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ABSTRACT

An analysis of the dynamics of supersonic mass-loaded isothermal winds shows that in many situations
such a wind will pass through one or more global shocks at speeds much lower than the wind’s maximum
velocity. A method for estimating the Mach number of the global shock in a mass-loaded, spherically sym-
metric, isothermal wind is given. The criteria that must be met for the assumption that the wind is isothermal
to be valid are treated. We discuss the asymptotic behavior of these winds and the nature of sonic points in
them. Numerical solutions for the Mach numbers of isothermal winds for different radial dependences of the
mass-loading rate are given. The possible relevance of low shock speeds in some mass-loaded isothermal

winds for radio quietness is mentioned.

Subject headings: hydrodynamics — radio continuum: general — shock waves

1. INTRODUCTION

The observed properties of bubbles blown by the winds of
highly evolved stars (e.g., Smith et al. 1984; Meaburn et al.
1991) have led to the conclusion that the structures and evolu-
tion of the bubbles are greatly affected by the interactions of
the winds with clumps of stellar material ejected during prior
stages of mass loss (Smith et al. 1984; Hartquist et al. 1986;
Meaburn et al. 1991; Dyson & Hartquist 1992; Hartquist &
Dyson 1993). Consequently, detailed one-dimensional, time-
dependent hydrodynamic models of specific wind-blown
bubbles associated with evolved stars have been constructed
(Arthur, Dyson, & Hartquist 1993, 1994). The nature of winds
mass-loaded by the ablation of and evaporation of material
from embedded clumps (or stellar sources) has also received
theoretical attention in the context of galactic winds (Mathews
& Baker 1971), globular cluster winds (Durisen & Burns 1981),
starburst galaxy superwinds (Chevalier & Clegg 1985; Lei-
therer 1994 and reference therein), accretion flow-wind struc-
tures at the centers of active galactic nuclei (Beltrametti &
Perry 1980; David, Durisen, & Cohn 1987a, b; Williams 1993;
Poll 1994), and ultracompact H 1 regions (Dyson & Williams
1995). Some general properties of steady, mass-loaded, adia-
batic winds have recently been examined by Smith (1994).

The work of Arthur et al. (1994) showed that in at least some
isothermal mass-loaded winds, a global shock does not occur
in the region where the Mach number is large. Instead, the
wind passes through a global shock only after it has traveled
far enough for mass loading to decelerate it sufficiently that its
Mach number is less than a few. In some of these cases, a
global shock within the mass-loading region does not exist at
all, but a termination shock caused by the interaction of the
wind with an external ambient medium is located beyond the
mass-loading region; obviously, in such a case, mass-loading of
the wind reduces its speed at this termination shock.

Wendker et al. (1975) have noted that though IC 443, a
supernova remnant, and NGC 6888, a Wolf-Rayet stellar
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wind-blown bubble, show some similarities, they differ signifi-
cantly from one another in their radio properties. While IC 443
is a very strong nonthermal radio source, NGC 6888’s radio
emission is completely thermal in origin. That stellar wind-
blown bubbles usually are not synchrotron sources is so widely
accepted by now that the presence of nonthermal radio emis-
sion is sometimes cited as evidence that an object is not a
stellar wind—blown bubble (e.g., Bally et al. 1989; Kulkarni et
al. 1992).

The gradual deceleration of a wind by mass-loading and the
associated weakening of the shock may in fact contribute to
the radio quietness of some wind-blown bubbles. This is a
conjecture which currently cannot be proven because, whereas
heavier cosmic-ray particles apparently may be injected from
the suprathermal tails of their momentum distributions in an
immediate postshock plasma (e.g., Ellison & Mobius 1987),
the mechanism by which cosmic-ray electrons are injected
remains unknown as does the mechanism by which electrons
are heated in collisionless shocks (e.g., Asvarov 1992).
However, the conjecture is reasonable if the fraction of injected
electrons is independent of the shock speed, but the typical
injection energy per electron is proportional to the postshock
temperature; then a smaller percentage of the electrons behind
a slower shock would reach the roughly GeV energies associ-
ated with the cosmic-ray electrons that emit the observed syn-
chrotron radiation. For this conjecture to be valid, the
entrainment of clump material into the wind must be primarily
through gradual viscous coupling between the wind and the
entrained material, and only a small fraction of the wind may
pass at high velocity through those sections of bow shock
surfaces that have normals with significant components paral-
lel to the wind velocity; we do not consider the question of flow
structure on these intermediate scales which are associated
with entrainment but will address it in future work.

The main aim of the work presented in this paper is the
calculation of the Mach numbers of the global shocks in iso-
thermal mass-loaded winds. The results may be of relevance to
the nonthermal radio quietness of some sources, but they cer-
tainly bear on the issue of the thermal emission of wind-blown
bubbles. For instance, the absence of a high Mach number
global shock in a mass-loaded wind leads the bubble to be a
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weaker X-ray source than a bubble blown by a comparable
wind that develops a high Mach number global shock.

Section 2 contains estimates of the locations and Mach
numbers of shocks in spherically symmetric mass-loaded iso-
thermal winds. In § 3, we give criteria for the validity of the
assumption of isothermal flow, while § 4 concerns the proper-
ties of the sonic points in spherically symmetric, steady, mass-
loaded isothermal winds and the flow structures at large radii
in infinitely extended mass-loading regions. Section 5 gives
numerical solutions for the wind Mach number as a function of
radius for infinitely extended mass-loaded regions in which the
mass-loading rate has various radial dependences; the section
also has numerical results for finite mass-loading zones and the
Mach number of shocks occurring in them. Section 6 is a brief
conclusion.

2. APPROXIMATIONS TO THE SHOCK LOCATION
' AND SHOCK MACH NUMBER

We consider a steady isothermal wind flowing radially
through a spherically symmetric mass-loading region which
extends to radius r; and is centered on the source of the wind.
We assume that mass-loading smoothly decelerates the wind
until is passes through a global shock at radius r, (we will see
below that r, must be less than r;), and that the mass-loaded
wind remains subsonic to radius rp (where r, <rp <rp), at
which it passes smoothly through a sonic point to become
supersonic again. Related approximations have been used in
the case of combined wind-accretion flows by Ostriker et al.
(1976) and Durisen & Burns (1981).

We consider the case of a mass-loaded wind with no gravita-
tional forces, which leads to considerable simplifications in the
analysis. Gravitational effects are small, so long as the wind
driven from small radii is supersonic when it reaches the region
in which mass-loading is important. This is likely to be true for
most nebulae around stars. For example, around the nucleus of
a planetary nebula 2GM, /c? < 10! cm (where the limit corre-
sponds to M, =~ 10 M and ¢ ~ 15 km s~ ), far smaller than
the PN radius. Close to this radius, radiative forces are also
likely to have an important effect. We neglect both gravity and
these radiative forces and assume that the flow from small radii
is highly supersonic and can be specified by a central mass-loss
rate M, and velocity v,.

The values of M, and v, are determined by gravitational
and radiative forces close to the star and match the solutions in
the mass-loading region at some small but finite radius r > r,,
where these forces have become negligible. These values are
well defined if the stagnation pressure of the stellar wind flow
at the sonic point close to the stellar surface is far larger than
that in the mass-loading region, or in the surrounding ambient
interstellar medium (ISM).

The dynamics of the wind are governed by the equation of
continuity

d
o (pvr?) = Sr?, (1a)
and the force equation
1d dP
= (pv’r?) = — I (1b)

where r is the distance from the wind source; v and p are,
respectively, the wind speed and density; and P is the pressure.
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S is the rate per unit volume at which mass is entrained by the
wind. In isothermal flow

P=pc*, (10)

where c is the isothermal sound speed. Equation (1) integrates
to give

M(r) = dnr’pv = M, + I(r) , (2a)

where

I(r) = 4n[ Sr2dr, (2b)
and M, is the mass-loss rate of the central source, at its surface
r=r,.

To*estimate the global shock radius r,, we balance the ram
pressures of preshock and postshock flow. We first estimate the
ram pressure of the supersonic wind at a radius only margin-
ally less than r,. Use of equations (1a), (1b), and (1¢) yields

dv S 2vc?
2 _ % _ 2.2 2y , 20 3
(v c)dr p(v +c%)+ - 3
If we assume that the flow is hypersonic at r < r,, we obtain
dv S
—~ ——, 4
o p (4a)

Use of the relation (2a) permits us to eliminate p from equation
(4a) and then to integrate to find that

Uy
PETY UM’

where v, is the speed of the wind at small ». Employing equa-
tions (2a) and (4b), we find that the ram pressure of the mass-
loaded supersonic wind at r, is roughly

(4b)

M,v
o =28 )

P
47r?

s

We next calculate the sum of the ram pressure and the
thermal pressure at the sonic radius, rp. This is the radius at
which v = ¢, so for a solution to exist, the right-hand side of
equation (3) must also vanish. In the case of an isolated, spher-
ically symmetric mass loading region, sonic points where the
flow becomes supersonic can either occur within the region (for
particular mass-loading distributions, see below), or can be
“synthesized” at its edge (r, = rp) if the forms of the steady
solutions within and outside the region are suitable (cf. Fig. 2;
Chevalier & Clegg 1985; Williams & Dyson 1994).

In this paper, we assume that the wind from the nebula has
driven the ambient ISM to radii well beyond the mass-loading
region, so the flow in this region can be treated as steady. The
influence of the ISM can be included as a boundary condition
on the pressure at infinity, P, for these steady flows (cf. Parker
1965). The flow must be supersonic beyond the mass-loading
region for sufficiently low external pressure (P, < Pp). A shock
at some intermediate radius will then match the fully deter-
mined transonic solution with the nebula to the external pres-
sure. This is the more likely case, which we treat here.
Alternatively, if P, 2 Pp, the external pressure will stagnate
the flow onto a breeze solution, which is everywhere subsonic
beyond the inner shock radius. The stagnation pressure of the
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breeze solutions is finite at infinity: the external ISM pressure
will determine which breeze solution is appropriate; the inner
shock will be driven to radii rather smaller than those found
for the transonic solution.

Using the fact that v = ¢ at rp, and equations (1¢) and (2a),
we find that the sum is

_ [M* + I(rp)]c

P
P 2nrd

©)

Because by assumption the flow between r, and rp is sub-
sonic, to a good approximation

P s = P P> (73.)
from which we find that
Myo, ™2
s = {2[1\'4* + I(rP)]c} P (76)

If this equation yields a value for r, larger than rp, then the
central wind has sufficient momentum flux to drive through
the whole mass-loading region, nowhere becoming subsonic:
no global shock will form in the mass-loading region.

The Mach number of the shock, defined as m = v/c, may be
calculated from equations (2b), (4b), and (7b). To make this
calculation, we assume that

L/ r\T*3
M*(r_> r<rg
=1 s ®
M*< L> r>rg.

To
where T is a constant and r, has obviously been chosen to
satisfy I(ro) = M,. We require I' > —3 and neglect terms of
order (r,/ro)" * 3 required by the definition (2b). All sonic points

in the flow must be inside the mass-loading sphere, sorp < r;.
Thus from equation (4b), the shock Mach number is

U* rg r+37-1
mee ()] *

v, 0,(re/ro)* ‘”3”2}]-1
[+ ) -

If a global shock is to form within the mass-loading region for
an initially hypersonic wind, equation (7b) implies that

Irp) > M, (10)

(and so, from eq. [8], [rp/ro]" *3 > 1). With this condition, we
find from equation (9b) that

—@+1)T+3)2) -1

v, v, (Tp
~ %<1 == . 11
s C{ +|:26 (’o) _ } (112)

Using equations (8) to substitute for (rp/r,) in this, we find

(T +3)2 - +1)/2) -1
Uy Uy I(rp)

~ %<1 —* — . 11b
s ¢ { * (26) [M*_ (1)

<

1R

From equation (11b) we see that a large reduction of m, below

v,/c occurs if

v I(r (Tr+1)/(r+3)

?* > 2[%] . (12)
*
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For the particular case I' = —2, equations (11b) and (12) give,

respectively,
S P AN G
My = = {1 + <2c> M, (13a)
and
I(rp)  2c
——>—, 13b
M, > Uy (13b)

A global shock will form in an isothermal mass-loaded wind
when condition (10) holds and will have a Mach number much
less than v,/c if condition (12) is met. For v,/c> 1 and '
—1, condition (10) is the more restrictive of the two; condition
(10) states only that at the outer edge of the mass-loading
region the flux of entrained mass must be much greater than
the flux of mass that is injected by the central source. For
I' 2 —1, condition (12) is more restrictive than condition
(10y—any shock which forms will have an upstream Mach
number substantially below that of the initial stellar wind.

3. THE ASSUMPTION OF ISOTHERMAL FLOW

We now consider conditions that must hold in order for the
wind to behave isothermally while it is hypersonic. The equa-
tion for energy conservation for ay = 5/3 gas is

1df,(1 , 5

= = = —P|)|=H-A, 4

r dr[r U(va *32 ):I (19)
where H is the heating rate per unit volume due to processes
other than mass-loading, which we assume does not add

energy to the wind, and A is the cooling rate per unit volume.
From equations (1a) and (1b) we obtain an equation governing

P/p:
dln(P/p)__i_}_lg S 2H-A

dr ¥ 3P w3

2 5P\ /10 vP 4v? 2H—-A
——l?-= —2—-——'—)—S—~— . (15)
3v 3p 3rp 3 p 3 »p

If we assume that the wind is hypersonic, we need to retain
only the first, second, and fourth terms on the right-hand side
of equation (15). The derivative on the left-hand side of equa-
tion (15) and the first term on the right-hand side may be
neglected if

4P
r> S (16a)
and either
2Pv
r> TH Al (16b)
or
2Pv
r> . 16¢
Al (16¢)

If conditions (16a) and either (16b) or (16c) are met, a hyper-
sonic wind will have a temperature given by the solution of

A=1LiS* +H. 17)
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If the wind remains almost fully ionized, the temperature will
then vary little so long as either

din|H — A ||~ |dIn(Sv?)
dinT anr | <! (183)
or
|H| > LSv2 . (18b)

If we use equations (8), (2b), and (4b) as well as assume that
I(r) > M, then condition (18a) becomes

din|H — A||™!
T IT+3]<1.

For the hypersonic part of the flow to remain roughly isother-
mal, conditions (16a), (16b) or (16c), and (18a) or (18b) must be
met.

A corresponding set of conditions is relevant to the issue of
whether the flow remains isothermal in the subsonic region.

(19

4. SOME PROPERTIES OF STEADY ISOTHERMAL
MASS-LOADED FLOWS

In this section we consider the natures of sonic points in
mass-loading regions and the asymptotic behavior at large r of
winds in very extended mass loading regions.

From equations (1a), (1b), (1c), (8), and the definition of the
Mach number, it follows that

x(m* — I) dm I+3
T ol Tiaremmt D), (209)
with
x=r. (20b)
[4]

The solutions of this equation can have a finite gradient at
Mach number of unity only at the set of sonic points where the
right-hand side of the equation is zero when |m| = 1, that is at
Xp, Where

xp= ([ +2)"1VC+3 1)

To study the nature of the flow close to these sonic points,
we expand equation (20a) using I'Hopital’s rule (cf. Holzer
1977). Close to m = 1, we find the gradients of the solutions
through a sonic point satisfy

2
xzd—m +xd—m+r+2=0.
dx dx

The roots of this equation determine the form of the sonic
point. For the narrow range —2 < I' < —(7/4) the roots are
real and of the same sign and the sonic point is a node. The
solutions corresponding to either of these roots can take
the flow from supersonic to subsonic motion. For I' > —(7/4)
the roots are complex, and m(r) spirals in the vicinity of the
sonic point; thus, for I' > —(7/4), a shock must exist in a
steady flow for it to pass through all radii. Depending on the
global form of the solutions, it is possible that a shock may also
be required when the sonic point is a node. Note that an equiv-
alent equation to (22) holds in the neighborhood of the sonic
points in adiabatic flows, and there are thus similar regimes of
flow topology (cf. Smith 1994).

Equation (22) holds for general mass-loading distributions,
with the local value of I'(r) = dIn S/d Inr; the sign of the second

(22)

term is reversed for inward flows, where m ~ —1 (eq. [20a]
does not, however, hold if I" varies). Indeed, at some radius I
must break to a slope steeper than — 3 if the total mass loading
is to be finite. For a general mass-loading distribution, it is
possible that at the sonic point I' < —2, so the roots are of
opposite sign and the sonic point is a saddle. The “ synthetic”
sonic points discussed above and illustrated in the next section
are a limit of this case, where I' - — oo suddenly at the edge of
the mass-loading region.

5. NUMERICAL SOLUTIONS

Figure 1 shows solutions of equations (20a) for the Mach
number as a function of radius for different values of I'. The
mass-loading regions are assumed to extend from r, =0 to
infinity. For T" = 0, the solutions form a tightly wound spiral.
For I' = — 1.5, the spiral is far looser, but for either case, any
flow that passes from supersonic to subsonic must go through
a shock. For I' = — 1.9, however, the sonic point is a node. As
the solutions approach the sonic point they are seen to be
strongly attracted toward a curve that passes through it with a
small gradient; this is the nonsingular solution. The singular
solution is the boundary between solutions that approach the
sonic point from the left and solutions that approach the sonic
point from the right; it has a steeper negative gradient than the
nonsingular solution. The gradients of these two solutions
through the sonic point are given by equation (22) (or
equivalent). Any of the upstream solutions with Mach numbers
less than the singular solution can pass smoothly through the
sonic point and be continued by any of the downstream sub-
sonic solutions that have larger Mach numbers than the singu-
lar solution. For an upstream solution with higher Mach
number than the singular solution to become subsonic, it must
pass through a shock.

In Figures 2 and 3 we present numerical results for m in
cases where the mass loading region is of finite extent. Figure 2
is for I' =0 and r;, = 4r,. The bold curves show the unique
solution that is subsonic at r < r, and transonic at r = r;, and
that which is supersonic at r < r; and transonic at r = r;. The
intersection of the dashed curve with a solution shown in
Figure 2 gives the location and Mach number of the shock that
connects the intersected solution (through the isothermal
shock jump condition that m,m, = 1 where m, and m,, are,
respectively, the Mach numbers of the flow just upstream and
immediately downstream of the shock) with the solution that is
subsonic at r < r, and transonic at r = r,. Flows correspond-
ing to all solution curves that intersect this dashed curve must
contain such a shock if they are to be steady within the mass-
loading region, and to exit the mass-loading region trans-
onically. If the pressure boundary condition at large radii is
small, the outflow will follow the transonic solution; for high
external pressures, the shock radius will be rather smaller and
the flow will exit the mass-loading region as a subsonic
“breeze.” Note that the strongest central winds can blow
straight through the mass-loading region without forming a
shock—this is the case where equation (7b) yields r; > rp.

In Figure 2 the dotted curve shows the estimated locus of
isothermal shocks, (r;, m,), given by equations (4b) and (11a).
This compares with the “exact” numerically calculated value
of m; shown by the dashed curve in this figure. Approximate
solutions for particular values of v,, shown by open circles, are
connected with the radius at which the exact solutions predict
that a shock would form by a bar. The approximate locus of
shocks is in reasonable agreement with the exact one, except
close to the very edge of the mass region where m — 2 for the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...446..759W

log(r/ry)
FiG. 1la
« T T T T
o~ F
g
o \’\
-1.5 -1 -0.5 0 0.5 1 1.5
log(r/ry)
FiG. 1b
« T T T T T
o -
E
o
-15 -1 -0.5 0 0.5 1 1.5
log(r/r,)
FiG. 1c

F1G. 1.—Solutions for infinitely extended mass-loading regions with various values of I". (@) T = 0;(b)) T = —1.5;(c) [ = —1.9.
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log(m)

F1G. 2.—Isothermal spherical solutions for a wind blowing into a region with uniform mass-loading inside a radiusr, = 4r,, and zero mass-loading beyond it. In
this case, the sonic point (at r ~ 0.8r,) is a spiral. The solid curves show a range of solutions to the Mach number equation, chosen, for clarity, to terminate where the
gradient of the Mach number is infinite. The bold curve shows the unique solution that is supersonic at large radii; the dashed curve shows the locus of values m(x)
which can pass onto the outer transonic solution through a shock. The dotted curve shows the shock strengths derived from egs. (4b) and (11a), which provide an
approximation to the dashed curve. Points for specific values of v, are shown by open circles—bars are drawn between their centers and the numerically determined

shock radii.

approximation. The individual points are perturbed from the
exact shock radii by the countervailing effects of the neglect of
pressure forces in equation (4a) and the assumption that I(r) >
M used in deriving equation (11a).

Figure 3 shows solutions for I' = —1.77 (which gives a
nodal inner sonic point) and r;, = 18r,. The plot is similar to
that of Figure 2, except for the existence of singular and non-
singular solutions which pass smoothly through the inner
sonic point (the singular solution is shown bold in Fig. 3).
Unlike a I =0 mass-loading region, a I' = —1.77 mass-
loading region, with its nodal inner sonic point, can contain a
wind that is supersonic at r < ry, and becomes subsonic in the
mass-loading region without passing through a shock, before

emerging from the region transonically at r = r,. Indeed, any
solution which is below the (bold) singular solution upstream
of the inner sonic point can pass smoothly onto the transonic
solution. The correspondence of the approximate and “exact”
shock loci (r, m) in this case are far poorer, as might be expected
since the shocks which form in this case are never strong. The
predictions of individual shock radii r(v,) are, however, still
quite reasonable.

6. CONCLUSION

Clearly, mass-loaded isothermal winds often pass through
global shocks at speeds that are substantially smaller than the
wind speeds at the inner edges of the mass-loading regions. If

log(m)

r/ry

FiG. 3.—Isothermal spherical solutions for a wind blowing into a region with mass-loading index I' = — 1.77 inside a radius r, = 18r,, and zero mass-loading
beyond it. In this case, the sonic point (at r ~ 3.3r,) is a node (in Fig. 2, the sonic point was a spiral). As in Fig. 2, the solid curves show a range of solutions to the
Mach number equation, chosen, for clarity, to terminate where the gradient of the Mach number is infinite. One bold curve shows the unique solution that is
supersonic at large radii; the dashed curve shows the locus of values m(x) which can pass onto the outer transonic solution through a shock. A further bold curve,
which tends to Mach zero at large radii, is the singular solution through the sonic point. The dotted curve shows the shock strengths derived from eqgs. (4b) and (11a),
which provide a (poor) approximation to the dashed curve. Points for specific values of v, are shown by open circles—bars are drawn between their centers and the

numerically determined shock radii.
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mass entrainment occurs through gradual viscous coupling of
the winds to the entrained mass, the weakness of the global
shocks that do develop will certainly lead to the winds being
weak sources of hard thermal emission relative to comparable
shocked unloaded winds. The shocks’ weakness may also have
consequences for the radio loudness of some wind sources.

In closing, we address the question of whether the wind in
NGC 6888 is likely to behave like an isothermal wind as it is
mass loaded, since it provides an example of a wind bubble
with a completely thermal radio spectrum. The wind speed and
mass-loss rate in this object are 2400 km s~ '—roughly Mach
150 at 10* K—and 1.1 x 10™* M yr~* (St. Louis et al. 1989)
so that from equations (2a) and (4b) the number density of the
wind is roughly

r -2 r r+37j2
n, ~0.1 cm‘3(———> I:l + (——) ] }
1pc o

If solar abundances and collisional ionization equilibrium are
assumed, the maximum value of A is

23)

~ —21 -3 —1f s 2
Apax =1 x 10 ergscm™° s (1 cm‘3> (24)
(e.g., Raymond, Cox, & Smith 1976; Gaetz & Salpeter 1983) in
the wind that has not undergone much mass loading; A =
A at a temperature of roughly 10° K. Because the wind is
likely to have heavy element fractional abundances greater
than those in the Sun, and the ionization structure may be out
of equilibrium, the value of A in the wind will be assumed to be
greater than A, by a factor f which reasonably may lie in the
range of 10-100. We estimate that betweenr =0andr =r,

% Sv?~1x 10718 ergs cm 3
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Using equations (23), (24), and (25) we see that the Wolf-Rayet
wind is likely to behave isothermally when 1Sv?/A_, <1,
where

() (o D
Amn‘”lm(loo e\ T 3) s e
26)

For I' = 0 and fixed r, this ratio peaks when r/r, = (2/7)}/3 ~
0.66. For 1Sv?/A,,,, < 1 at all radii, we require that

‘max

<2 -2 L .
re $25x 10 pc(lOO)

(V)]
Compared to the nebular extent of several parsecs this is small.
However, r, can be small if the Wolf-Rayet wind is mass
loaded by the clumpy ejecta of a binary supergiant companion.
Such a supergiant companion would probably be difficult to
detect as it is clear that M3 supergiants are less luminous than
the massive He emission-line stars that have been detected in
the Galactic center and which are probably related to Wolf-
Rayet stars (Eckart et al. 1993).

The process discussed in this paper may also have relevance
for radio quietness or X-ray quietness in other types of wind-
blown bubbles including, perhaps, those around compact
sources at the centers of some active galactic nuclei (AGNs).
For instance, the great widths of the broad absorption lines
detected toward some AGNs and the relative radio quietness
of those AGNs (e.g., Turnshek 1988) may be associated with
the mass loading of nearly isothermal winds. While they are of
lower speeds and, hence, may not be expected to be strong
X-ray or radio sources, the broad H, line—forming regions in
Orion may also be in mass loaded isothermal winds (Malone,
Dyson, & Hartquist 1994).

% [To -3 1+ r (r/ro)" 25) We thank the referee for a thoughtful report, which helped
1pc 301+ (/ro) ¥37%° us to improve the clarity and completeness of this paper.
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