that for 1., = 0.1, a reasonable value for a
thin Keplerian disk, V, .;, ~ 0.04 & V, , where V, x = 6'/*c/n
is the local Keplerian critical field estimate (BH). Thus, the
superrotational Alfvén speed required for stability in the infin-
ite incompressible cylindrical shell model translates to a super-
thermal V, in a thin, isothermal disk.

In the presence of an azimuthal field, we have found that for
small V,, values of V;, ~ r, Q, are required for critical stability.
This, therefore, begs the same question as asked in CPS: does
the same result hold for thin disks, or does critical stability
again require V, ~ ¢,?

Following the same calculational procedure as in CPS, we
calculated critical stability curves for a = b = 2, rigid bound-
aries, and a range of A, (Fig. 11). Mode confusion prevents us
from going to 4. < 0.2, but the trend is clear. The curves do
not all approach ¥, = 1 as ¥, — 0, since they are for fixed k; the
small Q, stabilization discussed in § 4.1 takes over when V,
becomes small. This can be seen explicitly by deriving the fol-
lowing “local” critical stability relation. In the local limit,
E—rt, so EV? x(0.5)2 = 0.25 for a = 2, and equation (4.6)
gives (in proper units)

277172
w22 -CRIT)
Acrit v ro€do

Assuming the azimuthal field is subthermal so that it does
not significantly alter the overall structure of the disk, the criti-
cal stability requirement A.;, ~ 2H = 2(21/?)c/Q(r,) then yields

(- -

ro Qo 2 \¢ T

(T g
rOQO }'cril

For 4. = 0.1r,, equation (4.18) gives the long-dashed curve
shown in Figure 11. Although equation (4.18) concurs with the
sequence of curves shown and highlights their key qualitative
features, it cannot be rigorously correct for two reasons: first,
one cannot actually have a “thin” disk with a =2; and
second, the derivation is inconsistent for V,/roQo~1>
V,/c,.

¢Regardless of the applicability of equation (4.18), the
numerical curves in Figure 11 unambiguously show that
although V, ., decreases with decreasing A, (or decreasing
scale height H), the same is not true of V, ;. Even in the thin
disk limit, one still requires V,, .., ~ 1o Qo for complete stabili-
zation; i.e., for all wavelengths and at any V,. This result can be
understood by recalling the physical cause of the LFI: it can
only occur when rotation is relatively unimportant in compari-
son with the azimuthal field, a requirement that does not
change when the effective scale height is reduced.

In a real, compressible, vertically stratified accretion disk,
Parker (vertical magnetic buoyancy) instability is known to act
when V, 2 ¢, <1,Q,. Thus, the above result could have at
least two important consequences for such a disk. First, it

(4.18)
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FiG. lO.-Seiectcd eigenfunctions at peak growth for a = 2, b = 3, and increasing ¥, from top left to lower right. The solid line indicates the real part of du,; the
dashed line, the imaginary part. Each eigenfunction is normalized to its peak value.

argues persuasively against the possibility of the LFI ever
occurring, since for ¥V, 2 c,, Parker instability would already
have caused a rearrangement of the magnetic equilibrium.
Second, and more importantly, the above result suggests that
the V C instability is unlikely to be stabilized by an azimuthal
field of any power-law index or strength V,, < c,. We will discuss
other possible environments for the LFIin § 6.2.

5. NONCONSTANT VERTICAL FIELD

Should an accretion disk be threaded by a vertical magnetic
field, the latter is more likely to vary with radius than be
uniform. Although we do not explicitly model the accretion
flow in this study, its overall effect is to drag field lines radially
inward (by flux freezing), leading to a higher B, flux in the inner
regions. In this section we consider the effect of a radially
varying vertical magnetic field on the VC instability, and
neglect the azimuthal field. Although for completeness it would

be desirable to consider the most general situation of noncon-
stant vertical and azimuthal fields, we defer that to a future
work. An additional complication arises in that case, since
resonances can occur where the real part of w? — k2V3(r) = 0.
This is not a concern for the unstable modes considered in this
section, since they always have w? < 0; a proof of this is given
in Appendix D. We consider only rigid BCs, since the zero-
current restriction on our freely bounded equilibria requires
c=1

Even with the restriction to rigid BCs and the knowledge
that w? is real, analytic progress is difficult, since the r depen-
dence of @* means that the perturbation equation (3.2) is not of
standard Sturm-Liouville type. Regrettably, the global WKB
approach used in CPS does not give satisfactory results in this
case, for the following reason. Choosing 1/k as a small param-
eter, the last right-hand side member of equation (3.5) cannot
be neglected, due to the presence of w-dependent terms.
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However, use of the thin shell approximation of Appendix C
gives the result

? = SRol2K + 0) + /2] + 22 — a)k®
2(k? + 3/4)
1 {QRolk*(n + 1) + n(n/4 + 2c — 3/4)
+ 3(1 — 20) + 4¢?]
+ 2k2Q32,[8k2 + 3a + (2 — a)(4c + )]
+ 4k*2 — a)2}112/2(k? + 3/4) ,

where 1 = 3 — 8¢ + 4c? and Q,, = kV,(r,). This solution can
be regarded as quantitatively valid only in a small neighbor-
hood of the pressure maximum. However, it exhibits roughly
the same qualitative behavior as the exact numerical solutions
discussed below. In addition, taking k > 1 leads to the local
dispersion relation of CPS and BH.

Exact numerical growth rates as a function of Q,, for
various values of ¢ > 1 and the fiducial values a =2, V,, =
0.3, rp/r; = 100 are plotted in Figure 12. The different curves
are labeled by their corresponding c-values. For ¢ > 1, the
growth rate is always reduced from its constant V, value. The
critical Alfvén frequency for stability, Q,¢ ., decreases with
increasing c, until at some critical value, ¢ & 2.5-3, it begins to
increase again. The peak growth rate, however, continues to
decrease. We have difficulty finding |w| for ¢ 2 3.5 and large
Qu0, possibly due to the simultaneous presence of several
unstable modes with the same growth rate.

The particular laws ¢ = 9/4 and ¢ = 5/2 correspond to the
flux distributions for two popular centrifugally driven wind
models; Blandford & Payne (1982) and Pelletier & Pudritz
(1992), respectively. As far as the stability of these distributions
is concerned, there is no great distinction between either; both
are VC unstable. One should note, however, that both models
require By # 0; in the former B, ~ B,, while in the latter,

0,/
F1G. 12—Numerical growth rates as a function of Alfvén frequency for

V,=0 and V,= V,r'~° (n =0 mode). Curves are labeled by their corre-
sponding c values. Other model parameters are shown at upper left.

By ~ r~'. Thus, while the results of the present paper suggest
that V, < roQ, will further stabilize, a calculation explicitly
incorporating B, is still necessary.

The run of peak growth rate with c is shown in Figure 13, for
V, =03, ry/r; =100, and different values of a. The a = 1.5
curve is incomplete because 1 < ¢ < 3/2 is forbidden by the

15 T T T T T T T T T T T T | T T T T
V=03 -

r,/r, = 100 -
Rigid BCs

160/ Qplmax

0.5 —

oLl v L b e e

1 1.5 2 2.5 3
c

F1G. 13.—Maximum growth rates as a function of vertical field index ¢ for
different rotation indices a. The lower curve is incomplete since equilibria with
a=15and | <c < 1.5 are not allowed (Fig. 2a). The maximum growth rate at
¢ = 1, found in CPS, is shown as a large dot slightly offset (for clarity) from the
vertical axis.
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equilibrium (Fig. 2b). The large dot on the vertical axis shows
the constant V, value (see Fig. 7a of CPS).

The physical reason for the stabilization observed here is the
same as for an azimuthal field in the presence of a constant V,,
except that now the additional vertical motions are induced by
the gradient of the vertical field (see eq. [A4]). As for the effect
on the stability criterion, we advance the following argument.
In the inner region of the disk, V,(r < ro) > V,(r,). Thus, the
local instability at r < r, will be attenuated compared to the
constant V, = V(r,) situation. By the same argument, the local
growth rate should be enhanced outside the pressure
maximum. However, the unstable eigenmodes are strongly
peaked inside r = ry, when ¢ & 1; this region is more impor-
tant for the action of the VC instability. Thus, for ¢ 2 1, the
attenuation effect dominates, and the critical wavenumber for
stability, k., = Qao.crit/ Vzo, i reduced from its value in CPS.
For c significantly greater than 1, an interesting phenomenon
occurs (Fig. 14). The peak of the eigenfunction du, gradually
moves from inside the pressure maximum (for ¢ = 1) to r/r, &
1 (for ¢ = 7/2), and presumably beyond for more extreme field
gradients. Thus, it is likely that for larger ¢, the above argu-
ment no longer holds. That is, the enhancement effect of the
VC instability at r > r, does contribute, leading to a reversal in
the trend of Q¢ ¢y

We have searched for other unstable modes, e.g., at V, > 1,
with no success. Interchange modes, which might be expected
to act at large field strengths, do not occur here because we
consider only axisymmetric perturbations (see, e.g., Kaisig,
Tajima, & Lovelace 1992; Lubow & Spruit 1995).

6. DISCUSSION

6.1. Comparison with Previous Results
Here we compare our results for the effect of the azimuthal
field on the VC instability with those of four recent papers,
finding some significant discrepancies.

T T T T [ T T T T ] T T T T ‘ T T T T I T T T T
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FiG. 14—Radial eigenfunctions (n = 0 mode) at peak growth rate for
various c. The overall normalizations have been adjusted to unity for purposes
of comparison.
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Dubrulle & Knobloch (1993, hereafter DK), via a WKB
method, found that the imaginary part of the eigenfrequency,
oy ~ Q,/(1 + constant x ¥3) in the limit ¥, —» 0. The same
result holds for both rigid and “free” BCs, uj(r,) = dul(r,) = 0
(these conditions differ from ours in the respect that the con-
figuration is bounded by a complete vacuum; i.e., one devoid of
external fields.) Thus, it would appear that one needs an infin-
ite ¥, to stabilize the system. Our results are clearly at odds
with DK in this respect. Although the finite-sized stable region
found by DK was also found here, we have shown that such a
region exists only in the presence of rigid boundaries, and then
only fora < b.

Kumar et al. (1994, hereafter KCK) concluded, on the basis
of the sufficient stability criterion (1.2), that “toroidal fields
only destabilize the flow.” As regards the VC instability, we
have found that the opposite is in fact the case, at least when
we consider the “principal range” 3/2<a<2,b>1. It is
only in the large-field (V,, 2 r, Q) regime that B,, destabilizes.
Had the authors continued their thin-shell calculation to
O(V}), they would have discovered that the correction to  at

peak growth is
i a® 4
w2,max_§<b—7+_é—>,

which is always damping provided that 3/2 <a <2and b > 1.

As regards the enhancement of the instability for free bound-
aries, we note that the global energy change due to the pertur-
bations, &, consists of three different contributions, in general.
The first is the energy change in the fluid interior, derived by
KCK as

ELIG .
0= T—J°5Bx§"+2prQQ’|¢,| rdr, (6.1)
where & = dufic» + rQéu, ¢ is the Lagrangian displacement
vector. The second contribution is due to perturbations of the
external vacuum field,

1
36y =7 f |6B*rdr , 6.2)

while the third is a surface contribution, 6&5, which vanishes
unless the equilibrium has surface currents (see Schmidt 1966,
§ 5-2). We avoid the latter here, and so the effect of free bound-
aries is given entirely by the integral (6.2), which is always
positive. This led KCK to conclude that “stability criteria are
not affected ” by the BCs. However, one should be careful upon
drawing such a conclusion from sufficient, but not necessary,
criteria. In fact, as noted by Bateman (1978), there are numer-
ous instances when free boundary instabilities grow faster than
fixed boundary ones, even though 6&,, > 0. The reason for this
is simply that by allowing & # 0 at the edge of the fluid, free-
boundary instabilities can make more effective use of the inter-
nal fluid potential energy, represented by the first two terms on
the right-hand side of equation (6.1). We found ample evidence
of such behavior in the preceding sections, and in CPS.

Blaes & Balbus (1994, hereafter BB) considered two-fluid
models of ions and neutrals coupled by collisions, ionization,
and recombinations. Their analysis is local, but includes an
equilibrium azimuthal field. They found that B, can alter the
stability criterion only in the limit of ionization equilibrium (as
opposed to ion conservation) and can in fact produce total
stabilization for B, 2 10B, if the ion-neutral collision fre-
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quency is below a certain threshold. In all other cases, B, can
cause a small reduction in growth rate, but does not affect the
stability criterion (i.e., the critical Alfvén frequency for stability
is unchanged from the B, = 0 case).® They take ¢, = 10V, so
that the critical V} for stability is ¥, ~ c,. This differs from our
result, V, ... ~ 7oy, since BB’s compressible model is sensi-
tive to the coupling between magnetosonic and rotation-
modified Alfvén modes, which is stabilizing. BB’s model does
not include vertical gravity, however, so buoyancy instabilities
that would be expected to become important near V,, ~ ¢, were
not detected.

Gammie & Balbus (1994, hereafter GB) considered an accre-
tion disk model that was local in the radial coordinate, but
global in z; ie., they solved for the vertical eigenmodes. One
should be cautious in comparing our results directly to theirs,
but their vertical node number n should compare roughly with
our k, and their radial wavenumber k with our radial node
number n. The near coincidence of notation here is unfor-
tunate; let us unambiguously relabel these parameters as n,, k,
k., and n,, respectively. For a Keplerian disk, they plotted
curves of constant growth rate in the (V,, V) plane for k, = 0
and n, = 1 (their Fig. 2), finding that stabilization is achieved
for V, ~ 1.5 irrespective of V,; this value agrees quite well with
the free-boundary results of CPS (we found V, ., ~ 1.43 for
a = 1.5). Their BCs are similar to ours in the sense that far
from the disk, the field lines move about freely, exerting no
stress on the disk.

On the other hand, although GB find that the growth
rate decreases for increasing ¥, (they consider values up to
Vs/c, = 5), it apparently never vanishes, nor does V, affect the
stability criterion. The discrepancy between these results and
those of the present paper could be telling us something about
the relative importance of vertical motions (which they treat in
detail, and we do not) and radial ones (vice versa). To date,
nonlinear calculations of the BH instability have indicated that
inward and outward radial motions at different z (the so-called
“channel solutions ”) are the immediate outcome of the linear
stage of the instability. It may be that the unstable modes are
more sensitive to variations in radial structure than in vertical.
GB’s local approximation in r could, therefore, have missed the
most important effect associated with strong B,; namely, the
prevention of the channel solution from ever forming.

Due to the apparent similarity between GB’s Figure 2 and
our Figure 6, one might be tempted to make a direct compari-
son between the two. We caution the reader against it, for the
following reason. The results in the former figure are for the
longest vertical wavelength (n, = 1 or k, = 0) mode only. For
this mode, the V, — 0 limit is automatically stable, since w; ~
Q, — 0. By contrast, our critical stability curves are mode
independent; i.e., they reflect the requirements for stability to
perturbations of arbitrary k. This explains the rather puzzling
feature of GB’s Figure 2 in the V; — O limit, namely, that the
absolute maximum growth rate is attained not at ¥V, = 0 as in
CPS, but at V, ~ 0.85. As an example, consider the a = b = 2
case, whose growth rate is given by the imaginary part of

6 A point of formalism is worth stressing here. The finding that B, does not
affect the stability criterion, regardless of its strength, is not surprising in a
purely local model such as that of BB. This is because terms behaving as B,/r,
which are crucial in the global model, are ignored in local calculations. The
disappearance of B, from the stability criterion in the latter case can be seen
immediately from egs. (4.7) and (4.17).
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equation (4.5). In the k — 0 limit, E — E,(2)/k?, giving
o= —k(V3 + E, V2 —2E}?V)'?IE, .

Considered as a function of V,, the maximum of w; occurs at
V, = 0.52, independent of V;. The point this argument over-
looks is that as V, becomes small, k necessarily becomes large
for the most unstable mode; e.g., when V, = 0.05 and V,, 2 0.7,
there are no unstable modes whatsoever at k = 0 (Fig. 3b). GB’s
Figure 4 in fact shows that n, = 1 is not the fastest growing
mode for nonzero V. One should not, therefore, treat GB’s
Figure 2 as our Figure 6; i.e., as a critical stability diagram.

Finally, we note that in the context of uniformly rotating
magnetic stars, which are expected to have distributions of B,
increasing with radius, Pitts & Tayler (1985) identified an insta-
bility having the same characteristics as the LFI (i.e., stability
was ensured for low m [azimuthal wavenumber] modes pro-
vided that ryQ, 2 V), but did not obtain detailed growth
rates or critical stability curves.

6.2. The Large-Field Instability: Possible Environments

The results of § 4.6 suggest that the LFI is not likely to be a
threat in standard thin accretion disks. In some environments,
however, the characteristic value for the LFI, V,/r,Q, 2 1,
might in fact be achieved. Recent observations of flattened
structures in massive star-forming regions (see, e.g., Aitken et
al. 1993) suggest that such “pseudodisks” are very massive
(~10% M) and also that the dominant magnetic field com-
ponent is toroidal. Such massive objects are likely to be self-
gravitating and sub-Keplerian, so that rotation may not be as
important a mechanism of support as in thin disks. It remains
to be seen how the LFT is affected by self-gravity.

On larger scales, roughly 50% of giant molecular clouds and
somewhat fewer individual dark clouds and cores (Goldsmith
& Arquilla 1985) possess measured velocity gradients that have
been interpreted as being due, at least in part, to large-scale
rotation (Blitz 1993). As the magnetic fields in such objects are
substantial [magnetic energy ~ gravitational energy ~ kinetic
(nonthermal) energy; see Myers & Goodman 1988], the condi-
tion V,/roQ, 2 1 is likely to be satisfied in at least some
regions. Of course, the effects of compressibility and self-
gravity are also likely to be important, so a new model is
needed.

A concrete example displaying appropriate conditions for
the LFI may already exist. The L1641 region of Orion A con-
sists of several low-density filaments, whose major axes run in
a roughly north-south direction. In addition to a north-south
velocity gradient that extends across all of Orion A (~8 km
s~ 1), L1641 also contains an east-west gradient, ~2 km s~ !,
indicating that the overall velocity field of Orion A is helical in
nature (Bally 1989). Further, the surrounding magnetic field
displays the same symmetry (Heiles 1987). It is well-known
that such a helical field is characteristic of superposed vertical
and azimuthal fields. While figures for L1641 alone are hard to
come by, the average east-west gradient in the Orion A cloud
as a whole (40 x 2 pc) has been estimated at 0.135km s~ pc~!
(Kutner et al. 1977; Genzel & Stutzki 1989). If this is entirely
due to rotation of a cylindrical region ~20 pc in radius, then a
crude estimate of the rotation velocity gives V, ~ 2.7 km s !,
Comparing this with ¥, ~ 1.8 km s~ !, the density-averaged
Alfvén speed for the region (Heiles et al. 1993), one obtains
V,/V, ~ 0.67. Given the likelihood that V, ~ V; (due to the
predominantly toroidal appearance of the field), and that V. is
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probably an overestimate, one sees that values of V,/(r, Qo) 2
1 should not be out of reach in this environment, and perhaps
several others.

6.3. Summary

In this paper we have examined a variety of magnetic field
distributions and orientations, with the principal intent of
gauging their effect on the VC instability of magnetized accre-
tion disks. The main results are the following: (1) An azimuthal
field, varying as some inverse power of radius, has a stabilizing
effect on the VC instability if its characteristic Alfvén speed,
V40, is less than the characteristic rotational speed, ro Q. (2) If
Vso R 70y, the system is susceptible to the LFI, whose peak
growth rate increases with V. This instability is more likely to
affect thick, massive disks and molecular clouds than thin acc-
retion disks. (3) Our calculations for finite vertical wave-
numbers suggest that complete stabilization of thin disks by an
equilibrium B, is unlikely, since the required field (V; ~
roQy > c,) is prone to Parker instability. (4) In contrast to
CPS, taking free boundaries into account gives qualitatively
different behavior. In particular, whereas absolute stability can
be achieved for certain rigidly bounded configurations, none of

Vol. 453

the freely bounded equilibria we examined are similarly stable.
(5) In the absence of an equilibrium azimuthal field, a configu-
ration with a radially varying vertical field has a smaller peak
growth rate than in the constant field case. However, the most
unstable wavenumber for fields that decrease extraordinarily
quickly with radius may be unaffected or even increased.

The advantages of adopting a global analysis to address
questions of stability in the presence of strong magnetic fields
are even more apparent in the present work than in CPS. In
particular, our results show that differentially rotating bodies
threaded by strong azimuthal but weak vertical fields should
be highly unstable for certain specific rotational and azimuthal
field profiles (§ 4.5.2), a result not definitively shown by any
local or thin shell analysis. It is hoped that future work will
focus on these particular profiles, in order to more fully
examine the consequences of the ensuing instabilities.

We thank Peter Sutherland for reading an earlier version of
the manuscript and Omer Blaes for several useful discussions.
C. C. is grateful to McMaster University for financial support,
while the research of R. E. P. is supported by the Natural
Sciences and Engineering Research Council of Canada.

APPENDIX A

THE PERTURBATION EQUATIONS

We begin with the equations of ideal MHD in cylindrical polar coordinates (r, ¢, z):

Ou B-B 1
P[E +(u-V)Il:|= —pV‘P*V<P+W)+Z;(B VB, (A1)
OB
E:Vx(uxB’), (A2)
V-u=V-B=0. (A3)

Here p is the gas pressure, p the constant density, # the fluid velocity, and ¥ = — GM/r the gravitational potential. Substituting
perturbations of the form (3.1) into these equations and only retaining terms of linear order in perturbed quantities, we obtain

ikB B 7] . B
iw5u+v5h—’k—zaB+2 —2_ §B, — Qdu, § + 2 ﬁaB,—gaau,tp— Z $B,2=0, (Ad)
4rp 4npr 4np 4np
iw 6B — ikB, éu + 2(4 OB, — A du,)p + B,ou,5 =0, (AS5)
% (réu) + ikou, =0, (A6)

where h = p/p + B?/(8np) is the specific enthalpy, o = —rQ/2, # = —[(rQ)’ + Q]/2 are the usual Oort shear parameters, and
A = —r(By/r)/2, B = —(By + By/r)/2 are their magnetic counterparts. For future reference, we note that with the power-law forms
(2.1), the first two of these equations become

ikB B 2 — b)B . (1—0¢B
iw5u+V5h—l—’(SB+2 —‘L53¢—Qéu¢ﬁ+ (2—a)Q&u,—uQ53, ¢—(——L63,2=0, (A7)
4np 4npr 4npr 4npr
. . bBQ N Bz A
iw 0B — ikB, ou + | aQ 0B, — r ou, lp +(1 —c) ~ ou,z=0. (A8)

Note that equations (AS) and (A6) imply V * 6B = 0. Resolving equations (A7) and (A8) into components, and using equation (A6),
one can eliminate all variables except du,, leading to the perturbation equation (3.2).
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APPENDIX B
ROTATING VERSUS NONROTATING EQUILIBRIA

The stationary pressure distribution in the nonrotating case can be found from equation (2.2) with Q, = 0. When ¥, = constant,
the pressure maximum relation is simply

Gr—M =(b-2)V3,. (B1)

o
Note that this requires b > 2 for a sensible equilibrium. Using this to eliminate GM in equation (2.2) and integrating gives

p 1- (r/ro)—”’—“]

p
For a constant vertical field, equation (2.5) reads (in proper units)

P_Po 2ro o 1=(fr2™ D Vi [re o 1—(rfrg 3V
p_p+(r090){r SATPa T ey R V) ‘

206 — 1) (B2)

Q=0

=@+V;O(b—2)[19—1+
p r

When b = g, this becomes

R L R . =+ EL SR PR LR R O] e

< IS
|3

26— 1) 26— 1)

7o Q0 \2
beg = [ 22 b.
eff <V¢0>+

Clearly, equation (B3) is identical to equation (B2), but for the replacement of b by b.;. The two equations become identical in the
limit Vo > roQq, which is precisely the regime of the LFI found in this paper. In fact, as soon as Vj, X ro Q,, one would expect that
the rotating system should start to display much of the qualitative behavior of its nonrotating counterpart, since then the
contribution of the magnetic terms to the pressure is of the same sign in equations (B2) and (B3) for b 2 1. Finally, one might be
tempted to blame the LFI for b < 2 entirely on the violated equilibrium condition (B1). However, this condition applies only when
Vo > 10 €Qo. As an example, take b = 1.7. Then Figure 1b shows that all equilibria with 0 < ¥V, < 1.83 are allowed.

where

APPENDIX C
THIN-SHELL APPROXIMATION

Following Kumar et al. (1994), we adopt a thin shell approximation, in which the radial dependence of equilibrium quantities is
ignored to first order, but their derivatives are not. The perturbation equation (4.1) then becomes

a*y
@ + Q0¥ =0, (C1)
where
2k2VE 5 2k? 5 .2 8k2wQAV¢ 2. 3
Q0= & (bd _ZQA)+F(2(D —aw)—~—4—— k +Z s (C2)

Y =r'?5u,, and { = r — 1. Since Q, is a constant, the solution of equation (C1) is ¥ = ¢, sin (Qo)"?¢ + ¢, cos (Qo)"/?(; applying
the rigid BCs then gives Q, = (nn/s)?, where s is the shell half-thickness and n the radial mode number. Assuming ks > n, equation
(C2) yields the following characteristic polynomial:

* + [2(a—2—bV3) — 203]w? + 8Q, V0 + QA[QF + 2(b — 2)V2 — 2a] =0, (C3)

where the reader is reminded that all equilibrium quantities are to be evaluated atr = r, = 1.

The roots of equation (C3), although calculable analytically, are algebraically complicated and do not give much physical insight.
Kumar et al. (1994) adopted a procedure equivalent to expanding w in powers of ¥}, taking the latter as a small quantity. As our
object is to obtain the critical stability curves, it is more useful for our needs to place no restriction on V,,; rather, we take Q, as a
small parameter. Expanding w as

0=w)+Q0; + Qw, + -,

substituting into equation (C3), and solving the resulting equation in orders of Q,, we find there are two branches of the dispersion
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' relation. One gives all real contributions to w; the other has w3 = 0and

o = = 2V, + [bb —2)Vy + 2a + b — ab)V} — a(2 — a)]'/?

- a—2-bV} (€4
- Positivity of the square root argument leads to the stability criterion (4.14).
APPENDIX D
PROOF THAT w? IS REAL WHEN B, = B,(r) AND B, =0
The perturbation equation in this case is (eq. [3.2]):
1 VY] 4kle?Q? 1
= [rs*(6u,) Y + {kzr[(Qz)’ ! ’)] T @Z(kz + —2>}5u, = 0.
r r @ r
Multiplying through by r du* (an asterisk denotes the complex conjugate) and integrating, one finds
ra 2y 4k2 202 1
[ ford @y - C2 ) 22 i+ )l par s 10, (©1)
s r @ r
where
r2 r2 ra
I= J Su*[r&*(ou,) ] dr = rdd*(du,) su*| — .[ r®? | (ou,) |*dr . (D2)
Ir1 ry ry

The latter result is obtained via integration by parts.

We consider rigid BCs only, since we restrict consideration to B, = constant in the free boundary case to avoid currents (§ 2.2.1).
Applying éu,(r;) = du,(r,) = 0 to equation (D2), the first right-hand side term vanishes. Substituting the result back into equation

(D1) and taking the imaginary part of the entire expression gives

r2 4
(@) f 1 {l(éu,)' P+ [l%

ViQ? + k% + ;lz:lléu,lz}rdr =0,

where a subscript I indicates the imaginary part. The integrand is positive definite for all r, showing that (w?); = 0.
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Note added in proof—The possibility that accretion disks might exist for which V, ~ r, Qg was examined by Shibata, Tajima, &
Matsumoto (1990) (Shibata, K., Tajima, T., & Matsumoto, R., ApJ, 350, 295 [1990]). Their results indicated that the Parker
instability is suppressed in disks that are formed with a large magnetic energy, allowing the field strength to increase still further.
Such disks would then be susceptible to the LFI. We also point out that some of the field configurations studied in this paper have
recently been examined by Coleman, Kley, & Kumar (1995) (Coleman, C. S., Kley, W., & Kumar, S., MNRAS, 274, 171 [1995]).
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