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ABSTRACT

Gamma-ray burst time histories often consist of many peaks. These peaks tend to be narrower at higher energy.
If gamma-ray bursts are cosmological, the energy dependence of gamma-ray burst timescales must be understood
in order to correct the timescale dependence due to the expansion of the universe. By using the average
autocorrelation function and the average pulse width, we show that the narrowing with energy follows, quite well,
a power law. The power-law index is ~—0.4. This is the first quantitative relationship between temporal and
spectral structure in gamma-ray bursts. It is unclear what physics causes this relationship. The average
autocorrelation has a universal shape such that one energy range scales linearly with time into all other energy
ranges. This shape is approximately the sum of two exponentials.

Subject heading: gamma rays: bursts

1. INTRODUCTION

The Burst and Transient Experiment (BATSE) on the
Compton Gamma Ray Observatory (CGRO) has deepened the
mystery of gamma-ray bursts (GRBs) rather than solving it.
GRBs appear to be isotropic on the sky, yet there is a dearth
of faint events compared to the brightest events (Meegan et al.
1992). The two most likely explanations for this situation are
either that the bursts are at cosmological distances (and the
dearth of events is due to effects associated with the expansion
of the universe) or that the events are from an extended halo
about our Galaxy (and the dearth of events is due to a
decrease in the density of neutron stars in the halo). If
cosmological, the expansion of the universe shifts the photon
energies by a factor of 1/(1 + z), where z is the redshift and
stretches the temporal structure by a factor of 1 + z. Indeed,
time dilation has been claimed on all timescales within GRBs
(Norris et al. 1994, 1995a; Davis et al. 1994). Norris et al.
(1994, 1995a) interpret the factor-of-2 dilation as consistent
with the GRB log N-log P distribution, although perhaps with
some evolution. Fenimore & Bloom (1995) contend that it is
not consistent when one includes all the factors relating
distance to time dilation. One key factor involves the tendency
for peaks in GRB time histories to be narrower at higher
energy. Fishman et al. (1992) noted that individual peaks
frequently are narrower and better defined at higher energies.
Link, Epstein, & Priedhorsky (1993) showed that this is a
prevalent property of most bursts. In this Letter we show that
there is a well-defined relationship for the average width of
peaks as a function of energy. We will show that the average
autocorrelation function for many bursts is a very well behaved
function with a shape that is universal. Heuristically, an
autocorrelation measures the average relative intensity be-
tween points in the time history that are separated by an
amount of time called the lag. As such, it can be used to detect
changes in timescales that might be associated with the
expansion of the universe or to measure the average peak
width as a function of energy. The average autocorrelation is

fairly immune to systematic effects such as the identification of
the highest peak. The noise is explicitly accounted for by
calculating the expected autocorrelation given the noise level.
The average autocorrelation is similar to the aligned peak tests
in that the peak of each burst is used as a fiducial to form an
average and is sensitive to timescales the order of a few
seconds. It is roughly equivalent to aligning most of the peaks
in a burst rather than just the highest.

2. INSTRUMENTATION

The BATSE experiment on CGRO uses eight large-area
detectors (LADs) to locate and study GRBs over a large
dynamic range (see Fishman et al. 1992). For the purposes of
this study, we will use the four channel triggered data. This
consists of the counts in four broad energy bins labeled 1 for
25-57 keV, 2 for 57-115 keV, 3 for 115-320 keV, and 4 for
above 320 keV, which is effectively 320-1000 keV. A data set
labeled 1+2 combines 1 and 2 together to effectively create a
25-115 keV channel. A memory records ~2 s of data before
the trigger, and the duration of the recorded data after the
trigger is ~240 s. The time resolution for this data is 0.064 s.
In Norris et al. (1994), the period prior to the trigger is
augmented by rebinning the continuously available 1.024 s
samples into 0.064 s samples. This extends the pretrigger by
~16 s.

We will use the same data set as used by Norris et al. (1994)
including the augmented pretrigger. Bursts were assigned by
Norris et al. (1994) to a brightness class based on the largest
net count rate in 0.064 s samples in channel 1+2+3+4. Those
bursts with count rates between 18,000 and 250,000 counts s~ *
are called “bright” bursts, those with counts rates between
2400 and 4500 counts s ! are “dim,” and those with count rates
between 1400 and 2400 are called “dimmest.” (Events with an
intermediate count rate are not used because the time dilation
effects are largest for well-separated classes.) Short events
(defined here and in Norris et al. 1994 to have durations less
than 1.5 s) were excluded from the study. In this Letter, we
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seek the intrinsic variation with energy of the width of the
temporal peaks. We use only the bright events to avoid
potential effects due to different distances including time
dilation from the expansion of the universe. Even if GRBs
come from cosmological distances, under the standard candle
assumption, these events are all from approximately the same
distance and therefore have the same stretching because of the
expansion of the universe. There were 45 usable events in the
bright class.

3. THE AUTOCORRELATION FUNCTION

The autocorrelation function for GRBs was investigated by
Link et al. (1993), where it was shown that timescales are
almost always shorter at higher energies. Following Link et al.,
let m; be the observed gross counts in discretely sampled data
in n bins of equal size AT ranging from —nA7/2 to +nA7/2
about the largest peak in the GRB time history. Here m; is
number of counts, so it follows Poisson statistics. Let b; be the
corresponding background counts. We determined the back-
ground by a linear fit to regions before and after the bursts
where it was judged by eye to be inactive. The net counts are
¢; = m; — b;, and the estimate of the true autocorrelation as a
function of the lag, 7 =jAT, is

n/2
A= cAj—’c —nj2<j<n/2 1)

=2 70

and A(t) =1 if j=0. Here, c;; is zero if i +j>n/2 or
i +j < —n/2. When studying individual events (as Link et al.
1993 did), one can always use the entire time history. We
average many events together and must use them in a uniform
manner. This requires us to select the duration to use. If we
selected a very short duration, then the autocorrelation is not
sensitive to time stretching (a flat-topped burst exceeding the
selected duration would show no difference in the autocorre-
lation). If we selected a very large duration, then there would
be many instances when bursts would have to be left out of the
averaging because the peak occurs within +A7/2 of the ends
of the data such that c;,; is not defined for part of the needed
range. Although bursts can be very long, usually emission
more than a few seconds away from the largest peak contrib-
utes only a little to the autocorrelation function. We have
found only small differences for all nAT > 8 s and have used
nAt = 16 s throughout this Letter. By definition, the autocor-
relation is symmetric, A(t) = A(—7). The normalization, A4, is

n/2

Ay = D 2 —m;. 2

i=—n/2

An autocorrelation without normalization would have a
large peak at 7= 0, where all the noise adds coherently, and
would be count rate dependent at T# 0. The —m; term in
equation (2) normalizes the autocorrelation to that expected
without noise. To fit functions to the observed autocorrela-
tions, we require a measure of its uncertainty. The terms of
A(7) are not statistically independent. However, our use of the
uncertainty is only to obtain a relative goodness of fit. In fact,
each term of the variance on A(7) will be approximately the
same, so its exact value is not important. The variance of the
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FiG. 1.—Average autocorrelation of 45 bright BATSE gamma-ray bursts in
four energy channels. At higher energies, gamma-ray bursts have shorter
timescales. The solid curves are fits of the sum of two exponentials to the
autocorrelation histograms.

numerator of equation (1) is

n/2

0'3*0,» = 2 C%|Ci+j| + |ci|c%+j' (3)

i=-n/2

(We assume that the variance propagated from the back-
ground is small because the background is based on much
more data than the individual points.) The variance on the
normalization is

n/2
%= 2 4ct +m,;. 4)
i=—n/2

Combining equations (3) and (4) gives the variance on the jth
term of the autocorrelation:

ol.,  A(AT)
Uzl(jAT) = A%] + A—% 0'210 . (5)

The average of a fair number of GRB autocorrelations is
quite stable and shows only a small variation. Let A(i, 7) be the
average autocorrelation for the ith channel or combination of
channels. Figure 1 shows the average of the bright events
for the four channels of the LAD data, that is, A(i, 7) = 342,
A, (i, 7)/Ng, where Ny is the number of bright events (45) and
k denotes different bursts. The normalization of each autocor-
relation is such that each burst contributes equally to the
average autocorrelation independent of its brightness. Note
how clear the energy dependency is in Figure 1. Figure 1 is
semilog, and the curves appear nearly as straight lines so the
shape of the autocorrelation is approximately an exponential.

Each energy channel is nearly an exact time-stretched version
of the others. We define S;; to be the best-fit factor that scales
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F16. 2—Comparisons of pairs of energy channels for the BATSE bright
events. Each panel shows the average autocorrelation for two energy channels
from the BATSE LAD data. The bold histogram is a best-fit, time-stretched
version of the narrower (higher energy) channel fit to the broader (lower
energy) channel. The average autocorrelation apparently has a universal shape
which is approximately exponential.

A(i, 7) into A(j, 7). It is found by minimizing

@ = i [4G, IAT) = A,AGSIADT

6
=1 Uj(/,IAT) + U/%(i,lS,;jAT) ©

Here mAT is the range of lags that is used in the fit. This range
is set by where the functions are well defined. The autocorre-
lation of the highest energy channel begins to have significant
noise at ~2.5 s (see Fig. 1) so we have used mAT = 2.5 s. Since
A() is symmetric, nothing is gained by including negative lags.
In each panel of Figure 2, we show the average autocorre-
lation for two channels. For example, in Figure 24, we show
A1, 7) (ie., 25-57 keV) and A(2, 7) (i.e., 57-115 keV). Also
shown as a bold curve is the time-stretched autocorrelation of
the higher energy channel that best fits the lower energy
channel [e.g., the bold curve in Fig. 2a is A»A(2,S,,7)]. The
overall scaling (A) is always very near unity. Note, for example,
in Figure 2c that the bold curve slightly exceeds unity at 7 = 0.
For energy channels with poorer statistics, the uncertainty of
the normalization is reflected in o1, which is nearly constant as
a function of 7 because mAT (2.5 s) is much less than nAT
(16 s). The %oodness-of-ﬁt parameter in equation (6) will not
follow the x” statistic because the points are not independent.
The purpose of o4 is to balance the uncertainty in the overall
scale factor (A) with the uncertainty in the time stretching (S).
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Figure 2 demonstrates that the average autocorrelation has a
universal shape (but different time stretching) for all energies.
Note how well the time-stretched higher energy autocorrela-
tion always agrees with the broader (lower energy) autocorre-
lation. Even the highest energy range (320-1000 keV), which
showed a deviation from an exponential in Figure 1, scales
exactly into the lower energy autocorrelations.

The curves in Figure 1 are not pure exponentials; there is a
slight curve to the histograms. We have tried to fit a variety of
functions to the histograms. A single exponential (exp ~"°) fits
poorly, especially the higher energy channels. A func-
tion such as exp™ **" fits the lower energy channels well but
not the higher energy channels. Although not unique, the most
successful function that we tried is a sum of two exponentials:

A, 7) = B; exp e + (1 — B;) exp 2, @)

where i denotes the four energy channels. To determine the
free parameters in equation (7), we minimize

n/2
X = 2 [AG,jAT) = By exp M — (1 — B;) exp "],
j=1
®)
The parameters «; and o, are found by searching the

parameter space, and (; is found analytically from 8x*/88; = 0.
The best fits are

A(1,7) = 0.66 exp 24 +0.34 exp >, (9a)
A(2,7) = 0.64 exp ™17 +0.36 exp V>, (9b)
A(3,7) = 0.48 exp 1™ +0.52 exp 1%, %)
A(4,7) = 0.53 exp 1% +0.47 exp 155 (9d)

All values of a;, above 25 are equally consistent with the data.
These fits are plotted as curves in Figure 1. Equation (8) does
not follow the y? statistic because the A terms are not
independent so we cannot qualitatively evaluate the fit. How-
ever, as seen in Figure 1, the fit is excellent.

4. ENERGY DEPENDENCE OF TIMESCALE

We will characterize the energy dependence of the typical
timescale in the GRB time history using two different mea-
sures: the width of 4 and the width of the average pulse profile
(from Norris et al. 1994, 1995b). The solid triangles in Figure
3 are the width (W,.) of each autocorrelation from Figure 1 as
measured by where In A(7) = 0.5. Since Figure 3 is log-log and
the points nearly lie on a straight line, we have fitted a power
law to the points. The best-fit power law is W,.(E) = 17.4E "%,
This function is shown in Figure 3 as a solid line. This is a
robust result. Using the width at other values of A4 gives similar
results. Also, the fact that the autocorrelation function for
each energy can be scaled into another and they overlap so
well (Fig. 2) implies that the power law holds for more than
just the point where 1n A(7) = 0.5 (see discussion of eq. [10]).

One thing that is not clear in our formulation is at what
energy to place the points. We have placed them at the energy
corresponding to the lower energy bound of the channel that
they represent. The autocorrelation function is quadratic in
counts (see eq. [1]), so for any particular channel, the width
reflects where most of the counts are. For example, if one
combines channels 3 and 4, it has effectively the same width as
channel 3 only. If we were to use the midpoint of the channel,
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F16. 3.—Energy dependency of the timescale as determined by the average
autocorrelation and the average pulse width. The triangles are the half-width of
the autocorrelation function, and the solid curve is a best-fit to the triangles.
The squares are the sum of the rise and fall of the average pulse profile, and the
dotted line is a best fit to it. In each case, the timescale of the temporal
structure within the GRB scales as a power law of the energy with an index of
~—0.4.

it is still a power law: W, = 18.1E7*°. Another possible
measure of the timescale of A is how much one energy range
needs to be stretched in order to map it into another energy
range. This is not independent from W, but serves as another
way to measure it (eq. [6] rather than eq. [1]). Using channel
1 as a baseline (i.e., if Sy; = 1), S' = 0.78, S3;' = 0.54, and
Si' = 0.33 give how much the autocorrelations of the higher
energy channels are narrower as a function of energy. Fitting
the S;;' points gives S;;* = 4.45E;%%_ A second measure of the
timescale of GRBs comes from the average pulse width. Norris
et al. (1994) decomposed GRB time histories into individual
pulses and found the average rise and fall time scales. The
widths (in seconds) of the rise/fall of the average pulse profile
are 0.22/0.44, 0.17/0.32, 0.13/0.27, and 0.08/0.18 for BATSE
channels 1, 2, 3, and 4, respectively. We plot in Figure 3 as
squares the sum of the rise and fall times as a function of
energy. Again, the energy dependence of the timescale ap-
pears to be a power law. In this case, the average pulse width
is W,, = 2.1E™*¥, which is plotted in Figure 3 as a dotted line.
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Another measure of the pulse width is the average full width,
half-maximum (FWHM). Norris et al. (1995b) reports that the
average FWHM for the four BATSE channels are 0.817, 0.616,
0.473, and 0.287 s. These widths can be fitted by a power law
as well: Wewy = 3.2E7%%. This, too, is very robust. Norris et
al. (1995b) reports the width for seven different fractions of the
peak height, and all seven can be fitted with a power law.

We note that the average pulse width is much less than the
width from the autocorrelation function. The individual pulses
are narrower than the clusters of peaks that often determine
the autocorrelation width. However, there is not a simple
relationship between the two measures. For example, simula-
tions of shot noise with pulses the order of the average pulse
width produce autocorrelation functions that are much nar-
rower than observed.

In equation (8), we fitted each energy channel separately
using 12 parameters. From Figure 3, we see that the energy
dependence of the timescale in GRBs is a power law. The
parameters «;; and «; found in equation (9) do not follow a
power law. However, it is possible to have a functional form
that has a power-law dependency on energy and fits within the
noise. We fitted all four curves in Figure 1 with

A(i,7) = Bexp ("B +(1 — B) exp ("E™ | (10)

This form accommodates the three characteristics of the
average autocorrelation: it consists of two exponentials, the
energy dependence scales as a power law, and the shape of one
energy range scales linearly with time into all the other energy
ranges. The parameters B = 0.55, k, = 8.75, k, = 154, and
a = 0.45 give an acceptable fit.

In summary, we find that the average autocorrelation of the
time histories of GRBs is a universal function that can measure
the timescale as a function of energy. The dependence is a power
law in energy with an index that is between 0.37 and 0.46,
depending on how it is measured. This is the first quantitative
relationship between temporal and spectral structure in gamma-
ray bursts. The energy dependence is important for two reasons.
First, the shape may indicate the underlying physics responsible
for the time history. For example, the subpeak’s temporal width
might be produced by the growth of a shock within a relativistic
expanding shell in a cosmological GRB, and the power-law
dependence on energy is related to how the shock converts bulk
motion into gamma rays. Alternatively, the energy dependence
might be related to how a disturbance propagates on the surface
of a neutron star. Second, in order to interpret the time dilation
due to the expansion of the universe, one must understand the
energy dependence which competes with the cosmological time
dilation to form the temporal width. Fenimore & Bloom (1995)
include the energy dependence in the interpretation of time
stretching as a function of burst brightness and conclude that the
observed time dilation is not consistent with the observed log
N-log P distribution (Fenimore et al. 1993) unless there is strong
evolution and it is only coincidental that the log N-log P
distribution shows a —3/2 power law.
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