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ABSTRACT

A general Sobelov optical depth formula and some related results are derived for time-dependent spherically
symmetric relativistic systems. This formula and the other results are specialized for the case of homologous
expansion. The homologous expansion results will be useful for supernova calculations. Remarkably, the
Sobolev optical depth formula for relativistic homologous expansion is angle independent. This new formula
corrects an erroneous angle-dependent formula given in an earlier paper.

Subject headings: radiative transfer — relativity — supernovae: general

1. INTRODUCTION

A relativistic Sobolev method has been developed by Hutse-
mékers & Surdej (1990, hereafter HS) and Hutsemékers (1993).
The expression they give for the relativistic Sobolev optical
depth (appearing in their first paper) is, however, only valid for
time-independent systems. In this paper, we will generalize
their expression for the time-dependent systems. We assume
spherical symmetry.

We should first make clear that using a time-dependent
optical depth does not imply that a full time-dependent calcu-
lation is needed. We are not aware of any full time-dependent
formulation of the Sobolev method. Such a formulation may
be possible, but for calculations requiring full time-dependent
treatments it is probably best to use the comoving frame for-
malism in which time dependence is treated naturally (e.g.,
Mihalas 1978, p. 490, and references therein). Nonetheless, we
will briefly consider the needs of a full time-dependent Sobolev
formulation in our developments. A Sobolev method calcu-
lation for a time-dependent system is generally a snapshot cal-
culation, i.e., a calculation in which all or most of the physical
conditions are evaluated at a specific time and where the calcu-
lation proceeds as if or almost as if the system were time-
independent. A snapshot calculation yields a sort of
time-average result. The time-dependent optical depth we
derive is just another of the physical conditions to be evaluated
at the time of the snapshot. The introduction of the time-
dependent optical depth into snapshot calculations is a formal
improvement since some of the time dependence will be
included in the calculations. The practical improvement may
be modest in many cases.

The main reason for the generalization of the relativistic
optical depth formula for time-dependent systems is to
improve supernova radiative transfer calculations done with
HS’s relativistic Sobolev method. The highest observed velo-
cities for supernovae are 40,000 km s ! (8 ~ 0.13) (e.g., Jeffery
1993, hereafter J93, and references therein), and typical velo-
cities are ~5000-15,000 kms™! (8 ~ 0.017-0.05). At these
kinds of velocities, relativistic effects on line radiative transfer
can be expected to be rather small. By applying the relativistic
Sobolev method to homologously expanding systems, which
include supernovae after early times (see below), J93, however,
showed that the relativistic effects will not be vanishingly small
in the case of the highest supernova velocities. Thus, J93 veri-

fied the value of a relativistic treatment of line radiative trans-
fer for supernovae. Now homologous expansion is a
particularly simple form of time-dependent motion (see below).
J93 took account of this time-dependence in his prescriptions
for the relativistic Sobolev method in the homologous expan-
sion case, except by oversight in his formula for the relativistic
homologous expansion optical depth and related formulae. In
this paper we correct this error and show that the correction is
in fact a simplification.

In homologous expansion the matter elements move with a
range of velocities that are constant in time. Additionally, the
matter elements were effectively at a point at time ¢ = 0. Thus,
the radius of a matter element at any time ¢ after ¢t = 0 is given
by

r=ut, 1)

where v is the matter element’s constant velocity. Of course, if
we fix r in the observer frame instead of fixing it on a matter
element, we find that the velocity at r is decreasing like ¢t~ 1.
Moreover, even if we follow a matter element, we find that its
density is decreasing like t~3. Therefore, homologous expan-
sion is a time-dependent velocity field and unlike the station-
ary velocity fields considered by HS.

For supernovae, the time ¢t = 0 of homologous expansion
corresponds to the explosion epoch. The initial radius of the
exploding star is negligible compared to the radii of the mass
elements after 1 day at most in the case of most Type II (and
perhaps Types Ib and Ic) supernovae and after ~ 100 s in case
of Type Ia supernovae (according to the standard theory).
Thus, one can assume that the matter elements started from a
point at ¢t = 0 for all supernovae after appropriate time inter-
vals. Ordinarily, the forces on the matter elements vanish, and
the matter elements go into uniform motion after time intervals
comparable to those that make the initial matter element radii
negligible. Thus, all the conditions for homologous expansion
will be met by most supernovae after at most 1 day. In some
cases, very large initial radius and/or interaction of the ejecta
with circumstellar matter may delay the onset of homologous
expansion for a few days (e.g., Hoflich, Langer, & Duschinger
1993).

In § 2, we derive the general formula for the time-dependent
relativistic Sobolev optical depth and some related formulae.
In § 3, we specialize the results of § 2 for the case of homolo-
gous expansion. Conclusions appear in § 4.
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2. THE GENERAL RESULTS

Consider a spherically symmetric moving atmosphere with a
large nonzero velocity gradient everywhere. We will measure
velocity in units of ¢ and use f for the radial velocity. For the
general velocity (i.e., the velocity in any direction), we use

Bu=uB, @

where u is the cosine of the angle from the radial direction.
Both B and B, are observer frame velocities. We will dis-
tinguish comoving frame quantities from observer frame quan-
tities with a subscript or superscript 0 where there is any
ambiguity. Note the following transformations:

_ ko + B

=Tt =™ Xo=1""1, €)
where v is frequency, y is the monochromatic opacity, and
n=y1-up). @)
The 7 factor is, of course, given by
1

=—. 5
N ¥

The above transformations are derived by, e.g., Mihalas (1978,
pp. 495-496).

Consider a beam path measured by the coordinate s in the
observer frame: s increases in the direction of photon propaga-
tion. The rate of change with respect to s of the general velocity
encountered by a photon propagating along the beam path is
given by

as, _ 3 o

2 &
ds ‘u@s 0s

Brrgas

(6)

The last term in equation (6) includes the effect of the time
dependence of the velocity field. From simple geometry we
know that

B OB op 1-—4
as Hor T F )
where r is the radial coordinate. For a photon,

a 1

o2 8
Js ¢ @®)
of course, Using these results, we obtain
ap, , 0B » B ap 1
—+ =y — = - 9
ds #6r+(1 H)r+#6tc ©)

For the Sobolev optical depth we need formulae for dn/ds
and dv,/ds. From the expressions given above, it is straightfor-
ward to show that

B 1
P Lra-wxa-plrw-p 2],
(10
d d
f= . ‘1d—'s’. (11)

The optical depth into a line from negative infinity to a point
s is given by

1) = f s 1s) . (12

Now
x(s) = nxo(s) = neto PLvo(s) — 71, (13)

where «, is the comoving frame integrated line opacity, v{ is
the line center frequency, and ¢[vo(s) — v{] is the line absorp-
tion profile. Substituting equation (13) into equation (12) and
transforming the integration variable from s’ to v;, using equa-
tion (11) yields

{vo) = %7 fvo v p(vo — V),

F oo

(14)

where 7, which is the Sobolev optical depth of the line, is
defined by

- -1

dv dn
ds ds

We have assumed that the quantities used to construct T can be
extracted from the integral and evaluated at the resonance
point: i.e., at the point s where v, = v?. This assumption, which
is the usual assumption of the Sobolev method, implies that
these quantities do not vary significantly over the region where
&(vo — v}) is signficantly different from zero. This region is
called the resonance region. From equations (10) and (11) we
derive the expression for the characteristic width of the reson-
ance region, As:

Avy |dn
As==242
s v T\ s

1
_% 2
v

(15)

T=1N%

T A 1

0 .2
Vi ¥

g (1 — pp)
| u(u — B)OB/Or) + (1 — uPX1 — B2)B/r)’
+ (u — BY0B/or)1/c)|

where Av, is the frequency width of the line. In equation (14)
the upper and lower case results are for when dv,/ds > 0 and
dve/ds < 0, respectively: ie., for when the photons progres-
sively blueshift and redshift, respectively, in the comoving
frame. Since ¢(vo — V) is normalized, 7 is simply the total
optical depth of the line.

Using equations (4), (10), and (15), we find the Sobolev
optical depth to be given by

(16)

%l (1 - pp)?
vy | ulu — BOB/Or) + (1 — p)1 — BA)B/)
+ (u — BYOB/oD(1/c)|
Equation (17) is our general expression for the time-dependent

relativistic Sobolev optical depth. As a function of the co-
moving frame angle cosine u,, the general expression is

(17)

oy 1 1
T=—"%"3

v 7% | Holko + BYOB/Or) + (1 — p3)1 — BB/
+ to(1 + po BYOB/OEY1/c)|
If the time derivative term is dropped from equation (17), we

recover the time-independent expression of HS (see their egs.
[25]-[26]). If we drop all but the lowest order terms in 8 from

(18)
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equation (17) (or from eq. [18] with the u,y’s changed to y’s), we
have

%o 1
=30

v | (0B/or) + (1 — p?)(B/r) + p(@p/oeN1/c)|

the time-dependent classical Sobolev optical depth.

If for some directions dy/ds goes to zero, the Sobolev optical
depth goes to infinity (see eq. [15]). Of course, the real optical
depth does not go to infinity, but is probably very large. In
these directions, at least one of the physical conditions (e.g.,
dn/ds or ) that the Sobolev method assumes are constant
across the resonance region cannot be approximated as con-
stant. In practice, radiative transfer may be dominated by the
directions where dn/ds # 0, and infinite Sobolev optical depths
may be no problem at all. A case where dn/ds goes to zero, but
does not change sign, is in the inward and outward radial
directions of the outermost part of hot star winds where radial
velocity is a constant with respect to radius and time (e.g.,
Pauldrach, Puls, & Kudritzki 1986). A case where dn/ds goes to
zero and does change sign is in very relativistic examples of the
exponentially expanding atmospheres of J93.

In some radiative transfer problems it may be useful to have
the comoving frame inverse angle-averaged optical depth T
(e.g., Jeffery 1995). Using equation (18) with the assumption
that the quantity in the absolute value signs never changes sign
(or, equivalently, that dn/ds never changes sign), we find 7 to be
given by

I= <T—1>—l

Tclas (1 9)

v\ 1@B/ar) + 21 — B*)B/r) + B@B/oEX1/c)|’

where the angle brackets indicate angle averaging in the co-
moving frame. However, if dy/ds does change sign for some
directions, the angle average must be done by segments.

The formal Sobolev solution for radiative transfer across a
resonance region is a time-independent result and therefore
requires the optical depth 7 and the line source function to be
constant in time. In a full time-dependent Sobolev calculation
one can imagine taking time steps sufficiently short to guar-
antee the constancy of 7 and the line source function over the
time step. However, the formal Sobolev solution would be
inapplicable if the time step guaranteeing constancy were
shorter than the (characteristic) photon crossing time for the
resonance region (i.e., As/c). Thus, for a full time-dependent
Sobolev calculation to be realizable in a straightforward way,
there must be time steps longer than As/c over which 7 and the
line source function can be considered constant. In § 3, we
show that this constancy condition is met in the case of super-
novae. Of course, for snapshot calculations with the time-
dependent optical depth we make the gross assumption that
time variation in almost all physical quantities can be
neglected. Obviously, we are not neglecting the effect of the
time dependence of the velocity on the optical depth.

3. THE HOMOLOGOUS EXPANSION CASE RESULTS

For homologous expansion we have the following expres-
sions derived from equation (1) (see § 1):

_r _p_1 B__F
B— ’ ar_ - s - . (21)

Vol. 440

Using these expressions, the formulae for d,/ds, dn/ds, dv/ds,
and As become

apg, 1
Pu_ (1
2= -up), (22)
di__7 2o _m
- g =—"r, 23)
dﬁ_ voy? . Yom
- g U—eh=—— (24)
and
Avgyet 1
As=—— 5T——, 25
vyl — ub) =
respectively.

We note that dv,/ds is always negative even in the limit of §
going to 1 with u = 1. Thus photons always redshift in the
comoving frame as they propagate in homologous expansion.
There are relativistic atmospheres in general expansion (i.e., in
which the velocity derivative along any path is always greater
than zero) where comoving frame blueshifts are possible at
very relativistic velocities (HS; J93). This can never happen in
classical atmospheres in general expansion although both
comoving frame redshifts and blueshifts can happen in the
same classical atmosphere if the velocity derivative changes
sign (Rybicki & Hummer 1978).

For the relativistic homologous expansion optical depth we
obtain

apct 1l agcet
t= = V1B (26)
iy Vi
The classical homologous expansion optical depth without the
time derivative term (which is the optical depth used in most
supernova Sobolev calculations) is given by
oo Ct
e =, @
Vi
where the asterisk superscript is used to indicate the lack of the
time derivative term. Remarkably,  is angle independent and
does not differ from 7%, to first order in f (not considering the
hidden B dependence in a ct/v}). The erroneous expression for
7 given by J93 (which was obtained from eq. [17] without the
time derivative term) had angle dependence and a first-order
term in uf. Because 7 and ¥, differ by at most ~1% for
known supernova cases where < 0.13 (see § 1) and uncer-
tainties in o, for instance, are at least as large as 1%, it is clear
that we have proven that the use of %, is far from being the
limiting error in past supernova calculations.

Some insight into the effect of time dependence on the
optical depth is given by considering the (full) classical
homologous expansion optical depth which we derive from
equation (19):

. _apct 1
RN

As a photon propagates it Doppler shifts in the comoving
frame because of the spatially and time-varying velocity. Even-
tually, it encounters a line and over some spatial region (i.e., the
resonance region) can interact with the line. The time variation
of the velocity field changes the spatial length over which the

(28)

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...440..810J

No. 2, 1995

interaction occurs relative to the analogous stationary situ-
ation and therefore changes the optical depth relative to that
situation. The sign and magnitude of the change are angle
dependent. For example, for outward radial propagation the
velocity increases with radius but decreases with time. The
decrease with time stretches out the region of interaction and
increases the optical depth. As equation (26) shows, relativistic
effects cancel all the classical angular dependence of the optical
depth.

We note that the relativistic optical depth 7 goes to zero as
goes to 1. To understand this result, let us write 7 in the general
form given by equation (15):

-1

-l - (29)

T =1n0g

From equations (4) and (24) for the case of u # 1, we see that
the # factor (which comes from the transformation of the
opacity) goes to infinity like y and that | dv,/ds| ™! goes to zero
like =2 when B goes to 1. Thus, in the limit of § going to 1, the
Doppler shift through the frequency band where the line is
significant is rapid enough to kill the line’s effect on a beam
even though the line opacity is going to infinity. But from the
same equations for the case of u = 1, we find that the # factor
goes to zero like \/1 — B and that |dvy/ds| ™! goes to a con-
stant when B goes to 1. Thus, in the forward direction the
vanishing of the opacity kills the line’s effect when f goes to 1.

The relative photon crossing time of the resonance region is
given by

At _As_Av 1

(30)

In homologous expansion the density at any comoving point
(i.e., point of fixed velocity) declines as ¢~ 3. If «, is assumed to
vary like density (which is roughly true), then 7 declines
roughly as ¢~ 2. The approximate relative change in 7 in a
photon crossing time is thus

Gy

If the frequency width of the line is only the thermal Doppler
width, then the relative photon crossing time and the relative
change in 7 in a photon crossing time usually will be very
small, i.e., usually <4 x 1073 and <8 x 1073, respectively, for
a temperature of ~10* K (e.g., Mihalas 1978, p. 110), which is
characteristic of supernovae in the photospheric epoch. Since
the line source function depends on nearly the same atomic
conditions as 7, the relative variation in the line source function
in a photon crossing time will be comparable to that of 7.
Clearly, one can take time steps longer than a photon crossing
time in a time-dependent calculation over which 7 and the line
source function can be regarded as constant. Thus, at least one
of the conditions needed for full time-dependent Sobolev calcu-
lations for supernovae is met. Since f§ can be at least as large as
0.13 in supernovae (see § 1), it is clear that the relativistic time-
dependent correction to t¥,; can be much larger than the rela-
tive variation in 7 in a photon crossing time. Thus, using the
relativistic homologous expansion optical depth instead of t%,;
in the still hypothetical full time-dependent Sobolev calcu-
lations for supernovae is certainly sensible.

As we pointed out in § 1, J93 verified that relativistic effects
in supernova line radiative transfer will not be vanishingly
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small at the highest supernova velocities. Thus, the use of the
relativistic Sobolev method for Sobolev supernova calcu-
lations is a distinct improvement over the use of the classical
Sobolev method. In relativistic Sobolev supernova calcu-
lations, it is obviously conceptually better, more consistent,
and hardly more work to use the correct relativistic homolo-
gous expansion optical depth, 7, than to use t¥,,. Because of
the coincidental closeness of the T and t%,, formulae, however,
T, 1s scarcely less accurate than 7 for Sobolev supernova
calculations. The incorrect formula of J93 for the relativistic
homologous optical depth is distinctly less accurate and more
complex than the correct formula given here and thus should
not be used.

4. CONCLUSIONS

The general expression for the time-dependent Sobolev
optical depth for spherically symmetric relativistic systems is
given by
% 1 (1 —pp)?

vi v [u(p — B)OB/Or) + (1 — p(1 — B>)(B/r)
+ (u — BNOp/oD(1/c)|
Equation (18) gives the general expression as a function of the

comoving frame angle cosine p,. The expression for the case of
homologous expansion is

o Ct
T= 30 J1-p.

1

(32)

T =

(33)

Remarkably, the homologous expansion expression is angle
independent and lacks a first-order term in .

Equation (33) corrects the homologous expansion optical
depth formula given by J93 (his eq. [54]) and its first-order in
approximation (his eq. [55]). The general optical depth expres-
sion, equation (32), and its classical limit, equation (19) (see § 2),
should replace the corresponding correct, but time-
independent, formulae in J93: his equation (51) (HS’s egs.
[25]-[26]) and his equation (52) (the usual Sobolev optical
depth formula). J93’s expressions for the characteristic width of
the resonance region in the general and homologous expansion
cases (his eqs. [57] and [58]) should be replaced by equations
(16) and (25), respectively. The demonstration calculations
reported by J93 in his § 6 would only be slightly affected by the
use of the correct optical depth formula of this paper, except
for the extremely relativistic calculation illustrated in his
Figure 6. The extremely relativistic calculation must now be
regarded as incorrect. All the other results given by J93, in
particular his expressions for the homologous expansion
common direction and common point frequency surfaces (see
his §§ 2 and 3), still appear to be entirely correct. In fact, it was
the inconsistency between his homologous expansion common
point frequency surface and optical depth expressions that led
to the discovery of the error in the homologous expansion
optical depth expression.

An important aspect of this paper is the conceptual clari-
fication of time-dependent and relativistic effects yielded by the
expressions derived. This clarification may lead to further
improvements in Sobolev method techniques, such as the
inclusion of more time-dependent effects. The clarification also
allows a valid appreciation of the classical homologous expan-
sion optical depth without the time derivative term, t¥,.. We
could not have known that 7¥_.’s lack of angle-dependence and
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first-order term in § were good qualities until the correct rela-
tivistic homologous expansion optical depth expression had
been worked out.

The relativistic Sobolev method of HS provides a modest
improvement over the classical Sobolev method for supernova
calculations as shown by J93. This improvement could not be
fully realized without the correct relativistic homologous
expansion optical depth formula given in this paper. Similarly,
Sobolev or semi-Sobolev calculations for other time-dependent
relativistic systems will benefit from the use of the general time-

dependent relativistic optical depth formula we have given in
place of HS’s corresponding time-independent formula.
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