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Abstract. — The aim of this paper is to describe the numerical techniques used in the code CEPAM, developed
to study the internal structure of giant planets. The main originality of CEPAM is the solution of the two point
boundary value problem of the quasi-static equilibrium by a collocation implicit method based on piecewise polynomial
approximations projected on a B-spline basis. An automatic mesh refinement is designed to adjust the location of the
grid points depending on the variation in the unknowns. Moreover, a grid point can be adjusted at any determined
position. This allows an exact treatment of the problem, even when the first derivatives of the integration variables
(M, R, P, T, L) are discontinuous. A robust optimization method allows the calculation of models matching the
observed equatorial radius and gravitational moments. The numerical accuracy of the models calculated is found to
be satisfactory even with a small number of mesh points (the relative accuracy is better than 10~5 on all the variables

with 100 mesh points). The whole precision of models of giant planets is limited by the accuracy of physical data.
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1. Introduction

The giant planets are natural laboratories for the study
of the behavior of matter at high pressures and tempera-
tures, in a region that can barely be reached in laboratory
and where non-ideal effects are preponderant. They pro-
vide also very good tests for the models of formation and
evolution of our solar system. Thus, they became the fo-
cus of many studies since the pioneering work of Jeffreys
(1923). _

The observations of giant planets have led to more
and more accurate constraints, particularly since Pioneer
and Voyager measurements. The accuracy of the numer-
ical models of internal structure of these planets should
therefore be consistent with the precision reached by the
observations, though the uncertainties on physical theo-
ries of matter at high density, especially in the region
p ~ lg.cm™3, are, at the present time, still large and do
not seem to require a large exactness of the models.

A first way to improve the numerical precision of a
model is, evidently, to increase the number of grid points,
a second way is to use numerical algorithms of high order.
(In fact, for reaching a given accuracy, there is a compro-
mise between the number of grid points and the order of
the scheme to be employed.)

Up to now the models of giant planets’ interiors have
been computed with explicit methods (Hubbard & Marley
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1989; Chabrier et al. 1992). This method has given good
results and could eventually be implemented with algo-
rithms of higher order. However it has only been designed
for the study of adiabatic models, i.e. models for which the
temperature gradient can be directly determined by the
equation of state. With the possibility of a non-adiabatic
structure of the interior of giant planets, pointed out by
Guillot et al. (1994a), a better method seems to treat the
more complicated quasi-static problem as an implicit two
point boundary value problem, as it is done for stellar in-
terior modeling since the work of Henyey et al. (1959).
Robust, flexible and accurate algorithms can then be ob-
tained. This technique is employed in the numerical code
CEPAM?!, which has been adapted from the stellar code
CESAM (Morel 1989). CEPAM has been used for the ac-
curate calculation of models of Jupiter and Saturn (Guillot
et al. 1994b; Mosser et al. 1994).

Another feature of CEPAM is its modularity: all the
physical inputs (equation of state, opacity,... etc.) are com-
puted only from external routines. Hence, it is possible to
adapt a specific part of the physics without any other in-
ternal modification in the code.

The basis of CEPAM is a numerical technique for the
integration of the two point boundary value problem de-
rived by deBoor (1978). The basic idea is to write the
unknown functions as piecewise polynomials of a given
order, and project them on their B-spline basis (de Boor
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1978; Schumaker 1981), which is, for the calculations,
much more convenient than the canonical basis of the lin-
ear space of piecewise polynomials. The main advantages
are, essentially, efficient and stable computations and a
very large flexibility. Moreover, discontinuities are treat-
able without significant modifications of the algorithms.
Finally, with a very convenient basis of B-splines, the in-
tegration is of Gaussian type, which improves the order
of the scheme: the so-called “superconvergence”. Its main
disadvantage is a consequence of the non trivial and not fa-
miliar algebra of B-splines: the algorithms are much more
difficult to read than those with finite differences.

We recall in Sect. 2 the physical bases motivating a
numerical study: we formulate the differential problem of
quasi-static equilibrium and discuss the boundary condi-
tions determined from the observations as well as the qual-
itative internal structure of giant planets.

In Sect. 3, we describe the method used to solve the
two point boundary value problem. In this paper we fo-
cus on the determination of static models. The evolution
problem, although treatable with this code, will only be
mentioned in this paper but not reported. Section 4 is de-
voted to comparisons of the models obtained. We discuss
there the internal relative accuracy of the solution that
can be expected with a reasonable number of meshes.

2. Physical inputs
2.1. Structure of the giant planets

A qualitative view of the interior of giant planets is pre-
sented in Fig. 1. The most striking features are that, con-
trary to a star like the Sun, the four giant planets, first,
are too cold to ignite thermonuclear reactions and, sec-
ond, are supposed to possess a central dense core, whose
composition (and density) is totally different from that of
the envelope which is mainly composed of hydrogen and
helium.

This is important as, first, the equation of state (EOS)
used in the envelope is different from the EOS valid in the
core (Hubbard & Marley 1989; Chabrier et al. 1992) and,
second, there is a jump of the density across the transition
envelope/core.

This core is, itself, possibly formed by a central part
of “rocks” with a surrounding layer of “ices”. Therefore,
the density therein can also be discontinuous.

Moreover, the pressures involved inside Jupiter and
Saturn are sufficiently high to pressure-ionize hydrogen.
As pointed out by Saumon & Chabrier (1991, 1992),
this transition between molecular and metallic hydrogen
(Plasma Phase Transition or PPT) should be first-order.
Hence, a discontinuity of the density across this transition
has to be considered too.

The other important point is that the giant planets
rotate rapidly (typically in about 10hours). However, as
reviewed by Zharkov & Trubitsyn (1978), this problem can
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be handled without changing the form of the equations
for quasi-static equilibrium. With a development of the
radius in Legendre polynomials, one finds that a term V,
added to the hydrostatic equation, is sufficient to take into
account the rotation. The radius, R, then represents the
mean radius.

A consequence of the rotation is that the external grav-
itational field no longer possesses spherical symmetry. The
departure from this symmetry depends on the rotation ve-
locity and on the density profile and can be determined by
studying the movement of a close satellite. Thus, some of
the gravitational moments of the planet J>,, (n = 1,2,3),
are known and constitute accurate constraints for interior
models (see Appendix).

2.2. Equations for the quasi-static equilibrium

With M, the mass, as independent (lagrangian) variable,
the internal structure of giant planets is governed by the
following system of differential equations:

(oP _ _GM .

OM =~  AnRA4 d

T _(0P\ T,

oM —\am ) P

OR 1 (1)
8M ~ 4nR?p

oL EX
it =T

where the following classical symbols have been employed:
R: mean radius, P: pressure, p: density, G: gravitational
constant, T: temperature, V = 9InT/d1n P: gradient, L:
luminosity, £: energy production rate due to any source
of energy, S: specific entropy, t: time, 4T R?V,,: centrifugal
acceleration due to the angular velocity w.

The rotation term V,, can be developed as (see Zharkov
& Trubitsyn 1978):

w2 GMtot

Vw = =3 w) 2
6rR T 47rR€’°tR(p @

where Mo and Ryio; are the total mass and radius of the
planet, and ¢, corresponds to the undimensioned rotation
perturbation at high order (see Appendix).

2.2.1. Internal boundary conditions

The boundary conditions at the center, M = 0, can triv-
ially be written as:

R=0, L=0.

However, as we will see, it is more convenient to separate
the integration of the core and the integration of the enve-

lope. Hence these internal boundary conditions will only
be used for the integration of the core.
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Fig. 1. The interior of the four giant planets, according to “conventional wisdom”

2.2.2. External boundary conditions

The measurements inferred from Voyager data yield an
accurate determination of the external conditions in the
four giant planets. These conditions are usually fixed at
the external P.y;=1 bar pressure level, for which the corre-
sponding mass My and luminosity L.y are nearly equal
to the total mass My and luminosity Lot of the planet.
The equatorial radius R.q as well as the temperature Ty
have been accurately measured for this pressure level.

These measurements show that below this 1 bar level
the temperature profile is adiabatic (Lindal 1981) and that
the presence of clouds provides a semi-infinite (7 > 100)
optical depth (Bézard et al. 1983). Thus, the diffusion
approximation, which is only valid in the optically thick
medium, is a very good assumption in the whole domain
studied. This is important since the gradient V in Eq. (1)
is calculated within the classical mixing length formalism
and using Rosseland mean opacities (see e.g. Kippenhahn
& Weigert 1991).

Along the evolution a relation between the 1bar tem-
perature and the intrinsic luminosity of the planet can be
deduced from the calculations of Graboske et al. (1975).
Then the external boundary remains fixed at the 1bar
level, but the conditions are functions of the time. Hence,
at M = M., we set:

T= Text(L(Mext)a t)a P = 1bar.

2.3. Evolution

Due to the fact that their interiors are relatively cold,
no thermonuclear reactions occur inside the giant planets.
It could be assumed that the problem of their evolution
is governed only by their contraction and cooling. How-
ever, two other phenomena may have a significant effect
on the energy generation. First, during the evolution, as
the planet was hotter and is cooling, the PPT has moved
from the exterior to the interior. Some energy has been
released due to the latent heat produced by the transfor-
mation of molecular to metallic hydrogen. However, this

occurs early in the evolution (about 10® yrs after the for-
mation) and seems to have only a small influence on the
history of Jupiter and Saturn (Saumon et al. 1992).

Second, if the inner temperature is sufficiently low, a
phase separation between hydrogen and helium can oc-
cur (Stevenson & Salpeter 1977). The gravitational en-
ergy released by helium-rich droplets falling toward the
core should be significant and affects the evolution. This
is indeed a probable explanation for the high intrinsic lu-
minosity of Saturn.

3. Solving the two point boundary value problem
3.1. Separation of the integration: core and envelope

As previously mentioned, giant planets are thought to con-
sist of a dense central core surrounded by a hydrogen-
helium envelope, whose structures and compositions are
very different. Therefore, two (or more) EOS are used for
the integration of the core, and of the envelope, respec-
tively. Moreover, the masses of the cores of Jupiter and
Saturn appear to be small compared to the total masses of
the planets. Therefore their thermal properties have little
influence on the planets heat content and one can assume
that the cores are isothermal. This simplifies considerably
the equations and, for the core, the system (1) can simply
be written as:

0P __GM .,
- _4_'—4 wH

on __T" ®

OM ~— 4rR?p’

Attempts have been made to solve simultaneously Eq. (3),
for the core and Eq. (1), for the envelope, but the discon-
tinuous properties of the two EOSs tend to destabilize the
problem. A good method is therefore to integrate sepa-
rately, and in turn, the core and the envelope until con-
vergence. The following boundary conditions, which take
into account the observed quantities, are used:

M = My : P=Pexta T = Text,

Envelope : {M = Mcore : R = Reore, L = Leore- (4)
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. M=Myqwe: P= Penvelopea
Core.{M=0: R=0 (5)
Lcore is the core luminosity, Mcore and Reore are the mass
and radius of the core and Pepvelope i the pressure at the
bottom of the envelope.Penvelope and Rcore result from the
integration of the envelope, and of the core, respectively.

When considering static models, Lcore 1S set t0 Lext,
the observed intrinsic luminosity. Moreover, the value of
L is assumed to be constant throughout the planet. As
discussed by Guillot et al. (1994b) this is a good approx-
imation since we only consider radiative zones located in
the outermost layers of the planet where the luminosity is
constant.

When dealing with planetary evolution, Lo will be
more properly set to a small, but finite, value, typically
the value of the radioactivity of a mass of chondrites equal
to the mass of the rocky core.

The structure of the core is solved with the method
of integration employed for the envelope but without us-
ing mesh refinement, as described hereafter. Hence we in-
tegrate Eq. (3) directly, using the mass as independent
variable. This is possible because the integration of its
structure is quite straightforward and does not require
special care. A transition between a “rocky” core and an
“icy” core can be included in our calculations. This tran-
sition yields a discontinuity of the density. However a dis-
tribution function with one mesh located exactly at the
transition can be easily found since this transition is al-
ways set for a given mass in planetary models. Therefore,
the spline/collocation algorithms, described hereafter, al-
low one to obtain a solution with the required accuracy in
the whole core.

The method of numerical integration of the core being
a simplified variant of the method used for the envelope,
it will not be developed any further.

3.2. Variables used for the numerical integration of the
envelope

The system of Eq. (1) presents a singularity at the center.
This is not a problem for CEPAM (the differential equa-
tions are not calculated at the mesh points), yet, a set
of variables borrowed from studies of the stars (Eggleton
1971; Morel 1989) appears to be more efficient and avoids
this singularity. Thus, the following variables are used in
the calculation:

2 2
M \3 R
=1 P, =1 T, =1- s = ,
é 8 K " K <Mtot) C <Rtot)

L \3
/\=<Ltot,) .

(6)
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With this set of new variables Eq. (1) can be written as:
( - 3/2
9 3 2 _ /
_6 e e_ igM:‘"‘ ——1 el —Yul| — w2 X
9 4 | 2 R, ¢

1—p 1/2
x( ¢ ) ’

=

an _ 9§
T _ %
Ou Buv’
8 _ 3 Ml (1—p\'?
op 4R, p\ ¢ ’

Qz_Mtot <1—/.L 1/2 E-T _ai .
L 8# Ltot A ot u
(7)
It is easily shown that both (1—p)/¢ and (1—p)/A have no

singularity throughout the whole planet. One notes that
©., has no singularity either.

3.3. The mesh refinement: an automated allocation of grid
points

Planetary models are often calculated with equidistant
meshes in radius. This method, although probably the
most simple, is not very efficient since regions where the
gradients of the unknowns are important are treated in
the same way as regions where almost no variation oc-
curs. To illustrate this problem, one can look at the vari-
ations of the pressure scale height H,=dr/dIlnP, which is
larger than 10° cm in inner regions and about 10 cm near
the surface of Jupiter and Saturn. Therefore, it is obvious
that an accurate treatment of the problem will require
more points near the surface than near the center of the
planet.

In CEPAM, a grid of points is calculated, with more
points in regions where the gradients of the unknowns are
important. This is obtained by an automatic mesh refine-
ment.

The most common method for grid refinement consists,
on need, by adding or subtracting mesh points; though
very simple in its principle, this obvious method is, in
fact, difficult to be properly fixed in practice.

With the automatic grid refinement used in CEPAM
the number n of mesh points is fixed at once and their
location is made by fulfilling the condition that, at a
fixed time, the jump of a strictly monotonous “distribu-
tion function” Q(u,t), is a constant from a grid point to
the next (see Eggleton 1971; Press et al. 1986, Sect. 16.5).
At each time ¢, one looks for a distribution of the grid
points p;, ¢ =1,...,n in such a way that:

Q(/J'i+17 t) - Q(p’i’t) = Cte(t)1

There is a large choice for the distribution function
Q(p, t); it results from the feeling one has, a priori, of the
behavior of the solution. For each value ¢ of the time, one

i=1,...,n—1. (8)
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defines a function subscript? g(u,t) mapping [1, fcore] OR
[1,n] C N. We introduce the derivative of @ with respect

to g,

Eq. (8) then becomes:
61/))
— ) =0.
<3q ¢

Note that Q is a linear function of g as soon as the Egs. (9)
and (10) are fulfilled. The change of variables u — g(u,t)

gives: 5
—pg[Z2*
ww—e(@)ﬁ

0(u,t) = (6Q/0n): (12)
can be derived from the analytic form of Q(u,t) and from
Eq. ().

Thus, compared to Eq. (1), there are two more un-
knowns: 9(t) and u(g,t); they fulfill a system of differen-
tial equations of first order with boundary conditions:

a) =¥ 9% —o, with
<aq>t 6’ (aq t b q="n, k= Hcore

(13)
These equations are added to Eq. (1) written with respect
to ¢ and t. The set of equations to be solved on the equidis-
tant grid g; = 1,7 = 1,...,n is therefore:

(9)

(10)

(11)

where

(06 _ et 3G My | (1—p 3/2_<p —w? by
dq 4 | 2 Riy ¢ ¢
1/2
)"
¢ 0

on _ 8¢
dq aqv’
dac _ _3Mtot1(1_—_u)”2£
dqg 4t R}, p\ ¢ 6’
B Ma (1), p(29)]¢
(9q Ltot A ot P 0
o _ %
dq 9’
oY
\a—q—-O.

(14)
For the envelope the boundary conditions (4) are written:

{ﬂ(l,t) =0, 5(1at) = {ext(t)a n(lvt) = next(t)a

[.L(’I'L,t) = Hcore; C(na t) = Ccorey )‘(nat) = /\core(t)-
(15)

2in CEPAM the shell with the subscript 1 (resp. n) corresponds
to the outer (resp. to the center). Therefore, u=0 when ¢=1
and p=fpcore for g=n.
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For the core, similar relationships can be inferred from
Eq. (5).

Since the set of non linear differential Eqs. (14) is
solved by an iterative process, the initial value for the dis-
tribution function can be derived directly from the initial
model.

On the other hand, the differentiation with respect to
the grid function g yields much better accuracy than the
same differentiation with respect to the mass p: between
two meshes Ay can become very small, and then impre-
cise, whereas Agq is, by definition, constant and equal to
unity.

Let us introduce the following notation which will sim-
plify the discussion:

vin = &), vi2 =0(a), ¥i3 = (@), via = Ma),
Yis = 1(a), vie = V()

vi = ¥(@) = T 9i6) = 76,6 m,9)
Y; = Ty rUng)s 4 =1,6

Y = (Yy,...,Ys),

where n is the fized number of mesh points.

3.3.1. Choice of @ in CEPAM

The distribution function Q(u, t) is set to be a linear com-
bination of the integration variables:
E . .m ¢ A u
=+t —-+t=+t-5+—
Qut =3zt an T ac T amx T an
The so-called distribution factors: A¢, An, A{, AX and
Ap are free parameters. One finds that good results are
obtained by setting these parameter to values close to the
whole variation of each unknown:

AN = A(m) = A1), Ap = () — (1)

(16)

(17)
These factors can be adjusted at each time step. Each
unknown has therefore approximately a similar weight in
the distribution function.
Note that the function 6(u,t) can now be explicitly
calculated using Egs. (7), (12), and (16).

3.3.2. Setting a grid point at a given location

At the transition between molecular and metallic hydro-
gen and, in a more general way, at any particular level
where the density is discontinuous, the derivatives of the
pressure, temperature and radius in respect to the mass
are discontinuous functions. Between two mesh points, the
piecewise polynomials which interpolate the unknowns are
differentiable functions. Therefore their derivatives are al-
lowed to be discontinuous only at a grid point. As a conse-
quence, each discontinuity must be located precisely on a
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knot. This allows one, with an ad hoc choice of the piece-
wise polynomial basis, to have different values on left and
right for the derivatives of the function considered. For
this delicate problem the use of the deBoor basis (see
next section) is an elegant solution.

In order to simplify the discussion we will assume that
there is only one level where a discontinuity arises (labeled
with a subscript ‘D’); naturally, in CEPAM, the algorithm
is extended to several discontinuities, as long as the jumps
of the density are separated by a sufficient number of grid
points.

The localization of each discontinuity on a grid point
is obtained by a slight modification of the algorithm used
for the automatic allocation of grid points. The algorithm,
developed by one of us (PM), is described hereafter; basi-
cally, it is an inverse linear interpolation.

The idea is the following: the grid points are located
in such a way that from a mesh to the next the change of
the distribution function is constant. Inside each mesh, in-
dexed by i, the relative weights of the variables are defined
by the distribution factors A, An, A, AN, Ap. These
are defined to within a factor w;(q), 7 = 1,2,...,n — 1,
which was implicitly assumed to be equal to one for each
mesh. This factor can be adjusted (iteratively) in order to
set each discontinuity limit on the closest grid point. In
order to do so, instead of Q(q), for q € [g;, ¢i+1[, we use a
weighted distribution function defined by pieces:

Qi(g) = Q(g)/wi(q),
where Q(q) is defined by Eq. (16). Analogously we set:

00 = 20 ), 00 = I o)

(18)

(19)

the pieces of the function 3; being connected by continu-
ity: ¥;(q;) = ¥i_1(q;), 1 = 2,...,n — 1. Therefore, instead
of Eq. (13), one uses:

G5 ()
oq), 60;’ o0q /), '
We emphasize that Q(q) and v;(q) are continuous but that
w;(q) and then 6;(q) are step functions. Due to the fact
that i) the differential equations are not written at the
mesh points, and ii) the spline/collocation method allows
discontinuous derivatives at the mesh points, the discon-
tinuities in Eq. (20) are handled in an implicit way (see
Sect. 3.4).

Let us assume that, for the time ¢, a solution Y(®
of the problem (14) has been initialized and that the
weighted distribution function, defined by Eq. (18) with
wfo)(q) =1, is QEO)(q). Each quantity with a ‘(j)’ su-
perscript will be related to the j-th iterated model, j =
0,1,...

At the location qg), where the discontinuity of den-
sity occurs, the distribution function, calculated with

(20)
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Eq. (16), amounts to Qg) . Let [ be the index of the near-
est mesh point from the discontinuity (I # 1,n). Since
Q(J)(q) is a strictly monotonous function, there is only a

unique value qg) such that Q(j)(qg)) = Qg). Therefore,

for g € [4:,qis1[, © = 1,2,...,n — 1, the weights w{”(q)
can be defined for j > 1 by:

(QU=V(gp) — QU= (g_1))

D =L
(@) =1 (@D (a1) ~Q9 V() . _,
pGD T
1 otherwise.
(21)

After convergence, Eq. (20) yields '¢1(°°)(q) = Cte. From
Egs. (19) and (20) it follows that:

(00) _ 1 () () — O(o)

(7 o {Q (@)-@Q (41—1)}-
On the other hand, Eq. (21) yields
() _ 1 (%) (gry) — (o)

= 5= {0") - @)}

Hence, one gets necessarily:

q1 = qpD-

However, this first order iterative process will converge
only if the functions considered are sufficiently smooth
and if the discontinuity is sufficiently well defined. This
is the case for the PPT. In CEPAM, the weights w’)(q)
are reevaluated after each Newton-Raphson correction.
QY (q) and qg) are derived from the localization of the
PPT at the (j — 1)-th iteration.

Figure 2illustrates the behavior of the solution when a
mesh is adjusted on a discontinuity. First, only the mesh
which is nearest to the discontinuity is significantly af-
fected. Second, the first derivatives of the pressure and
temperature are then clearly discontinuous, as required
by the jump of the density (in the case of a homogeneous
chemical composition this jump is about 20%). Finally,
the solution is affected by about 103 if this algorithm is
not used i.e. the PPT is not exactly localized on a grid
point.

3.4. Outlines of the spline/collocation method

Since B-splines are not familiar in star or planetary inte-
rior modelings, we will briefly describe the principles of
the spline/collocation method used for the integration of
the two point boundary value problem. Refer to de Boor
(1978) and Schumaker (1981) and to the literature cited
herein for more advanced description and proofs.

With this technique all the unknown functions (e.g.
pressure, temperature ..) are interpolated by piecewise
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Fig. 2. Pressure (in dyn.cm™?) and temperature (in K) profiles
in a model for which a mesh point has been set at the location
of the PPT (plain lines) and in a model for which the location of
the meshes are free (dashed lines). The squares (resp. crosses)
indicate the position of the mesh points corresponding to the
plain lines (resp. dashed lines)

polynomials. One then writes that the differential equa-
tions of the planetary structure are fulfilled by these in-
terpolating functions. If, for algebra, the canonical basis
is the simplest way for writing piecewise polynomials, for
the calculations, that basis leads to algorithms having bad
stability conditions. Among all the basis of the linear set
of piecewise polynomials, a local basis, the B-spline basis,
leads to stable algorithms.

A B-spline is itself, obviously, a piecewise polynomial.
It can be defined either from divided differences (de Boor
1978; Gaches 1988), or from the algorithm used for their
calculation; in fact they are convolution products of the
sampling II (“door”) function (Marchouk & Agochkov
1985).

3.4.1. The nodal vector: the key of the computations with
B-splines

Before presenting in the definition of the B-splines, we
must define more precisely what a piecewise polynomial
P(q) of order s is, on a given partition A of [1,n], A =
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{1 =qg <¢ < ...<gr <@g =n}: P(g) is de-
fined as a function which coincides, on each sub-interval
[¢i,gi+1], 1 <@ < n, with a polynomial of degree s—1. The
existence and uniqueness of P(g) on A results from the
knowledge, at each breakpoint, of the kind of connection
which is required between the right and the left pieces of
polynomials. For instance, the so-called “natural spline”
is a piecewise polynomial Py(q) of order 4 (degree 3),
constructed in such a way that, at the inner breakpoints
gi, 1 < i < n, the second derivative Py (g;) is continuous.

Formally, the rules of connection can differ from one
breakpoint to the next: at some of them, P(g;) can be dis-
continuous, at some others the left and right pieces can
be tied fulfilling the continuity of their first derivatives or
only of P(g;),...etc. For each g;, the connection is charac-
terized by the so-called multiplicity m; obtained as follow:
let d; < s, 1 <11 < n be the order of the oscularity of the
connection between the left and right polynomial pieces at
the breakpoint ¢;; d; = 0 means continuity of P(g;),d; =1
means continuity of the first derivative, d; = 2 of the sec-
ond ones ...etc. and we set d; = —1 for a discontinuity of
the function itself. At ¢ = 1 and ¢ = n (inner and outer
boundaries) we fix the value of P(g;). This is equivalent
to assume that P is discontinuous at these points. Hence,
one has d; = d, = —1. The multiplicity of the point g¢; is
then defined as:

miES—(di-I-l)

From the vector of multiplicities: M = T(mq,...,m,)
one constructs the heart of the calculation with B-spline:
the so-called “nodal vector”: N (A, M, s) associated to
the piecewise polynomial. It is the vector which has for
coordinates the g;, each of them appearing m; times. N/
can be written as:

mi m2 My
N = T(aaqlf‘ .. aq;’a27qz,' . -#12‘,.- ',frIanw ",q;)
= T(tlat27t37 v 7tS+mn)'

The dimension of AV is then S + m,, with S = Z?;ll m;.
A convenient schematic representation of the nodal vector
consists in writing one column of m; elements for each
breakpoint g;.

As an example, with s = 4, n = 6, continuity of P(q) at
g3, of P'(q) at gg, of P"(q) at g2 and g¢s, and discontinuity
of P(q) at g4, the nodal vector is represented as:

X X X X X X X
X X X X X
X X X X
X X X

Once given this nodal vector, the value of the k-th,
1 < k < S, normalized B-spline on A is obtained by
induction:

]-a if tk S q< tk+17
Ni(q) = { (22)

0, otherwise,
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and,for 1 <o < s:

—t o
Ng(q) = —L1—* _N77Y(g) +

tk+a —q -1
9% _tkte 4 no-1h).
teto—1 — Lk 1 Rl (@)

tkto — bkt
(23)
Note that its first derivative can easily be calculated:

N g)
te+s—1 — bk

N7 (a)
thys — bkt

dNi(g9) _
dq

(s—1) (24)

From these relationships one can see that NJ(¢) = 0
if ¢ € [tk—s+1,tk+s). Hence the B-spline basis is a local
basis. Moreover, Vg € [1,n], only s B-splines of order s
are not identically zero and their sum is equal to 1. We
stress that formally, Egs. (22) and (23) do not constitute
a mathematically correct definition for the B-splines since
some denominators in Eq. (23) vanish. However, when
this happens, the corresponding B-spline is identically zero
and this term has therefore no contribution. Since only s
splines have to be calculated for a given point g, an algo-
rithm which avoids zero denominator can easily be derived
from Eqs. (22) and (23) (see de Boor 1978). Finally, it can
be shown that the set B(A, N, s) of all the B-splines
Ni(g), 1 £k < S, forms a basis for the linear space of
the set of the piecewise polynomials having N for nodal
vector. Thus, the dimension of B is precisely S.

3.4.2. Integrating differential equations with the

spline/collocation method

Since the system of Eq. (14) is non linear, it is solved
by iterations from an initial model of the planet (which
can be calculated, for instance, by a shooting method or
using a polytropic approximation). Let us suppose that we
have such a model, representing fairly well the interior of
a planet. Each of the functions Y§O)(q),j =1,...,6 which
describes this starting model is known for a discrete set
of mass (or radius) values; it can be interpolated by a
piecewise polynomial. Then, with respect to a B-spline
basis, {Ng(g)}i-, of order s, at g, for the variable j, the
piecewise polynomial is developed as:

S
Pi(a) =Y pr,;iNi(0), (25)

k=1

where the py ; are the coordinates of the j-th unknown
with respect to the B-spline basis. (These coordinates ver-
ify the linear systems obtained by writing that the inter-
polation functions coincide with the functions at each grid
point.) The unknowns can be taken as the B-spline coef-
ficients pj, 1 < 7 < 6, 1 < k < S, rather than the
functions themselves. Note that for a given g, only s coef-
ficients are non identically zero: the sum in Eq. (25) has
only s non zero terms. Formally, each of the differential
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equations in the system (14) , can be expressed for the
Dk,; in the form:

< N
_Zpk,] 6q

IP;(q)
9q

k=1

Hence, derivatives of the functions can be readily calcu-
lated by derivation of the basis function N;:(q).

In CEPAM the deBoor’s B-spline basis is used. In the
case of first order differential equations (which do not in-
volve second derivatives of the unknown functions), the
continuity of the piecewise polynomial is ensured at the
knots but not their subsequent derivatives. Hence, the
nodal vector has the schematic representation:

X X X ... X X X

for s=2,
X
and
X X X ... X X X
X X X X X X for s=3.
X X

This allows one to obtain the B-spline functions shown in
Fig. 3. It is clear that the continuity of the derivatives of
the functions is not ensured at the mesh points (contrary
to the common interpolation with natural cubic splines).
This does not mean that the function derivatives will be
discontinuous but rather that they can be discontinuous at
these points. (This property has been used in the previous
section in order to treat exactly the discontinuities.)

For each mesh and for each piecewise polynomial, s
parameters have to be known (recall that P(gq) is, on
[¢i» @i+1], @ polynomial of degree s —1). Since, for each un-
known, the continuity of the function or the boundary con-
ditions of the problem provide one constraint, the equa-
tions have to be written at s — 1 points within each mesh.
These are called the collocation points, noted (Tk)f;ll,
where S = (n — 1)(s — 1) + 1 and are defined as follow:

1<y <az<...<as—1 <1,

1
Ti-1)sto = 5 [@i+1 + & + 0o (giv1 — @),
t=1,...,n;0=1,...,s—1.

(26)
The quantities o, can be almost arbitrarily chosen. How-
ever, for the de Boor’s nodal vector, they are chosen as
the zeros of the (s — 1)-th Legendre polynomial. (The
same method is used in the standard Gauss quadrature;
note that these points are then different from the mesh
points g;.) For this particular collocation pattern, it can
be demonstrated that, for first order differential equations,
the overall approximation is of order O(1/n)*, but that it
is of order up to O(1/n)%(*=1) at the mesh points (de Boor
& Swartz 1973). This is the so-called “superconvergence”.
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Fig. 3. Normalized B-splines of order s=2 (left) and s=3 (right) calculated with de Boor basis for n=3 equidistant mesh points.

The nodal vectors are indicated by crosses below both graphs

Once written on this particular basis, system (14) (in-
cluding boundary conditions at both ends) can be ex-
pressed in a simplified form as:

Fi(g;P) =0, j=1,...,6. (27)
where F; is a function of ¢ and of the vector P of the
coordinates pi ;, k=1,...,5, 7 =1,...6. The resolution
of the non linear system of equations Eq. (27) is obtained
by linearization (Newton-Raphson method) starting from
the initial model. Since the B-splines basis is a local basis,
the jacobian matrix is block-diagonal. This allows storage
facilities and faster calculations. In CEPAM one usually
uses either s = 2 or s = 3 for the order of the piecewise

polynomials. The linear system to be solved has then one
of the following structures:

o o
oo
oo
with s =2 ;
oo
oo
[oye]
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O 0 O
00D
000
ooao
o0oO
with s =3 :
oo
oo

o OO0OQO
o OO
o OO

The “0” are 6 x 6 matrix for the collocation points and
the o are 3 x 6 matrix for the boundaries. The resolution
of the linear system of equations is performed using par-
tial gaussian pivoting. The robustness of the solution is
improved by using the modified Newton-Raphson method
(see e.g. Stoer & Bulirsch 1980), giving the values of the
unknown functions at iteration [ + 1 from their values at
iteration I:

141 l (1

.8 9=1,...,6.
(28)
where dpﬁc’ ; are the corrections and « is a parameter which
ensures that variations of the unknowns pi ; remain small
even when dpi, ; is large (hence, o < 1). The iteration
stops when a sufficient accuracy is reached.

A disadvantage of the use of the linearization technique
is the need of first and second derivatives of the density
and internal energy (or entropy) obtained from the EOS
with respect to pressure and temperature. Hence, one has
to rely on the accuracy and consistency of the EOS, which
can sometimes be problematic. Note however that this can
affect the convergence of the solution but not its accuracy.

3.5. Optimization of static models

Like the Sun which is calibrated to the observed radius
and luminosity by using free parameters, models of the
giant planets are adjusted to observed quantities by using
parameters which are not fixed by observations or physical
arguments. This is for instance the case of the mass and
structure of the central dense cores of these planets.

The observational quantities which are directly related
to the structure of the interior of the planets are the equa-
torial radius R.q and the gravitational moments J, J4
and Js (see e.g. Lindal 1992). These are called primary
constraints of the models to distinguish them from indi-
rect constraints on the internal structure, as the chemical
composition of the atmosphere. We will therefore seek to
obtain optimized models, i.e. models which reproduce the
primary constraints within their error bars.

Let us call z, y and z three free parameters of the prob-
lem: the core mass, the chemical composition of the inte-
rior, and a jump of composition at the transition between

T. Guillot and P. Morel: CEPAM: a code for modeling the interiors of giant planets

molecular and metallic hydrogen (PPT). (Evidently, many
more free parameters could possibly be imagined but a
wiser philosophy is to follow the principle of Ockham’s ra-
zor and thus to limit the number of these parameters.) We
introduce the following minimization function:

2
1 | [ Redle — Rebs Jgle — Jgbe\?
f(IIJ,y,Z) - 4 ( o-obs(Req) +< O'Obs(Jz) ) +

N <J‘<1:alc _ szs 2 + Jgalc _ ngs 2
a-obs(J4) a—obs(JG) ’
(29)

where 0°%*(X) is the 1o error bar on the observed quan-
tity X. The index ‘calc’ refers to quantities calculated by
the code. Optimized models are such that f < 1: all the
primary constraints are then satisfied to 2. An even bet-
ter optimization is performed when reaching smaller val-
ues of f.

One could think of using a gradient method (or any re-
lated algorithm) to find the minimum of f. However, since
we seek an accuracy which is better than 10~ on R.q and
Jo the optimization problem is highly unstable. On the
other hand, the calculation of a jacobian not only requires
calculation of 3 x 3 models at each time, but can also be
achieved only with numerical derivatives whose accuracy
can sometimes be quite weak. Therefore, the minimization
of f is best achieved using a simplex method (see Press
et al. 1986) which is a generalization of bisection at more
than 1 dimension. The algorithm used is such that the
volume of the simplex (a tetrahedron in our case) could
not increase from one iteration to the next. This ensures
that two consecutive models are not too far from each
other and therefore yields much better convergence to the
solution and higher accuracy.

As a result a minimization successfully matching the
primary constraints requires an accuracy of about 1076 on
the value of the free parameters. This precision is unreal-
istic compared to the uncertainties of the physics involved
(EOS, opacities, rotation...etc.). However our goal is not
to obtain this precision but rather to determine whether
it is possible to find f < 1, and then to estimate the ex-
tent of the set of solutions. This can be achieved using the
method presented here.

4. Accuracy

A first test of the code and its accuracy is to compare
solutions obtained from CEPAM with analytic solutions.
The comparison with a polytrope of index n = 1 (see
e.g. Chandrasekhar 1939) is presented in Fig. 4. This is
obviously a crude simplification over the real structures
of the giant planets. In particular the models have been
calculated with a perfect gas EOS and no core. Notwith-
standing, this allows an estimation of the accuracy of the
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Fig. 4. Accuracy of solutions obtained with CEPAM calcu-
lated by comparison with a polytrope of index n = 1. The
dashed lines represent models with 100 meshes whereas plain
lines indicate models with 200 meshes. The order of the piece-
wise polynomials used in the collocation method is s = 3 for
both models

solutions. As a result, an extremely precise solution (about
10~® or 107° for 100 and 200 mesh points, respectively)
is found in the largest part of the planet. The accuracy is
somewhat lower at the center and near the surface. This
stems from the fact that the mass shrinks rapidly near the
center, as well as the other quantities near the surface.
Thus, one cannot avoid lesser precision in these regions.
However, we stress that with a relatively low number of
points (100) the accuracy of the solution is better than
2 10~¢ everywhere. This latter quantity shrinks by more
than one order of magnitude when the number of points
is doubled, in agreement with the fact that the order of
the scheme is, at the mesh points, 2(s—1) = 4 when using
third order piecewise polynomials.

An internal test of models of Jupiter is presented in
Fig. 5. We see that the accuracy of a “real” interior model
is much worse than that obtained by comparison with an
ideal model (the polytrope). This stems from the fact that
the structure of a polytrope is an oversimplification of the
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Fig. 5. Accuracy of Jupiter models obtained with 100 (dot-
ted lines) and 200 mesh points (plain lines). These models are
compared to a 500 mesh points model. As previously, the order
of the piecewise polynomials used is always s = 3. The letters
a, b, and c indicate the levels where a discontinuity occurs: a)
Rock/Ice transition in the core. b) Rocky core/H-He envelope.
c) Metallic/Molecular hydrogen (PPT). Note that the zero er-
ror on the temperature of the core is simply a consequence of
our isothermal assumption

problem. As a result, the mass is still obtained with a good
precision (about 107¢) but this is not the case for the other
quantities. In particular, systematic errors are found both
for models with 100 and 200 mesh points. These errors
do not shrink significantly when doubling the number of
meshes (and hence one could have doubts about the pre-
cision of the model with 500 meshes), but rather seem to
be random functions of the total number of points in the
model.

The cause of these errors is readily understood when
looking at Fig. 6. The adiabatic gradient is a quantity
which comes directly from the equation of state. Further-
more, it is calculated as:

(8S/0InT)p

Vad = ~(35/am P)y
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Fig. 6. Comparison of the adiabatic gradient (thin line) to
the accuracy of the temperature (strong line) obtained using
data from Fig. 5. The letters A, B and C indicates levels where
misbehaviors of the equation of state occur (see text)

where S is the specific entropy of the mixture of hydrogen
and helium, calculated with an ideal-volume law approx-
imation involving the specific entropies of pure hydrogen
and of pure helium (see Chabrier et al. 1992; Guillot et al.
1994b). Hence, this calculation involves four first deriva-
tives, which are calculated using cubic-splines interpola-
tions. It is therefore not very surprising that such kinks
occur in a region which is close to a border of the EOS
table, and difficult to modelize, due to the dissociation of
the hydrogen molecule. This yields inaccuracies of about
0.1% to 5% on the adiabatic gradient. Depending on their
extent, these kinks will eventually be avoided by models
with a relatively low number of meshes but will be seen
when the number of meshes is increased. This is indeed
the case in the region labeled “A” in Fig. 6: models with
100 and 200 mesh points do not experience this misbehav-
ior of the adiabatic gradient whereas it is treated by the
model with 500 mesh points. The extent of kinks “B” and
“C” is somewhat more important and they have therefore
less influence on the accuracy of the temperature profile.
Furthermore, the functions to be integrated are then not
“sufficiently smooth” and convergence theorems do not
apply any more for this level of accuracy. Therefore, the
precision of the models is limited to about 10~* due to
the equation of state and not to the algorithm presented
here. One could argue that the discontinuities seen on the
adiabatic gradients are due to an inaccuracy of the tem-
perature profile rather than the opposite. This is not the
case: first because in the region considered (P < 1Mbar),
pressure ionization and dissociation of hydrogen cannot
produce relative variations of the adiabatic gradient of
more than 1% when P or T are changed by only 1074, and
second because this phenomenon occurs independently of
any modeling.
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Fig. 7. Same as Fig. 5 for a pure hydrogen EOS

These problems are reduced when considering the EOS
for pure hydrogen. Even though we cannot calculate a
physically consistent model of Jupiter with such an EOS,
it is nevertheless possible to estimate the accuracy of
the solution calculated by CEPAM code. This is done in
Fig. 7. The accuracy of the solution is then considerably
increased, but is still limited by a faint jump of the adia-
batic gradient (~ 1%) for P =~ 0.16 Mbar. As a result all
variables have a precision which is better than 2 10~° ex-
cept the temperature for which this value is double, with
models with only 100 or 200 mesh points. Furthermore,
the discontinuities which were predictable (labeled a, b
and c in Figs. 5 and 7) have been treated with an accu-
racy which is better than 1073,

We present the results obtained for the quantities re-
lated to the rotation of the planet, i.e. equatorial radius
and gravitational moments, for a “real” model of Jupiter
(corresponding to Fig. 5) in Fig. 8. These results are con-
sistent with the precisions obtained in Fig. 5: the equato-
rial radius is calculated with an accuracy which is better
than 10~ for models calculated with 100 mesh points or
more and of order s = 3. The calculation of the other
quantities, Jo and Jy4, involves powers of the equatorial
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Fig. 8. Relative variations of the equatorial radius Req
(squares) and gravitational moments J; (circles) and J4 (stars)
as a function of the number of mesh points used in CEPAM
models. Points connected by plain lines indicate calculations
with third order piecewise polynomials (s = 3). Points con-
nected by dashed lines indicate calculations with second or-
der piecewise polynomials (s = 2). Note that the scale of the
Y—axis is different on left and right graphs. All results are com-
pared to s = 3 models with 500 mesh points

radius and their precisions are lowered accordingly. It is
interesting to see that, as expected, the accuracy of mod-
els with order of piecewise polynomials set to s = 2 is
worse than when s = 3 and that both models have a bet-
ter precision when the number of meshes increases (this
is not always true since the variations are essentially ran-
dom, but reflects the global tendency). Thus models with
500 mesh points calculated with s = 2 and s = 3 are
very similar. Furthermore, the convergence is consistent
with theoretical previsions only for low numbers of mesh
points (25 or 50). This stems from the effect discussed
previously: the misbehaviors of the EOS are not seen by
models with a low number of meshes. Hence, the func-
tions can then be considered as sufficiently smooth. This
is not any more the case when more precise models are
calculated. Finally, the presence of discontinuities (as the
PPT) limits the order of convergence, but this is a small
effect.

These results can be compared to the precision ob-
tained from the observations: for Jupiter (for which we
have the most accurate data) Req, J2 and Jy are known
to about 6 10™%, 7 1075 and 9 10~3. Thus, the accuracy of
R.q and J; given by models with 100 or 200 mesh points
is comparable to the accuracy of the observations. This
is problematic, mainly for the optimization procedure.
Hence, the use of a very robust algorithm, as described
in Sect. 3.5 is highly valuable.

An important point is then the accuracy of the solu-
tions calculated within the theory of figures. Due to the
unpleasant aspect of the equations, the development of the
theory was limited to the third order, as it is usually the
case. For this order of approximation, the accuracy of the
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solutions for Jj is well below the observational constraints
(see Appendix).

However, as pointed out by Hubbard (1982), the differ-
ential rotation in Jupiter and Saturn yields an uncertainty
on the value of J; which is one order of magnitude larger
than the observational error bar (see Lindal 1992), and
is therefore compatible with a third order calculation. On
the other hand, the theoretical uncertainties on J; and Jg
are compatible with the observations. Hence, without a
real understanding of the rotation of the interior of these
planets, only a slight improvement in the gravitational
constraints can be expected by carrying the theory of fig-
ures to a higher order.

5. Conclusion

In this paper, we have described the numerical techniques
used in CEPAM, a flexible, robust and precise tool de-
signed for the computation of the internal structure of the
giant planets.

The interior including a rocky core (possibly sur-
rounded by a mantle of ices), is calculated without the
assumption of full adiabaticity. From our knowledge it is
the first numerical code which allows such a complete com-
putation.

This code has been used for the construction of non-
adiabatic models (i.e. with a radiative zone) of Jupiter and
Saturn. Furthermore, it enables a precise determination of
the free parameters of the models. This allows one to study
the non-uniqueness of the solutions, which is particularly
significant in the case of Saturn (Guillot et al. 1994b).

The method employed consists of an interpolation by
piecewise polynomials of the unknown functions which de-
scribe the internal structure. The resolution of the quasi-
static equilibrium, a two point boundary value prob-
lem, employed a spline/collocation technique originated
by de Boor (1978). Among the most interesting advantages
of the method, we point out its stability and the fact that
the discontinuities of the unknown functions, or of their
derivatives, are more easily worked out than with finite
differences. Another convenient feature, is that the order
of accuracy is monitored by only one external parameter.

Furthermore, a robust algorithm, derived from the sim-
plex method, has been worked out for the optimization of
the models. It allows one to infer the values of the three
most important free parameters of the model (e.g. the
mass of the core, the chemical composition and the jump
of composition at the PPT) from the observed values of
the equatorial radius and the gravitational moments Jz,
J4 and Js.

The comparisons of models computed with different
number of shells and with different order of accuracy al-
lowed us to estimate the internal relative accuracy of our
models. So far, it is limited by the precision of the inter-
polation scheme of the tabulated equation of state at the

© European Southern Observatory * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26AS..109..109G

G,

FT995ACAS. S109: 1

122

level 10~%. This value decreases to a few 107 if a perfect
gas equation of state is employed.

It appears that the internal relative accuracy of the
models with only 100 mesh points and parabolic splines is
limited nct by numerical considerations but by some faint
inconsistencies of the equation of state. We conclude that
the models of giant planets computed with CEPAM have
the accuracy of the input physics.

On a separate matter, the problem of the evolution of
a non-adiabatic planet is an extension of the numerical
methods described here and will be treated in a forthcom-

ing paper.
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Appendix: theory of figures

We outline in this appendix the treatment of the rota-
tion used in modeling giant planets. The theory dealt
with is long-known from planetary workers and was in-
troduced by Clairaut and Laplace who calculated first or-
der solutions. A second order theory is due to Darwin
and De Sitter and was applied to Jupiter and Saturn by
DeMarcus (1958). Interior models, including ours gener-
ally use a 3rd order theory, although Zharkov & Gudkova
(1992) solve the equations of the theory of figures to 5th
order. A detailed review is found in Zharkov & Trubitsyn
(1978), including the equations to 3rd order which will not
be given here. Moreover we will assume that the rotation
is solid (for a discussion of the effect of differential rota-
tion on the interiors of Jupiter and Saturn, see Hubbard
1982).

In order to estimate the influence of rotation on the
structure of the giant planets, we introduce a small param-
eter m which is the ratio of the centrifugal to gravitational
acceleration:

w?R3,
= =, (1)
GMtot

where R is the mean radius of the planet. m is approxi-
mately equal to 0.08, 0.14, 0.04 and 0.02 for Jupiter, Sat-
urn, Uranus and Neptune, respectively.

The basic problem of the theory of figures is the deter-
mination of level surfaces on which the gravitational po-
tential remains constant. In the case of hydrostatic equi-
librium the other quantities density, pressure ...etc, are
also constant on these level surfaces.

In order to determine these surfaces, the radius is
sought in the form:

B)Ps;(cos 9)} (2)

1=0

T(,By 0) Rtot,B {1 + Z 52z

where € is the polar angle, 3 is the normalized mean ra-
dius, P; are Legendre polynomials and s; are functions
to be calculated and of order of smallness m* (except sg
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which is of order of smallness m?). Furthermore, it can be

shown that the total potential (gravitational+centrifugal)

can also be developed as a sum of spherical harmonics:
U(r,6) = 57GPRE B Y Ani(8) Pas(cost),  (3)

i=0

where p is the mean density and A,;(3) are non-

dimensional quantities. Requiring that U be constant on

level surfaces one obtains A,; = 0 for 7 > 0.

A theory of order n can then be calculated by trunca-
tion of Egs. (2) and (3) for ¢ > n. In other words, we sup-
pose that s2;(3) = 0 when ¢ > n. The remaining non-zero
s9; parameters are solution of an implicit set of integro-
differential equations determined by the n conditions on
Agi:

{321' = f2i(B,50,82,---,82n-2),

for i < m,
(4)

Son = f?n(/Ba 80,82y ...,82n-2, '5211,)7

and fy; are non-linear functions of the variables
B,50,-..,82n. The calculation of these functions requires

integrals of the form

5= [ o5
which are calculated as:

d
S= zf(‘sl’s()u <y 82n4 Ap’t /f(,B,SOa . 782n) pdﬂ

Ap; are the discontinuities of the density at point s;, in-
cluding the two boundaries. This method allows one to
take more easily into account the discontinuities of the
density. Moreover, the accuracy of the derivative dp/df
can be checked directly from the interior model. This
quantity has been calculated using directly the equations
for the quasi-static equilibrium and the derivatives of the
EOS.

System (4) was solved with an explicit method. The
order of convergence is only 1 but this is sufficient since
this system is rapidly convergent (about 20 iterations are
needed at the first time that these equations are solved).

The total gravitational potential is then determined
using Eq. (3) and reported in the equation of hydrostatic
equilibrium:

df IBa S0, -

as2n)a

VP = pVU. (5)
A convenient method is to develop Ag(3) as:
M
A = B + =+
o8) = BB + 3775

b [ 4 (o) b

where By(3) and h(8) are slowly varying functions of 8

and are of order of smallness m2. It can then be easily

shown by using Egs. (1), (3), and (5) that:
2__GM + w? n G Moy
dM ~ 47R*  6rR ' 4nR3,R"“

(6)
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¢, being defined by:

0. =2|Bo(0) - %n(o)] + 8| By(6) - Xow o)
(7
The functions By and h are then interpolated as a function
of B using cubic piecewise polynomials with a nodal basis
ensuring discontinuous behaviors where (physical) discon-
tinuities occurs. As a result, the centrifugal potential is
at most equal to 6% and 10% of the total gravitational
potential for Jupiter, and Saturn respectively. The term
¢, increases slowly from about 2 1073 at the center to
4 10~2% at the 1-bar level of Jupiter, and to 1072 at the
1-bar level of Saturn.
The external gravitational potential Vex; can also be
expressed in the form of a development of Legendre poly-
nomials:

o 21
‘/ext(T,e) = g {1 - Z <'R:q) JziPZi(COSG)} y (8)

1=1

where R.q is the equatorial radius of the planet. The co-
efficients Jy; are the gravitational moments, which are,
for the giant planets, of order m*. These coefficients can
be determined for a given interior model, using Eq. (4).
Furthermore, J,, Jy and .Js have been directly measured
in the four giant planets and thus provide fundamental
constraints for interior models (see Sect. 3.5).

The algorithm has been tested with the analytic poly-
tropic solutions to order 4 calculated by Hubbard et al.
(1975). This comparison reveals that the precision of a
third order algorithm is superior to the observational ac-
curacy on Jg but is of the same order for J4 and insufficient
for J, for Jupiter and Saturn (see Lindal 1992). This stems
from the fact that the relative accuracy on the measured
value of J, for Jupiter is 7 10° whereas our calculations
have an accuracy of ~ 3 1073. In fact, since we calculate
J2 to the order of smallness m? and since Jo  m we can-
not expect a much larger accuracy than m? ~ 6 10=3 (for
Jupiter). This problem is discussed in Sect. 4.
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