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ABSTRACT

A complete theoretical description of the parallactic terms in the timing formula for a binary pulsar is pre-
sented. It is shown that the terms depend not only on the annual motion of Earth but also on the orbital
motion of the binary pulsar as well. It is proved that measurements of the effect of orbital parallax can serve a
useful purpose, both in determination of pulsar distances, and also in the measurement of companion masses.
Estimates of expected magnitudes of the corresponding timing signals for the most appropriate binary pulsar
candidates are tabulated, and prospects for the measurement of orbital parallaxes are discussed.

Subject headings: binaries: general — pulsars: individual (PSR B1259—63, PSR J1713 +0747,
PSR J2019 +2425) — stars: fundamental parameters

1. INTRODUCTION

It is well known that measurements of annual trigonometric
parallax caused by Earth’s orbital motion give model indepen-
dent distances to stellar objects. In the case of pulsars, parallax
measurements allow us to estimate the average electron
density along the line of sight. With this information, one can
calibrate the distance scale based on pulse dispersion. Previous
measurements of the annular pulsar parallaxes have been
reported by Salter, Lyne, & Anderson (1979), Backer &
Sramek (1982), Gwinn et al. (1986), and Bailes et al. (1990).
These measurements were based on the VLBI technique and
are applicable for pulsars having both second and millisecond
periods. The independent method of using pulsar timing data
to measure the annual pulsar parallaxes has been discussed by
Blandford, Narayan, & Romani (1984), and a similar idea was
proposed independently by Kuzmin & Kuzmin (1988). Rawley,
Taylor, & Davis (1988) tried to detect the timing parallax of
PSR B1937+21, but their null result served only to set an
upper limit. The first successful measurement of the annual
parallax of PSR B1855+09 using timing data was recently
reported by Ryba & Taylor (1991). Further development of
this method, in application to PSR B1855+09 and PSR
B1937+21, is described in Kaspi, Taylor, & Ryba (1994).
These investigations show obviously that parallax determi-
nations by the pulsar timing technique are very difficult and
can be relied on only for those pulsars which meet stringent
criteria for timing accuracy. Nevertheless, the rapid growth of
the population of millisecond pulsars reveals new candidates
such as J2019+24, J1713+07, and J0437 —47 which display
unprecedented accuracy in their pulse arrival times. It seems
not unreasonable to hope that the number of pulsar parallax
measurements will increase rapidly in the not so far distant
future, with a corresponding improvement of calibration for
the distance scale in the Galaxy.

It is worthwhile to note that in the case of a binary pulsar,
the parallactic shift of the pulsar in the sky is caused not only
by the annual motion of Earth about the Sun, but also by the
orbital motion of the pulsar itself. Measurements of the orbital
timing parallaxes in binary pulsars open an additional possi-
bility for the determination of distances to the pulsars and

L5

masses of the pulsar companions (Kopeikin 1992). An accurate
measurement of the masses of binary pulsars along with their
distance and kinematics offers the best quantitative checks of
the formation scenarios of millisecond binary pulsars.

2. MEASURABILITY AND APPLICATIONS OF PULSAR
ORBITAL PARALLAXES

The modern method of the precise determination of neutron
star masses is currently based upon the measurement of any
two relativistic effects in the orbital motion of binary pulsars
(Taylor 1992). Unfortunately the method can be applied only
for binary pulsars having “ relativistic” orbits and/or an angle
of orbital inclination i sufficiently close to 90°. For binary
pulsars having large orbital periods, the application of the rela-
tivistic effects to the mass determination is questionable due to
their smallness.

However, in the event that a binary pulsar has a wide orbit
and is not too far from Earth, its orbital parallax could have a
measurable value. In that situation, one might hope to deter-
mine the apparent orbit of the binary pulsar in the same
fashion as is sometimes possible with visual double stars
(Couteau 1981). Such a determination would impose an inde-
pendent numerical restriction on the angle of inclination of the
pulsar’s orbit to the plane of the sky and therefore restrict
possible values of masses of the pulsar and its companion. If
the pulsar’s companion was also visible as a pulsar, or if a
relativistic effect was measurable, then a separate determi-
nation of mass of each star would be possible. On the other
hand, for systems in which the pulsar’s companion can be
identified in the visible wavelength range, the parameter of the
variable Doppler velocity of the companion might be obtained
from spectral studies. In combination with the parameters
obtained from the timing observations, this would provide an
alternate route to mass determinations.

According to Ryba & Taylor (1991), the magnitude of
annual trigonometric .parallax is A, ~ (1 a.u.)?/(2cd). For a
pulsar in the ecliptic at a distance d = 1 kpc, the value of A, is
approximately 1.2 us. Thus, the pulsar is accessible for mea-
surement if the timing accuracy e is equal to or better than 1 us.
It therefore follows that the determination of pulsar parallaxes
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can be obtained only for millisecond pulsars. In the case of
binary pulsars, the additional orbital parallax is split in two
terms: (1) the pure orbital parallax A,p ~ a2/(2cd) = np/sin® i
and (2) the mixed annual-orbital parallax A, ~
(1 a.uw)a,/(cd) = my/sin i, where a, is the semimajor axis of the
pulsar’s orbit with respect to the barycenter of the binary
system, 7, = cx?/(2d), my, = (1 a.u.)x/d, and x = a, sin i/c is the
projected semimajor axis of the binary system’s orbit. Note
that A, is larger than A, for those pulsars whose semimajor
axes a,exceed 1 a.u.

At present, several binary pulsars are known which have
semimajor axes large enough for possible determination of
orbital timing parallaxes. We have selected the most appropri-
ate candidates from the list of millisecond pulsar binaries and
have tabulated the lower limits for the expected magnitude of
the corresponding timing signals. We have also estimated the
upper limits for annual parallaxes. The results are presented in
Table 1.

The table shows that the magnitude of orbital parallaxes
may be marginally accessible to measurement in PSR
B1259—63, PSR J2019 + 2425, and PSR J1713+0747. In par-
ticular, it should be noted that we have used the minimal
values of distances for PSR J1713 +0747 and PSR B1855+09
in our calculations in accordance with the low limits on annual
parallaxes given by Camilo, Nice, & Taylor (1993) and Kaspi
et al. (1994), respectively. Our estimates show that it makes
sense to develop an exact analytical model for measurement of
orbital pulsar parallaxes and include it in existing timing soft-
ware packages. Moreover, it is not difficult to see that the
orbital motion of PSR B1259—63 is directly accessible for
observations by the VLBI technique that is equivalent to a
measurement of the timing parallax of the system. The
maximal magnitude of the orbital parallactic shift in the sky
for this pulsar reaches 0.003/sin i arcsec.

3. TIMING FORMULA

The timing formula for the wide orbit millisecond binary
pulsars can be summarized in the equation

T=1—1+Ac—Df* + Ago + Ao
+ Ago + Aso —Ar — App — Ay, (1)

where we consider all nonseparable parameters as being
absorbed in the redefinitions of separately measurable ones
(Damour & Taylor 1992; Kopeikin 1994). Here T is the pulsar
proper time; t is the proper time of observer; 7, is an initial
epoch of observations; A. represents time offsets between the
local observatory clock and international atomic time (TAI);
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D/f? is the dispersive delay; Azo, Ao, Apo, and Agg are
“Roemer,” “Parallax,” “Finstein,” and “Shapiro” propaga-
tion delays within the solar system; and Ag, A,p, A, are the
analogous terms for the binary pulsar’s orbit. Expressions for
Ares Ag, Agg, and Agg are well known (Damour & Taylor
1992). We are especially interested in the parallactic terms A,
and A, A, which take the form (Kopeikin 1992)

: 1
Ao = =5 (Ko X 7, el
1 2
Aep =55 (Ko X 1,7, @)
1
AnM=_a(KO,xrp)(K‘0xr)' (4)

In these terms, c is the speed of light, d is the radial distance
between the binary and solar systems, r = (X, Y, Z) is the solar
system barycentric coordinates of the geocenter (Standish
1982), r, is the radius vector of the pulsar with respect to the
binary system’s barycenter, K, is the unit vector pointing from
the solar system’s barycenter toward that of the binary
system’s, and the multiplication cross denotes an ordinary

vector crossproduct. The radius-vectorr,, is given in Brumberg
(1991): ‘ '

r, = a,[iQ(u) + jRW)] , (5)
where '

Q(u) = cos w(cos u —e) — (1 —e*)?sinwsinu, (6)

R(u) = sin w(cos u —e) + (1 —e?) 2 coswsinu, (7)
i = cos QI, + sin QJ, , 8)
J = cos i(—sin QI + cos QJ,) + sin iK| . )

In the above expressions, u is the eccentric anomaly, the angles
o and Q are the longitudes of periastron and ascending node
respectively, (I, Jo, Ky) is the triad of unit vectors attached to
the barycenter of the binary system and related to the com-
monly adopted equatorial coordinates (a, §) by

I, = (—sin a, cos a, 0) , (10)
Jo = (—cos a sin , —sin a sin J, cos 9) , (11)
K, = (cos a cos 9, sin o cos J, sin 9) . (12)

4. ANNUAL PARALLAX

The annual parallax term A,, has been well known for a
long time (Kuzmin & Kuzmin 1988; Ryba & Taylor 1991). It is

TABLE 1

MAGNITUDE OF ORBITAL AND ANNUAL-ORBITAL PARALLAXES

P d x Ao Tp Ty
PSR J PSR B (s) (kpo) (s) (us) (us) (us) sin i References
1302-6350...... 1259 —63 0.047 23 3450 0.53 24.41 7.08 >0.9 1
1312+18 ........ 1310+ 18 0.033 18.5 84.17 0.07 0.00 0.02 2
1623 —-2631...... 1620—26 0.011 22 64 0.55 0.01 0.16 3
2019+42425...... 0.004 0.9 38.77 1.35 0.01 0.20 5
1955+2908...... 1953+29 0.006 35 33 0.35 0.00 0.04 4
171340747...... 0.005 0.8 32.34 1.52 0.01 0.20 <0.96 6
1857+0943...... 1855+ 09 0.005 0.7 9.23 1.73 0.00 0.06 0.9992 7
0437—4715...... 0.006 0.15 337 8.09 0.00 0.10 8
2317+1439...... 0.003 1.46 23 0.83 0.00 0.02 9

REFERENCES.—(1) Kochanek 1993; (2) Kulkarni et al. 1991; (3) Lyne et al. 1988; (4) Boriakoff et al. 1983; (5) Nice et al.
1993; (6) Camilo et al. 1994; (7) Kaspi et al. 1994; (8) Johnston et al. 1993; (9) Camilo et al. 1993.
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parameterized as follows:

A = [(X cos 6 cos a

" 2cd

+ Y cos § sin a + Z sin 8)* —r?]. (13)

The annual parallaxes are accessible for measurements in
PSR J1713+ 07 (Camilo et al. 1993) and PSR B1855+09
(Kaspi et al. 1994) and could in principle be measurable in
PSR B1937+21 (Kaspi et al. 1994), PSR J2019+24, and
PSR J0437 —47 (Johnston et al. 1993).

5. ORBITAL PARALLAX

After a straightforward calculation, the pure pulsar orbital
parallax term A, can be expressed as

cx? 1 1 } .
Ap= el {cscz i-3 + B e*(1 + sin® w — 3 csc? i)

— 2e(csc? i — sin? w)(cos u — e)

1
+ (1 —e?'2 sin 2w<e sin u — 3 sin 2u>

1
+ 3 [cos 2w + e?*(csc? i + cos? w)] cos 2u} , (14)

where a, and e are the semimajor axis and eccentricity of the
binary pulsar orbit, x = a, sin i/c, and i and o are the orbital
inclination and longitude of periastron, respectively. One con-
cludes immediately from equation (14) that the constant and
periodic terms depending exceptionally on cos u and sin u are
absorbed in the astrometric and Keplerian parameters of the
binary system. Thus, the coefficients of the functions in equa-
tion (14) which depend periodically on time as sin 2u and
cos 2u are the only separately measurable parameters. Their
measurement will deliver new physical information regarding
the numerical values of distance to the pulsar and the sine of
orbital inclination. Therefore, measurement of the pure orbital
parallax A, will admit a separate determination of the dis-
tance d to the pulsar as well as the angle of the orbital inclina-
tion i, but only in the case when e # 0. Such a situation is
realized in the case of PSR B1259—63 (see Table 1) and can be
used to extend the calibration of the distance scale in the
Galaxy to larger space intervals.

Additional information may be extracted from the indepen-
dent measurement of the annual-orbital parallax A_,,.

6. ANNUAL-ORBITAL PARALLAX
Let us introduce the following notations:
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The expressions on the right-hand sides of equations (15) and
(16) are known functions of time and can be precisely com-
puted using the modern ephemerides (Standish 1982). The
mixed annual-orbital parallax term A_,, can then be presented
in the form

Ay = 3— [(A,O sin Q — A,, cos Q)R(u) cot i
— (Ag, cos Q + A, sin Q)Q(u) csc i] . (1

It is not difficult to see that the structure of the annual-orbital
parallax term is such that if A_,, is omitted from the timing
formula, we would measure

S ti
xobs - xlntr1n51°|:1 + % (AIO sin Q — AJO Ccos Q):I , (18)

and

- & (Ag, cos Q + Ay, sin Q) .

wobs — wintrinsic

(19)
This will induce the systematic periodic variations in the
parameters x°* and «°* with annual period. Probably, oscil-
lations in these parameters could be responsible for the non-
random behavior in the residual phases of PSR J2019 +24
(Nice, Taylor, & Fruchter 1993) if sin i were equal to or less
than 0.1.

Again one can see from equations (14) and (17) that the
observations of A,, and/or A,,, admit a separation of the
orbital inclination i and the semimajor axis a, under condition
that the distance d is already known. It is possible to measure
the longitude of the ascending node Q as well. Taking into
account the numerical values of the inclination angle i, as
well as the mass function f(m,, m_), one will be able to obtain
more reliable estimate of the ratio K = f(m,, m, /sin3 i =

m2(m. + m,)~%. The mass of the pulsar’s companion can then
be evaluated assuming for example, that the pulsar’s mass is
equalto 1.4 M.

Measurements of the pulsar orbital and annual-orbital
parallaxes are equivalent to the determination of the apparent
orbit of the binary pulsar as in the case of visual double stars
(Couteau 1981). Such observations would improve the mass
estimates of stars in binary pulsars even in the event that the
orbit is close to face-on. In such situation, the classical method
of the stellar mass determination does not work so well, due
to the large uncertainty in the numerical value of the mass
function.
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