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ABSTRACT

We add black holes to nonrotating, spherical galaxy models, with the assumption that the black-hole
growth is slow compared with the dynamical time but fast compared with the relaxation time. The outcome
differs depending on whether the core of the initial galaxy does or does not resemble that of an isothermal
sphere. For the isothermal case the previously known results are confirmed and sharpened: the black hole
induces cusps in the density (p ~ r~*?) and velocity dispersion (v2 ~ r~'), and a tangential anisotropy in the
velocity distribution away from the center. For the nonisothermal case the induced density cusp is steeper,
and the induced anisotropy is larger and penetrates right to the center. The cusp around the black hole is
insensitive to anisotropy in the initial velocity distribution, and also to the origin of the black hole, unless its
mass comes exclusively from the stars of lowest angular momentum, in which case the cusp is suppressed. We
discuss the implications for the interpretation of evidence for massive black holes in galactic nuclei.

Subject headings: black hole physics — galaxies: kinematics and dynamics — galaxies: nuclei

1. INTRODUCTION

The growth of central mass concentrations appears to be a
natural result of the processes that shape large stellar systems.
Quasars and active galactic nuclei are believed to derive their
power from the most spectacular outcome of this: matter at the
center of a galaxy that has collapsed into a massive black hole
(BH). If this view is correct then many galaxies should today
contain “dead quasars,” massive BHs starved of fuel (Rees
1990). The search for dynamical evidence of BHs from the
distribution and kinematics of stars in the centers of galaxies
has thus received considerably attention, as constraints on BH
masses would help us understand the structure of quasars and,
more generally, the formation and evolution of dense galactic
nuclei. There is evidence from ground-based observations that
BHs have been detected in this way in a half-dozen or so
nearby galaxies (see the reviews by Dressler 1989, Gerhard
1992, and Kormendy 1992), although a watertight case has yet
to be made. Some of the remaining questions might be
answered by high-resolution observations with the refurbished
Hubble Space Telescope (HST); others could perhaps be
answered by better theoretical modeling of existing data. In
this paper we avoid detailed modeling of particular galaxies,
and focus instead on a complementary approach—the con-
struction of general theoretical models of galaxies with central
BHs—in the hope that this might help both in identifying and
measuring BHs in galaxies, and in explaining the origin of
these systems.

By the construction of models of galaxies with central BHs
we mean the exploration of equilibrium solutions that result
from plausible initial conditions and definite (though perhaps
speculative) BH formation scenarios. We thus exclude models
in which a BH is placed at the center of a stellar system without
regard to the origin of that configuration, with simplifying
assumptions made without justification. Examples of these
include the “loaded polytropes” of Huntley & Saslaw (1975),
which assume an isotropic velocity distribution and a poly-
tropic relation between the pressure and density, and the “#-
models with BHs” of Tremaine et al. (1994), which assume an
isotropic velocity distribution and a law for the variation of

density with radius. These models can give helpful mathemati-
cal insights into the range of allowed solutions, but their arbi-
trary nature makes it unlikely that they will match real galaxies
well. We also exclude models constructed by techniques such
as linear programming to match observations of galaxies
believed to contain BHs (see, e.g., Richstone & Tremaine 1985).
These models are valuable for deciding whether particular gal-
axies contain BHs (and for constraining the BH masses if they
do), but they are not based on initial conditions and a BH
formation scenario, and hence can neither help us assess theo-
ries for these nor make general predictions for the solutions we
should expect to find.

The expected distribution of stars around a massive BH was
studied in detail in the late 1970s and early 1980s, but in the
context of globular clusters, not galactic nuclei (see Shapiro
1985 for a review). The key assumption underlying this work is
that the two-body relaxation time is short compared with the
age of the system. The cluster is then driven by relaxation
processes to a steady state solution in which the consumption
of stars by the BH and the diffusion of new stars into the loss
cone result in a density cusp p(r) ~r~7/* (Bahcall & Wolf
1976).

In most galaxy cores, however, the relaxation time is long
compared with the age of the system, and there is no reason to
expect a unique solution. The distribution of stars around a
central BH in a galaxy is likely to depend upon many factors,
including the order in which the galaxy and the BH form, the
structure of the galaxy—assuming that it formed first—before
the BH forms (spherical, axisymmetric, or triaxial? rotating or
nonrotating? cuspy or flat? isotropic or anisotropic?), and the
origin of the BH mass (stars? gas? an external source?). If we
had predictions for the cusps that result from all the pos-
sibilities we would have a good understanding of what we
might find, and could rule some possibilities out by comparing
their predictions with observations.

Only one plausible formation scenario has been explored in
detail: the growth of a central BH from the accumulation of
gas on a timescale long enough that the stellar action variables
are adiabatically conserved. The consequences of this can be
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derived most easily for spherical galaxies. Peebles (1972) con-
sidered the adiabatic growth of a central BH in an isothermal
sphere, and showed it would lead to a density cusp
p(r) ~ r~32, Young (1980) constructed numerical models that
confirmed Peebles’s result and showed that the BH induces a
tangential anisotropy in the velocity distribution. Goodman &
Binney (1984) obtained an approximate solution to the same
problem, and showed that the velocity distribution remains
isotropic at the center despite the tangential bias induced
nearby. Lee & Goodman (1989) generalized Young’s calcu-
lation in an approximate way to study the growth of BHs in
axisymmetric, rotating galaxies.

The adiabatic growth of a BH in a triaxial galaxy is more
difficult to analyze than the corresponding problem for a
spherical galaxy, but is potentially more interesting because
the maintenance of triaxiality depends on the existence and
selective population of box orbits, orbits that—given enough
time—pass arbitrarily close to the central BH. Most studies of
this problem have considered only the effect of a BH on single-
particle orbits, and have not attempted to follow the self-
consistent evolution of a whole galaxy. Gerhard & Binney
(1985) argued that the scattering and redistribution of box
orbits by a BH would force the inner regions of a triaxial
galaxy to become rounder, out to a distance of about 1 kpc for
a 10® M, BH in a giant elliptical galaxy, perhaps resulting in a
global change in the galaxy shape. Similar arguments were
made by Hasan & Norman (1990) for the growth of BHs in
barred galaxies. Norman, May, & van Albada (1985) pioneered
the use of N-body simulations to follow the self-consistent
evolution of triaxial galaxies with growing BHs, and found
results consistent with the predictions of Gerhard and Binney.
The number of particles in their simulations was small (5000
20,000), however, which limited the realism with which they
could model the systems, and which caused spurious relax-
ation that influenced the results in an uncertain way.

Despite these advances, many questions remain about the
effect a growing central BH has on the structure of a galaxy.
This is true even for spherical galaxies. We don’t know what
extremes are possible, e.g., how steep or gradual the density
and velocity cusps can be, and whether it is possible to hide a
BH at the center of a galaxy without an observable cusp.
Nobody has made accurate predictions for the tangential
anisotropy expected near a BH, which we need to interpret
observations and to make precise mass estimates. We don’t
know exactly what signature a BH will leave in the distribution
of velocities along the line-of-sight, a pressing question now
that an effort is underway to quantify the deviation of these
distributions from Gaussians and to use that information to
constrain dynamical models (van der Marel et al. 1994).
Another question is to what extent a BH can suppress insta-
bilities such as the radial-orbit instability that plague some
models for galactic nuclei without BHs (see, e.g., Merritt 1987;
Palmer & Papaloizou 1988).

For nonspherical galaxies the questions are more numerous
and profound. The main question is whether a central BH is
compatible with triaxiality, i.e., whether the growth of a BH in
a triaxial galaxy forces the galaxy to become rounder and, if it
does, whether this happens gradually from the inside out, or
abruptly in a manner that affects the whole galaxy. The answer
might allow us to constrain BH masses and formation histories
from observed isophote shapes, and might help explain why
unresolved elliptical galaxy cores tend to appear disky while
resolved ones tend to appear boxy (Nieto, Bender, & Surma

1991). Figure rotation and resonances can mitigate the influ-
ence of the BH and complicate the analysis by preventing
orbits from approaching close to the center (Pfenniger & de
Zeeuw 1989). The growth of a central BH in a triaxial galaxy
will cause many orbits that were regular to become stochastic,
although it is not clear what stochasticity implies for the struc-
ture of the galaxy (Udry & Pfenniger 1988). Many of these
questions are difficult and can be addressed only with the help
of large N-body experiments.

In this paper we start with the simplest problem, and study
the adiabatic growth of a central BH in a nonrotating, spher-
ical galaxy using the numerical approach of Young (1980).
There are several reasons for reexamining this problem. The
first is that previous work considered the growth of a BH in
only one galaxy model, the isothermal sphere, and it is not
clear which of the results are peculiar to this model and which
are general. We now know that few elliptical-galaxy cores
resemble that of the isothermal sphere; many have surface
brightnesses that continue to rise at the smallest observable
radii. We examine a family of simple galaxy models with this
property, and show that the adiabatic growth of a central BH
gives results for them that differ qualitatively from those for the
isothermal sphere. In particular, the density cusp induced by
the BH is steeper, and the anisotropy in the velocity distribu-
tion is larger and penetrates right to the center.

Another reason for reexamining this problem is that pre-
vious work did not consider the origin of the BH, and assumed
either that its mass came from a source external to the stars
(such as gas that seeps in from the outer parts of the galaxy), or,
if the BH did grow at the expense of the stars, that the mass
loss could be ignore. We perform calculations both with and
without taking stellar mass loss into account, and show that
the mass loss is indeed unimportant unless it is highly concen-
trated towards the galaxy center.

Finally, we are reexamining this problem to extract quanti-
tative results that were ignored or considered only qualita-
tively in previous work, such as the anisotropy in the velocity
dispersion, and the fourth moment of the line-of-sight velocity
distribution. We are doing this partly because of their impor-
tance for the interpretation of observations, but also because
we want to use them to calibrate an N-body program we are
developing to study the growth of BHs in triaxial galaxies, a
problem that cannot be handled by the simple techniques used
here.

We assume that the mass concentration at the galaxy center
is a massive BH, although some of our conclusion will apply to
galaxies with other mass concentrations, such as star clusters,
provided that they are sufficiently dense.

2. COMPUTATIONAL METHODS

2.1. Strategy

The computational strategy and equations on which our
calculations are based are described in detail by Young (1980),
and are summarized only briefly here.

The starting point of the calculation is an equilibrium spher-
ical galaxy with no BH (or a small BH). Young then adds a BH
to the center making two assumptions: first, that the BH mass
comes from a source external to the stellar system, and does
not deplete the stellar distribution function; second, that the
BH growth is slow enough that the stellar action variables
(radial action J, and angular momentum L) are adiabatically
conserved, but fast enough that two-body relaxation can be
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ignored. The first assumption is not essential and can be
relaxed; we do this later in the paper and find that the results
are not highly sensitive to the origin of the BH mass. The
second assumption is necessary in this type of calculation, but
is justified provided the relaxation time is long compared with
the age of the system, and that the BH growth is slow com-
pared with the orbital period near the galaxy center. (We tried
integrating obits in analytic spherical potentials in which a
point mass is turned on at the center over a time t,,,,, and
found the change in radial action éJ, to be less than 1% pro-
vided that t,,,, is at least 10 times the initial radial period P_,q.
The typical behavior is |0J,/J,| S (Paa/tgow)’. The angular
momentum L is conserved for any value of ¢ because of the
spherical symmetry of the potential.)

Young’s approach does not follow the time-evolution of the
system, but solves directly for the final self-consistent distribu-
tion of stars in which the distribution function has the same
dependence on the action variables as it did in the original
model. This is done by adding a central BH and then passing
repeatedly through the following loop to converge onto the
solution: compute the potential from the mass distribution
(including the BH); compute the action variables in that poten-
tial; adjust the distribution function f(E, L) to remain a fixed
function of the actions; compute the density generated by the
distribution function in the current potential ; check how much
the density has changed from the previous iteration; decide
whether to accept the solution or to pass through the loop
again. A dozen or so repetitions are usually enough to reduce
the change in density to less than one part in 10* at all radii,
which is our convergence criterion.

grow>

2.2. Computer Program and Output

Our program that implements this strategy is simple and
easy to run, yet flexible enough to handle a variety of galaxy
models. The density, distribution function, and other proper-
ties of the galaxy are described by their values on a discrete set
of grid points: p; = p(ry), f;; = f(E;, L)), etc. The radial grid
points are spaced logarithmically between minimum and
maximum values chosen by the user (typically r,;, = 10~% and
Tmax = 10?2 in our units). The grid points for energy are chosen
to match the potential at the radial grid points, and thus vary
during the iterative procedure to converge onto the new poten-
tial. The grid points for angular-momentum are spaced linearly
between x,,;, = 0 and x,,,, = 1, where x = L/L, is the ratio of
the angular momentum to the circular angular momentum at
the given energy. For the calculations in this paper we used 200
grid points for radius and energy and 20 for angular-
momentum, although that is more than is necessary: the gross
properties of the stellar cusps can be reproduced easily with
half this number. A typical calculation takes about one minute
to complete our IBM 580 RISC workstation.

At the end of the calculation we have the complete distribu-
tion function for the stellar system, which we condense into a
small number of moments as a function of radius (r) or project-
ed radius (R). We first compute the density

¢(c0)

p(r) = 4n f dE f TALLAE, Ly, 1)
P(r) 0

and some low-order velocity moments (m and n are given
integers)

4 @(c0) Lm m,.n
Qo) = —= f dEf dLLf(E,L) 2% ()
p(r) b(r) [} ry,

r

where L, is the maximum angular momentum attainable by an
orbit of energy E at radiusr,

L, = {2r*[E — ¢(1}'*, ©)
and v, and v, are the radial and tangential velocities,
v, = {2[E — ¢(r)] — Z/r*}'?, v, =L/r. @

We then project the intrinsic density and velocity moments
onto the plane of the sky to get the surface density

®  drrp )
R /r*—R?’

the dispersion of the line-of-sight velocity distribution
(LOSVD)

2 [(* d R? 1 R?
PR =g | \/%{3 [(1 E T2><"'2> +377 <v3>] :

Y(R) = 2

(©6)

and the fourth moment of the LOSVD (Merrified & Kent
1990)

" 2 ®  drrp _R_Zz
X0 = 5w m[(l‘ =)

R? 3 R*
+37 (r* — R2Kv? of) + 37 <v?>] (D

which we usually present as the dimensionless kurtosis x =
{vs>/{v2>* We also compute the anisotropy parameter

B=1— <o}y, ®

which is O for an isotropic distribution, and can vary between
—oo (for purely circular orbits) and +1 (for purely radial
orbits).

Some of our output quantities can be compared directly
with observations and some cannot. The anisotropy parameter
p cannot, but it is nevertheless important because it must be
known (or assumed) before observed values for X and {v?) can
be converted into a precise mass estimate. The velocity
moments {v7> and <vi) could be compared directly with
observations if we could observe without noise and with infi-
nite resolution, but in practice we cannot and the moments are
affected by noise in the wings of the distribution (this is espe-
cially true for {v3», which cannot be measured reliably) and by
the nonzero seeing radius over which the observations are
averaged. Gerhard (1993) and van der Marel & Franx (1993)
argue that it is better to quantify observed LOSVDs by a set of
Gauss-Hermite moments, which describe the LOSVD by a
Gaussian fit and the deviations from this fit, and which are not
as sensitive to the wings of the distribution as the moments
such as (vj) and (v;). It might have been interesting to
present our output in this form, but that would have made the
program more complicated. The classical moments (v2) and
<uf;> are easy for us to compute and are sufficient to give an
understanding of the intrinsic dynamics. For distributions
close to a Gaussian, the Gauss-Hermite moment h, of van der
Marel & Franx (1993) is related to the kurtosis by

Kk~3+8/6h, ©)

(the linear relation is unreliable if | i, | = 0.03).
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2.3. Tests of Program

To test the program we first ran it with simple galaxy models
(described in § 3.1.) with no BH to check that the output quan-
tities matched those of the input models to sufficient accuracy
(at least one part in 10%, except at the outermost radial grid
points where the accuracy is worse) and that the accuracy
improved in the expected manner when the number of grid
points was doubled or quadrupled. To check the calculations
of the anisotropy parameter f and kurtosis k we used the
anisotropic Plummer models of Dejonghe (1987) and Cudde-
ford (1991), and several other anisotropic models that we
derived by Cuddeford’s technique.

The main test of the program was to reproduce Young’s
(1980) results for the adiabatic growth of a BH at the center of
an isothermal sphere. A visual comparison of our results with
his showed satisfactory agreement. The only quantity for
which we could detect any disagreement is the ratio f, ., /fin =
fLE, L (E)]/f(E, 0), which Young plotted in his Figure 1 for just
one BH mass (the largest he considered) to quantify the aniso-
tropy in the distribution function. We show our version of this
plot in Figure la, in the same units used by Young. Our
Jfnax/fmin Tatio approaches unity towards the left of the plot
slightly slower than Young’s does, but the difference is small
and we do not view it as significant (our result does not change
if we double or quadrupole the grid resolution).

It is unfortunate that Young presented the anisotropy in this
way, as it is not obvious how large an anisotropy it implies for
the velocity dispersion (although Young concluded correctly
that even for his largest BH mass the anisotropy was small).
We show in Figure 1b the anisotropy parameter f for the same
calculation as in Figure la. Note first that the anisotropy is
small, as Young concluded, and second that it goes to zero at
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F1G. 1.—Anisotropy induced by the growth of a central black hole in a
isothermal sphere, as quantified by (a) the ratio f[E, Lc(E)]/f (E, 0), and (b) the
anisotropy B in the velocity dispersion. The results are from a numerical
calculation with a self-consistent potential (solid curve), from the same calcu-
lation with an idealized, non-self-consistent potential (dashed curve), and from
the approximate solution of Goodman and Binney ( filled squares). See text for
details.
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the center, as predicted by Goodman & Binney (1984). The
Goodman-Binney solution! gives an anisotropy that varies
with radius as B ~ r'/2, which we show in Figure 1b. This
solution is expected to be valid only near the galaxy center, as
it is derived by approximating the true potential by a harmonic
potential before the BH is added and by a Kepler potential
after. Binney & Petit (1989) estimate the boundary to the solu-
tion’s validity to be the radius at which the enclosed stellar
mass in the initial model equals the mass of the BH, but for the
calculation shown in Figure 1 we find that at this radius
(r ~ 0.6) the anisotropy implied by the solution is about five
times too large.

The dotted line in Figure 1b shows our program output
when we turn off the self-consistent potential calculation and
impose harmonic and Kepler potentials at all radii (chosen to
match the central potentials before and after the BH is added).
The output agrees with the Goodman-Binney solution, con-
firming that our program is correctly keeping the distribution
function a fixed function of the action variables.

3. RESULTS

3.1. Initial Models and Output Figures

As the starting point for our calculations we pick well-
known, simple galaxy models with mass distributions that
span the range of behaviors expected for spherical galaxies.
The models are not intended to be accurate representations of
real galaxies, although two of them (the y=1 and y =2
models) do give reasonable fits to an R** law.

The first model we pick to have a core like that of the iso-
thermal sphere. We do not use the isothermal sphere, because
it was studied in detail by Young (1980). Instead we use
Hénon’s (1960) isochrone model, defined by the potential

GM

MO T e

The density corresponding to the potential falls off at large
radii as r~*. At small radii the density is nearly constant, and
can be expanded in even powers of r:

p(r) = p(0) + 3p"(O)r> + -+ (11)

Models that share this property—such as the Plummer model,
King models, and the isothermal sphere—are often called
models with isothermal cores, a name we dislike because the
word isothermal should refer to the velocity distribution, not
the density, and because the singular isothermal sphere has a
steep density cusp (p ~ r~2) and yet certainly deserves to be
called isothermal. It is nevertheless useful to have a name for
galaxy models with the property (11), because, as we shall soon
see, they all respond in a similar manner to the adiabatic
growth of a central BH. We shall call them models with analy-
tic cores,? because a density with spherical symmetry must be
expandable about the center as in (11) if it is an analytic func-
tion of the three spatial coordinates.

For models of galaxies with nonanalytic cores we pick three
from the one-parameter family studied by Dehnen (1993) and
Tremaine et al. (1994). We call them “y models” because they

(10)

! There is a typographical error in the Goodman-Binney paper suggesting
that B varies as r and not r!/2. The x,, in their eq. (13b) should be x2. The same
error is repeated by Binney & Petit (1989).

2 Suggested to us by S. Tremaine.
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are defined by the density which Dehnen writes as

BG-»__ Ma
4n r(r+a)pr’

(Tremaine et al. describe the same density by the parameter
n = 3 — y and call the models “# models.”) At large radii the
density falls off as p,(r) ~ r~*, just as for the isochrone model,
but at small radii the density has a cusp p,(r) ~ r~ 7. The mass
distribution M (r) is nonsingular as long as y < 3:

r \37?
A/{y(r) - M(r + a) '

Two of these models are well known from previous work: the
y = 1 model is the Hernquist (1990) model; y = 2 is the Jaffe
(1983) model. We use these as representative models for gal-
axies with mild (y = 1) and steep (y = 2) density cusps, and add

pyr) = (12)

(13)

- as a third the y = 0 model which, though it has a finite central

density, does not qualify as a model with an analytic core
because its density varies linearly with radius near the center.
We have experimented with the y = 3/2 model, but do not
show the results here because they are intermediate between
those for y = 1 and y = 2 and do not reveal any surprises.

The results from our calculations are shown in Figures 2-5.
We present all the results (except those for the isothermal
sphere in Fig. 1) in the standardized units of Heggie & Mathieu
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(1986), in which the gravitational constant G and the initial
galaxy mass M are both chosen to be unity, and the initial
energy is chosen to be E = —%. The scale lengths for the y and
isochrone models are thus a = 1/(5 — 2y) and b = (37 — 8)/6.
Each figure has four panels, showing (1) the surface density, (2)
the projected velocity dispersion, (3) the anisotropy parameter
B, and (4) the kurtosis of the LOSVD. Each panel of each figure
has six lines: the dotted line shows the initial model before the
BH is added; the five solid lines show the final models after
the adiabatic growth of BHs of masses 0.001, 0.003, 0.01, 0.03,
and 0.1.

3.2. Surface-Density Cusps

The surface-density cusps shown in Figures 2-5 vary from
one model to another, and, for all models but the isochrone,
are steeper than the £ ~ R™!/2 cusp found by Peebles (1972)
and Young (1980) for the isothermal sphere. Varying the mass
of the central BH merely shifts the radius where the limiting
power-law cusp appears.

The fact that the y models develop cusps steeper than
¥ ~ R™12 js perhaps not surprising for the models with y > 0,
which have density cusps before the BH is added, but it is for
the y = 0 model, which starts with a finite central density as
does the isochrone and yet develops a cusp that is twice as
steep. There is a simple explanation for this difference. In deriv-
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R
6
m 4 (d
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F1G. 2—Results from the adiabatic growth of central black holes of masses 0.001, 0.003, 0.01, 0.03, and 0.1 in an isochrone model (the dotted lines show the initial
model without a black hole): (a) surface density; (b) line-of-sight velocity dispersion; (c) anisotropy in the velocity dispersion; (d) kurtosis (minus 3) of the line-of-sight

velocity distribution.
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- (d)

F1G. 3.—Results from the adiabatic growth of central black holes in a y = 0 model (see Fig. 2)

ing his cusp formula, Peebles (1972) assumed that the distribu-
tion function could be approximated by a constant in the core
of the initial model. This assumption is not valid for the y
models, because their distribution functions diverge as E
approaches ¢(0). It is easy to generalize the derivation to take
this into account (see Appendix). We need just three assump-
tions: that the initial model has an isotropic core; that the
potential varies with radius near r =0 as a power law
¢ ~r*>77; and that the distribution function diverges near
E = ¢(0) as a power-law f(E) ~ [E — ¢(0)]". From these it
follows that the adiabatic growth of a central BH induces a
density cusp

3 2
p(r)~r 4, Z(R)~ R4, A=—+n(

— ¥
> ) (14)

4—

For galaxy models with analytic cores, n = 0 and we recover
the result A = 3/2, but for models with n > 0 we find steeper
cusps. We have verified this prediction for the five models listed
in Table 1. Equation (14) is not valid for y = 2 (because the
potential and distribution function do not behave as power
laws near the center), but as y approaches 2 the cusp exponent
A for the y models approaches 5/2, which agrees with the
numerical results shown in Figure 5.

There is a gap in Table 1 between the models with analytic
cores, for which A = 3/2, and the y models, for which 4 > 2.
There is another gap between the y models with 0 < y < 2, for

“which (Dehnen 1993)

0=

(15)

and the model with y = 0, for which n = 1. The gaps can be
filled by other nonanalytic models, such as the one-parameter
family described by the density

Po

(r). + a)4/,1 * (16)

palr) =
These models are awkward to work with because the potential
and distribution function must be found by numerical integra-
tion. We experimented with some models with 1 < 1 <2 and
found final density cusps intermediate between A = 3/2 and

TABLE 1
ADIABATIC DENSITY CUSPS

Model Y n A C
isochrone...... 0 0 3/2 9/4
y=0........... 0 1 2 9/4
y=1........... 1 5/2 7/3 7/3
y=3/2 ........ 32 9/2 12/5 12/5
=2t 2 5/2 5/2
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FIG. 4—Results from the adiabatic growth of central black holes in a y = 1 (Hernquist) model (see Fig. 2)

A = 2. Equation (14) works in some cases but not all; it fails for
the models with A close to (but less than) 2.

3.3. Velocity Cusps

The cusps in velocity dispersion in Figures 2-5 all rise as
{v2) ~ R™! at small radii, and do not vary much from one
model to another, although at low BH masses the cusp for the
isochrone model is less noticeable than for the y models. Note
that the velocity dispersion for the y = 1 model without a BH
(in fact, for any y model with 1 <y < 2) goes to zero at the
center (see Binney 1980 and Tremaine et al. 1994 for a dis-
cussion of this).

The anisotropy parameter § behaves differently for the iso-
chrone model than for the y models. The isochrone model
remains isotropic at the center and develops a mild tangential
anisotropy away from the center, similar to the result for the
isothermal sphere shown in Figure 1. This is true also for the
Plummer model and, we suspect, for all models with analytic
cores. The y models develop larger tangential anisotropies that
penetrate right to the center. Note also that increasing the
mass of the central BH has a different effect for the two classes
of models: for the isochrone model it increases the maximum
anisotropy that develops; for the y models it does not change
the maximum anisotropy, but merely shifts outward the radius
to which the anisotropy reaches.

The results for the kurtosis of the LOSVD are more difficult
to interpret. The figures show the deviation of the kurtosis

from x = 3, the expected value for a Gaussian distribution. In
most cases this deviation is small in the final cusp, comparable
in magnitude with what it was in the outer parts of the initial
model without the BH. Note, however, the following differ-
ences between the behavior of the kurtosis near the center of
the isochrone model and the three y models: for the isochrone
model without a BH the kurtosis is constant, whereas for the
y = 1 model (and other y models with 1 <y < 2) the kurtosis
diverges; for the isochrone model the addition of a BH causes
the kurtosis to increase, whereas for the three y models the
opposite occurs.

Perhaps one conclusion to draw from the kurtosis plots is
that the adiabatic growth of a central BH in a spherical does
not cause the LOSVD to become highly non-Gaussian. But
note that this conclusion applies to the LOSVD measured at
one exact radius, i.e., to what could be observed if we had
infinite resolution. The conclusion changes if the LOSVD is
averaged over an aperture, because the average of {vy» will be
weighted more towards the center (R = 0) than the average of
{v2>, and hence the effective kurtosis of the averaged LOSVD
will differ from our comparison of (vj» and (v2)* at the same
radius. In fact, if the LOSVD is averaged over an aperture that
includes the BH the effective kurtosis will be infinite, because of
the arbitrarily high velocities possible close to the BH (see
Bahcall & Wolf 1976). van der Marel (1994a) shows that this
leads to a positive h, Gauss-Hermite moment, and stresses that
it is better to quantify the observations by the Gauss-Hermite
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FiG. 5—Results from the adiabatic growth of central black holes in a y = 2 (Jaffe) model (see Fig. 2)

moments than by the classical moments such as (v2)» and (v} ).
Our work shows at least that, for the models we consider, the
non-Gaussian nature of the LOSVD observed near the center
is expected to result almost entirely from the spatial averaging,
and not from a peculiarity of the intrinsic velocity distribution.

4. DISCUSSION

4.1. Theoretical Questions

4.1.1. Anisotropic Initial Conditions

The results presented above are for models that start with
isotropic velocity distributions. We do not view this as a severe
limitation. Young (1980) suggested that “in order to have an
effect, the anisotropies must be significant inside the radius of
influence r; ~ GMy/a? of the black hole as reckoned in the
unperturbed cluster.” We have verified the correctness of this
suggestion for Dejonghe’s (1987) anisotropic Plummer models
[we tried models with g = +1, which have anisotropies
B(r) = 0.5gqr*/(1 + r?)]; even for the largest BH we considered
(Mgy = 0.1M) the cusps were nearly identical with that for an
isotropic Plummer model.

We also experimented with some models derived by Cudde-
ford’s (1991) technique (with his « set to 3) to have a constant
tangential anisotropy f(r) = —%. For the isochrone and y = 0
models the resulting cusps differed from those for the corre-
sponding isotropic models, but not by much. That is not sur-
prising, since we know the exact result for the adiabatic cusp

that forms around a BH if the initial model has a density cusp
p(r) ~ r~? made up entirely of circular orbits (this is a simple
generalization of Young’s result, derived in the Appendix):

3_
o) ~r=C, Z(R)~R!~C, c=3—z—_—;. (17

For the isochrone and y = 0 models, this “circular ” cusp slope
is C = 9/4, considerably steeper than the “isotropic” cusp
slope of A = 3/2 for the isochrone model, but not much steeper
than the A =2 for the y = 0 model. For the y models with
0 <y < 2, the values of 4 and C coincide. Since this is for the
most extreme tangential anisotropy possible, we conclude that
a moderate tangential anisotropy in the initial model will have
little or no effect on the final density cusp (although it will have
an effect on the kinematics).

The case of a galaxy core with a radial anisotropy is more
difficult to analyse because of a lack of suitable models to test.
We tried to derive isochrone and y = 0 models with a constant
anisotropy B = 4 by Cuddeford’s (1991) technique (with his «
set to — 1), but that was not possible: the distribution functions
turned out to be negative at large binding energies. We do not
know how large the radial anisotropy can be at the center of a
galaxy with a flat core or a mild density cusp, but it appears to
be small (O. Gerhard 1994, private communication), probably
too small to significantly change the cusp that forms around
the central BH in our calculations.
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4.1.2. Origin of Black Hole Mass

Young (1980) suggested that a central BH could grow “by
accreting gas, from mass loss by giant stars, or by some other
process,” but he added a BH to his galaxy models without
removing any mass from the surrounding stars. We have done
some simple experiments to check how sensitive the results are
to this assumption.

We first tried removing the BH mass uniformly from all the
stars, by reducing the stellar distribution function by a con-
stant fraction Mgy /M at the same time that we added the BH.
This made almost no difference to the cusp around the BH,
even for Myy/M as large as 0.1.

We then tried removing the BH mass from the stars of
lowest angular momentum, since they are the stars that
approach closest to the center. We adopted the following strat-
egy: at the time the BH is added, reduce the distribution func-

" tion f(E, L) by the loss fraction I, if L < L, and leave it

unchanged if L > L, i.e.,

Lfa-fE D ifL<L,
& L) { f(E, L) otherwise ,

with L, chosen so that the total mass removed equals Myy. The
rest of the calculation remains the same. We assume that,
however the mass is lost, it is lost slowly so the action variables
of the remaining stars are adiabatically conserved. The results
of several calculations of this type for the y = 0 model are
shown in Figure 6.

The calculation with I, = 1.0 yields a galaxy with a hidden
BH, with no observable cusp in the surface density or projected
velocity dispersion. In fact this galaxy model has a hole in the
middle in two senses: a BH and a hole carved out of the

(18)
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F1G. 6.—Adiabatic cusp induced by the growth of a central black hole of
mass 0.01 in a y =0 model (see Fig. 3) when the black hole grows at the
expense of low angular-momentum stars. The fractional mass loss is [, = 1.0
(bottom curves), 0.9, 0.5, and 0.0 (no mass loss; top curves). The dotted curves
show the initial model without a black hole.

Vol. 440

intrinsic density p(r). Although this is a contrived model—we
have assumed that all of the mass with L < L, but none with
L > L, gets swallowed by the BH, and have ignored pertur-
bations such as two-body relaxation and triaxial components
to the potential that might help replenish the density hole—it
offers the intriguing possibility that real galaxies could contain
BHs larger than suggested by their surface-density and velocity
cusps. The calculations with [, < 1 show, however, that the
mass loss must be highly concentrated toward the center (I, 2
0.5) for it to have a noticeable effect. The velocity-dispersion
cusp is less sensitive to the effects of mass loss than is the
surface-density cusp.

4.1.3. Dynamical Stability and Related Questions

We are confident that our models are dynamically stable,
but know of no theorem that proves this for nonisotropic
models with a central BH. The question is especially interesting
for models with hidden BHs, such as that in Figure 6 with
I; = 1. Another question is by how much our models would
differ if the BHs grow too fast for the assumption of adiabatic
invariance to be justified. We hope to answer these soon with
the help of large N-body experiments.

4.2. Observational Implications

Our results should be compared with observations with
some caution. We have started our calculations from simple
galaxy models that, while sharing the essential properties of
real galaxies, are not expected to match them closely at all
radii. We have assumed spherical symmetry and have ignored
rotation, whereas many of the galaxies believed to contain
massive BHs have rotating, disklike nuclei. We have presented
results that would be obtained with infinite resolution, and
have ignored seeing corrections and other such factors that
must be included in realistic models. Despite these limitations,
we believe our results lead to some important conclusions for
the interpretation of density and velocity cusps in galactic
nuclei.

4.2.1. Models without Black Holes

We start by asking how steep a cusp can be without a central
BH. Dehnen (1993) and Tremaine et al. (1994) describe y
models without BHs for all y-values between 0 and 3. Perhaps
some of the models with large y-values can be ruled out.

One restriction is set by the total energy, E = —GM/
4a(5 — 2y), which diverges as y approaches 5/2. Another is set
by two-body relaxation. For any y model with y > 0, the relax-
ation time goes to zero at the center. This sets a limit to the
minimum radius for which the model can accurately represent
a collisionless system (the radius at which ¢, equals the age of
the system). For example, for the models with 1 <y <3 we
find, forr < q,

L) = 0.0650° L5
7T G*mpInA T (3 —y)y — 1)*?

a3 1/2 M/m M(r) (3—7/2)/(3~7y)
x (av) (TA‘)[V] - 1

For y-values close to 3 the exponent (3 — y/2)/(3 — y) is large,
and a substantial fraction of the mass is then at radii where ¢, is
small enough to invalidate the assumptions on which the
model is based (i.e., the mass would have undergone core col-
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lapse, possibly leading to the formation of a BH; see Quinlan
& Shapiro 1990). While this argument does not give a sharp
division betwecen acceptable and unacceptable values for y
(because it depends on the values of M, m, and a), y = 5/2
seems a conservative choice.

If we therefore disregard models with y > 5/2, we find that
the steepest cusp possible without a BH is

Z(R)~ R, iy ~R7V? (y=3). (20)

This model has a steep surface-density cusp, much steeper than
the adiabatic cusp arround a BH in an isothermal sphere, but
only a gradual velocity cusp, half as steep as expected around a
BH. A surface-density cusp at the center of the galaxy thus
provides only weak evidence for a BH; a Keplerian rise in the
velocity dispersion toward the center is the real proof (if other
sources of dark matter can be ruled out).

4.2.2. Interpretation of Density and Velocity Cusps

Recent photometry of elliptical galaxies from the Hubble
Space Telescope (HST) has shown almost none to have analy-
tic cores (Crane ct al. 1993; Ferrarese ct al. 1994; Kormendy et
al. 1994); most have surface brightnesses that continue to rise
at the smallest radii resolved. The old picture of a galaxy
having a core radius r, within which the surface brightness is
nearly constant is giving way to a new picture where, for many
galaxies, the inner parts can be modeled by a double power law

such as
r\ % r 0 a1 —a2)/é
I(R) = 2‘“‘““"’1,,(—) |:1 + <—> ] (21)
T r,

(from Kormendy et al. 1994, with the notation changed to
avoid confusion with our use of y), with the transition between
the two powers a; and a, occurring at a radius r, called the
“break ” radius or “bend ” radius or, sometimes (confusingly),
the core radius. Paradoxically, the larger elliptical galaxies
such as M87, the ones we expect to harbor massive BHs, have
only gradual surface-density cusps (x; =~ 0.0-0.3), while the
smaller ellipticals have the stecpest cusps (¢, ~ 0.5-1.0). The
explanation for this dichotomy is not clear; it probably
requires different formation mechanisms, perhaps involving
massive BHs.

The double power law in equation (21) should not be con-
fused with the density law (12) for the y models. These models
(such as the Jaffe and Hernquist models) were designed to give
reasonable fits to elliptical galaxies if the scale length a is
chosen comparable with the effective radius r,. (Some of the
BH masses in our calculations are therefore much larger than
would be expected in real galaxies.) The break radius r, in
equation (21) is typically a few arcsecconds for Virgo-cluster
ellipticals, at lcast 10 times smaller than r,; and the power-law
outside the break radius is typically a, ~ 1.0-2.0, much less
stcep than the ~R ™3 fall off for a y model at r > a. The y
models are not flexible enough to match closely a galaxy with a
double power-law profile at r ~ r,.
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Some galaxies have surface-brightness cusps that resemble
Young’s (1980) model for the adiabatic growth of a BH in an
isothermal sphere. The best known of these is M87, first
analyzed in this way by Young et al. (1978). The HST photo-
metry of M87 shows a gradual surface-density cusp, I ~ R~ %26,
which Lauer et al. (1992a) say is consistent with Young’s model
(with Mgy as large as 3 x 10° M) because the observations
do not penetrate to a small enough radius to see the expected
asymptotic slope of R™/2, We checked this with our program
and reached the same conclusion; observations with a slightly
higher resolution should see a steepening in the surface bright-
ness if Young’s model is correct. M32 is another galaxy studied
in detail (Lauer et al. 1992b) that can be fit by Young’s model,
although the fit is not as striking as it is for M87. Crane et al.
(1993) fit Young-type cusps to a number of elliptical galaxies
(and give convenient formulas for doing this), although they
find that a single or double power-law often fits just as well,
sometimes better (especially for galaxies with steep inner
cusps).

These fits to Young’s (1980) model are suggestive, but cannot
be accepted as convincing evidence for massive BHs. In many
cases it is easy to construct models without BHs that fit the
data just as well. We caution against attaching too much sig-
nificance to Young’s R ™!/ power-law in interpreting surface-
brightness cusps; steeper cusps result from the adiabatic
growth of BHs in galaxies with nonanalytic cores, and the
observations suggest that these are common. The adiabatic-
growth scenario will always cause a steepening in the surface
brightness at small radii (except in contrived models such as
those in Fig. 6), although this is not so noticeable for a model
like Jaffe’s that starts with a steep density cusp.

Convincing evidence for massive BHs can come only from
high-resolution spectroscopic observations. The velocity-
dispersion cusp around a BH is insensitive to the details of the
galaxy model within which the BH forms (unlike the surface-
density cusp, which varies from model to model), and is diffi-
cult or impossible to mimic without a BH. Ground-based
observations of M87 show evidence for such a cusp (van der
Marel 1994b), suggesting that the original Young et al. (1978)
BH model is correct, a conclusion strengthened by the dis-
covery of a high-velocity gas disk at the galaxy center (Harms
et al. 1994). More results like these from the refurbished HST
are eagerly awaited. When combined with surface photometry,
they can help us assess models for the formation of massive
BHs and dense galactic nuclei. There is still much work to do
to refine these models so we can extract the most information
possible from the observations.

We thank S. Faber, O. Gerhard, J. Kormendy, S. Tremaine,
and R. van der Marel for helpful discussions while this work
was in progress. This work was supported in part by the Alfred
P. Sloan Foundation, NASA Theory grant NAGW-2422, and
from the NSF under grants AST 90-18526, ASC 93-18185, and
the Presidential Faculty Fellows Program.

APPENDIX

ADIABATIC DENSITY CUSP AROUND A BLACK HOLE

In the derivation that follows we drop all inessential variables and numerical constants (G, n, M, etc.) and consider only the
scaling of various quantities with E and r. We use subscripts i and f where appropriate to distinguish the initial and final states, and
adopt a sign convention where E and ¢ are both positive. We approximate the final potential by the Kepler potential around

the BH.
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Consider first a model that starts with an isotropic core. The distribution function f(E) is related to the differential energy
distribution N(E)dE (the number of stars with energies in the range E to E + dE) by

N(E) = g(E)f(E) , (A1)

where the density of states g(E) is, for the isotropic initial model,

i~ 1(E)
gd{E) ~ J‘ dr "2\/ o{r) — E; ~ EES-y)/Z(Z—y) . (A2)

(]

Near the BH in the final model the energy varies with radius as E, ~ 1/r, which allows us to relate the density p (r) to N (E,) and

N{(E) by

dE dE;
Pf(") ~r2N f(E f)(d_rf> ~1r7*N i(Ei)< l) . (A3)

dE;

The relation between E; and E is easy to derive for purely circular orbits and purely radial orbits, for which the invariance of the
action (angular momentum in the circular case, radial action in the radial case) implies that

E§4—7)/2(2—v) ~ Ef— 1/2 , (A4)

or

Ei ~ E;(Z—)')/(‘t—v) ~ r(2—y)/(4—y) . (AS)

If we use this relation for all orbits we find from equation (A3) that

A=§+n(2_y). (A6)

pf(r) ~r A,

2 4—y

A model consisting entirely of circular orbits is easier to consider. Assume that the density cusp is p ~ r~? before the addition of

the BH and p ~ r~€ after. Conservation of mass implies that

pirtdri=pridro=>r}"" ~r3 €. (A7)

Conservation of angular momentum implies that

M) =1, MJr) =1 Mgg=>r{"" ~1). (A8)

Combining these two results we find

(A9)
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