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ABSTRACT

A demonstration is made of the existence of the Teerikorpi Cluster Population Incompleteness Bias (CPIB)
in the Tully-Fisher (TF) method of distance determination. A bias exists if the cluster is sampled incompletely
into its luminosity function, despite the fact that all the cluster galaxies are at nearly the same distance.
Neglect of the bias will give too small a cluster distance and, therefore, too high a Hubble constant.

The bias is modeled using graphical methods based on properties of Spaenhauer diagrams following the
method of Papers II and IIL It is shown that the bias is the same as the individual M, — M(m, z) corrections
derived in Paper I, generalized to the M, — M(m, v,,,, z) corrections in Papers II and III for the TF method.

Four predictions of the model are that (1) the slope of the apparent TF regression depends on how far we
sample into the cluster luminosity function, (2) the highest rotators will lie closest to the unbiased fiducial TF
ridge line, (3) the error in the distance modulus decreases as the magnitude grasp into the cluster luminosity
function (LF) increases, reaching zero only at ~6 mag into the cluster LF if the intrinsic dispersion is as high
as we obtain here, and (4) the observed, not the true, dispersion is a strong function of the sampling depth into
the luminosity function. The small TF dispersions in clusters derived in a number of current discussions are
artifacts of the bias caused by using incomplete samples.

The predictions are verified using two independent data samples of real galaxies.

Values of the Hubble constant near H, = 90 km s~! Mpc~! found using incomplete cluster data reduce to

unbiased values between 45 and 55 when corrections for the cluster incompleteness bias are applied.
Subject headings: distance scale — galaxies: distances and redshifts — methods: statistical

“We do not know if this pedestrian argument suffices to change any minds, or whether it misses
a point that is too subtle for us to have grasped thus far.”’

Kurt Gottfried in a reply to a criticism by John Bell concerning the role of measurement in
quantum mechanics (Physics World, 4, 34 [1991]).

1. INTRODUCTION

The purpose of this paper is to study the bias properties of
incomplete, flux-limited samples of galaxies in clusters when
such samples are used to derive cluster distances by the Tully-
Fisher (TF) method. It was early believed that such samples
suffer no bias errors in the resulting distances, even if the
samples are incomplete because all galaxies in a given cluster
are nearly at the same distance. This is the premise upon which
many of the TF cluster distance scales are based (Aaronson et
al. 1986; Aaronson & Mould 1986: Pierce & Tully 1988, 1992).

Nevertheless, that a bias does in fact exist was discussed
theoretically by Teerikorpi (1987, 1990). Further, it was identi-
fied empirically by Kraan-Korteweg, Cameron, & Tammann
(1988, hereafter KKCT) and Fouqué et al. (1990, hereafter
FGBP) using Virgo Cluster data. Following Teerikorpi, we
hereafter call the effect the “cluster population incompleteness
bias” (abbreviated in what follows as the CPI bias or some-
times as the CPIB).

Both Kraan-Korteweg et al. and Fouqué et al. demonstrated
that the derived distance modulus of the Virgo Cluster using
the TF method changed from m — M = 30.7 to 31.7 as the
apparent magnitude grasp of the sample was increased from

B, =11 to 16 (KKCT, Fig. 6). We show in this paper that this
effect is the CPIB.

It was then argued by Pierce & Tully (1992, their Fig. 6) and
by Pierce (in Jacoby et al. 1992, their Fig. 12) that the effect
does not exist. They contended that the systematic shift of the
TF ridge lines faintward as the magnitude grasp into the Virgo
Cluster data deepens (Fig. 4 of KKCT) is a result of adding
background galaxies to the sample rather than due to CPI
bias. The purpose of this paper is to show that the CPIB effect
is real by demonstrating its presence in non—Virgo Cluster data
where “background effects due to cluster infall ” do not exist.

A confusion exists in the literature concerning the incom-
pleteness bias. Sample statements denying its existence include
“—because the galaxy samples are chosen from a cluster popu-
lation which is generally all at the same distance, Malmquist
bias does not occur” (Aaronson et al. 1980), or “work with
clusters avoids the thorny issue of how to properly treat the
Malmquist effect, because the galaxies in a cluster are generally
at all the same distance ... it is likely that any sort of magni-
tude bias effects can be dispensed with entirely ” (Aaronson et
al. 1982), or “several ... possible sample biases, including the
Malmquist effect, are considered and dismissed ” (Aaronson et
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al. 1986), or “with clusters we confine ourselves to a sample
which is basically volume rather than magnitude limited,
allowing us to circumvent the [bias] problem” (Aaronson et
al. 1986).

These statements are incorrect. First, the bias is not the
Malmquist effect. It is more complicated, depending on catalog
magnitude limit, redshift, and line width when using the TF
method (Sandage 1994a, b, hereafter Papers I and II; Feder-
spiel, Sandage, & Tammann 1994, hereafter Paper III). Second,
the statements confuse the properties of a sample that is dis-
tance limited with one in which all objects are at the same
distance if that sample is incomplete. A purpose of this paper
to demonstrate that the derived distance in the latter case
depends on how much of the cluster luminosity function is
sampled. This is known as the Teerikorpi CPI bias, but we
develop its properties here in a different way than was done by
Teerikorpi (1990).

The plan of the paper is to give a semitheoretical demonstra-
tion in § 2 based on Spaenhauer diagrams, generalized from
the method set out in the papers I-III. The method is applied
in §§ 3 and 4 to data from two different environments. One is a
simulated cluster environment where questions of “back-
ground contamination,” raised by Pierce (1992), do not exist,
and the other is the Virgo Cluster. The conclusions are made
using a comparison of the predictions with the systematics in
the data themselves.

Encouraged by the close agreement of the predictions made
in § 2 with the actual data used in § 3 from the large field
galaxy sample of Mathewson, Ford, & Buchhorn (1992, here-
after MFB) we analyze again the data for the Virgo Cluster in
§ 4, showing the predicted change of the TF slope and the
absolute magnitude of the zero point and of the apparent dis-
persion of the TF diagrams as the magnitude grasp into the
cluster is pushed faintward. The tests show the same effects
discovered by KKCT, by FBGP in Virgo, and explained by
Teerikorpi (1990) with his theoretical model.

2. PREDICTIONS CONCERNING THE CLUSTER
INCOMPLETENESS BIAS USING
SPAENHAUER DIAGRAMS

2.1. The Method

The CPI bias is demonstrated here via Spaenhauer diagrams
(SDs), one for each line width (LW) interval, following the
methods in Papers II and IIIL (“Line width” and “rotational
velocity ” are related by LW ~ 2 v,,). The method differs from
the formalism of Teerikorpi (1987, 1990), Lynden-Bell et al.
(1988), and Willick (1994), although we suspect the solutions
are the same.

Proof of the existence of bias is made by adding progress-
ively fainter data to the Spaenhauer diagrams and testing if the
apparent bias properties move faintward as the apparent mag-
nitude grasp of the sample increases. If bias exists, corrections
for it can be made as functions of redshift, line width, and the
apparent magnitude cutoff of the samples. These are the triple-
valued (m, LW, redshift) corrections calculated in Papers II
and I11.

2.2. Demonstration Using Simulated Clusters from the
MFB Field Galaxy Sample

The general problem solved in Papers II and III was to
identify bias in samples of field galaxies that have a large range
in distances.
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The bias problem in the present paper is different because all
cluster galaxies are at nearly the same distance. However, we
show below that this is simply a special case of the general
problem solved in Paper I, again leading to a bias if the intrin-
sic dispersion of the distance indicator is as large as we claim.
The illustration of the problem and its solution is set up by
considering that subset of a sample of field galaxies that have
nearly the same redshift, imitating the condition of galaxies in
a cluster.

Recall from Paper I (Fig. 4) that the calculation of the bias
correction, My — M(m, v;), at a given redshift v; can be made
from the Spaenhauer diagrams by considering the percentage
of the luminosity function that is cut away by the apparent-
magnitude limit line for the subsample contained in the red-
shift interval dv;/2 at v;. Recall also that the gross Malmquist
bias is the sum over all velocity space of the individual M,

— M(m, v;) corrections, weighted by the volume elements,
v} dv;. However, as in Papers I-111, this integrated Malmquist
factor is not the correction we need. Rather, we need each of
the components of the integrand. These are the individual mag-
nitude corrections at a particular redshift as the apparent mag-
nitude limit for data in a given cluster is made progressively
fainter.

We now demonstrate this claim and derive the properties of
the CPI bias using the large TF sample by Mathewson et al.
(1992). The method is to make several artificial clusters from
the data as they are binned into separate narrow intervals of
redshift, one for each artificial cluster defined by galaxies in the
restricted redshift interval.

The bias properties of TF samples can be made manifest by
considering individual Spaenhauer diagrams for narrow
ranges of line width, one for each line width interval. This is the
method of Paper III, to which the reader is referred for the
details that are important here. We have adapted Figure 5 of
that paper, adding several features useful for our present
problem. We show it as Figure 1 here. Five ranges of line width
are shown for the rotational velocity intervals of greater than
250 km s~!, between 250 and 200 km s~ !, 150-200 km s~ 1,
100-150 km s !, and less than 100 km s~ ..

The shapes of the individual Spaenhauer configurations
have been copied from Paper I (Fig. 3), calculated with the
indicated dispersions, 6(M), determined from the “total” MFB
data as used in Paper III. The ordinate is the kinematic abso-
lute I magnitude calculated using H, = 50 (however, the abso-
lute distance scale is irrelevant). The abscissa is the redshift
referred to the centroid of the Local Group. An apparent mag-
nitude limit of I = 14 is put in each diagram calculated from
m — M = 5logv + 16.5, where the constant obtains if H, = 50
kms~!Mpc!.

For an apparent magnitude limit this faint, no galaxies in the
highest two line width bins (upper and middle left panels) are cut
from the MFB sample, and the mean absolute data for them
are unbiased. Note that this would not be the case if the appar-
ent magnitude limit had been placed brighter at I = 12.5 as in
Figure 6 of Paper III.

Bias to the mean absolute magnitude of the sample, ie.,
summed over all redshifts, has begun at redshifts larger than
log v = 3.6 where the lower curved envelope line intersects the
apparent magnitude limit line in the lower left panel of Figure
1. The bias is obvious in the two panels at the right which are
for the lowest line widths.

Two vertical lines are drawn in Figure 1 showing a redshift
interval in log v from 3.5 to 3.6. Galaxies in this interval are all
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FiG. 1.—Fig. 5 of Federspiel, Sandage, & Tammann (1994 [Paper III], but with guiding lines as aids to understanding the model in the text. The two vertical lines
cutting all panels show a simulated cluster, all “members ” at a common distance. An apparent magnitude limit line of I = 14 is shown in each panel. The horizontal
line tangent to the upper envelope of the configuration at log redshift = 3.55 in the upper left panel defines the absolute magpitude of the brightest galaxies in the
simulated cluster. This line is repeated in each panel.

at approximately the same distance. The sample therefore imi- Various predictions of the expected correlations that illus-
tates the conditions of a cluster. The dotted horizontal line trate the bias can be seen from Figure 1.

placed at M; = —24.2, repeated in each panel, is set tangent to

the upper curved envelope in the upper left panel at the middle 1. Galaxies with the largest rotational velocities, such as in
of the redshift interval defined by the two vertical lines. It is the three Spaenhauer configurations in the left panels, are not
discussed later. biased at the I = 14 faintness limit because each configuration
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is sampled completely in the indicated redshift interval (log v
between 3.5 and 3.6). However, galaxies in the two lower rota-
tional velocity panels at the right are progressively biased
because the I = 14 mag limit cuts into the configurations in the
indicated narrow redshift interval.

The effect of this cut is that the slope of a linear TF relation
for such “cluster ” galaxies will be shallower than the true slope
when the data are sampled only to I = 14 because part of the
data at faint absolute magnitudes will be missing. Although the
missing galaxies are also of low line width, nevertheless the
absolute magnitudes of the galaxies remaining in the sample at
these line widths will be brighter than the unbiased (M ) mag-
nitude at that line width, shown by the lines through the
middle of the configurations. This affects the slope, making it
shallower, as said, than that of the true (unbiased) TF regres-
sion. This prediction on the slope effect is the same as is seen in
Figures 4 and 7 of Paper II, read at any fixed redshift.

2. As the magnitude limit is made fainter, the range of rota-
tional velocities within which the data will lie above the
magnitude-limit line will become larger (cf. Figs. 5-6 of Paper
III). Data in this range will be unbiased. The result is that the
smaller LW data will become progressively more unbiased the
fainter the apparent magnitude cut is. The highest rotational
velocities will be closest to the unbiased ridge line in a TF
diagram at a given limiting apparent magnitude, whereas the
slower rotators will not. Hence, the apparent TF relation will
appear to be nonlinear (if in fact the true relation is linear),
curving toward the unbiased ridge line asymptotically at the
highest LWs (Figs. 4 and 7 of Paper II).

3. The bias will cause a change in the zero point of the mean
absolute magnitude of those galaxies that remain in each
subset as the catalog apparent magnitude limit is made fainter.
Only galaxies whose rotational velocities are high enough (as
in the three left panels of Fig. 1) will be bias free. These are the
only galaxies for which the correct mean absolute magnitude,
M (LW), that must be used at each redshift and line width to
obtain unbiased distances is the apex magnitude. For all other
galaxies in the sample at redshifts larger than the distance-
complete limit, the M(m, v,,,, z) absolute magnitudes must be
used to obtain statistically correct distances that are not com-
pressed by the bias.

To find how far into the luminosity function we must reach
to be complete at each line width, draw a horizontal line
tangent to the upper envelope at log v = 3.55 in the upper left
Spaenhauer configuration of Figure 1. This defines the bright-
est galaxy in the simulated cluster. Repeat this horizontal line
in each of the panels, keeping the absolute magnitude level the
same. Read, then, the magnitude difference between this line
and the lower curved envelope-limit line in each configuration to
find the magnitude that must be sampled into the cluster if we
are to avoid incompleteness bias.

From this construction, we see that the magnitude grasp
into a cluster that is required to be bias free, using the disper-
sion of each SD shown in Figure 1, must be ~ 1.8 mag into the
luminosity function for the upper left panel, ~4 mag for the
lower left panel, ~ 5.5 for rotational velocities between 100 and
150 km s~ ! in the upper right, and ~8 mag for the slowest
rotators in the lower right panel.

4. The apparent dispersion of the TF correlation calculated
from the biased sample will be smaller than that for a distance-
limited sample for two reasons: (a) the intrinsic dispersion is
smallest for the fastest rotators (the widths of the configu-
rations in Fig. 1 are larger for the slower rotators), and (b) the
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apparent dispersion of the subset of the sample that remains
above the limit line in each of the biased configurations
becomes progressively smaller as the rotational velocity
decreases, seen well in the lower right-hand panel of Figure 1.

To test these four predictions, of which the third and fourth
lead incorrectly to the short distance scale if uncorrected, we
now discuss the MFB field galaxy data, binned into discrete
redshift intervals so as to simulate a series of clusters at differ-
ent redshifts.

3. DEMONSTRATION OF THE BIAS USING SIMULATED
CLUSTERS FROM THE MFB FIELD
GALAXY SAMPLE

We now analyze the data of MFB by isolating several sub-
samples contained within several narrow redshift intervals. If
bias effects are present they will move faintward by 1 mag for
each increase of the redshift interval by 0.2 dex. This is equiva-
lent to sampling several real clusters at different redshifts to
different grasps into their luminosity functions, if the apparent
magnitude catalog limits are kept constant.

The bias problems affect both (1) the proper mean absolute
magnitude to use to obtain statistically correct mean photo-
metric distances, and (2) the determination of the intrinsic dis-
persion of the TF relation from the observed (apparent)
dispersion as functions of the percentage of the complete lumi-
nosity function that is sampled (or, equivalently, that is
missing).

Consider first a subsample of the MFB data that exists in the
redshift interval between log v; of 3.4-3.6. The observer’s pro-
cedure of adding fainter galaxies to a real cluster catalog is
simulated by changing the catalog magnitude limit by adding
progressively fainter galaxies from the MFB field sample,
keeping the stated redshift interval fixed. We test the four pre-
dictions from § 2 as fainter galaxies are added from this
sample.

Figure 2 shows the result using five Tully-Fisher diagrams
for the simulated cluster in the redshift interval 3.4 < log
v < 3.6. Figure 3 shows the same result for the simulated
cluster in the redshift interval 3.6 < log v < 3.8. Calculations
were also made for the nearer redshift interval of 3.2 < log
v < 3.4. The results are used later (see Table 1) but are not
shown as a diagram.

The progressive apparent magnitude limits in Figures 2 and
3 are I <11 mag, <12, <12.5, <13, and finally the total
sample which contains galaxies (although incompletely) to the
MFB limit at I ~ 14.5 mag.

The unbiased fiducial ridge line derived in Paper III (Fig. 7
and eq. [4b] there) is shown as the lower envelope line in each
panel. Its equation is

M; = —-7741log v, — 4.69 . (1)

Verification of the four predictions made in § 2 are seen from
Figures 2 and 3 as follows.

1. The slope of the least-squares regression that would be
put through the data themselves is a function of the apparent
magnitude cutoff adopted for the simulated cluster data. The
equations of such regression lines for the direct TF relation
(absolute magnitude as the independent variable) are listed in
column (2) of Table 1. Data for the three simulated clusters
with different redshifts are shown. Note that the slope values
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F1G6. 2—TF diagrams for the simulated cluster at a mean redshift of {log v) = 3.5 for five increasingly deeper grasps into the luminosity function. The actual
MFB data in this redshift interval are used. The distance-limited unbiased TF direct regression of eq. (1) is drawn in each panel. The progressive deviation of the data
from the unbiased line at each rotation velocity is the Teerikorpi CPI bias. These deviations are listed in Table 1.

for each cluster change progressively as the catalog limiting
magnitudes become fainter. For example, the slopes for the
3.4 < log v < 3.6 simulated cluster (Fig. 2) change from dM/d
log v= —197 for data with m; <11 mag to dM/d log
v = —5.58 when all the data are used. These slopes approach
the unbiased slope of —7.74 that is valid for a distance-limited
sample (eq. [1]) as the magnitude grasp into the cluster

increases. However, they do not reach it even when the total
sample is used because part of that sample is still incomplete,
suffering from “cluster incompleteness bias” even at the limit
of the MFB data.

2. Galaxies with the highest rotational velocities lie closest
to the unbiased line, and vice versa, seen directly by inspection
of Figures 2 and 3.
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F1G. 3.—Same as Fig. 2, but for a simulated cluster at the larger distance at the mean redshift of (log redshift) = 3.7. Note that the deviations of the data from
the unbiased line are larger than in Fig. 2. The reason is that, at a given cut in apparent magnitude, the depth of sampling into the luminosity function is less than in

Fig. 3.

3. The magnitude difference between the unbiased line of
equation (1) in Figures 2 and 3 and the mean line through the
data in each panel, read at any particular v,,, value, is the bias
correction, My — M(m, v,,,, redshift), calculated in Papers II
and III. Clearly, the M, — M(m, v, z) corrections depend on
.- Galaxies with higher rotational velocities are closer to the

unbiased line than those with low v_,. Therefore, these have the
smallest bias corrections.

These magnitude differences (eq. [1] minus the equations in
Table 1 at a given v,,,) are listed in columns(6)—(8) of Table 1 at
the three values of the rotational velocity of log V,,, = 2.0, 2.2,
and 2.4, for each of the three simulated clusters. The magnitude
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TABLE 1

LINEAR LEAST-SQUARES TF REGRESSIONS FOR THREE SIMULATED MFB CLUSTERS

A(m — M)
log Uro log Urot log Dot
MAGNITUDE LiMiT SoLuTiON N a(M)) AM =20 =22 =24
) @ 3) @) ) ) U] ®

Cluster 3.2 <log v < 34
<110 ............ —248 log V,,, — 16.87 46 042 20 0.61
<120 ...l —4.09 log V,,, — 13.02 97 0.52 3.0 1.03 0.30
<125 ... —4.73 log V,,, — 11.49 127 0.55 35 0.78 0.18
<130 ............. —5.00 log V,,, — 10.85 153 0.57 40 0.68 0.13
<limit............. —5.50 log V,,, — 8.74 185 0.58 5.5 0.57 0.12
Unbiased.......... —7.74 log V,,, — 4.69 0.62 © 0.00 0.00 0.0

Cluster 3.4 <log v < 3.6
<110 ............. —1.97 log V,,, — 18.71 35 0.37 1.25 1.32 0.17
<120 ..cooennis —4.16 log V,,, — 13.23 118 0.40 225 . 0.66 —0.06
<125 ...l —4.35log V,,, — 12.72 161 0.42 275 1.25 0.57 —0.11
<130 ...l —4.56 log V,,, — 12.16 196 0.45 3.25 1.11 0.47 —0.17
<limit............. —5.58 log V,,, — 9.80 254 0.55 475 0.79 0.36 —0.08
Unbiased.......... —1741og V,,, — 4.69 0.62 0 0.00 0.00 0.00

Cluster 3.6 <log v < 3.8
<110 ............. —0.66 log V,,, — 22.18 8 0.17 0.50 . 049
<120 ..oooennnns —243 log V,,, — 17.69 106 0.29 1.50 1.32 0.25
<125 ..l —3.64 log V,,, — 14.71 197 0.33 2.00 1.82 1.00 0.18
<130 ............. —4.39 log V,,, — 12.89 272 0.36 2.50 1.50 0.83 0.16
<limit............. —5821log V,,, — 9.54 378 042 3.00 1.01 0.62 0.24
Unbiased.......... —174log V,,, — 4.69 0.62 o 0.00 0.00 0.00

grasp into the luminosity function of each of the clusters is
listed in column (5), calculated in the manner described in § 2,
based on the construction in Figure 1, done separately for each
of the simulated clusters. The grasp into the luminosity func-
tion is, of course, smaller at a given apparent magnitude cutoff
at the higher redshifts.

The data on the magnitude corrections, now expressed as
the errors in the distance modulus, A(m — M), as a function of
line width are combined in Figure 4 for the three clusters as a
function of the magnitude sampled into the luminosity func-
tion, starting with its brightest member, again using the con-
struction in Figure 1 to define the brightest member. The
curves in Figure 4 are made from smoothed! values of the data
from columns (6)—(8), of Table 1, together with calculations,
not shown, for other values of log V,,, such as 2.3 and 2.1.

The apparent dispersion, 6(M),y,, is a function of the appar-
ent magnitude grasp into the cluster luminosity function. Table
1 shows that the dispersion that would be observed is smallest
for the brightest limiting magnitude in all three simulated clus-
ters. Its values for the nearby cluster (3.2 <log v < 3.4)
changes from 0.42 to 0.58 mag as the apparent magnitude limit
changes from I < 11.0 to the limit near I = 14.5.

The observed dispersions are different clusters using the
same apparent magnitude cut. The reason is that the same bias

! Cognizance has been taken in Fig. 4 of the fact that linear least-squares
solutions should be replaced with nonlinear solutions at high ¥, , values such
that no negative values of A(m — M) are permitted. The actual curves in Figs.
2-3 must approach the unbiased line asymptotically at high V,,, values. Linear
least-squares solutions near the high V,,, limit do not satisfy this requirement.
They cross the unbiased line at negative A(m — M) values for high ¥, ,, which is

an artifact of the linear solution. This defect of the linear solution has been
compensated for in Fig. 4 for the highest line widths used.

properties move faintward at the rate of 1 mag per 0.2 dex in
redshift, consistent with the requirements of the bias model.
Said differently, at a fixed apparent magnitude limit, the frac-
tion of the total luminosity function that is sampled differs
between the three simulated clusters. We probe deeper into the

log Vim

omo | ~a

2.3 24 /
2.1 P
2.0

i

20 |- -

0.5 |

I

A (m-M)

10 -

Il

SIMULATED
CLUSTERS

Al

F1G. 4—The error in the distance modulus as a function of the range of the
luminosity function that is sampled in the three simulated clusters using the
data in Table 1. The data in Table 1, per cluster, are shifted by 1 mag for each
0.2 dex increase in redshift to combine the data from the three clusters. The
rotational velocities at the reading points of the equations in Table 1 are
denoted as V).
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F1G. 5—Top: Variation of the observed dispersion in M, with apparent
magnitude limit for the three simulated clusters. Data are from Table 1.
Bottom: Combination of the three top curves by shifts of 1 and 2 mag account-
ing for the different redshifts of the clusters. The abscissa is the depth sampled
into the luminosity function. The true dispersion, o(M), at a given line width is
not seen in the observations until we sample ~6 mag into the luminosity
function.

function for the nearby cluster than for the most distant if the
apparent magnitude limit is kept constant.

Using the fact that the bias properties move brightward with
increasing redshift for a fixed apparent magnitude limit, we can
combine the results in columns (6)—(8) of Table 1 (these are the
curves in Fig. 54) to find the run of the dispersion as the abso-
lute magnitude penetration into the luminosity function is
increased. (Note that the depth penetrated into the luminosity
function is listed in col. [ 5] for each of the simulated clusters).

Figure 5 shows the result. The top panel shows the o(M)
values for each of the three redshift intervals as a function of
the apparent I magnitude (col. [1] of Table 1). The bottom
panel shows the result of combining the data by shifting the

2 The AM values in col. (5) of Table 1 do not increase as 1 mag per 0.2 dex in
log redshift for the following reason. The col. (5) values are the magnitude
differences from the brightest cluster member at the listed apparent magnitude
limits listed in col. (1). The brightest cluster member in the simulated clusters
increases in luminosity as the redshift increases as a result of the increasing
volume normalization factor. This brightening is given by the upper envelope
of the Spaenhauer diagrams in Fig. 1 in each of the upper left panels read at
{log v) = 3.3, 3.5, and 3.7. This brightening amounts to 0.25 mag for the
3.4-3.6 “cluster” and 0.5 mag for the 3.6-3.8 “cluster ” relative to the 3.2-3.4
“cluster.” In real clusters this is equivalent to the “cluster richness correction ”
(Sandage 1975).

Vol. 452

curve for the 3.4-3.6 cluster to the right by 0.75 mag and for
the 3.2-3.4 cluster by 1.50 mag. The shifts compensate for the
different redshifts of the clusters at the rate of 1 mag per 0.2 dex
in redshift, modified by the change in the absolute magnitude
of the first ranked galaxy as a function of redshift (see footnote
2).

The abscissa of the bottom panel of Figure 5 is the magni-
tude difference that the presentation reaches from the brightest
galaxy in the clusters, calculated by noting that the apparent
magnitude of the intersection of the tangent line to the upper
envelope of the SD at {log v) = 3.55 is at absolute magnitude
~ —24.2 from Figure 1. Using m =M + 5 log v + 16.5, the
corresponding apparent magnitude is I = 10. This is taken as
the fiducial zero point (i.e., the point at which AM; = 0) in
Figure 5b.

The importance of this diagram is that it counters the claims
of Aaronson et al. (1980, 1982, 1986), Aaronson & Mould
(1986), and Pierce & Tully (1988, 1992) that the intrinsic disper-
sion of their TF cluster data is only o(M) ~ 0.25-0.4 mag.3

Figure 5b shows the disappointment of these claims. Most of
the clusters used by Aaronson & Mould (1986) to derive their
high value of H, were probed only 2-3 mag into the respective
cluster luminosity functions (see § 5). Only 2 magnitudes are
effectively broached in the data used by Pierce & Tully (1988,
their Fig. 1) for the Virgo Cluster.

Figure 5b shows that the observed dispersion is only ~60%
of the intrinsic value of the cluster grasp is only AI =2 mag.
Six magnitudes must be sampled to reach the intrinsic disper-
sion.

4. DEMONSTRATION OF THE CPI BIAS IN THE TULLY-FISHER
RELATION USING A FLUX-LIMITED SAMPLE OF VIRGO
CLUSTER GALAXIES THAT IS COMPLETE

The conclusions concerning the Teerikorpi CPI bias in §§ 2
and 3 had previously been demonstrated by KKCT and FBGP
using actual Virgo Cluster data.

Criticisms of the Virgo discussions have ranged from sug-
gesting (1) that the KKCT magnitude data are inadequate for
the demonstration (Burstein & Raychaudhury 1989), (2) that
there is a severe depth effect (Pierce & Tully 1992) because of
background and foreground infalling segments of the cluster,
causing the observed large dispersion of the TF relation to be
unreal, and (3) that the true dispersion about the ridge line of
the TF relation is as small as (M) = 0.3 mag, making the bias
problem for TF distances nearly moot (Pierce 1992; Bernstein
et al. 1994).

The model in § 2 applied to the MFB simulated cluster data
disappoints these criticisms.

1. The Virgo data used by KKCT do not suffer from the
effects suggested by Burnstein & Raychaudhury, otherwise the
bias properties predicted in §§ 2 and 3 based on an ideal cluster
model would not be present. They are in fact present in the
actual Virgo data in conformity with the ideal model. Further-
more, the same predicted effects seen by KKCT were found

3 If the intrinsic dispersions were in fact this small, the bias problems would,
of course, be nearly moot. The main difference between our current precept
and that argued by Aaronson & Mould (1986) and Pierce & Tully (1988, 1992)
for the short distance scale concerns this value of the intrinsic, not the
observed, dispersion of the TF relation. They claim a small intrinsic dispersion.
We say it is significantly large at a level of at least <o(M)z > ~0.7 mag.
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later by FBGP, who used even better photometric data than
those of KK CT for the Virgo Cluster. Again, the agreement of
the data with the predictions concerning them belie the criti-
cism by Burnstein & Raychaudhury.

2. There are no depth and/or putative infall or streaming
effects in the M F B simulated clusters. The predictions based on
the CPI bias model are the same as are observed in the Virgo
data. Hence, Virgo data are not falsified by infall effects
because no such effects are present in the analysis of §§ 2 and 3.

3. The large observed dispersions in the Virgo TF relation
cannot be a result of adverse effects of any putative streaming
or random motions on the absolute magnitudes used in
Figures 1 and 2 for the reasons discussed in Paper I (footnote
1), Paper II (§ 2.2), and Paper III (§ 8.2). Any possible stream-
ing and random motions give the opposite sign from that
observed for the scatter in the Hubble diagram as a function of
redshift. Hence, the criticisms concerning the large observed
dispersion on the basis of streaming motions are not correct on
the proffered grounds.

The demonstrations by KKCT and FBGP using their nearly
complete data for the Virgo Cluster are decisive in showing
that the CPI bias exists. In addition, the FBGP Virgo data can

BIAS IN EXTRAGALACTIC DISTANCE INDICATORS. IV. 9

be used with the model in § 2 to (1) address how far into the
luminosity function we must sample before the observed dis-
persion, a(M), is the intrinsic dispersion (similar to Fig. 6 of
KKCT but using Virgo data as in Fig. 8 later), and (2) deter-
mine the size of the error in the distance modulus for different
depths of sampling into the cluster luminosity function using
the Virgo Cluster data themselves to obtain the equivalent of
Figure 6. To do this we redetermine Figure 6 of KKCT using
the FBGP data from their Table 2.

Figure 6 shows the equivalent of Figures 2 and 3 but using
the B photometric band data for the Virgo Cluster. The absol-
ute magnitudes are based on a distance modulus of
(m — M), = 31.7, but making the By, listings of FBGP fainter
by 0.19 mag to account for their assumed 0.19 mag absorption
in B in the Galactic pole, which we set to zero.

The fiducial line drawn in each panel is the least-squares
direct regression for the “complete” data in the lower right
panel, reaching to apparent magnitude 16. This is 7.5 mag into
the luminosity function. It is a more complete sample than was
used by Pierce & Tully (1988, their Fig. 1) where their data
encompassed only a range of ~2.5 mag into the luminosity
distribution.
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FiG. 6.—Same as Figs. 2 and 3, but for Virgo Cluster data in the B photometric band from FBGP. The line in each panel is the (direct) regression for the complete
sample shown in the lower right panel, defining in first approximation the unbiased TF relation. Its equation is My = —5.68 logv,,, — 7.72. Note that the definition
of v,,, is that of FBGP, differing slightly from other definitions in the literature, requiring a conversion when using data based on a different LW system.
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TABLE 2
LINEAR LEAST-SQUARES TF REGRESSIONS FOR THE VIRGO CLUSTER USING THE DATA OF FOUQUE ET AL.

A(m — M)

log Vo logV, logV,

MAGNITUDE LiMiT SoLuTION a(Mp) AM =20 =22 =24
1) 2 @ 5 6) (7 @®)
<110 ....oooeeln —2.05 log V,,, — 16.81 0.41 1.5 . 1.83 1.10 0.38
<115 ............. —3.26 log V,,, — 13.85 0.49 20 1.29 0.81 0.32
<120 ... neennns —4.11 log V,,, — 11.77 0.51 2.5 091 0.59 0.28
<125 .ol —4.32log V,,, — 11.11 0.63 30 0.67 0.40 0.13
<130 ..ol —4.48 log V,,, — 10.60 0.67 35 0.48 0.24 0.00
<135 ...l —4.67 log V,,, — 10.10 0.68 4.0 0.36 0.16 0.00
<140 ............. —4.61 log V,,, — 10.15 102 0.71 45 0.29 0.08 0.00
<145 ............. —492 log V,,, — 941 121 0.74 50 0.17 0.00 0.00
Limit .............. —5.68 log V,,, — 17.72 131 0.78 7 0.00 0.00 0.00

The equation of the fiducial line in Figure 6 is
Mg = —5.681log v, — 772, 2

as set out in the last listing in Table 2.

The data, cut at the indicated magnitude limits, are plotted
in the nine panels of the diagram. The direct least-squares
regressions are listed in Table 2, showing how the apparent
dispersion, (M), for each of the data subsets changes with the
magnitude limit of the sample.

The mean magnitude offset from the fiducial line tabulated
there is similar to those in Figure 2 and 3 for the simulated
clusters. These offsets are the CPI biases. They decrease with
increasing magnitude grasp into the cluster, approaching zero
for the A(m — M) error in the modulus as the completeness of
the sample increases.

The magnitude differences from the fiducial line of equation
(2) are shown in Figure 7a. The family of curves is calculated
from the equations in Table 2 as read at the indicated log V,,,
values ranging from 1.9 to 2.4. Table 2 only lists these
A(m — M) differences for log V,,, = 2.0, 2.2, and 2.4 in columns
(6)—(8), but the complete family is shown in Figure 7a. The
range from log V,,, = 1.9-2.4 is consistent with the range of the
log V,,, values covered by the data. The distribution of the log
V... values peak near log V,,, = 2.0; FBGP, Fig. 1.)

The apparent magnitude limits are marked along the top of
Figure 7a. The depth sampled into the cluster, marked along
the bottom, follows by adopting the brightest cluster galaxy to
have B, = 9.5 from Table 2 of FBGP.

Figure 7b shows the calculation of the “effective ” magnitude
offsets. These are the values of the mean modulus errors as a
function of the depth sampled into the LF. The values are
obtained by averaging over all abscissa values in each of the
panels of Figure 6, calculated by finding the magnitude offset
of each data point from the fiducial line and averaging the
result. This is what an observer would calculate from a com-
plete set of data obtained by adopting a particular slope to a
fiducial TF relation as in Figure 6 and equation (2) and using
that fiducial line to determine TF distances, biased as they
would be by the CPIB effect.

Consider next the results for the Virgo Cluster concerning
how the observed dispersion, a(Mp), approaches the intrinsic
dispersion as the depth into the luminosity function is
increased. The apparent dispersions displayed in Table 2 (col.
[4]) for the data in the panels of Figure 6 are plotted in Figure
8. The FBGP B-band magnitudes (made fainter by 0.19 for

zero absorption in the pole) are marked along the bottom. The
depth penetrated into the luminosity function, based on the
brightest cluster galaxy being at B = 9.5, is marked along the
top.
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F1G. 7—(a) The difference in magnitude for different rotational velocities,
V> at the reading points of the equations in Table 2, between the equation of
the regression line through the data as listed in col. (2) of Table 2 and the
equation for the fiducial line drawn in each panel of Fig. 6. The difference is a
function of the limiting apparent magnitude marked along the top abscissa.
The AB values along the bottom abscissa are based on the brightest Virgo
Cluster galaxy having B = 9.5 in the FBGP data. (b) Same as a, but calculated
from the mean deviation of all the data points in each of the panels of Fig. 6 for
all rotational velocities. This is close to the procedure that is used in practice
by observers in analyzing TF data.
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FiG. 8.—Same as Fig. 5 for the variation of the observed (M) values of the
TF regression with the depth of sampling into the luminosity function, but
from the data in Table 2 for the Virgo Cluster in the B photometric band.
Abscissa is the By, magnitude system of FBGP but made fainter by 0.19 for
zero absorption in the Galactic pole. The apparent (observed) dispersion,
(M), at a given v, does not reach the intrinsic value (here taken to be 0.8
mag in B), until we have sampled ~ 5.5 mag into the cluster luminosity func-
tion.

The important result of Figure 8 is that the intrinsic disper-
sion of o(M) ~ 0.8 mag is not reached until the cluster is
sampled to a depth of ~6 mag. Part of the variation in the
apparent o(M) value is a result of the progressive increase in the
intrinsic dispersion as smaller rotational velocities are con-
sidered. The remaining effect is a result of the CPI bias.

Figure 8 has a larger amplitude than the similar Figure 5 for
simulated clusters in the I band because the intrinsic dispersion
in B is indeed slightly larger than in I [o,(c0) = 0.62 mag com-
pared with gg(00) = 0.80 mag]. The increase of the o(M),,
values with magnitude grasp into the sample are combined in
Figure 9. The ordinate is the percentage of the intrinsic disper-
sion for the complete sample (integrated over all line widths)
reached by the observed dispersion at any given penetration
into the cluster luminosity function (the abscissa).

5. THE HUBBLE CONSTANT

A purpose of this paper is to use the bias-correction machin-
ery here and in Papers II and III to comment on the Hubble
constants determined by Aaronson et al. (1986), Aaronson &
Mould (1986), and Pierce & Tully (1992). All gave high values
of H,, and each neglected the CIP bias.

Each showed TF relations with very small dispersions of
(M) ~ 0.3 mag in absolute magnitude at a given line width,
which, as we have seen, are characteristic of a shallow sampling
of the luminosity function. Such a small dispersion, if it were to
be real, would, of course, minimize the bias effects.

That the sampling into the cluster LF is in fact this shallow,
both in the clusters other than Virgo (Aaronson et al. 1986,
Fig. 4), and in Virgo itself (Pierce & Tully 1988, Fig. 1), mili-
tates against claims that the intrinsic dispersion is as small as
a(M) ~ 0.3 mag.

ABor Al

FiG. 9.—Combination of Figs. 5 and 8 but with the percentage (ordinate) of
the intrinsic dispersion that is observed at any given magnitude grasp into the
cluster luminosity function. The apparent magnitude values along the abscissa
in Figs. 5 and 8 are changed into magnitude differences from the first-ranked
cluster galaxies by assuming the brightest galaxy to have B = 9.5 in the Virgo
Cluster and I = 10.0 mag in the MFB simulated cluster at a distance of (log
redshift) = 3.7. The latter follows by noting the apparent magnitude of the
horizontal line in Fig. 1 that is tangent to the upper envelope of the Spaen-
hauer configuration at log v = 3.7 in the upper left panel which contains the
brightest galaxy.

5.1. The Virgo Cluster Analysis

Consider first the analysis of Pierce & Tully (1988) leading to
a Virgo Cluster distance modulus* of m — M = 30.96 £ 0.20.
This distance is too small because of CPI bias.

The precise error they have made in their (m — M)y, value
depends on the detailed (unknown) properties of the incom-
pleteness of their sample. These include (a) whatever partial
incompleteness exists in their magnitude grasp, (b) their incom-
pleteness even at a given magnitude, (c) the distribution of v,,,
of the sample which is required for a proper weighting of the
family of curves in Figures 4 and 7, etc.

We can estimate the approximate error by adopting a factor
based on Figure 1 of Pierce & Tully (1988, hereafter PT) which
shows an “effective” completeness only to (Bp) = 12.2.
(Although their range is larger, their completeness is almost
zero at B = 13). The number of galaxies in their Virgo sample
is 29 to B = 14, whereas the number of galaxies used by FBGP
to this limit is over 100 (but with different inclination
restrictions to be sure).

Using B = 9.5 as the adopted magnitude of the top of the
Virgo luminosity function (FBGP) gives an effective penetra-
tion into the cluster of ~2.7 mag for the PT data. Entering
Figure 7a at a mean log V,,, of 2.2 (note that the PT W values
are line widths, not rotational velocities; the two differ by ~0.3
in the log) with AB = 2.7 mag gives an error to the modulus of
~0.5 mag caused by the bias. Therefore, taken at face value,

4 From this modulus, these authors obtained H, = 85 + 10 km s~* Mpc™!
using v(cosmic) = 1316 km s~ ! for Virgo. Had they used the cosmic Virgo
redshift reduced to the kinematic frame of the microwave background of
v(cosmic) = 1179 + 17 km s~! (Jerjen & Tammann 1993) they would have
obtained Hy, = 76 + 8 km s~ !, even with their incorrect distance modulus of
30.96.
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the TF corrected modulus would be m — M = 31.5, D = 20
Mpc, and H, = 59 using the Jerjen/Tammann Machian-frame
redshift of v(cosmic) = 1179 + 17 km s~ ! for Virgo.

However, the details of this correction are unsatisfactory at
the needed level of precision. Our purpose here is only to
demonstrate that the small modulus derived by PT is not itself
correct as a result of the neglect of the Teerikorpi CPI bias in
the presence of incomplete sampling. As stated in § 3, their
appeal to front and back infall effects cannot be correct
because of the close agreement between the actual Virgo data
and the data for the simulated clusters in the MFB sample
concerning the effects predicted in §§ 2 and 3 where infall
effects are clearly absent.

The only decisive way to obtain the unbiased modulus of the
Virgo Cluster using the TF method is to analyze an actual
cluster sample that approaches completeness. This has been
done by KKCT and by FBGP with the result that
m— M = 31.60 + 0.15 using a set of calibrators (Table 1 of
KKCT) that adopt modern distances to M31, M33, and M81
from, for example, Madore & Freedman (1991). With
v(cosmic) = 1179 + 17 for Virgo (Jerjen & Tammann 1993),
the bias-free value of the Hubble constant adopted by KKCT
is Hy = 56 + 7 via Virgo.

The later analysis of FBGP, using an even more complete
Virgo sample, gives m — M = 31.62, again using the modern
calibrators of Madore & Freedman (1991). The resulting
Hubble constant again is H, ~ 56. These various papers have
been either undercited or overlooked in the literature which
give encomiums for the short distance scale.

5.2. The 10 Clusters of Aaronson et al. (1986)

Following Bottinelli et al. (1987), we consider next the data
for the 10 clusters analyzed by Aaronson et al. (1986) as dis-
cussed in the panegyric of Aaronson & Mould (1986). The data
and the details of the nature of the sample are in Aaronson et
al. (1986) (their Table 2 and Figure 4). They obtained H, = 90
by dismissing all biases, as they state directly.

To redress their discussion we must first reduce their dis-
tance estimates to the modern scale of the local Cepheid cali-
brators (Madore & Freedmann 1991). These average 0.4 mag
brighter than the three calibrators (M31, M33, NGC 2403)
used by Aaronson et al. (1986, their Table 3). Had they used the
earlier scale of Sandage & Tammann (1974), which differs from
that of Madore & Freedman by less than 0.1 mag in the mean
(Tammann 1992), their zero point would have been made
brighter by 0.49 mag (their estimate) and their Hubble constant
reduced from 90 to 72. However, this is still a fully biased value
and is therefore still incorrect.

An estimate of the bias correction can be made as follows.
Only three of the 10 clusters have data that sample the lumi-
nosity function deeper than 4 mag (Cancer, Pegasus, and
Z74-23). Of these, the authors conclude that Cancer and
Z74-23 are not compact clusters but “are composed of
unbound substructures strung out in space” (their Fig. 9). Of
the remaining eight clusters, three (Coma, Pisces, and A1367)
reach as much as 3.5 mag into the luminosity function. The
remaining four (A400, A539, Hercules, and A2634/66) reach
only 2 mag beyond the brightest member.

Although the material is inhomogeneous as to completeness,
an estimate of an approximation correction for incompleteness
can be made from Figure 7a. Reading the 10 panels in Figure 4
of Aaronson et al. (1986) shows that the mean log rotation
velocity of the 10 clusters is near 2.3. (Recall again that LW ~
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2v,,,)- For the four most biased clusters where the penetration
into the cluster is 2 mag (A400, A539, Hercules, A2634/66), the
mean log V,,, is high at 2.35. Reading Figure 7a at this (¥, >
with a 2 penetration gives a bias correction of 0.55 mag for
each. The m — M modulus is too small by this amount.

For the three clusters with 3 mag penetration, the mean log
V.o 1s 2.28, giving a correction of 0.3 mag. For the one remain-
ing cluster with a penetration of 4 mag (Pegasus), the mean log
V.ot 18 2.25, which requires a correction of 0.1 mag, based on
Figure 7a.

Hence, the estimated mean correction for the eight clusters
that remain in the sample, averaging 0.55 mag for four clusters,
0.3 mag for three clusters, and 0.1 mag for one cluster, is 0.40
mag. This, added to the 0.49 mag from the calibrators, gives an
approximate total correction of 0.89 mag for the Aaronson et
al. sample. This is a factor of 1.51 in distance, reducing their
value of 90 to H,, ~ 60.

Because these cluster data are too inhomogeneous as
regards the incompleteness factors, we cannot claim this to be
a new determination of H, via the TF method. Our purpose
here is rather to justify the upper envelope fits made by KKCT
to the Aaronson et al. data so as to compensate for the bias.
KKCT obtained H, = 57 from the Aaronson et al. data in the
following way.

Because of the faintward progression of the ridge lines of a
TF diagram as the percentage of the cluster completeness
increases (their Fig. 9, which is the CPIB effect), it is necessary
to use such upper envelope fits of the TF diagrams of the 10
cluster sample of Aaronson et al. (1986). This compensates for
the incompleteness factors that cause their cluster TF diagrams
to differ systematically in zero point from the TF calibration
that is done with distance-limited samples. In this way, KKCT
(Fig. 9 of KKCT) derive a distance scale that gives H, = 57
with the TF method using the Aaronson et al. (1986) clusters.
The analysis by KKCT also gave the distance to the Virgo
Cluster as 21 Mpc (Table 6 of KKCT).

KKCT conclude that the original distance ratios to the 10
clusters of Aaronson et al. (1986) were nearly correct, but
because of the incompleteness bias, the absolute distances of
Aaronson et al. are too small by a factor of 1.59. This is identi-
cal, within the errors, with the factor of 1.51 found indepen-
dently here.

We would finally note that Bottinelli et al. (1986, 1987) dis-
cussed the CPI bias, showing that allowing for it leads to
H, = 56 instead of H, = 90 when the local distance scale set
up by Sandage & Tammann (1974, hereafter ST) is used. These
ST values for the distance modulii of the local calibrators
average 0.55 mag larger than those used by de Vaucouleurs
(1979a) for the same local galaxies (Table 5 of Bottinelli et al.
1986).

5.3. H, from TF Field Galaxies

The TF method applied to field galaxies in a distance-
limited sample has always required the long distance scale. For
example, the distance-limited 500 km s~ ! catalog of Kraan-
Korteweg & Tammann (1979) gives H, between 48 and 56
using the 21 cm line width data of Huchtmeier & Richter
(1986), and calibrated with the 64 galaxy sample of Richter &
Huchtmeier (1984). The difference between this distance-
limited sample and the fully biased field galaxy sample of
Aaronson et al. (1982) was emphasized again as resulting from
selection bias in Sandage (1988, Fig. 9; 1994b).
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These field-galaxy demonstrations have been criticized in
the literature, we believe incorrectly, on the basis that the
cluster data consistently give H, ~ 90, and therefore the field
galaxy samples have been claimed to be incorrect based on the
false precept that “cluster data, where all galaxies are at the
same distance, cannot be biased.”

Also, as mentioned earlier, another criticism of the field
galaxy data has been that the local velocity field is so badly
fouled by noncosmological streaming and random motions
that kinematic distances are more incorrect than photometric
distances. The consequence is said to be that an “incorrectly
large intrinsic dispersion of the TF relation is derived” (a
summary of the Aaronson et al. and Pierce & Tully position).
A purpose of this paper (Figs. 8-9) is to belie this precept.

That such noncosmological kinematic effects do not occur at
a level that fouls the analysis has been shown elsewhere
(Sandage & Tammann 1975, 1990; Sandage 1972, 1994a, b,
1995; Federspiel et al. 1994; Tammann & Sandage 1995a, b)
based on the nature of the residuals in Hubble diagrams.

Finally, proof that the distance scale set out by de Vaucou-
leurs (1979b), based on his several criteria, and by Pierce
(1994), based on the TF method, are incorrect is seen by the
mean absolute magnitude of SNe Ia at maximum calibrated
via Cepheid distances to parent galaxies. De Vaucouleurs
(1979b, his Table 9) requires (M g(max)) = —18.5 + 0.2 for
SNe Ia on his distance scale. Pierce (1994, his Table 2), basing
his scale solely on the TF method, requires {Mg(max)) =
—18.74 + 0.14. Both calibrations are ~1 mag fainter than
{Mg(max)) = —19.65 + 0.13 calibrated by Saha et al. (1995),
based on Cepheids. Pierce’s claim that if H, ~ 45, then the TF
relation “must then have a discontinuous absolute magnitude
calibration of Am = 1.4 mag over a small range in distance,
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namely 4.0 < Dy < 6.5 Mpc” is incorrect. It arises from the
neglect of the bias corrections that vary with distance (Fig. 8 of
Federspiel et al. 1994), and can therefore imitate a step, as is
also apparent in de Vaucouleurs & Peters (1986), where the
same effect occurs as an artifact of the uncorrected bias.

Hence, the conclusion that follows both here and from
Papers II and III of this series is that the bias problem in the
Tully-Fisher method is complicated, and that its effects are
remarkably severe, making clear that values of H, ~ 90 based
on biased TF relations need substantial corrections downward.

The principal problem now concerning H, is not the dis-
tances to the local calibrators (we counter Aaronson 1987) but
rather rests with the bias problems. The severity of the bias
depends on the intrinsic dispersion of the TF relation. Decisive
means must be devised to determine this intrinsic dispersion
precisely, otherwise the debate on the value of H, will con-
tinue.

The science and the first drafts of this paper were made at
the Institute of Astronomy of the University of Basel in 1994
May/June. A. S. is grateful for the hospitality of the Institute
during this extended visit, where the many contacts with the
staff were invaluable. We also thank the Swiss National
Science Foundation for its support of the Institute, and thank
also the US National Aeronautics and Space Administration
(NASA) for a grant through the Space Telescope Science Insti-
tute for the determination of the Hubble constant using the
Hubble Space Telescope. We are grateful to a perceptive referee
who advised us well on the first draft of this paper. We are also
grateful to Donald Lynden-Bell for his comments on the
inverse relation and its bias properties.

APPENDIX

A literature has grown concerning the advantage of using the inverse regression of log v,,, on M rather than M on v,,, for the TF
formulation. Schechter (1980) suggested that the former avoids the bias in the slope.

A particularly powerful demonstration of the Schechter “inverse ” prediction that the slope remains constant was made by FBGP
(their Fig. 7), using Virgo Cluster data that penetrate 6 mag into the luminosity function.

However, the impression is incorrect that because the inverse slope is constant, that then the inverse TF formulation avoids the
bias. There will be bias both in the derived (albeit constant) slope and also in the zero point if the sample is not complete in LW at a
given M. This was demonstrated by Teerikorpi (1990) with an elegant formalism and was shown using actual data by FBGP. These
latter authors analyze the problem in both ways (direct and inverse) and show directly from the data that bias does exist as a
function of depth of penetration into the luminosity functions in both formulations. The problem is also discussed by Bottinelli et al.
(1986) and by Lynden-Bell et al. (1988) as to why the direct formulation, used with its explicit correction for bias, is preferred. We are
content here to illustrate the problem using the MFB data by constructing diagrams similar to Figures 2 and 3, but using the inverse
TF regression with absolute magnitude as the independent variable.

We demonstrate Teerikorpi’s (1990) conclusion that the inverse is not generally bias free if there are restrictive cuts of any kind by
line width. Such restrictive cuts (natural or forced) in line width are the usual case for various obvious and unobvious reasons.

For the demonstration, we use the data for the simulated cluster from the MFB data in the highest redshift interval (3.6 < log
redshift < 3.8). The subset of the data in this redshift interval is cut at progressively tighter rotational velocity limits, but retaining all
apparent magnitudes. This is the parallel experiment as in Figures 2 and 3, but made now by cutting the other (LW) coordinate
rather than absolute magnitude, dictated by an apparent magnitude limit.

The equivalent of Figure 3 (note the same redshift interval in both diagrams) is shown in Figure 10 as a series of TF diagrams such
that data for all I magnitudes in the MFB sample in this redshift range are plotted with logv,,, values, but cut at logv,,, limits of
>24, >2.3, >2.2, etc. The fiducial line drawn in each of the panels is the unbiased TF relation (inverse) calculated from the
distance-limited subset of the total MFB sample that was isolated in Paper III (Fig. 7 there) and discussed in § 3 here. Its equation is
M, = —-901loguv,, — 1.95.

The progressive deviation of the data points from the fiducial line, as the rotational velocity limits are tightened, is evident. This
either is, or is related to, the inverse cluster population incompleteness bias first discussed by Teerikorpi (1990).

An additional problem with using the inverse TF relation is that it uses the absolute magnitude M as the independent variable,
which is unknown a priori. In the case of clusters, one can of course use the apparent magnitude instead, but only if all sample

rot
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F1G. 10.—Demonstration of the bias, similar to that in Figs. 2-3, but now cutting the sample in the simulated MFB cluster at (log v) = 3.7, in intervals of
rotational velocity (all apparent magnitudes included) rather than in apparent magnitude (all rotational velocities included). The fiducial line drawn in each panel is
the unbiased “inverse ” regression calculated from the distance-limited MFB subsample isolated in Paper III (Fig. 7 there). The equation of this line is M, = —9.01
log v,,, — 1.95, which is the least-squares solution of the unbiased sample calculated in the inverse way (with LW as the independent variable). The deviation of the
data points from this fiducial line is the effect of the incompleteness bias.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...452....1S

BIAS IN EXTRAGALACTIC DISTANCE INDICATORS. IV. 15

galaxies are cluster members. In real applications the method is therefore blind in separating true and projected cluster members,
and even more so in discovering any true three-dimensional structure of a cluster. The problem is especially serious because one
believes that the spirals (the only morphological types to which the TF method can apply) do not define the same spatial
arrangement as the ellipitical galaxies that generally define the core of a cluster.

The corresponding problem for noncluster (“ field ”) galaxies is that one must assume an ideal expansion field to obtain a measure
of the “independent ” (if one wishes to use the inverse method) variable M. One then automatically denies any peculiar or streaming
motions. Hence, there is a built-in contradiction in the inverse method when the TF indicator is used to derive putative deviations
from the Hubble flow.

In the current literature one, of course, attempts to reccver any peculiar motions by iteration, but this procedure always rests on
the assumption of minimum scatter, which we are contesting here, claiming that most, if not all, of the scatter in the TF relation is a
result of absolute magnitude variations (a broad luminosity function) rather than peculiar motions.

One of the purposes of this paper is to prove this contention that the intrinsic dispersion of the TF method is large near
a(M) = 0.7 mag in B by using “local ” field galaxies where the velocity field is known to be very quiet (§ 3). The same demonstration
was made earlier (Sandage 1988) using the 500 km s ~! sample of Kraan-Korteweg & Tammann (1979).
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