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Abstract This chapter discusses the various techniques used to calibrate the
amplitude and phase of VLBI data. The effect of residual calibration errors on
image quality is also considered.
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9.1 Introduction

This chapter describes the basic physical and statistical problems encountered in
the process of calibrating VLBI data. The purpose of this chapter is to acquaint
the reader with the fundamental issues rather than set forth an encyclopedic or
cookbook approach to calibration. The need for calibration and the limitations
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162 9 CALIBRATION TECHNIQUES FOR VLBI

of self-calibration procedures are presented. The four types of calibration: delay,
fringe rate, amplitude and phase are described. The amplitude calibration is
affected primarily by aperture efficiency, atmospheric absorption and pointing
errors. Direct phase calibration has rarely been possible up to now. However, the
processes that effect the coherent integration time such as phase noise in the fre-
quency standards and path length fluctuations in the atmosphere are important
in data processing. The use of phased arrays as VLBI elements are explained.
Finally the recognition of calibration errors in image defects is described.

The fundamental task of calibration can be stated quite succinctly. One
hopes to estimate a set of fringe visibilities V;; between the antennas ¢ and j,
but because of various instrumental problems one actually measures quantities
Vi;- Many effects depend on the antennas alone and can be described by the
equation

VI —_— G G* 5] ) (9'1)

where G; and G; are complex gain factors that characterize the instrumental
amplitude and phase errors at each antenna. For example, if a cloud drifts
through the beam of antenna ¢ and introduces a phase shift of 1r/2 during a
measurement, its effect is characterized as a complex gain of G; = €'% for that
time. There are other effects that are baseline dependent and are more difficult
to deal with. Baseline dependent gain coefficients, i.e., G;j, cannot be factored
into station dependent gains as in equation 9.1.

The need for detailed discussion of calibration procedures could be ques-
tioned. Why not draw on the years of experience with the VLA and other
connected element interferometers where the calibration relies on the procedure
of interleaving observation of the program source with those on an unresolved
calibrator source that is nearby in angle? Such observations directly provide the
quantities G;Gj; and equation 9.1 can be inverted to obtain the desired Vj;s.
The funda.mental problem of adapting such a scheme to VLBI data is that there
are few unresolved sources at the angular scale of milliarcseconds, so calibration
sources are generally far removed from program sources. Hence, such quanti-
ties as the atmospheric phase shift and the elevation dependent collecting area
of the antennas will differ. In addition, VLBI has a broader range of instru-
mental problems. For example, the clocks at the stations may not be running
synchronously.

A second objection might be that calibration should be unimportant because
of the very powerful techniques of self-calibration or hybrid mapping that rely
on closure relations that remove or mitigate the effect of complex gain errors.
We briefly describe these relations, which are graphically shown in figure 9.1.
Suppose we have three stations, with instrumental phase errors ¢1, ¢2, and ¢s,
which contribute gain factors e%1, ei%2, and e*%*. We could correct them if we
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Figure 9.1: Left: A set of three baselines in an array that forms a triangle, which can be used
to generate a phase closure variable. Right: A set of four baselines that forms a quadrangle,
which can be used to generate an amplitude closure variable.

knew what they were. The visibility phases on the three baselines will be

$12 = bias+ Y12+ ¢1 — P2
¢23 = boazs+ a3+ 2 — ¢3 (9.2)
#31 = bazis+ 31+ ¢3— ¢1,

where b;; is the baseline vector between stations ¢ and j, s is the unit vector in
the direction of the source, 1;; is the phase of the fringe visibility with respect
to the field center defined by s. The sum of the phases around this triangle is

@123 = d12 + P23 + P31 = Y12 + Y23 + VY31 - (9.3)

The baseline terms cancel because the baselines, when factored out of the dot
product, form a closed triangle (by2 + bas + bs; = 0) . Baseline errors and source
position errors cancel. Hence @ is free of instrumental effects and geometric errors
and can be used to determine the source structure (contained in the t;; terms).
Note that if the source is a point source then ®;53 is 0. The amplitude closure
conditions apply to four baselines that form a closed quadrangle, and is defined
as

_ |Vial1V34l _ 9192|V12]9394| Va4 _ |Vi2|| Va4l
|VasllVail  92931Vaslgag1|Vai| — |Vas||Vaa|’

Q (9.4)

where the g;s are the magnitudes of the respective gains, G;s. The closure ampli-
tudes can be used most effectively in the high signal-to-noise regime with large
arrays. The closure conditions require that fringes have been detected on each
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Figure 9.2: Simplified diagram of an interferometer with “ideal” fringes and “real” fringes
degraded by receiver noise and atmospheric effects. Some critical elements of the system, e.g.,
frequency standards, mixers, and tape recorders, are not shown.

baseline separately. For the VLBA, the minimum detectable signal is about 25
mJy. The fraction of the phase and amplitude information that can be recovered
is N—2/N and (N — 3) /(N — 1), respectively. The use of phase and amplitude
closure information in image restoration procedures is discussed extensively by
Pearson and Readhead (1984). Self-calibration has several limitations. For small
arrays a significant fraction of the phase and amplitude information cannot be
recovered. Also, as is clear from equations 9.3 and 9.4, the information about
the total flux density and also the absolute position of the source are lost.

A cartoon of an interferometer fringe pattern is shown in figure 9.2, with a
case of no noise and one with noise and other sources of errors. In the following
sections we discuss the basic physics behind these errors. Later chapters in
this book describe these effects in more detail and give a more step-by-step
approach to calibration implementation. Much of the information can be found
in Thompson, Moran and Swenson (1986, hereinafter TMS), Moran (1989), and
Rogers (1993a).
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9.2 Delay Calibration

The signals received at the interferometer elements must be aligned properly or
else the fringe amplitude will suffer degradation. This effect can be understood in-
terms of one of the fundamental theorems of Fourier Transform analysis, the shift
theorem. If a function f(t) has transform F'(w), then f(¢ — 7.) has transform
F (w) exp (iwTe) . These transform pairs can be written

f(t) & F(w) (9.5)
and
ft—1) e F(w)em™. (9.6)

In particular, if a correlation function R(7) at a point in the (u,v) plane has a
transform V (w), then R(7—7.) transforms into a visibility function given by

R(T—Te,u,v) & V (w,u,v) e, (9.7)

Thus a delay error causes a phase shift with frequency. If the frequency interval
is Av (the bandwidth in the case of continuum analysis or the spectral resolution
in the case of spectral line analysis) then the averaging of the function e**" in
equation 9.7 over frequency Av gives a reduction in amplitude of
sin TAvT,

|G12| = (9.8)

TAvT,
Note that this is a baseline dependent error, as opposed to a station dependent
error since it depends on the relative delay error between the two antennas and
cannot be factored into the form G1G%. Note however that clock offsets do
close. The delay error due to station clock errors can be readily determined
by observations of a calibrator source. The accuracy of a delay measurement is

(e.g., TMS)

1 1
T~9AVSNR'

where Av is the total bandwidth, 1/2Av is the Nyquist sampling rate, and SNR
is the signal-to-noise ratio of the measurement.

(9.9)

9.3 Fringe-Rate Calibration

The frequency standards that control the station clocks may not be exactly set to
the desired frequency, which makes the delay error change linearly with time and
also introduces an instrumental phase that changes linearly with time. Hence

5
Te=Te, + (7”> £ (9.10)
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where 6v/v is the fractional frequency offset of the time standard. The gain
factor will have a term of the form G; = eli2™(é¥/v)I¥t_ If the integration period
T is significant with respect to (6v/ 1/)"1 then visibility amplitude will decrease
by the amount

(9.11)

where v /v is here the difference in fractional frequencies between the standards
at the stations. The frequency offsets of the frequency standards can be deter-
mined either by measuring 7. at several epochs or by measuring the fringe rate
offset.

In VLBI the determination of the station clocks and frequency offsets has
often been a formidable task known as “finding the fringes.” With an array such
as the VLBA, which will operate continuously, these parameters will be closely
monitored.

Astrometric VLBI measurements have been made almost exclusively with de-
lay or fringe rate variables. Phase has generally been too difficult to calibrate, but
differential astrometry has been done with phase information on closely spaced
continuum sources and maser clusters. Astrometry on continuum sources is usu-
ally based on broad band delay measurements whereas astrometry on spectral
line sources, which are inherently narrow-band, is usually performed on fringe
rate measurements. Final calibration parameters are modeled and determined
during the least-mean-squares data analysis that yields the desired source posi-
tions.

9.4 Amplitude Calibration

9.4.1 Antenna Calibration

The power received by a radio telescope is given by, e.g., Rolfs (1986)
P= A / I, () A(Q)de, 9.12)

where I, is the specific intensity of the source as a function of angle 2, A is
the effective collecting area of the antenna and Av is the receiver bandwidth.
By the Nyquist theorem (which is the one dimensional blackbody relation), the
received power can be related to an equivalent antenna temperature T4 by the
relation, P = kT4 Av, where k is Boltzmann’s constant. If the source is small
with respect to the antenna beam, the usual case in VLBI, then A can be taken
out of the integral as a constant. The integral of intensity is the flux density S
so that

SA

TA:ﬁ-.

(9.13)
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For a VLBI system based on a quantized signal representation, the computed cor-
relation function p, or in the case of spectral line data, the cross power spectrum
p (w), is converted to temperature units by multiplication by the geometric mean
of the system temperatures, Ty, and T},. As suggested by equation 9.13, the con-
version to units of flux density is accomplished by multiplying by 2k/+/A; A,.
Hence the relation between visibility and normalized correlation (ignoring digital
processing factors) is

T, T:, 1*°
Vis = p- 2k - 10%¢ [ﬁ] [Iy], (9.14)

where the areas are in m? and k is in w K1,

The rms sensitivity is proportioned to the term in brackets. Thus a useful
quantity in describing the performance of a station is the system temperature
in units of Janskys, Tj,, or the system equivalent flux density (SEFD), which is
given by

, 27607y,
T;, = v (9.15)
where A;, is the effective collecting area in square meters. Then the normalization
is simply Vip =p+/T:,T:,. Note that in the estimate of V' any errors in the
amplitude of the temperature reference of the radiometer (eg., noise tube or
thermal load) cancel in the estimate of T} ,. That is, if the temperature reference
is overestimated by 10% then both the system temperature and the collecting
area will be overestimated by 10%, and Tg will be unaffected.

The ratio of the effective collecting area of the antenna to the geometric area
is the aperture efficiency, n4. A typical parabolic reflector antenna may have the
following components of efficiency

Na = MRITNsONBNS » (9.16)
whose definitions and representative values are:
NRr = radiation efficiency = 0.96
nr = taper illumination = 0.90
nso = spillover = 0.95
nB = feed leg and subreflector blockage = 0.90
ns = surface accuracy = 0.90
na = 0.66 .

Consider the surface accuracy term, ns. We can think of the surface of the
reflector as consisting of many segments with deviations from a perfect parabola
given by €, which is a gaussian random variable, with probability distribution

1 _£
e 207

p(e) = Tore ,

(9.17)
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where (¢) = 0 and (€2) = o2. A very important relation, which can be proved by
direct calculation from equation 9.17 is
. o0 o2
(€*¢) = (cos e+ isine) = (cose) =/ cose p(e)de=e"7 .
= (9.18)

A surface deviation of € causes a phase shift in the electric field of ¥ ~ 4we/A,
where ) is the wavelength (the extra factor of two comes from the reflection), as
long as the f/d ratio of the antenna is large, and hence the electric field com-
ponents at the focus of the antenna have a gaussian random phase distribution
with oy = 4wo/A. If we suppose that the antenna has N independent panels
then the collecting area is proportional to the square of the electric field, or

1 <« il
A:Ag< TR > (9.19)

where A, is the geometric area of the antenna (wd?/4, where d is the diameter
of the antenna). If oy = 0, then all the phase factors are unity and A = A,.
Expressing equation 9.19 as a double summation gives

= % Z <ei(¢.-—¢,-)> ~ A, (ei¥i)2, (9.20)
%

where we ignored the terms where ¢ = j. From equations 9.18 and 9.20 we obtain

A= Age_(%‘—.)z. (9.21)

This equation is known in radio astronomy as the Ruze formula and in other
branches of astronomy as the Strehl ratio . An antenna with /X = 1/20, a
standard measure, gives ns = 0.67.

As an antenna with an alt-azimuth mount is moved in elevation, the reflector
distorts, changing the way in which the electric field components combine at
the feed. Hence the effective collecting area is a function of elevation angle. In
practice, the subreflector is moved as a function of elevation to compensate for
the change in position of the focus. Most antennas are set to have maximum
efficiency at an elevation of ~ 45°. The so-called “gain curve” of an antenna is a
plot of effective collecting area in units of K/Jy or from equation 9.15, A/2760
as a function of elevation angle. Examples of gain curves are shown in figure 9.3.
Note that the formal definition of antenna gain is 4mA/A2. This is the gain
relative to an isotropic radiator.

9.4.2 Atmospheric Opacity

The absorption of radio waves in the atmosphere at microwave and millimeter
frequencies is due primarily to spectral line transitions of water vapor and oxygen.
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Figure 9.3: The opacity corrected gain curves for the VLBA antenna at Fort Davis, TX, at
the wavelengths indicated.

The absorption as a function of frequency is shown in figure 9.4. For most
purposes we can assume that the atmosphere is a plane parallel layer of absorbing
gas above the antenna, which has temperature T, and zenith opacity 7o at the
observing frequency. The path length through the atmosphere is approximately
proportional to sec z where z is the local zenith angle, and the total opacity is 7 =
1o sec z. Hence, the system temperature will consist of the receiver temperature,
Tr, plus a contribution due to the atmosphere and (from the usual solution of
the equation of radiative transfer) can be written as

Ts =Tr+ 1o (1 —e” 70 secz) . (922)

Ts ~ Tr + ToTosec 2. (9.23)

Measurements of Ts are acquired as a function of z and plotted as a function
of sec z (see figure 9.5). The slope of a straight line fit to this data is To7o and
the extrapolated intercept at secz = 0 (no atmosphere) is Tr (86 K for the
case shown in fig. 9.5). The opacity 7o can be estimated by use of the surface
temperature for Tp. Note that at large values of sec z the functional dependence
of Ts will become non linear (i.e., it will saturate) because the plane parallel
atmosphere assumption breaks down and because of the non-linearity of the
exponential term in equation 9.22 when (7o sec z) > 1. Of course the opacity can
be determined from the full tipping scan by use of a non-linear least squares
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Figure 9.4: The zenith atmospheric opacity versus frequency for two different amounts of
water vapor (from TMS).

algorithm (Leppanen 1993). Ground pickup due to spillover can vary as a
function of zenith angle and lead to errors in the estimation of 7.

In modern receivers Tg is nearly constant over long periods of time. In this
case any individual measurement of Ts at a given time and elevation angle can
be converted into an opacity, that is

r=—In [T0+TR_TS] . (9.24)
To
The gain curve of an antenna can be measured after the opacity has been esti-

mated by tracking a calibration source through a range of zenith angles since

SA(2) .

TA (Z) — 2k —TpSecz , (925)

which can be solved for A (z). Note that changes in the collecting area don’t
effect the tipping scan measurements because the atmosphere fills the antenna

beam.
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Figure 9.5: Top: A plot of system temperature versus sec z which can be used to determine
the receiver temperature and atmospheric opacity (Bottom). The two tracks show the source
rising and setting. The system temperature is approximately a linear function of secz (see
equation 9.23). Deviations from the straight line can be interpreted as fluctuations in opacity,

70, as shown in B.

It is common practice to refer the system temperature to a point above the
atmosphere by dividing T's by exp (—7g sec z) . This modified system temperature
% is given by

T% = TRe™% 4+ Ty (€™ — 1) (9.26)

T% incorporates the two effects of additive atmospheric noise and signal at-
tenuation. Hence the use of T§ in equation 9.15 will correct for both system
temperature and atmospheric absorption effects. An example of the gain factors
for an array are shown in figure 9.6.

The effective collecting area can also change if there are antenna pointing
errors. These errors are often significant in VLBI where antennas are used at
frequencies above their initially planned limit. Suppose that the gain or collect-
ing area of a telescope is a gaussian function with full-width-at-half-maximum
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Figure 9.6: The gain factors of 5 antennas of the VLBA at 43 GHz for a 6 hour experi-
ment. These gain factors correct for variations in collecting area, system temperature, and
atmospheric opacity.

w, which is approximately 1.2)/d, and that the pointing error in each axis is de-
scribed as an independent gaussian random variable with rms deviation in each
axis of op. It is easy to show that the expectation of the effective collecting area
is given by

(A) = nad, [Tlrz] , (9.27)

where r = (\/8 In 2) op/w, and that the fractional rms deviation is

ga 1"2

(A " it

Various values of (A)/na A, and 04 /(A) are listed in table 9.1. Hence, an antenna
with an rms pointing error of 10% of its beamwidth in each axis will suffer a mean
loss of 5% in collecting area and the collecting area will vary by +5%. Pointing

(9.28)
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Table 9.1: Gain reduction due to pointing errors

22t (A)/maAg  oa/(A)
0

0 1 0
0.1 0.23 0.95 0.05
0.2 0.47 0.82 0.18
03 0.71 0.66 0.36
04 0.95 0.53 0.53
0.5 1.18 0.42 0.71

errors can be calibrated to a certain extent if the flux density of a nearby source
is frequently monitored. This technique has been used effectively for Sgr A* (Lo
et al. 1993). Pointing errors can be corrected in spectral line observations by use
of the total power spectra (see chapter 11).

Finally we mention that the full effective areas of the antennas in an array
will not be achieved if the polarizations of the antennas are not matched. For
example, suppose two stations operate with linear polarization with position
angles of @; and a3 on the sky. The visibility will be reduced by

G12 = |cos(a; — a3)] . (9.29)

Needless to say, attempts to observe unpolarized sources are severely thwarted
when o; —as = m/2. Many failed VLBI experiments have been traced to this sort
of blunder. VLBI observations are usually made in circular polarization in order
to eliminate problems caused by the differential parallactic angle of observations
and Faraday rotation in the ionosphere.

9.5 Phase Calibration

Direct phase calibration is rarely attempted in VLBI except in cases where a
calibration source lies very close to the program source. In maser sources, phase
calibration has been particularly useful wherein one maser spectral component
in a cluster of masers subtending an area of less than a few arcseconds can be
used as a phase reference (see chapter 11). The principal reason to be cognizant
of phase errors is to be able to choose an integration time short enough that
phase errors do not lead to fringe amplitude reductions. These are quite serious
since they are baseline dependent and may not be corrected by the application of
the closure relations. All of those matters are extensively discussed in chapter 9

of TMS.

9.6 Coherent and Incoherent Averaging

We begin this section by showing that an estimate of the fringe amplitude can
be obtained from a time sequence of fringe visibility measurements if the sample
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Figure 9.7: Top left: Phase versus time for perfect data, i.e., ¢ =0. Top right: The Fourier
transform of e'%: is a sinc function, or with discrete samples at intervals of 1/T, the normal
procedure, a delta function. Lower left: A more realistic plot of phase versus time, showing
both short term and long term fluctuations. Lower right: Fourier transform of the corrupted
phase function e'®i. Notice the spectral components at 60 Hz, which are commonly seen and
are caused by coupling of the local oscillator to the power line.

measurement time is less than the time scale for significant phase fluctuations.
Suppose that the fringe visibility, A, is constant but the measured visibility is
corrupted by some sort of phase noise process, ¢;, that is

z = Ae*®. (9.30)

Neglect for the moment the thermal noise introduced by the receiver. The
Fourier transform of the temporal sequence of fringe visibilities is the fringe
frequency spectrum, Z;. For incorrupted data the fringe frequency spectrum is a
“delta function” whose amplitude equals the fringe amplitude. In the presence of
phase noise, the signal is distributed in the fringe-frequency spectrum as shown
in figure 9.7. By Parseval’s theorem

>z = %Zz,fzg‘, (9.31)

or, from equation 9.30,

A= % > zz] v (9.32)
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Clark (1968) first applied Parseval’s theorem to the problem of estimating fringe
amplitude in the presence of phase noise and he showed that if it is necessary
to reduce the sample integration time to the reciprocal of the bandwidth, Av—1!,
then the sensitivity is the same as that of an intensity or incoherent interferom-
eter.

If the receiver noise contributions are not negligible then the amplitude es-
timate from equation 9.32 will be biased since the squared fringe amplitudes
are always positive. To calculate the magnitude of this bias consider the fringe
visibility to be a vector of magnitude .A oriented along the z axis to which a
gaussian noise vector is added. The joint probability distribution of the x and y
components of the resultant vector is

-t (9.33)

p(e,y) = g23¢

It can be shown that the probability distribution of the magnitude of the visi-
bility, z = \/z2 + y2, is (e.g., Papoulos 1965)

z _2+42 (74
p(Z) = ;C 202 I() (ﬁ) , T > O, (934)

where I is a modified Bessel function of zeroth order.

The expectation of z2 can be calculated directly from equation 9.33 as the
expectation of 2 4 y2. The result is (22) = A% + 202. Hence in the presence of
noise, equation 9.32 must be modified; an unbiased estimator of A is therefore

1 1/2
A. = [FZZ,-Z{ - 202] : (9.35)

The procedure used more commonly than that of equations 9.32 or 9.35 to im-
prove the sensitivity of an interferometric measurement is to segment the data
into periods short with respect to the coherence time and average the squares of
the fringe amplitudes. An unbiased estimate of the amplitude is

A, = [% (Y za) - 202] 1/2. (9.36)

In the strong signal case where this form of coherent/incoherent averaging
is not necessary, the signal-to-noise ratio improves as N /2 the same as for
pure coherent averaging. In the low signal-to-noise ratio case, where incoherent
averaging may be essential to improving the SNR or even detecting the fringes,
the SNR only improves as N1/4 for large values of N (Rogers, Doeleman and
Moran 1995).

There is another statistical issue that should be addressed at this point.
Often, it is necessary to search a large parameter space to find the signal or
fringes. In the absence of signal the real and imaginary parts of the fringe
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visibility are zero-mean gaussian random variables and the magnitude, z, is a
random variable with a Rayleigh distribution, as given by equation 9.34 for
A = 0 (Note that I(0) = 1). The probability distribution of the maximum
of N samples, z,,, has a distribution that becomes progressively more biased
as N increases. The mean value of 2, is about ov2In N for large N with an
rms deviation of about 0.80vIn N. Hence, if one searched a two dimensional
fringe rate/delay range of 10° points for a signal, the expectation of the largest
noise peak would be 50 +0.060. Hence, any “detection” less than 60 is clearly
suspect. Similarly, projections of the data may lead to a bias. For example, a
common option in spectral line VLBI is to plot the peak amplitude in the fringe
rate spectrum as a function of frequency. If the fringe rate spectra have N points
then there will be a biased baseline in the frequency spectrum of ov/21n N. Note
that for strong spectral line sources, o is a function of frequency, and gives rises
to the phenomena of “pseudo fringes”.

It is important to be able to estimate the coherence time of an interferometer.
This can be done empirically by subdividing the observation period into shorter
and shorter segments and estimating the amplitude from equation 9.36. At some
point when the phase fluctuations become small, the estimated fringe amplitude
will reach its maximum and true value. The phase fluctuations that limit the
coherent integration time are determined primarily by the atmosphere, but in
some cases by the frequency standards. For an integration time T', the measured
fringe amplitude will be given by

_1 T io(1)
13
T /0 e dt

where C (T) is a sample of the coherence function and ¢ is a sample function of

the fringe phase the same as in equation 9.30. C(T') is always less than or equal
to unity and only if the' phase noise is zero is C (T') = 1. Frequency standards are
usually characterized by a quantity called the Allan standard deviation which
describes the fractional frequency deviations of a sinusoidal waveform with phase
noise. The Allan standard deviation has a precise statistical definition and it was
invented to avoid problems with low frequency divergences in power spectra and
to confound students. Examples of the Allan standard deviation are shown in
figure 9.8. The Allan standard deviation, oy, is approximately the rms deviation
in frequency divided by the frequency, Av /vy, or ¢/ (27voT). Hence the coher-
ent integration time, T, is approximately defined as the time for which the rms
phase deviation is 1 rad,

Am = A = AC(T), (9.37)

2mTeoy =1, (9.38)

A more precise connection between the Allan standard deviation and the coher-
ence function for the case of white phase noise is given by (see Rogers and Moran
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Figure 9.8: Top: Idealized plot of the stability of atomic frequency standards, the pulsar
1937421 and actual VLBI data (from TMS). Bottom: The rms phase versus integration
period for VLBI data at 22 GHz derived from the Allan standard deviation in the upper plot
with the formula oy ~ oyvoT.
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Table 9.2: Coherence times for oy = 10713

v T.(8=08) T.(8=0.5)

(GHz)  (5) (s)
1 1840 3250

5 370 650

10 185 325

22 85 150

40 45 80

100 20 32

200 10 15

1981, or TMS)
271'21/30'3T2
(cr(T)H?=e 3 . (9.39)

A more general definition of coherence time, the time for the (C (T"))!/2 to drop
to 3, is, from equation 9.39,

T _/—6Ing

20y

(9.40)

Typical Allan standard deviations as a function of time for the atmosphere
and frequency standards are shown in figure 9.8 (lapelled “VLBI data”). Note
that the Allan variances are additive, so for VLBI application where two fre-
quency standards are involved, the Allan standard deviation will increase by
V2. A representative value is o, ~ 10713, The coherence times for § = 0.8 for
various frequencies are given in table 9.2. For frequencies below about 1 GHz,
the coherence time may also be affected by the ionosphere.

9.6.1 Atmospheric Effects on Phase and Delay

The atmosphere has a smooth component, which causes a systematic variation
of delay in an interferometer, and a fluctuating component, causing short term
phase noise. Consider first a short baseline interferometer under a homogeneous
plane-parallel atmosphere of index of refraction no. The relation between the
zenith angle of radiation impinging on the atmosphere at angle z and the ob-
served angle zg is given by Snell’s Law, ng sin zo = sin z. The interferometer delay
is

bsinzg bsinz

Ty = = , (9.41)
)

where c is the speed of light and b is the baseline length. Thus the atmosphere
can be ignored in this simple approximation as long as the free space values for

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ASPC...82..161M

FTOO5ASPC. -. 82 "1 M!

9.6 COHERENT AND INCOHERENT AVERAGING 179

the speed of light and zenith angle are used in computing the delay. However,
refraction must still be taken into account in pointing the telescopes in the
direction of the source since the refractive angle correction is approximately
equal to tan z in units of arc minutes!

The index of refraction profiles above the antennas in a VLBI array are differ-
ent and the zenith angles are also different. It is best to consider the geometric
delay for each antenna separately. In the zenith direction the atmosphere will in-
troduce an excess propagation path of Ly = [ (n — 1) d¢, where n is the index of
refraction along the line of sight. Since n deviates from unity only by about 300
parts per million, it is usually described in terms of refractivity, N = (n — 1) 10°.
For air the refractivity is approximately given by the two term Smith-Weintraub
formula,
~ 176 Py
N~ (P+4810T) , (9.42)
where P is the total pressure in mbars, p, is the partial pressure of water vapor
in mbars and T is the temperature. The two terms on the right side of the
equation are called the dry and the wet parts. The wet part is quite variable
and typically has a scale height of about 2 km and the dry part can be estimated
from the surface pressure and has a scale height of about 8 km. equation 9.42 is
accurate to a few percent from DC to 1000 GHz at frequencies where the atmo-
sphere is reasonably transparent. Hence the atmosphere introduces a frequency
independent (i.e., non-dispersive) delay. A widely held misconception is that
phase fluctuations are worse near the 22 GHz water vapor transition. This is
not true. Equation 9.42 can be integrated along a vertical path to yield

Lo ~ 0.228P + 6.3w [cm], (9.43)

where w is the column height of precipitable water in cm. The first term con-
tributes 231 cm for a standard pressure of 1013 mb and the second term varies
from 0.6 cm during the best observing weather on Mauna Kea (17% of the time),
to 30 cm in places like New Guinea.

Since the atmospheric opacity at radio frequencies is largely due to water
vapor, it has long been hoped that the propagation delay could be estimated
from measurements of sky brightness. For example at 22 GHz the atmospheric
brightness temperature is about 13 w K. Hence a 10° shift of phase is caused
by Aw = 0.006 cm, which causes a change in sky brightness of 0.08 K, which
is a power change of 8 x 10~* with a system temperature of 100K. At 230 GHz
in an atmospheric window the brightness temperature is about 140 w and only
0.0006 cm of water vapor is needed to cause a phase shift of 10° and a brightness
" temperature change of 0.08K. Radiometry at 1.3 cm has been extensively de-
veloped to correct the interferometric delay for geodetic and astrometric VLBI,
but with limited success. Technical problems include difficulty with precise cali-
bration, the lack of validity in the algorithm under non-clear weather conditions
and the difference in volume sampled by the near fields of the VLBI antenna
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and the small radiometer antenna. For this reason the zenith delay is normally
estimated from the delay residuals in the interferometric data.

The excess path length at any zenith angle can be described in terms of the
zenith excess path and a mapping function m(z). Various mapping functions are

my (z) = sec z (9.44)
my (z) = secz — ? sec z tan? 2 (9.45)
0
and
1
mg (2) = y : (9.46)
cos z +
cobz+ cosz+ C

Model 1 is a simple plane-parallel atmosphere; model 2 is a Taylor expansion for a
round earth of radius 7o and exponential scale height ho; model 3 (also known as
CfA-2.2) which has free parameters A, B and C, is preferred by the geodetic VLBI
community (Davis et al. 1985). The atmosphere can easily cause excess delays
of 200 cm and fringe rates of several hundred mHz (at 22 GHz). Those effects
are large and are generally removed by a delay model in the correlator. The
observer is left to deal with residual errors and the effects of rapid fluctuations.

The rapid random component of atmosphere-induced phase noise is more dif-
ficult to deal with. The atmosphere can be characterized as a layer containing
irregularities over a wide variety of scale sizes distributed according to the Kol-
mogorov model of turbulence. A plane wavefront impinging on this layer will
have an emerging phase front at the ground given by ¢ (z), where ¢ is a gaussian
random variable. (See figure 9.9). The observed visibility is

V = Sei(d1-¢2) (9.47)

where the exponential function is just the G;G} term of equation 9.1. The
fluctuations are often characterized by the structure function of phase, given by

Dy (b) = <[¢1 (2) — ¢2(z - b)]2> : (9.48)

The structure function is of direct interest in interferometry because it describes
the variance of the phase difference at the two antennas, which is precisely
the quantity an interferometer is sensitive to (see equation 9.47). The relation
between the structure function and power spectrum of the phase fluctuations,

Py(q), is

Dy () =47 [ [1=Jo (@] Ps (@) ada, (9.49)
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Figure 9.9: Top: A depiction of the effect of a turbulent medium on the phase of an incident
wavefront. Note that unlike interstellar scattering, amplitude fluctuations are unimportant
because the antennas are directly adjacent to the turbulent medium. Bottom: Spectrum and
structure function of the phase fluctuations.

where Jy is a Bessel function of order zero, and ¢ is the spatial wavenumber.
Hence, by use of equation 9.18, the ensemble average of the visibility in equa-
tion 9.47 is

(V) = Ge~De(®)/2 (9.50)

The structure function of the atmosphere is proportional to b%/3 for distances
up to a few kilometers. After that, atmospheric fluctuations on reasonable time
scales are uncorrelated and Dy becomes a constant. The rms phase noise on
an interferometer is equal to /Dy (b) and for short baseline interferometers is
almost proportional to baseline length (cr¢ ~ b5/ 6) . For VLBI it becomes inde-
pendent of baseline length.

9.7 Phased Arrays as VLBI Elements

When sensitivity is important it is advantageous to use all the available anten-

nas at a location as a phased array element in a VLBI Network. Examples of
arrays that have been used in this fashion are the VLA, OVRO, BIMA, and
Westerbork. The undetected signals are summed after correcting for geometric
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delay and phase. The phased array forms a beam with an angular width of
approximately A/d, where d, is the size of the array. In the case of the VLA
in the A configuration at 22 GHz the beam size is about 0!/1. The position of
the program source must be known to a small fraction of this size. It is often
difficult to maintain adequate phasing of the array because of phase drifts in
the array electronics and atmospheric turbulence. For large arrays, such as the
VLA (A configuration), the coherence time due to atmospheric effects is about
the same as for the VLBI array. The normal procedure is to phase the array on
a calibrator source nearby in angle to the program source. Instrumental phases
can be derived and the results applied to the received signals before summation
(at the VLA the solutions from ANTSOL are used to adjust the phases in the
array). The array will slowly dephase with time until the calibrator must be
reobserved and the phases readjusted. If the program source is strong and com-
pact, the array can be continually phased on it, so that decorrelation problems
are avoided.

The sensitivity of a phased array can be calculated by the usual radiometric
analysis. We can analyze the phased array and use the results in the normal way
to calculate the SNR on a VLBI baseline. Suppose there are N identical elements
in a phased array, i.e., equal system temperatures and antenna temperatures, Tg
and T, respectively. The output of the summing port is

V) =) s +m(), (9.51)

where s; and n; represent the random signal and noise voltages from the ith
element of the array, respectively, and (s;) = (n;) = 0 and (s?) = T4 and
(n?) = Ts . The power, obtained from the square of equation 9.51, is

(V2 = [(sis) + (sing) + (s5mi) + (niny)]. (9-52)
ij

If the array is perfectly phased, then s; = s; and (s;s;) = Ta, whereas if it
is unphased, (s;s;) = Ta for i = j and zero for i # j. Since (sin;) = 0, and
(ninj) = Ts for i = j and zero for i # j, equation 9.52 can be reduced to

(V%) = N?T4 + NTs (phased) (9.53)
= NT4 + NTs (unphased). (9.54)
To calculate the noise level we first need to calculate (V*), which (from the

fourth-order moment theorem for gaussian random variables) is approximately
3N2TZ for Ts > NT4. Hence the rms fluctuation level in power is given by

[(V*) - (V2)2]1/2 = +/2NTs. Since there are 2AvT independent samples aver-
aged in integration period T', the SNR is given by

SNR = A;,TA VAVT (phased) (9.55)
S
= %\/ AvT (unphased) . (9.56)
S
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Hence the array functions as an element with a collecting area equal to the total
area of the array when it is phased properly and with the collecting area of
a single element when it is randomly phased. Note that if the phased array
were used for radiometry (and not for interferometry) then one might consider
averaging the detected signals (i.e., power) from each antenna. In this case the
phasing doesn’t matter and the SNR is

SNR = \/ng—A\/AuT, (9.57)
S

which is intermediate between the two cases given in equations 9.55 and 9.56.

If the atmospheric conditions are marginal, then care must be taken to make
effective use of a phased array. For example, with the VLA the antennas are
spaced in distance from the array center according to a power law with exponent
1.72. Since the atmospheric phase noise increases approximately linearly with
distance, as described in section 9.6.1, the phase noise on the outer three antennas
will be about twice that of any of the other antennas. Suppose we had the
situation where the phase noise was acceptable on the seven inner antennas on
each arm but effectively random for the outer two antennas. Dropping the outer
6 and retaining the inner 21 would increase the SNR of the array by 25% and
increase the SNR of a VLBI baseline formed with the phased array by 12.5%.

Another problem with phased arrays such as the VLA is that the performance
among antennas can vary widely. If the receiver temperatures are different, the
receiver voltages should be weighted in proportion to Ty; to obtain optimum
results. However, at the VLA the signals are quantized before summation so
the weighting is effectively (T,,-)I/ 2 The SNR ratio is less than optimum by the
factor

(Z 7%1-) (9.58)

F =,
NY &

where a; = T,. For an rms variation in performance among the antennas of 20%,
F is about 0.9. However, it is advantageous to remove very poorly performing
antennas from the array. Decision strategies on which antennas to include when
an array is being upgraded are discussed by Moran (1989). In the more general
case where both the receiver temperatures and the antenna gains vary, the opti-
mum weighting is Ty, /+/Ta; (Dewey 1994). This result may seem strange, but it
is entirely consistent with the well-known concept that the optimum sensitivity
in interferometric imaging is achieved by weighting the visibilities in Jy by the
product of the SEFDs of the elements (see also Rogers 1991).

9.8 The Impact of Calibration Errors in Images

In spite of one’s best efforts, there will always be residual calibration errors.
One can always get an idea about how well the calibration has succeeded by
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checking the corrected visibilities at crossing points in the (u,v) plane. Since
VLBI arrays rarely have exactly EW baselines, the (u,v) tracks on different
baselines will occasionally cross providing an opportunity for this check.

We concentrate here on the effect of multiplicative errors (see Ekers 1989) of
the form

V' (u,v) =V (u,v) G (u,v) , (9.59)

where G (u, v) is the residual complex gain, now referred to a point in the (u,v)

plane. It may or may not be factorable into station dependent components.
These gain factors are what is left over after calibration has been applied. Since
G (u,v) = G*(—u,—v), i.e., it is a Hermitian function, the magnitude of the
gain error is an even or symmetric function of u,v and the phase is an odd or
antisymmetric function. Consider first the amplitude errors in one dimension.
As depicted in figure 9.10, multiplicative amplitude errors can be represented
as a convolution in the image plane. Hence, a uniformly weighted map with no
amplitude errors would give a sinc function dirty beam (or a Ji (27um0)/(7u, )
Bessel function in two dimensions). Suppose one measurement out of a total of
N has a gain error that is off by a factor of 2. Because of the linearity of the
Fourier transform, the dirty beam will be the expected one, plus an additional
sinusoidal component. Hence the dirty map of a compact source will be the
normal convolved image plus stripes with period 1/ug, where ug is the spacing
of the offending data point in the (u,v) plane. In general, the amplitude errors
will have some complicated distribution, which will result in a symmetric dirty
beam, since the Fourier transform for a real symmetric function is also real and
symmetric. If the characteristic scales for variation in the amplitude variations
is Au,, then the extent of the dirty beam will be 1/Au,.

In two dimensions the NS coverage is rarely as good as the EW coverage.
Hence the dirty beam is elongated in the NS direction. The axial ratio gets larger
as the declination of the source decreases. For a source near the equator this axial
ratio might be 5:1. The tracks will be more closely spaced in v than u. Hence
the characteristic scale for changes in v will be smaller than for u, Av and Au
respectively. Hence, the extent of the error beam willbe Au~! and Av~! in the z
and y directions of the image. In other words, amplitude errors lead to symmetric
artifacts in the image that tend to be extended preferentially along the major axis
of the dirty beam. Another way to understand this result is as follows. The v axis
in the (u,v) plane can be stretched to make the coverage in both dimensions the
same. The dirty beam in the modified coordinates (compressed z axis) will be
nearly circularly symmetric (note however that circularly symmetric sources will
now appear elongated). Clearly, fringe amplitude errors will give rise to artifacts
which are distributed in a circularly symmetric fashion in a statistical sense.
Now, when the z axis is stretched to its normal value in the image plane, the
beam and the artifact distribution will be elongated in the same direction. (In the
early days of interferometry some astronomers published images in coordinates
that made the beam circular. This presentation was good for judging the error
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Figure 9.10: The effect of amplitude calibration errors on the interferometric image. From
the top: (1) The true source visibility and its Fourier transform, the image; (2) The weight-
ing function describing the (u,v) plane coverage and its transform, the dirty beam; (3) The
weighting function with a single calibration error and its transform; (4) The weighting func-
tion for a random distribution of errors, and its transform.
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artifacts, but not so good for interpreting the source structure.)

Phase errors give rise to antisymmetric artifacts, and like amplitude errors
can scatter the energy of a point source over the field of an image. In one
dimension the image is

1 , ,
I(2) =+ D Vmei2mueeit) (9.60)

where ¢ (u) is a gaussian random variable. If the source is unresolved and has
a flux density S, then (I(0)) = Se=2*/? and the strength is reduced by the
phase noise. In principle, the total flux can be recovered through application of
Parseval’s theorem

S P (o) = %Zv,f, =52, (9.61)

but this relation is of little practical use and subject to the normal noise bias
problem described in section 9.6.

A common practice in VLBI processing is to apply the phase closure condition
in hybrid mapping (or self-calibration) and not the amplitude closure condition.
This is because no mapping can generally be done at all without the use of
phase closure. Application of the amplitude closure sgmetimes causes instability
in the self-calibration because of the larger fraction of information that must
be supplied. Hence, the most insidious type of errors are the amplitude errors,
which can lead to symmetric “jet/counterjet” artifacts.

9.9 Summary

Here are a few things to remember about calibration.

1. The complex gain factors relating the measured and true visibility are ei-
ther baseline or station dependent. Station dependent errors are removed
in the process of self-calibration, which makes use of phase and amplitude
closure relations. Self-calibration does not fully supply the calibration in-
formation for a small array and it also requires high SNR for implemen-
tation. Astrometry requires precise calibration of delay and/or fringe rate
data.

2. Amplitude calibration requires measurement of the receiver temperature,
atmospheric opacity and antenna gain curve. The first two quantities can
be obtained from tipping scans (in reasonable weather conditions) and the
last by measuring the antenna temperature of a source as a function of
zenith angle. Pointing errors and polarization mismatch cause additional
amplitude calibration errors, which are hard to measure.

3. Where the SNR is low, estimates of fringe amplitude will be biased. Search-
ing for fringes often involves probing a large parameter space; watch out
for large noise bumps.
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4. Phase calibration is not usually possible. Primary consideration is given
to dealing with phase noise as introduced by the frequency standards and
atmosphere. The atmosphere is essentially non-dispersive at radio frequen-
cies and the phase noise (in turns) for a sea level network at temperate
latitudes is approximately given by 10~!3pT where v is the frequency in
Hz and T is the integration time in sec. To integrate longer you must
segment the data or use Parseval’s theorem on the fringe rate spectrum.

5. A phased array can be used as an element in a VLBI array. However, the
coherence time for a phased array (e.g., VLA/A) may be about the same as
for the VLBI array. The effective area of the phased array of N antennas
will vary from that of a single antenna to that of N antennas depending
on the quality of the phasing. In the case of the VLA/A at 22 GHz, the
beam of the phased array is rather small, about 0.1 arcsec, and the source
position must be known to better than this accuracy beforehand.

6. Residual amplitude errors in the data lead to symmetric artifacts in the
data whose distribution is elongated and oriented in the same direction as
the dirty beam. Residual phase errors yield antisymmetric artifacts.

We are grateful to J. R. Herrnstein, M. J. Reid, Z. Q. Shen, and A. R.
Thompson for helpful comments.
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