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ABSTRACT

In a previous paper we introduced TODCOR, a new two-dimensional correlation technique, to analyze
spectra of binary stars and derive the Doppler shifts of the two components. We propose here a generalization
of TODCOR to analyze spectra of triple-lined stellar systems and derive the Doppler shifts of the three com-
ponents. The algorithm computes the correlation of the observed spectrum against combinations of three tem-
plate spectra, with all possible shifts. Thus, the correlation is a three-dimensional function in velocity space.
The location of the maximum of this function corresponds to the actual shifts of the three components.

We demonstrate the difficulties of the one-dimensional cross-correlation and the advantages of the new
algorithm with a simulated example. We also analyze with the algorithm a real test case, HD 100018, and we
show that the velocities derived with the new extension of TODCOR solve a long-standing discrepancy
between the old orbital elements and the mass estimate for the system.

Subject headings: binaries: spectroscopic — stars: individual (HD 100018) — techniques: spectroscopic

1. INTRODUCTION

In a previous paper (Zucker & Mazeh 1994, hereafter Paper
I) we introduced a novel technique to analyze composite
spectra of binary stars. The technique, TODCOR, is a two-
dimensional correlation scheme to derive the radial velocities
of both components of double-lined spectra. TODCOR was
introduced as a generalization of the cross-correlation tech-
nique (Simkin 1974; Tonry & Davis 1979; Hill 1993) to deal
with the difficulties encountered in double-lined spectra, when
the lines of the two components cannot be resolved. In Paper
IT of this series (Mazeh et al. 1995) we applied TODCOR
successfully to an extremely eccentric binary, where during
most of the orbit the two velocities are very close to each other.
The ability to derive the velocities at all phases allows a
reduction in the amount of observations required and avoids
depending only on observations close to periastron.

In this paper we introduce an extension of TODCOR to
analyze spectra of triple-lined systems and derive the radial
velocities of the three components. In cases where the lines of
the three stars are well separated, the one-dimensional cross-
correlation exhibits three distinct peaks, and therefore the dif-
ferent velocities can be easily derived. The problems arise when
two of the velocities are not well separated, leading to blending
of the one-dimensional cross-correlation peaks and even
blending of the two-dimensional correlation peaks.

The inability to resolve the velocities can occur rather fre-
quently in triple systems for which all three components con-
tribute significantly to the observed spectra. Since a significant
fraction of binaries might actually turn out to be triple systems
(Duquennoy & Mayor 1991; Mayor & Mazeh 1987), it is
important to study the known triples thoroughly. The frequent
blending of spectral lines occurring in triple systems limits our
ability to study this important part of the population of multi-
ple systems.
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To overcome this problem, we propose to consider any
observed triple-lined spectrum as a sum of three known tem-
plates with unknown shifts. We suggest calculating the corre-
lation between the observed spectrum and combinations of the
three templates, rendering the correlation a function of the
independent shifts of the three templates. The location of the
maximum in the three-dimensional velocity space will corre-
spond to the actual Doppler shifts of the three components of
the observed spectrum.

In order to calculate the correlation in this three-
dimensional space, we would need O(N*) operations, where N
is the length of the spectra. However, by using Fourier trans-
form techniques, the number of operations required is reduced
to O(N3). In cases where the spectra have on the order of 103
pixels, this amounts to a reduction from about 10*2 operations
to about 10° operations, rendering the calculation possible on
present workstations.

This paper presents the extension of TODCOR to handle
triple-lined spectra. Section 2 briefly explains some of the
details of the algorithm, while a more detailed exposition is
given in the Appendix. Section 3 demonstrates the new capa-
bilities with a simulated example, while § 4 deals with a specific
real test case, HD 100018. Possible applications of the pro-
posed extension are discussed briefly in § 5.

2. THE THREE-DIMENSIONAL CORRELATION

In the one-dimensional cross-correlation technique, one cal-
culates the correlation as a function of the shift between an
observed spectrum fand a template g:

RY{f, g} = RV{f, g}(s) ,

where s is the shift between the observed spectrum and the
template. For double-lined spectra, TODCOR calculates the
correlation between f and a combination of two templates g,
and g,, with different shifts and an intensity ratio, denoted
by a:

gi(n —s9) + ag,y(n — s5) .
It can be shown that « is actually the ratio between the inten-
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sity of the secondary and the intensity of the primary. The
correlation is now a function of sy, s,, and a:

R(Z){f; g1 g2} = R(Z){f; 91> gz}(sp $2, (Z) .

As we have shown in the Appendix to Paper I, we can calcu-
late this function by using only three one-dimensional corre-
lation functions: RM{f, g,}, RV{f, g,}, and RM{g,, g,}, thus
reducing substantially the computational complexity.

Regarding the intensity ratio o, the algorithm can be used
either in cases where o is known a priori, or in cases where it is
unknown. In the first case, TODCOR simply calculates the
correlation using the known a. In the second case, TODCOR
eliminates the « dependency by finding analytically the a« which
maximizes the correlation for each pair of shifts. In both cases,
the correlation turns out to be a function only of s, and s,:

Rm{f’ 915 92} = R(z){f’ g1s gZ}(Sl’ s3) -

Now we extend the technique to the triple-lined case. We
have three templates, g,, g,, and g5, and we calculate the corre-
lation against a combination of the three templates with three
different shifts:

g1(n — s1) + ag,(n — s;) + Bgs(n — s3) .

Here a is the ratio between the intensity of the secondary and
the intensity of the primary, while g is the ratio between the
intensity of the tertiary and that of the primary. The corre-
lation is now a function of the three shifts and the two intensity
ratios a and f:

Rm{f: 91> 92, 93} = R(a){f’ gd1> 925 gs}(sn 52,83, % B) .

We show in the Appendix that, as in the two-dimensional
case, this expression can also be computed using only one-
dimensional cross-correlation functions, in this case six cor-
relations between the four spectra. Using these six one-
dimensional correlations, we calculate the correlation for a
grid of values for the shifts and then locate the maximum in
this three-dimensional grid. The shifts at the maximum are the
estimates for the actual velocities of the three components of
the system.

Regarding the intensity ratios, we consider four possible
cases: (a) both a and g are known a priori, (b) both « and g are
unknown, (c) « is known and B is unknown, and (d) « is
unknown and g is known.
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The first case requires only substitution of the known a and
B in the formula. The three other cases are handled by finding
the unknown ratios which maximize the correlation for each
set of shifts s;, s,, and s5. In all cases, the correlation turns out
to be a function only of s, s,, and s5.

3. TESTING THE ALGORITHM

We have performed numerous tests in which the new algo-
rithm was applied to simulated triple-lined spectra, prepared in
the same way as those presented in Paper I. All tests showed a
very good agreement between the input values and the esti-
mates obtained with the extension of TODCOR.

We present here the results obtained for a simulated triple
system composed of a calculated G5 V spectrum and two iden-
tical calculated KO V spectra. The calculated spectra are taken
from a grid of synthetic spectra computed by Jon Morse from
model stellar atmospheres developed by Kurucz (1992a, b).
They cover a 45 A spectral band centered at 5187 A, the stan-
dard window for routine stellar work at the Center for Astro-
physics (Latham 1985). Since the spectra in the grid are
characterized by their effective temperature, we chose a tem-
perature of 5500 K for the G5 V spectrum and 5000 K for the
KO V spectrum. The intensity ratio between the KO V second-
ary and the G5 V primary was chosen to be 0.5, and the ratio
between the KO V tertiary and the G5 V primary was taken to
be 0.4. To mimic real observed spectra, we added normally
distributed noise with a signal-to-noise ratio (S/N) of 85.

The first example we show here is a triple-lined spectrum in
which we combined the templates with well-separated veloci-
ties of —50 km s~ ! for the primary, 0 km s~! for the second-
ary, and + 50 km s~ ! for the tertiary. The combined spectrum
is displayed in Figure 1a, and a close examination reveals three
sets of lines. Figure 1b shows the classical one-dimensional
cross-correlation against the G template, where one can see
clearly the three peaks corresponding to the three velocities.
This is a simple case where the standard one-dimensional tech-
nique can give satisfactory results because the three peaks are
sufficiently separated.

In the second example, we combined the spectra in a way
that causes the peaks of the two K stars to blend, with veloci-
ties of +20 km s~ ! for the primary star, —15 km s~ for the
secondary, and —25 km s~ ! for the tertiary. Figure 2a displays
this combined spectrum, where only two sets of lines can be
seen. In Figure 2b we display the one-dimensional cross-

Velocity (km/s)
FiG. 1b

FIG. 1.—(a) Simulated spectrum composed of three templates with velocities of —50 km s~ for the G5 V primary, 0 km s ™! for the KO V secondary, and 50 km
s~ ! for the KOV tertiary. (b) One-dimensional cross-correlation function against the G5 spectrum. Arrows indicate the velocities used in the simulation.
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FIG. 2—(a) Simulated spectrum composed of three templates with velocities 20 km s ™! for the G5 V primary, — 15 km s~ * for the KO V secondary, and —25 km
s~ ! for the KO V tertiary. (b) One-dimensional cross-correlation function against the G5 spectrum. Arrows indicate the velocities used in the simulation.

correlation function of the spectrum against the G5 V tem-
plate. The peak corresponding to the velocity of the G5 V stars
is clearly separated and located at the correct velocity, whereas
the two KO V stars have blended into one peak.

Severe line blending poses a major difficulty to the classical
cross-correlation techniques, and such spectra can be suc-
cessfully resolved only in special cases (e.g., Fekel et al. 1994).
In the second simulated example, we were indeed unable to
measure the velocities of the two KO V stars, either with clas-
sical cross-correlation techniques or by using TODCOR.
However, applying the new algorithm allows the problem to be
readily solved. The velocities derived with the new extension of
TODCOR are 1998 + 0.06 kms~!, —150+ 0.1 kms™!, and
—25.2 4+ 0.2 km s~ !, with intensity ratios of o = 0.51 4 0.02
and B = 0.38 + 0.02. To illustrate the solution, we show in
Figure 3 the three-dimensional correlation function, projected
onto three axes. The second curve, for example, represents the
correlation as a function of the second velocity, leaving the first
and the third fixed at the value of the maximum. The most
striking features are the enhancement of the relevant peak in
each graph and the attenuation of the other two. All three
velocities are easily derived.

We applied the algorithm to a broad set of simulated
spectra, with a variety of intensity ratios, velocities, and S/Ns.
We were able to measure correctly the three velocities (with
uncertainties of up to 3 km s~ ') even at S/Ns of 3 and when the
tertiary star is 10 times fainter than the primary (8 = 0.1). For
an S/N of 100, we were able to detect a tertiary with = 0.03.
It is obvious that a brighter tertiary and a higher S/N improve
the results.

4. A REAL TEST CASE: HD 100018

After applying the algorithm successfully to numerous
simulations, we went on to try it on a well-known triple-lined
system, HD 100018 (ADS 8189, a,000 = 11%30™49%9, 6,00 =
+41°17'12"). This object has long been known as a visual
binary with a period of about 85 yr (Riechert 1923). The varia-
bility of the radial velocity of one of the components of the
visual pair was discovered in 1918 by Adams, Joy, & Sanford
(1924), who also discovered double lines in its spectra. Petrie &
Laidler (1952) found that the star is a spectroscopic triple;
sometimes they could see three sets of lines. They identified the
third set of lines as coming from the visual secondary B, which
-could not be resolved from A, the visual primary, upon their

slit head. They determined a 7.4 day orbit for the close pair
(Aa, Ab). Their findings were confirmed by Petrie & Batten
(1969), who studied the system further and succeeded in mea-
suring the radial velocities of the three components in some of
their spectra. In all the old solutions of the spectroscopic pair,
one can see the absence of measurements close to conjunction,
where the velocities of Aa and Ab are close to the center-of-
mass velocity of A. Since the relative velocity between A and B
is small, the velocities of Aa and Ab at conjunction are also
close to the velocity of B, which means that all three lines are
blended.

Petrie & Batten used the center-of-mass velocity of the close
pair and the velocity of B to calculate the relative velocity of
the visual pair. The value they obtained was 5.8 + 0.7 km s~ 1.
Combining this result with the visual orbit of Couteau (1965),
they were able to estimate the amplitude of the relative velocity
curve, K, + K, and from there they were able to estimate the
semimajor axis. The value they derived was 14.1 AU, which,
together with an orbital period of 86.44 yr (Couteau 1965),
corresponds to a total mass of the system of 0.38 M. This is
inconsistent with the spectral classification of Petrie & Batten,
who classified Aa, Ab, and B as F2, F5, and F2, respectively.
This classification of the components suggests a total mass of
about 4 M. We repeated their calculations using the more
recent orbit by Couteau (1989) and obtained very similar
results. This puzzling disagreement has remained unsolved for
the past 25 years.

We observed HD 100018 between 1986 and 1989 with the
digital speedometer (Latham 1985, 1992) operated by the
Center for Astrophysics (CfA) with the 1.5 m Wyeth Reflector
at the Oak Ridge Observatory in Harvard, Massachusetts. The
spectral resolution of the observations is 4/AA = 30,000. Alto-
gether, we have secured 42 spectra of HD 100018, spanning
over 1000 days. We also included in our analysis an additional
spectrum obtained approximately 2000 days later, during
1994.

To derive the three velocities, we selected templates from the
same grid of synthetic spectra from which we took the spectra
for the simulations. The synthetic spectra cover a 45 A spectral
band centered around 5187 A, identical to the observed spec-
tral range (Latham 1985). Using the spectral classification of
Petrie & Batten (1969), we started with templates calculated
for stars with temperatures of 7000 K, 6500 K, and 6750 K for
components Aa, Ab, and B, respectively, metallicity [m/
H] =00, logg=4.5, and v sin i = 0.0. Deriving the three
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All our observations were made roughly at the same phase
of the long orbit, which is 0.239 + 0.015 according to the
orbital elements by Couteau (1989). The center-of-mass veloc-
ity of Ais —2.1 + 0.1 km s, and the average velocity of B is
—17.4 + 0.2 km s~ !. Therefore, the relative velocity of the com-
ponents of the visual pair is V3, = —5.3 + 0.2 km s~ *. Using

200 Couteau’s orbit, we find that this value of V3, implies that
K,+Kz=95+0.8 km s~ !, and the semimajor axis of the
visual binary is 31 + 3 AU. This value for the semimajor axis

F1G. 3.—Cross sections of the three-dimensional correlation function, taken
at the peak of this function. Spectrum is the same as in Fig. 2. (a—) the
correlation function as a function of the primary, secondary, and tertiary
velocity, respectively, with the other two velocities fixed at the value of the
maximum. Arrows indicate the velocities used in the simulation.

velocities for each spectrum took about 35 s on a 33 MHz

SPARC workstation.

We performed an iterative search in the parameter space
defined by the characteristics of the templates. At each iter-
ation we solved the orbit of the spectroscopic pair using
ORBI18 (Mazeh, Krymolowski, & Latham 1993), a code which
takes special care to find the global minimum of the y? statistic
in the orbital elements space. Then we changed the parameters
of the various templates, looking for the combination which
gave the best fit of the velocities to the radial velocity curve for
the close pair. We also changed the rotational broadening of
the templates by convolving them with a rotational profile
(Gray 1976). The final values we adopted from this procedure
for the temperatures are 7000 K, 6500 K, and 6750 K for the
components Aa, Ab, and B, respectively. The final value for the
rotational velocity is v sin i = 8 km s™! for all three com-
ponents, although this value probably does not correspond to
the true rotational velocity of the stars, since part of the line
broadening is caused by instrumental effects. The intensity
ratios we obtained are a = 0.55 between the secondary and the
primary and B = 1.05 between the tertiary and the primary.
We estimate the uncertainties of these ratios to be 0.05 at a

confidence level of 1 4.

For the final parameters stated above, the velocities we
derived are listed in Table 1. Figure 4 depicts the radial veloc-
ity curve for the close spectroscopic pair together with the
velocities of the third star, and Table 2 presents the orbital
elements of this solution. The elements are very similar to those
obtained by the previous studies, except for minor differences.

Assuming the masses for Aa and Ab corresponding to spec-
tral types F2 and F5 are 1.3+ 02 Mg and 12 + 02 Mg
(Habets & Heintz 1981), we arrive at an estimate for sini, of
the close pair of 0.9 & 0.1. This means i; = 76° + 9°. Couteau
(1989) determined an inclination angle for the visual pair of
i, = 5627, which means that the minimal angle between the
two orbital planes is 19° + 9°.

TABLE 1

DEerIVED RADIAL VELOCITIES OF HD 100018

HID Vaa Vao v,
(—2,440,000) (kms ™) (kms™') (kms™Y)

6438.816.......... ~27.89 27.25 -116
6459.765........... —56.54 59.00 —534
6597.675.......... 76.81 —94.65 —8.11
6757.839.......... —~299 399 918
6771.949.......... 2284 23.82 —6.82
6803.820.......... 5584  —66.92 —6.53
6812.813.......... 24.49 —32.60 —6.32
6813.875.......... —59.99 61.84 —6.72
6819.703.......... 7430  —90.12 —5.56
6837.924.......... 3930 41.83 —1761
6842.830.......... —2596 23.58 —17.39
6860.887.......... —19.73 16.99 —6.18
6900.737.......... 7979  —96.74 —625
7104.936.......... ~2222 2191 —722
7115928.......... 5780  —66.58 —7.09
7144.963.......... 81.00  —96.13 —1.17
7163884.......... —-2919 29.60 —8.40
7167917.......... 3135 —43.66 —692
7172746.......... 1770 —21.13 577
7198.720.......... —61.96 66.22 —6.58
7202.845.......... 35.19 —44.10 —764
7214789.......... —50.01 54.86 ~6.88
7737 330 —5.75 —931
7218901.......... 8097  —9229 —6.65
7220.763.......... —60.50 61.01 —-9.15
7222.845.......... —36.16 38.10 —8.05
7226.173.......... 6836  —79.55 —7.24
7221.750.......... —40.02 3741 —7.59
7228728.......... —~6330 67.97 —808
7229.761.......... —46.18 4536 —1735
7232.829.......... 51.67 —60.79 —1739
7310668........... —56.18 59.70 747
7320.586.......... 1146  —1820 —6.14
7347.660.......... —58.20 58.04 —754
7481.8%.......... —32.46 31.35 —8.60
7495933.......... —5099 5491 787
7511.797.......... —2431 23.19 -897
7517.820.......... —5823 61.80 —1765
7526982.......... —15.10 11.08 —6.36
7538.953.......... —59.94 63.71 -7.19
7544.767........... 7624  —92.36 —17.63
7550.820.......... 4357  —53.17 —1.53
9535.559.......... 38.93 —49.41 —9.44
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F1G. 4—The orbital solution of HD 100018 as a function of the orbital
phase of the close pair. Triangles, squares, and circles represent the velocities of
the primary (Aa), secondary (Ab), and tertiary (B), respectively. The two con-
tinuous lines display the calculated radial velocity of the close pair.

leads to a total mass of 4 + 1 M, in very good agreement with
the assumed spectral types. This is a substantial improvement
over the result of Petrie & Batten, who obtained an estimate of
0.38 M, for the total mass of the system. Their erroneous
result stems from their value of V3, which is incorrect for that
phase of the wide binary.

From the semimajor axis reported by Couteau, 0741, we
derive a parallax for the system of 07013 + 07001. Halliwell
(1981) summarized a long controversy regarding the parallax
of the system and suggested the true value lies in the range
between 07009 and 07042. He concluded that the most prob-
able value is 07013, which we can now confirm.

It is interesting to note that Petrie & Batten (1969), referring
to the possible source of the discordance between the various
estimates of the parallaxes and the masses, wrote: “ The most
likely cause of systematic error in the radial velocities is blending
of the profiles of each line triplet. The stronger lines, used for
radial velocity measurement, are not completely resolved. ...
Therefore, the measured position of all three lines will be affected
by the blending of their profiles.” Since our work is intended to
deal precisely with this effect, it is gratifying to see that it has
solved the problem in exactly the way foreseen by Petrie &
Batten.

5. DISCUSSION

We have shown in this paper that the extension of
TODCOR is capable of deriving reliable radial velocities of the
three components of triple systems. Admittedly, the simula-
tions we presented are free of any complications which arise in
real cases, mainly mismatches between the templates and the
actual stars, which restrict the capability of any correlation
technique. However, our algorithm does improve the ability to
eliminate the error caused by blending of the peaks or spectral
differences between the components. Using this algorithm, one
actually correlates each component of the triple system with a
specific template tailored to its spectral type, rather than using
the same template for all components. The real system we
analyzed here demonstrates the applicability of the algorithm
to real stellar spectra. It also illustrates how major improve-
ments in velocity measurement have solved a long-standing
discrepancy between the old measurements and the mass esti-
mate for the system.

It may be possible to use TODCOR to obtain estimates of
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TABLE 2
ORBITAL ELEMENTS OF THE CLOSE PAIR

Parameter Value
Pd).oooovvienninninnnn. 7.39905 + 0.00002
pkms™Y) -21+40.1
Kikms™)............. 723+ 02
Kykms™) ............. 81.6 + 0.4
€ 0.356 + 0.002
17 6526 + 0°4
T(JD —2,440,000)...... 7182.67 + 0.01
a, sin i(10° m) 6.87 + 0.02
a, sin i(10° m) 7.76 £+ 0.04
M, sin® i(M ) 1.21 4 0.01
M, sin® (M) 1.072 4+ 0.008
My/M{ oo 0.886 + 0.005
gkms ...l 0.82
aykms™) . 1.84

various parameters of the components of binary systems affect-
ing the spectra besides the velocity, such as the spectral types
itself, the rotational velocity, and also the magnitude difference
between the system components. This can be done by search-
ing for the best correlation, or by searching for the best orbital
solution, as was done here in the case of HD 100018.

Analysis by any correlation technique requires the avail-
ability of templates, either synthetic or observed, which should
be as close as possible to the real spectra. Among the tech-
niques aimed at generating templates directly from the
observed spectra, we mention here the tomographic method of
Bagnuolo & Gies (1991), and the recent disentanglement pro-
cedure of Simon & Sturm (1994). Suitable extensions of those
techniques to the case of triples, together with the extension of
TODCOR presented here, may prove to be fruitful in analyz-
ing triple-lined spectra.

Measuring the complete set of velocities in triple and other
multiple systems may contribute to our understanding of triple
systems, their interesting dynamical behavior (Mazeh &
Shaham 1976; Mazeh & Mayor 1983; Soderhjelm 1984;
Bailyn 1987; Mazeh 1990; Mazeh et al. 1993), and the statistics
of their various characteristics (Fekel 1981). The next paper in
this series will deal with a specific triple-lined system—HD
98800 (Torres et al. 1995). We intend in the future to apply the
algorithm to other known triple systems, such as Gliese 644
and Gliese 866, and to report our findings in subsequent
works. Another advantage of the algorithm is the improved
ability to detect faint third comparisons to known spectro-
scopic binaries. As we demonstrated in a previous work
(Mazeh & Zucker 1994), TODCOR is capable of detecting
very faint companions and measuring their velocities. This
may prove to be true also in the triple-lined case.
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APPENDIX

Both the stellar spectrum and the template are assumed to be given as a function of n, where
n=Alni+ B.

Thus, the Doppler shift results in a uniform linear shift of the spectrum.
The one-dimensional cross-correlation function of Tonry & Davis (1979) is

RS, g}s) = M , (A1)

No,o,

where N is the number of bins in the spectra, and o, and g, are the intensity standard deviations of the spceua:
1
2 2
ot = n)? .
=N

Actually, since the sums do not include exactly N summands, but rather the number of overlapping bins, N in the denominators
should be changed to the overlap length. The calculations do not differ much, so we choose to keep N for simplicity.

As Tonry & Davis point out, one can compute the numerator in equation (A1) effectively with the fast Fourier transform
(FFT) algorithm. We denote the discrete Fourier transforms (DFTs) of f(n) and g(n) by F(k) and G(k), respectively. The DFT of

2 fW)g(n — s)is
F(k)G(k)* ,
where G(k)* denotes the complex conjugate of G(k). Using FFT, we can calculate the complete cross-correlation function in an
O(N log N)process, instead of O(N ).
Within the new three-dimensional algorithm, we correlate f(n) against a combination of three templates, with three different
Doppler shifts:
gi(n — ;) + ag,(n — s3) + Bga(n — s3),

where o and f are the intensity ratios of the system, which we assume are known. We relax this assumption later.
As a direct extension of equation (A1), we obtain

Y SLg1(n — 1) + aga(n — s5) + Bgs(n — s3)]
No;a,(sy, 52, S3) ’

R(3){f; g1 92, g3}(sl5 S2, 83, &, ﬂ) = (A2)

in which
02(Sy, 83, 83) = % ; [9:1(n — s1) + aga(n — 5,) + Bgs(n — s3)1% .
The numerator in equation (A2) can be written as:
%: fing,(n —sy) + o ; fmga(n —s3) + ﬂ; Smgs(n — s3),
that is, three summands which can be computed efficiently using FFT, just like the numerator of equation (A1). However, the

denominator in equation (A2) includes g, which is a function of sy, s,, and s,, unlike the denominator in equation (A1), which is
constant. To compute o, we note that

0X(sy, 3, 83) = 62, + a’6Z, + ol + 2004, + 2045 + 20045 ,
where
1
O'i,(sj —s5)= N Z gin — si)gj n— Sj) .
n

The first three terms include the standard deviations of the individual templates. The other three have exactly the same form as the
numerator of equation (A1), which makes them easy to compute via FFT. For simplicity, let us define

1

Ci(sy) = No,o Z fmg,(n —sy),
1

Cysy) = No,o Z fimg,(n —s,),
1

Ci(s3) = No,o Z f)gs(n — s3),
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1
Cias, — sy = N—ngl—gz % g1(Mgaln — (s — s4)]1,
1
Cislss —s) = m z": g1(mgsln — (s3 — s,)],
1
Cirils3 —s)) = m g g2(mgs[n — (s3 — s5)] .
Now we have
6; = 031 + aza:z + /32033 + 2“%1692 Ciz + 2/3091693 Ciz + zaﬁogz Og3 Cas
= 0';1(1 +a24+ P2+ 200Cy5 + 2B'Cy5 + 24/ C53) ,
in which o’ = (0,,/0, )x and ' = (g,,/0,,)p. The final expression is
C,+dC,+pC
R‘3){f, 941,92, 93}(51,32,83,% B 1 2 2 (A3)

S T+ a2 4 B2+ 20Cy, + 2§ Cys + 20FCsy

We see that the final expression includes only six cross-correlations: three between the observed spectrum and the templates,
Ci(sy), Cy(s,), and Cs(s3), and three between the templates, C,,(s, — s;), C;3(s3 — 5;), and C,3(s; — s,). This fact preserves the
O(N log N) nature of the calculation. In fact, since we can obtain a rough estimate of the three shifts using the usual cross-
correlation or other dynamical considerations, we can evaluate equation (A3) only for a small domain of the (s, s,, s3) space.

In order to obtain error estimates for each of the shifts, say s,, we can fix the other two shifts, s, and s, to their values at the
maximum, §,; and §;, and look at the function:

P(s,) = R(a){f, g1, 92, 93}(51, 52, 83, a, f) .

Careful examination of this function of s, shows that it is closely related to the cross-correlation of f against g,, after subtracting g,
and g, from f with the appropriate weights. Thus, an error estimate can be obtained using the error analysis of the one-dimensional
cross-correlation (e.g., Kurtz et al. 1992).

So far we have assumed that the relative weights of the templates, « and g, are known. We move now to discuss the case where at
least one of them is unknown. We wish to choose, for each s,, s,, and s, the value of the unknown weight which maximizes the
correlation between f(n) and the linear combination of g,, g,, and g3. The dependence of the correlation on « and f is analytic and
can be explored in all cases by the most basic means; the expressions for both weights and the corresponding correlation values can
be calculated easily. Finally, in the case where both light ratios are unknown, their values may be computed by the expressions

o= <f’_g_l> (Ci3Cy3 — C15)Cy + (1 — C3,)C, + (Cy, Cy3 — Cy3)Cy
0,,) (1 = C33)Cy 4 (Cy3Cy3 — C15)Cy +(C13Cy3 — Cy3)Cy

B= <&> (C12C33 — C13)Cy +(C; Cy3 — C33)C, + (1 — C3,)Cs
0,/ (1 — C33)Cy + (Cy3Ca3 — C13)Cy + (€13 Ca3 — Cy3)Cs

These values can be substituted in the formula for the correlation to obtain the value of the correlation for the best « and g for each
set of velocities.
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