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ABSTRACT

We propose the inclusion of a new correction term, the gravitational time delay effect caused by a star
between the observer and the pulsar, in the analysis of pulsar timing observation. This effect appears in the
form of In(1 + t2), where the amplitude connects directly to the mass of the star. When the residuals of the
time of arrival have a positive hump, it is worthwhile to reanalyze the data by including this correction term
in the existing models. The analysis of this effect will not only help to stabilize the pulsar time but also
provide a new way to determine the mass of a star directly. When the mass of a star is 0.2 M, the observ-
ation accuracy is 200 ns, and the observation period is 10 yr, the possibility of detecting this effect is of the

order of one-hundredth.

Subject headings: astrometry — dark matter — pulsars: general — relativity — stars: fundamental parameters

1. INTRODUCTION

The mass of a star is one of the most fundamental quantities
in astrophysics. However, its measurement is very difficult,
especially in the case of a single star and massive compact halo
objects (MACHOs), a kind of dark matter candidates in the
Galactic halo (Aubourg et al. 1993; Alcock et al. 1993; Udalski
et al. 1993). Since the general relativistic effects depend on the
mass of the gravitating matter, these effects can be used for the
measurement of stellar mass. A well-known example is the
microlensing effect, the amplification of the luminosity of a star
by the gravitational lensing of the foreground star. The dura-
tion of the luminosity enhancement depends on the mass, the
distance and the proper motion of the lensing star. So if we
know the distance and the proper motion by a separate
method, the mass will be evaluated (Paczynski 1986). Recently,
we proposed another method to measure the stellar mass by
use of the gravitational lensing (Hosokawa et al. 1993). In this
case, the mass and the distance of the lensing star can be deter-
mined simultaneously by observing the parallactic variation of
gravitational deflection of the light from the lensed source. In
this paper, we present yet another method to measure the
stellar mass. This time we consider the detection of the varia-
tion of the gravitational time delay of pulses from pulsar
caused by foreground stars.

In order to detect the gravitational time delay, we have to
know the original timing of pulse emission very precisely and
have to observe the delayed signals very accurately. Among
pulsars, millisecond pulsars are known to have a long-term
stability in the pulse period and have been proved to be one of
the most stable “clocks ” of all known natural phenomena. The
observational accuracy of the time of arrival (TOA) of pulse
from millisecond pulsars has presently reached the level of a
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few hundred nanoseconds (Kaspi, Taylor, & Ryba 1994). Since
the TOAs are measured in the proper time of the moving
observer, they must be related to that of the pulsar. In the
existing models of the TOA data analysis (Taylor & Weisberg
1989, for example), the variation of the TOAs has been con-
sidered to be caused by (1) the change of the behavior of the
pulsar itself and (2) the dynamical motions of the observer and
the pulsar.

As for the variation of the TOAs, the gravitational time
delay caused by the Sun, known as the Shapiro delay, and the
delay caused by the pulsar’s companion(s) in the case of binary
pulsars, have been taken into account (Shapiro 1964; Backer &
Hellings 1986; Ryba & Taylor 1991). On the other hand, the
gravitational time delay caused by a third body, such as a star
between the observer and the pulsar, has been ignored. This is
because (1) this effect is not separable from the clock offset
unless the relative configuration of the observer, the star, and
the pulsar changes, and (2) even if the configuration changes,
this time delay will vary linearly with time approximately and
therefore will be absorbed into the dynamical effects. The
variation of this effect would be, however, observable in some
cases.

In § 2, we will describe the theory of this effect and will
estimate its magnitude. In § 3, the separability of this effect
from other causes of the TOA variation and the possibility of
mass measurement by this method will be considered. Some
related topics are discussed, and the summary is presented in
§4.

2. THEORY

Consider that an observer O, a foreground star S, and a
pulsar P are well aligned, and the separation between the
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FiG. 1.—Configuration of the observer O, the pulsar P, and the star S. The
separation between the pulsar and the star seen from the observer . SOP,
denoted by 6, changes with time due to the proper motion of the star relative to
the pulsar. The length between S and the pulse path PO is L. At the epoch of
the closest approach t = t,, the pulsar is located at P,. The minimum of 6 and
L are 6, and L, those when ¢t = ¢, respectively.

pulsar and the star seen from the observer changes with time
due to the proper motions of them. A pulse from P is delayed
by the gravitational field of S and arrives at O. Here we
describe the system so that the star is at rest and the pulsar
moves with constant velocity (see Fig. 1). Then the amount of
the gravitational time delay is approximately expressed as

GM, t—to)?
|1+ <—°>
c ty
where y is a parameterized post-Newtonian (PPN) parameter,
G is the Newton’s universal constant of gravitation, Mg is the

mass of the star, and c is the speed of light in vacuum, ¢t is the
epoch of the closest approach,

At(t) = constant — (1 + y) In , (1)

tg=— (V)]

is the characteristic timescale of this effect, 6, is the minimum
of § = £ POS, and p is the proper motion of the pulsar relative

FiG. 2.—Apparent motion of the pulsar P relative to the gravitating star S.
The point P, denotes the closest position of the pulsar P at the time t = ¢,.
When t=t,+t, the pulsar is located in P,, respectively. The angle
L P, P,Sis45°.

Vol. 448

FiG. 3—Characteristic function f(x) = — In(1 + x?2). The curve has only
one maximum at x = 0 and has two inflection points at x = +1 where the
values are both — In2 & —0.693. These points correspond to P, when ¢ = t,
and P, when t = ¢, + t,in Fig. 2, respectively.

to the star. Equation (1) is an approximation under the condi-
tion that both of 6 and . OPS are sufficiently small. See
Appendix A for the detailed derivation. Figure 2 illustrates the
apparent motion of P relative to S, where P, denotes the
closest position when t =t, and P, are the positions when
t=ty+t,

First we remark that, in equation (1), the magnitude of the
delay is in proportion to the mass of the star directly. It has no
explicit dependence on the distances to the star or the pulsar,
on the impact parameter, or on the closest separation angle
between the star and the pulsar. This is the most important
point which differs from the microlensing or the parallactic
variation of gravitational lensing where the mass is coupled
with the distance.

Next, the time variation of the delay depends not on the
least-impact parameter itself but on its ratio to that of the
displacement of the foreground star during the observation
period. The time dependency of the delay is characterized by a
function

f(x) = —In(1 + x?), 3)

which has the following features: (1) it is symmetric with the
argument x, (2) it has the only one maximum 0 at x = 0, (3) it
has two inflection points at x = + 1 where the values are both
—In2 ~ —0.693. The variation of f(x) is illustrated in Figure
3. Note that the inflection points correspond to the points P,
and AP, P, S are rectangular equilateral triangles (see Fig. 2).
Namely, the value of the relative displacement during ¢, is the
same as the length of the least-impact parameter.

Because of features (2) and (3) above, this effect will cause a
positive hump in the residuals of TOAs after fitting to the
existing models. In that case, the mass of the foreground star
will be estimated by the formula

H
Ms=Mo x5+, @
where Hg is the height of the hump defined by the difference in
time delay between the peak and one of the inflection points
(see Fig. 3). The height of the hump for the Sun is evaluated as
GM
c3

Ho=In2 x(1+7) ~ 0.693 x 9.851 us = 6.828 us ,

®
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where we substituted y by unity as in the case of general theory
of relativity. In pulsar timing observation, the typical uncer-
tainty of the TOA is ~200 ns. This corresponds to an uncer-
tainty in the mass measurement of as small as 0.03 M. Of
course, the smaller the uncertainty in the TOS is, the greater
the accuracy of the mass measurement of the star will be.

3. OBSERVABILITY

When the residuals of the TOA have the properties dis-
cussed in the preceding section, they might be caused by the
gravitational time delay due to foreground stars. In this case,
the masses of the stars will be determined from the TOA data
analysis by introducing three new parameters Mg, t,, and t,. In
this section, we will estimate the magnitude of this effect and
examine its separability from the other effects considered in the
model so far.

In principle, the variation of TOA consists of a periodic part
and a systematic trend. The periodic part is caused by the
orbital motion of Earth around the solar system barycenter or
that of the pulsar around the barycenter of the pulsar system if
it has companion(s). The systematic trend has been assumed to
be a low-degree polynomial of time, where each degree term
represents a different mixture of the intrinsic properties of the
pulsar rotation and the dynamical motion of the pulsar relative
to the solar system barycenter (see Table 1). In practical TOA
data analyses, the degree of the polynomial is set to 2 or 3.

Since the effect introduced in this paper is nonperiodic, it is
feasible to separate it from the periodic effects. Note that,
although the typical magnitude of the gravitational time delay
is relatively large, as of the order of 10 us, that of the observ-
able effect will be much smaller. This is because the observable
quantity is the residual of this delay after the polynomial trend
is removed. Let us examine the magnitude of this observable
quantity.

First, we will estimate the residuals of this effect after a
polynomial fitting. Let us introduce the residual function R per
unit gravitating mass for a certain observation period T
defined as

_ 2 n Jj
e (5] el 31 o

TABLE 1

CAUSE OF COEFFICIENTS OF POLYNOMIAL
REPRESENTING TOA RESIDUALS

Term Intrinsic Dynamical
Constant ....... Clock offset r
Linear.......... v A
Quadratic....... v vV, + ru?
Cubic .......... V V. + 3rup

Notes.—r is the distance to the pulsar, V, is the
radial velocity of the pulsar, V, is the radial accel-
eration of the pulsar, V, is the radial jérk of the
pulsar, u is the proper motion of the pulsar (i.e.,
u=V/r), and j1 is the angular acceleration of the
pulsar. Note that the second derivative of the
pulse frequency v for most pulsars are small, and
this is compatible with the standard radiation
theory (Manchester & Taylor 1974), although the
observed magnitudes of the cubic term are much
larger than the values expected in some cases (see
Table 2).
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where t, and t, are defined before, and the variable range of ¢ is
|t/T| <0.5.

Assume that the motions of the pulsar and the star are both
linear and that the deceleration of the pulse period is mainly
governed by the magnetic dipole radiation. Then, there are no
quadratic and higher terms of dynamical origin because of the
linear motion assumption of the pulsar. The cubic and higher
trends expected from the radiation theory is so small that they
are negligible. Therefore the polynomial is to be second degree.

The coefficients c; are usually determined from the least-
square fitting (see details for Appendix B). Some examples of
the expected residual R are shown in Figures 4 and 5. These
figures show the amplitude of the residuals as a function of
time for some fixed values of t,/T and t,/T. Figures 4a and 4b
depict the cases of t, = 0T and t, = —0.3T, while Figures 5a
and 5b show the cases of t; =0.1T and t; = T. When the
observation period covers the epoch t, and T is larger than t,,
the residuals have a large positive hump at the epoch t,. The
smaller t,/T becomes, the larger the amplitude of the residuals
are. When ¢, is the center of the observation period (i.e., t, =
0), a quartic trend is expected. As t, shifts from the center of the
observation period, a cubic trend appears gradually.

In order to detect only the effect we proposed, it is sufficient
to consider whether the resulting false cubic term is detectable,
namely, larger than the observation error. However, this is far
from determining the three parameters from which we will
estimate the mass of a gravitating star. As is clearly seen in the
residual cases (3), (5) and (6) of Figure 5, the cubic trend in the
residual after a least-square fit taking up to the quadratic term
is of the form of P, the Legendre’s polynomial of third degree,
and therefore has only one degree of freedom. Generally speak-
ing, in order to determine the three parameters, we have to
consider up to the quintic trend. In the following, we will con-
sider the conditions necessary to detect the effect we proposed
and to determine the model parameters, separately.

Let us introduce angular coordinates (6,, 6,) on the celestial
sphere such that the star seems to be fixed, the origin is P,, and
the 0, -axis is in the direction of the proper motion of P relative
to S. Then the position of the star in these coordinates is
expressed as

(0, 0,) = (uto, uty) . U

This maps two of the parameters of the residual function, ¢,
and t,;, to a point on the celestial sphere. When the relative
position of a star on the celestial sphere is (1)—(6) of Figure 6,
the residual curve becames like curve (1)—(6) of Figure 5,
respectively.

Once the coefficients c; in equation (6) are fixed, it is easy to
evaluate the maximum residual Ry,,. Since c; are the function
of the above coordinates of the star, we can illustrate Ry,, as a
function of the coordinates as in Figure 7, where we obtained
Ry, for the ranges 0 < 6, < 4.5uT and 0 < 6, < 4uT numeri-
cally. Note that the spacetime reversibility assures that Ry, is
symmetric with respect to the 6,- and 0 -axes. The maximum
residual becomes small when the third derivative of f{(t)
happens to be small. This explains the six wedges of the pro-
jected contours in Figure 7. The time delay effect will be detect-
able when Ry, is larger than R_;,, which is expressed by the
uncertainty of the TOA observation 619, and the mass of the
star Mgas

010A
Re = . 8
T (Mg/Mg) x 9.851 ps ®)
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Once R,;, is given, the region of the stars that will cause the
detectable delay is fixed. This region is illustrated in Figure 8.
The area of this region Ay, is proportional to (1T Dg)?, where Dy
is the distance of the star from the observer and its coefficient
Cpis the function of R,;, as

Ap = Cl)(Rcriz)(llTDs)2 . )

Here the subscript D stands for “detectable.” Rough estima-
tions of the coefficient are numerically obtained as Cp(0.01) ~
15, Cp(0.1) > 4 and C(0.2) ~ 2.5.

On the other hand, in order to measure the three parameters
with sufficient precisions, we should impose a tighter condi-
tion. First, we note that in order to determine ty, we should
detect the quartic trend in the residual. For the stars on the
0,-axis, the quartic trend is detectable when 16,] < 1.2uT in
the case R,;, = 0.01 and when | 0,1 < 0.6uT in the case R,,;, =
0.1. Next, after t, is fixed, we simplify the process to determine

the remaining two parameters, t, and M;, by removing a part .

of the observational data so as to make the reduced period of
observation symmetric with t,. Then the estimation process
reduces to a fitting by an even function. Since we estimate the
quadratic trend simultaneously, the reduced observation
period should be long enough so that the deviation of the
characteristic function from a quadratic function of time is
significant. This is roughly equivalent to the condition that the
original observation period covers both of the inflection points
of the characteristic function so that the function cannot be
expanded by a low-degree polynomial within this period,
namely, |to| + |t;] < T/2. Thus the condition becomes that
the gravitating star should locate within the square region
composed by the points where (6,, 0,) are (£0.5uT, 0) or (0,

T
-~
—~—
—.—.—-—-—-.

Residual

t/T

FiG. 4a

FIG. 4—Amplitude of the residuals for various ty/T. The residuals for the cases (a)
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10.5uT). The resulting area becomes
Am = Cu(ReiuTDy)? (10)

where the subscript M stands for “measurable.” Here Cu
asymptotes to 0.5 when My is large enough for detecting a
quartic trend at 6, = 0.5uT, that is, when R <0.3. On the
contrary, when R.;, > 0.3, namely when Mg < 0.07 M o in the
case oo = 200 ns, C(R,,;,) is smaller than 0.5.

Now, note that

HTDs = |pp — ps| TDs = T, (1n

D
D—:VP_VS

where pp and pg are the proper motion vectors of the pulsar
and the star, ¥, and Vs are the transverse velocity vectors of
the pulsar and the star. Then, if we fix the pulsar and the
observation period, the areas depend only on R, Dg, and V.

If the distribution of the mass, the position, and the velocity
of foreground stars are known, we can estimate the probability
to detect (or measure) such time delay effect by the foreground
stars during the period T by integrating Ay, (or A,) with
respect to the mass, the position, and velocity. Note that the
dependency with Dg and V; is the same for both of Ap and A,,.
The difference between these two areas only comes from the
dependency on R_;,.

Here we will consider only a rough estimation under sim-
plified assumptions shown below. On the mass distribution, we
assume that all stars have the same mass M. As for the posi-
tional distribution, we adopt a single-component exponential
disk with the scale height h and the total column density Xg.
According to the recent study, the velocity of the pulsar can be
expected to be much larger than that of the stars (Lyne &
Lorimer 1994). So we assume ¥; ~ 0 for all stars. In this case,

Residual
N

I

Ll

T 0017

L td=0.1 -
l’ “\Q.‘ td:T "'/’:,'
] \‘~~'~-...-----‘\“’"

0 S

o
|
N
4

|

t/T

FiG. 4b

to =0T and (b) ¢, = —0.3T. The dash-dotted line is for the case t, = 0.01T, the

dashed line is for the case ¢, = 0.1, and the solid line is for the case ty = T. Although the time variation of the residuals is not significant for the caset, = T in this
scale, it has the same properties with respect to time which are clearly shown in Fig. 5b. The smaller is ty/T, the larger becomes the height of the hump of residuals at

the epoch z,,.
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FIG. 5a
F1G. 5—Shape of the residuals for various t,/T. The residuals for the cases (a) t; = 0.1T and (b)t, = T. The dash-dotted line (1), (4) is for the caset, = OT'; the
dashed line (2), (5), the case t, = —0.3T'; and the solid line (3), (6), the case t, = —0.7T. When t,/T is larger, the relative width of the hump of residuals becomes

somewhat wider and the height of the hump becomes smaller. Note that the observation period T is less than a few decades at most. Hence (b) will be a typical case in

practical observation to detect this effect.

the shape of the integration region becomes conelike. Then the
probability of detectable event during the observation period I

0y :
is expressed as
z D Dy sin | bp |
I.‘(l). M = C(D, M)(Rcril)(vi’ T)2<EA4—SSZ)(_3_P)K(_P_}1__?—) )

=5
@ 29 |o
Il

g 2| 12

‘ { ’/ where by, is the galactic latitude of the pulsar and

) (5 4 K(x) = .f &-éac/f EdE =3x73[2 — (x* + 2x + 2)e *]

0 0
(13)

¢

*

AE
g
i

is the latitude-dependency coefficient, which is illustrated in
Figure 9. Note that K(x) ~ 27* when 0 < x <2, K(x) ~ x 2

when 2 < x < 6,and K(x) ~ 6x 3 when 6 < x.
Now let us assume gy, = 200 ns, T = 10 yr, Vp = 400 km

s™1, Dp = 2kpc, Mg = 0.2 M, which is the value of typical M
dwarfs, h =325 pc (Bahcall 1986), and £3=40 M, pc?2
(Bahcall 1984) as nominal values. Then R_; = 0.1 and the

probability is evaluated as
rooafL LY D)% V(T
®-M ™\ 75" 600\ 2 kpc/\ 400 km s~/ \ 10 yr

F1G. 6.—Relations in apparent positions of the pulsar and the star for six % X h -t Mg !
40 Mg pc 2 \325pc) \02 M,

cases of Fig. 5. The origin was taken as the position of the pulsar when ¢t = 0.

The position of the pulsar becomes (,, 6,) = (ut, 0). The point (to/T, t,/T) in

the parameter space relates to the position of the star (ut,, ut,) in this coordi- D, h -1

nate system. The six cases (1)—(6) of Fig. 5 correspond to the relative positions x exp | —4.27 sin | bp| F —_— (149
2 kpc/\ 325 pc

of the star (1)—(6) as indicated.

it e ta=0.1T

0 x
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In | RMax I

0
-1
-2
-3
4+
5

FIG. 7—Maximum residual per unit mass as a function of the star’s posi-
tion relative to the pulsar. We assume that the pulsar shifts its position from
(—=0.5uT, 0) to (0.5uT, 0) during the observation period. The maximum
residual per unit gravitating mass R,,,, was obtained numerically as a function
of the star’s angular coordinates (0., 6,). The z-coordinate represents the
log | Ry,, |- Suppose that the time delay effect is detectable when R,,,, > R.;,-
Then, the detectable region of the stars is log Ry, > —2 when R_;, = 1072,
and log Ry,, > —1whenR_;, = 107"

crit

crit

for low-latitude pulsars, say | bp| < 20°, and

rownf(l, LY 2 ) (% Y
®M 1610 4900/\2 kpc/ \400 km s~*
8 T \?(sin |bp]\ 2 s
10 yr 0.5 40 M pc?

h Mg \!
X (325 pc)(0.2 Me) ' (13

for high-latitude pulsar, say | bp | > 20°.
The number of known millisecond pulsars on the Galactic
plane are more than a dozen (Taylor, Manchester, & Lyne

Fi1G. 8—Detectable and measurable regions on a celestial sphere. The
inside of rosette-like contours are the detectable regions corresponding to the
indicated values of R.,;,. The shaded square is the measurable region, which is
unchanged when R_;, < 0.3. The thick arrow indicates the movement of the
pulsar during the observation period.

—~
<
~— |
V4

0 5 10
X

FiG. 9.—Latitude-dependency function. The figure illustrates a character-
istic function, K(x) = 3x 3[2 — (x? + 2x + 2)e™*], expressing the dependency
with respect to the pulsar’s latitude of the detectable (or measurable) probabil-
ity of the gravitational time delay effect by a foreground star in pulsar timing
observation.

1993; Phinney & Kulkarni 1994). Since I'y, is a few percent for
low-latitude Galactic millisecond pulsars, the probability of
detecting this effect might be small even if we observe all of
these pulsars. However, the probabilities are proportional to
T2, and they become large as the TOA observation uncertainty
decreases. Further, many new millisecond pulsars will be found
as the observation sensitivity improves. In the future, it will be
more probable to detect this effect.

Let us briefly discuss how to identify the star causing the
delay. Assume that the position and the proper motion of the
pulsar are obtained. Also assume that the star causing the
delay is so bright that the star is visible and its proper motion
relative to the pulsar is measurable. In this case, once the effect
is detected and at least the parameter t, is determined, one
constraint for the candidate stars is fixed. That is, the direction
of the motion of the star relative to the pulsar should be

. \
8 \
S )
| 4/6
X
X
y 3 [o]
3y \
D \
X

FiG. 10—Star flow diagram. A pulsar-centered star atlas at ¢,. Arrows
indicate the proper motion of the stars relative to the pulsar. The filled circles
are the candidate stars that have the appropriate ratio of 6, to u, and have no
radial component of the relative proper motion. Open circles denote non-
candidate stars.
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orthogonal to the arc connecting the pulsar and the star at the
epoch t,. This will be helpful in identifying the star causing
the delay. If the candidate star is found by this constraint,
the parameter t; will be obtained by measuring the mini-
mum separation 6, and the relative proper motion p. Then
the mass of the star, the last parameter of this time delay, will
be determined from the amplitude of the residual. Namely,
there is a possibility of obtaining the mass of the star by com-
bining with the optical observation even the star is out of the
“measurable ” region.

In the case that all three parameters are determined by TOA
data analysis only, it will be easier to identify the star. Because
of one more constraint, the information on ¢t,, can be used for
the identification. Consider a “star flow diagram,” a pulsar-
centered star atlas when the proper motions of all stars relative
to the pulsar at the epoch ¢, are indicated by arrows, as shown
in Figure 10. Then, the candidates will be the stars in the
diagram whose ratio of the separation angle to the proper
motion is equal to t; and which have no radial component of
the relative proper motion. In Figure 10, filled and open circles
denote the candidates and noncandidate stars, respectively. On
the other hand, if there are no visible candidate stars, the time
delay might be caused by a MACHO.

4. DISCUSSION

So far we have assumed that there is no other effect that
causes the cubic and the higher trends in the residual. Under
that condition, we have seen that in most cases, except the case
when t, is less than the length of the observation period and ¢,
is near the center of the observation period, the residuals of the
time delay effect caused by the foreground star appear as a
cubic trend after a quadratic polynomial is fitted. Table 2
shows the estimated parameters for some known pulsars. The
breaking index, n = (vij)/¥?, is proved to be 3 when the cubic
trend is due to the magnetic dipole radiation.

For some pulsars, cubic trends have been observed to be
much larger than expected from the radiation theory (Thorsett,
Arzoumanian, & Taylor 1993; Backer, Foster, & Sallmen
1993; Kaspi, Taylor, & Ryba 1994). In such cases, it might be
worth reanalyzing the TOA data by introducing this effect. It
should be noted that, as shown in Table 1, there are many
causes of the cubic trend. So it seems to be difficult to separate
the time delay effect discussed here from these other effects.
This is true if the TOA analysis is done only for one data set.
Note that the magnitude of the residual for this effect will
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change according to the length of the observation period.
Therefore, when the observation is continued and the enlarged
data are reanalyzed for a longer observation period, we will be
able to judge whether the trend is caused by this effect or not.
To compare this effect with others and to evaluate the separa-
bility quantitatively remain an open question.

Let us consider the application of the TOA analysis in esti-
mating the mass of MACHOs. Recently some MACHO candi-
dates were discovered by the microlensing events and their
masses were estimated to be of the order of 0.1 M, (Aubourg
et al. 1993; Alcock et al. 1993). However, these estimates were
obtained under many assumptions. The mass of a MACHO is
important in specifying what kind of object the MACHO is. In
the determination of the mass of MACHOs, the method pro-
posed in this paper may have some theoretical advantages.
That is, no assumption is made on the proper motion and the
distance of MACHOs and the pulsars. In fact, we need not
know the position of MACHOs.

As for the velocities of MACHOs, their mean value is
thought to be ~200 km s~ 1, which is much larger than that of
the random motion of nearby stars. Therefore, in calculating
the probability to detect the effect caused by MACHOs, the
approximation Vg5 < ¥, adopted in § 3 is not appropriate. In
the case where V5 and ¥, are the same order of magnitude and
the distribution of ¥ is random, there appears an additional
term in the expression of I, ), which is based on the integra-
tion of (V; T)? term in a column-like region along the pulsar’s
direction.

By taking this contribution into consideration also, we may
roughly estimate the probability for the case of MACHOs. Let
us assume that the distribution of MACHOs is uniform and
isotropic, whose density is p & 7.9 x 1073 Mg/(pc)®. Further
assume that Mg = 0.1 M and Vg =200 km s~ !, and use the
same values for the other parameters. Then

rooof L 1 D, T \?
©-M 1290 1300/\ 2 kpc/\ 10 yr
X P Ms B
7.9 x 1073 Mg pc—2/\0.1 Mg

4 Ve 23 Vs 2
x[7<400kms—1) +7<200kms'1) - (19

These are roughly the half of the values of I by the stars for a
pulsar on Galactic plane and are 3 times larger than those for

TABLE 2
FREQUENCY CHARACTERISTICS OF SOME PULSARS

P P

V
PSR (s) (1071%) (10721 s73) n

BO531+21........ 0.033 4209 9.76 + 0.07 2.05 + 0.01
B0540—69......... 0.050 479.1 3.66 + 0.04 2.04 +0.02
B1509—58......... 0.150 1540 1.96 + 0.01 2.80 + 0.01
B1620—26"........ 0.011 81.56E—5 (1.866 + 0.017)E—2  (3.812 + 0.035E+7
B1757—-24......... 10.125 1279 (32+04)E—-1 38+5
B1937+21°........ 1.56E—3 1051E—7 (132 + 03)E-6 (4.52 + 0.100E+3
B2127+11A4...... 0.11 —0.02 (4.8 +0.1)E—4 1.5E+6

* Crab Pulsar.

® In M4.

¢ Fastest millisecond pulsar.

4 In M15.

NoTes.—P is the period of pulse, P is the period derivative, ¥ is the second-order derivative of the
pulse frequency, and n is the braking index. These data are quoted from Taylor, Manchester, & Lyne

1993 and Kaspi, Taylor, & Ryba 1994.
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high-latitude case. For more rigorous evaluation, we need a
more realistic distribution function with respect to the mass,
the position, and the velocity of MACHOs.

In summary, we introduced a new correction term to the
model of TOA data analysis, i.e., the gravitational time delay
caused by a foreground star. The effect appears in the form of
log (1 + t?), whose amplitude is directly connected to the mass
of the star. We discussed the practical aspects of the mass
measurement of the star by detecting this term. It is worth
noting that the explicit information on the distances to the star
and/or to the pulsar is not necessary. We illustrated the charac-
teristics of this effect and how to separate the time variation
due to this effect from other effects. When the residual of the
TOA has a positive hump and its time-dependency agrees with
the tendency expected from this effect, it is worth reanalyzing

Vol. 448

the TOA data by introducing three new parameters; the mass
of the foreground star, the epoch of the closest approach, and
the proper motion of the star relative to the pulsar. Such fitting
will determine the mass of the star. Since a vast amount of
TOA data has already been accumulated for a number of
pulsars, it is desirable to detect this effect.
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tions and comments. This work was partly supported by the
Japanese Science and Technology Agency Fellowship (K. O.)
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APPENDIX A

APPROXIMATION OF GRAVITATIONAL TIME DELAY FORMULA

In this appendix, we will examine the conditions necessary to find an approximation for the gravitational time delay, as in

equation (1).

Denote the distance between S and the line OP by L (see Fig. 1). If we introduce the auxiliary quantities x, y, z defined as

OS

x =tan -, yES—P,

2

then the amount of gravitational time delay is expressed as

2 2 2
() (22,

GM lOS+SP+OP|

At=(1+7)—5In

GM
~(+9) = (m

where

f(x,y)=2In|x|+In|y| —In|1 + x*>| —1n

Note that 0 < z < 1 by definition.

oS
tan - +In

1+ S ),

OS + SP — OP

an LPOS
)

(18)

1+ 1~z- (19)

In approximating f(x, y), we assume that 6 is small as of the order of 1”. Under this condition, x ~ 6/2 < 1 and z ~ (2xy)?. Then
the first term, 21n| x|, becomes the main part of f(x, y) unless z ~ 1. The condition x < 1 means that the angle / OPS is small and
L OPS ~ 2xy, while the fact z ~ 1 means that the angle /. OPS is large and the star is quite close to the pulsar. In the latter case,

fx,y)~2In|x|+In|y| —(n|x|+In|y])=1n|x]. (20)

However, in general this case may be rare. Also the coefficient of the main term changes by the factor 4 at most. Thus, hereafter, we
will consider only the case z < 1. Namely, we assume that the star is not so close to the pulsar or the observer, say at a distance of 1
pc or larger from both the pulsar and the observer.

Let us examine the magnitude of the maximum variations of the other three terms of f(x, y) caused by the proper motion of the
star and the pulsar. Here, we assume the duration of the observation as 10 yr and the uncertainty of TOA as 200 ns, and we will
consider the star with 0.2 M. Since the factor (1 + y)GM o/c® is ~ 10 us, we may neglect terms in f(x, y) if their variation is less than
0.1 for 10 yr.

First, the variation of the second term is evaluated as

|AOS| |ASP| 2| AOS| | AOP|
Al < . 21
2= 655+ 5p “Min(0s,sp) T sP @1)
Note that the velocities of the star and the pulsar can be as large as 100 and 800 km s, respectively. Then, the maximum of AOS
and AOP during a period of 10 yr will amount to 200 and 1600 AU, respectively. If we substitute these values into the above
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inequality, the maximum variation of this term is evaluated to be less than 8 x 10~3 when Min (OS, SP) > 1 pc, and therefore, is
negligible.
Next, the variation of the third term is caused by the transverse component of the motions of the star relative to the pulsar as

1/ L\ AL

—Aln|1 Ny —2xAx~ —=-|l—= =, 22
nll+ x|~ —2xAx 2(03)(05) @2)

where we used the assumption x < 1. Then, even if we substitute the maximum of AL, i.e., 1600 AU, the variation of his term is less

than the order of 10~ 2, and therefore, is negligible.

Finally, the variation of the fourth term becomes
1+ J/1—-z
2

where we used x < 1 again. Since z < 1 and Aln|y| is negligible as we have seen in the above, zAIn|y| is small enough to be
ignored. On the other hand, .

Az

—Aln 7 z%(AIn|x|+Aln|yl), (23)

~

24

1 L (OS\*AL AL
§A1n|x|z2(xy2)(Ax)z ( )

20s\sp) 0s~sp"
If the maximum of AL is substituted in, the maximum variation of this term is less than 10~ 2, and therefore is negligible.

On the contrary, the variation of the first term of f(x, y) is mainly due to the transverse component of the relative motion. Thus it
should be examined carefully. The variation in this term is expressed as

Ah|x|r—~x—=—. 25)

p
Note that we assume that 6 is so small that we can approximate x = tan (6/2) ~ 6/2. Let us take the value of L as 500 AU (i.c., 6 = 1"
at OS = 500 pc) and that of the transverse component of the relative velocity as 30 km s~ ! as a realistic case. Then AL amounts to
60 AU during 10 yr. In this case, the variation of the first term amount to 0.12. In other words, the variation of At arising from this

term is 240 ns for the star whose mass is 0.2 M 5.
Therefore we only have to consider this term in f(x, y), and we can approximate as

fx,y) =~ In <g>2 . (26)

Now, under the same conditions, the time variation of the separation angle 6 is approximated as

- 2
0(t) = /03 + p2(t — to)* = 0o |1 + <t " t°) . 27
d

By substituting this into equation (26), we obtain equation (1).

APPENDIX B
EXPECTED RESIDUAL CURVE R()

As an example, let us show how to evaluate the residual curve for the foreground star of a unit mass R(z), which would be expected
after the least-square fitting of a quadratic polynomial. Here we take t, t,, and t, are scaled by the observation period T, i, v = t/T,
1o = to/T, and 7, = t,/T. Then, the residual is defined as

R(r) =f(r) — P(v), (28)
where

P(7) = i ;v (29

is the best-fit polynomial for the characteristic function

f©)= —In [1 + (1;—“’>2] (30)
1

in the interval (— %, 3). The coefficients c; are determined by solving the normal equation
I, Iy Ip\[co Jo
11 12 13 Ci | = Jl . (3 1)
I, I3 14/ \c, J,
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Let us assume the observation of TOAs are sufficiently homogeneous and dense through the entire period of observation. Then the
coefficients of the normal equation are approximated as I, = 0 for odd n,

J‘l/Z 1
L=| td=—— 32
i (n + 1)2" (32

1/2 T—7Tg 2
J..=—J r"ln[1+< )]dr.. (33)
-1/2 Ta

By substituting equations (32) and (33) into equation (31) and deriving the inverse matrix, we solved the coefficients c; in terms of J,,
as

for even n, and

Co 9/4 0 —15\(J,
¢ )= 0 12 onNJ,}. (34
Cy —15 0 180/ \J,
The integrals J, are evaluated analytically as
Jo = — Td KO 5 (35)
Jl = —T‘%KI —TOTdKO9 (36)
Jy= _TgKZ—TO‘EgKl_T(Z)TdKO’ (37
where
Ko={t[In(1 + 7% — 2]+ 2 tan"* 7}}, (38)
2 1 b
T 2 2
Ki=<=[In(1+1)—-1]+=-In(1 +7%); , . (39)
2 2 a
3 b
T 2 2
Ky=4=|In(l+)-Z|+Z(r—tan" ' t)p , (40)
3 3 3 a
and
1422 1-2t
__1E% , _1-2% 1)
21, 21,
By combining the above expressions, we can obtain expressions for P(z) and R(z).
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Note added in proof—After this paper was submitted for publication, we were aware of the work by T. I. Larchenkova &
0. V Doroshenko (A&A, in press [1995]), which gives a discussion similar to what we presented in § 2.
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