Dynamics and stellar populations in early-type galaxies

C. Marcella Carollo ${ }^{\star}$ and I. John Danziger
European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München, Germany

Accepted 1994 April 28. Received 1994 April 20; in original form 1993 November 29

Abstract

Optical multiband CCD photometry and multiposition CCD long-slit spectroscopy are presented for the five early-type galaxies NGC 439, NGC 2434, NGC 3706, NGC 6407 and NGC 7192. Light and morphological profiles, rotation velocity and velocity dispersion profiles, as well as Mg_{2} and $\langle\mathrm{Fe}\rangle$ line-strength radial profiles are reported. In some cases the measurements extend beyond two effective radii.

Peculiar core kinematics are detected in NGC 2434 and NGC 7192, in which the innermost nuclear regions counter-rotate with respect to the main galactic bulk. Corresponding with the kinematically decoupled core, an enhancement in the Mg_{2} index is observed. A much weaker signature of enhancement with respect to the galactic bulk is found in the corresponding $\langle\mathrm{Fe}\rangle$ profiles. Should this phenomenon turn out to be common, it might be at least partly responsible for the relatively shallow slope in the $\langle\mathrm{Fe}\rangle-\mathrm{Mg}_{2}$ plane shown by galactic nuclei compared to that traced within galaxies.

Under the assumption of axisymmetry, the Jeans equations of stellar equilibrium have been solved to model the dynamical state of each galaxy. In some objects there is evidence for the presence of a significantly massive and extended dark halo (in some cases, even more flattened than the luminous galaxy).

The dependence of the local metallicity (as traced by the Mg_{2} index) on physical parameters that possibly influence the local chemical enrichment has been investigated. In particular, a local dependence of the metallicity on the escape velocity from the potential well has been found (supporting previous results); however, the spread in the local relationship hints at other physical parameters, in addition to the local potential, affecting the metallicity distribution within galaxies. $\mathrm{The}^{\mathrm{Mg}_{2}}$ index is found to correlate with the local stellar density ρ (as described by the R surface brightness) rescaled by the total galactic mass M, i.e. with ρM^{2}. The slope of such a correlation within individual galaxies seems consistent with the average relationship derived by Bender, Burstein \& Faber for galactic nuclei. A significant spread, reduced when the dark component is added to the scaling mass, is, however, present in the relationship. Part of such a scatter might arise from a residual dependence on the galactic size, possibly incompletely accounted for with the M^{2} dependence.

Key words: galaxies: abundances - galaxies: elliptical and lenticular, cD - galaxies: fundamental parameters - galaxies: kinematics and dynamics - galaxies: structure.

1 INTRODUCTION

A good deal of evidence seems to suggest that massive, boxy, pressure-supported ellipticals and smaller, discy, rotationsupported elliptical and lenticular galaxies are the endproducts of different star formation histories leaving their

[^0]signature in the galactic orbital structure and stellar populations as revealed by kinematics, colours, line strengths and line-strength ratios. However, the exact interplay between structural, dynamical and population properties in early-type galaxies still remains undefined. For example, it is still unclear whether the observed metallicity content and distribution within individual galaxies, e.g. the increasing trend with mass shown by line-strength gradients (Carollo, Danziger \& Buson 1993, hereafter CDB), are properties
related to the details of the orbital structure, such as the presence of a stellar disc, or rather properties dependent only on fundamental parameters or global quantities, such as the total mass involved in the galactic formation process or the total angular momentum of the system. A major difficulty in identifying the crucial parameters is the fact that the observable quantities do not often allow one to discriminate between various phenomena. For example, although the ratio V / σ provides information on the total angular momentum of the system, such a ratio is, on the other hand, also affected by the amount of dissipation that occurred in the process of galaxy formation. A high V / σ does not necessarily testify to the presence of a stellar disc, but in some cases can indeed be due to such a disc; pressure-supported galaxies with low V / σ do possibly arise from almost dissipationless processes (see Worthey, Faber \& Gonzalez 1992, hereafter WFG; Bender, Burstein \& Faber 1992, 1993, hereafter, respectively, BBF1 and BBF2; CDB).

Another unresolved question is why, on the one hand, the global galactic properties indicate a high degree of homogeneity from galaxy to galaxy (as shown, e.g., by the correlation of the nuclear Mg_{2} line strength with the velocity dispersion σ, or equivalently with the density-dependent parameter $M^{2} \rho$; BBF1 and BBF2), and why, on the other hand, for example, the $\mathrm{Mg}_{2}-\langle\mathrm{Fe}\rangle$ and the $\sigma-\mathrm{Mg}_{2}$ relationships within galaxies do not follow the corresponding patterns generated by galactic nuclei (WFG; Davies, Sadler \& Peletier 1993, hereafter DSP; CDB). This latter result strongly questions, for example, the local onset (regulated by the local escape velocity) of a supernovae-driven galactic wind as the unique origin of the observed global correlations (Franx \& Illingworth 1990, hereafter FI; DSP). A valuable test to investigate whether, and to what extent, the global correlations found for cores are also valid throughout whole galaxies is to look for features in the line strength, colour or kinematic profiles at large galactocentric distances, where, for example, anisotropy in the velocity dispersion, dark matter and signs of interaction with the environment should be more easily detectable. Any anomalous feature (such as non-homogeneities or age variations in the galactic structure and population, respectively) might strongly constrain plausible scenarios of galaxy formation.

The investigation of these issues was one of the original incentives for starting a detailed study of a few selected galaxies (Carollo \& Danziger 1994, hereafter Paper I). Here, we present a follow-up to that previous study, i.e. we present new multicolour optical photometric and multislit spectroscopic observations for five early-type galaxies, namely NGC 439, NGC 2434, NGC 3706, NGC 6407 and NGC 7192. In Section 2, details of the observations, an outline of the basic steps of data reduction and some general information on the sample are reported. In Section 3 the derived photometric, kinematic and line-strength radial profiles for all the galaxies of the sample are shown. All the galaxies are modelled in Section 4, with the same kind of axisymmetric dynamical models presented in Paper I. Local relationships between, for example, colours and line-strengths, and local dependences of colours and line-strengths on the depth of the galactic potential well (described by the local escape velocity) and on the stellar density (as described by the surface brightness in the R band) are presented and discussed in Section 5. Section 6 concludes this paper.

2 OBSERVATIONS

Broad-band optical imaging and multiposition long-slit spectra of NGC 439, NGC 6407 and NGC 7192 were taken in 1992 July 22-27, at the ESO New Technology Telescope, located at La Silla. The other two galaxies of the sample, NGC 2434 and NGC 3706, were observed at the $2.2-\mathrm{m}$ ESO/MPI telescope (La Silla) during 1993 January 21-25. Long-slit spectra were also taken for these two galaxies at three position angles, including the two major photometric axes. Multicolour optical photometry was taken only for NGC 2434, because it was already available for NGC 3706 from a previous photometric survey conducted at the $1.54-\mathrm{m}$ Danish-ESO telescope (Carollo 1993, hereafter C93). Information for each run, the instruments, the instrumental configurations, the detector characteristics and the corresponding spatial and wavelength resolutions are given in Tables $1(\mathrm{a})$ and (b).

The logs of the observations are reported in Tables 2(a) and (b).

2.1 Photometry

In both runs, broad-band imaging was performed with B, V, R and $I \mathrm{ESO}-$ Cousin standard filters. The run at the $2.2-\mathrm{m}$ telescope was photometric, with an average seeing FWHM of 1.1 arcsec in the I band, 1.5 arcsec in the R band, 1.7 arcsec in the V band and 1.3 arcsec in the B band. During those nights, exposures of Landolt CCD standard fields were taken at various times during the night. The whole run at the NTT was non-photometric, and on some occasions even very cloudy. The average seeing FWHM there was 1.3 arcsec in the I filter, $1.4 \operatorname{arcsec}$ in the R and V filters and $1.6 \operatorname{arcsec}$ in the B filter. The observations of NGC 3706 were also performed under imperfect photometric conditions (although weather conditions were rather good); standard stars (Landolt CCD fields) were observed. The average seeing was 1.1 arcsec in the R band and 1.3 arcsec in the B band.

For each set of photometric observations, the basic steps of data reduction were performed as described in Paper I, by using the ESO midas package (bias and dark current were subtracted from the science frames, and high-count twilight sky exposures were used to flat-field the frames). For the $2.2-\mathrm{m}$ data, the absolute photometric calibration was obtained by using all available standard stars. The derived colour equations, using R as the main filter, are (see Paper I)
$B_{\text {Bessel }}=21.819+B_{\text {tel }}+0.203(B-R)_{\text {tel }}$,
$R_{\text {Bessel }}=23.653+R_{\text {tel }}$,
and, for the V filter,
$V_{\text {Bessel }}=23.45+V_{\text {tel }}+0.135(V-R)_{\text {tel }}$.
Published aperture photometry from the Longo \& de Vaucouleurs (1983) and de Vaucouleurs \& Longo (1988) compilations was used to calibrate the NTT data and NGC 3706. For the R filter of NGC 7192, aperture photometry was not available, and we calibrated the frame assuming the same conversion factor derived from the R filters of the other two galaxies.

For the galaxy observed at the $2.2-\mathrm{m}$ telescope (NGC 2434), the zero-point error in the calibration (derived by

Table 1．The characteristics of the detectors and the instrumental setup for the spectroscopic（a）and photometric （b）runs．

Units are：read－out noise（ron）in $\mathrm{e}^{-} /$pixel；wavelength range in \AA ；slit width in arcsec；pixel size in $\AA \therefore \times \operatorname{arcsec}$ ； resolution（i．e．FWHM of Thorium／HeAr emission lines and sky lines）in \AA ．
${ }^{(1)}$ Thomson Coated， 1024×1024 pixels of $19 \times 19 \mu \mathrm{~m}^{2}$ ．
${ }^{(2)}$ In table，the slit width．Both chips are about 7 arcmin long．
${ }^{(3)}$ The CCD was always rebinned 2×2 ；the listed pixel size already includes such a rebinning．

| （b）Run | Telescope | Instrument | CCD | ron | ESO filters | Pixel Size |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| 22－27 July 1992 | NTT | EMMI | ESO \＃18 | 5 | B，V，R，I standard | 0.44 |
| 20－25 Jan 1993 | 2.2 m | EFOSC2 | ESO \＃19 | 5 | B，V，R standard | 0.332 |

Units are：read－out noise in $\mathrm{e}^{-} /$pixel；pixel size in arcsec．

Table 2．Observations logs for the spectroscopic（a）and photometric（b） runs．

（a）	name	P．A．（deg）	Telescope＊

＊During NTT observations，the Dichroic Mode of EMMI（DIMD）was used sometimes to collect simultaneously spectra in a bluer wavelength range（ $4000-4600 \AA$ ）．The analysis of these spectra will be reported elsewhere．The observations taken without dichroic are labelled as REMD （normal EMMI red－arm mode）．

\star Zero－point error in the photometric calibration．
＊＊Observations performed during the nights of 1993 January 16－20 at the $1.5-\mathrm{m}$ Danish－ESO telescope．Standard ESO－Cousin filters were used． The chip was a CCD Tektronix $1024 \times 1024,24-\mu \mathrm{m}(0.377-\operatorname{arcsec})$ size pixels．Details on this run of observations will be published in a separate paper（see text）．
comparing the results obtained by using different templates taken in various occasions during the nights) was estimated to be smaller than 0.03 mag . For NGC 3706, the calibration derived from aperture photometry and that derived from Landolt fields stars were consistent to within $\approx 0.05 \mathrm{mag}$. The zero-point error of the NTT observations was that of the aperture photometry used ($\leq 0.1 \mathrm{mag}$, from the scatter in the data published by different authors). Only for the R band of NGC 7192 might the calibration error be as large as 0.3 mag. The latter value gives the average scatter in the calibration of the other two galaxies of that run for which the R aperture photometry was available. It gives an estimate of the degree to which the weather conditions were non-photometric when the R exposures of NGC 7192 were taken.

The derived light profiles were K -corrected (as in Whitford 1971), and corrected also for Galactic reddening by using the extinction values published by Burstein \& Heiles (1984; NGC 439, $A_{B}=0$; NGC 2434, $A_{B}=0.71$; NGC 3706, $A_{B}=0.36$; NGC 6407, $A_{B}=0$).

2.2 Spectroscopy

All spectroscopic exposures were limited to a maximum of one hour, in order to avoid excessive cosmic-ray events on the galaxy spectra. The slit was always centred on the galaxy nucleus. At the NTT, thorium (and, at the 2.2-m telescope, HeAr) calibration spectra were taken after each exposure, to determine the wavelength scale. Spectrophotometric standard stars were taken in both runs, as well as G and K giants, to be used as kinematical templates and to correct the galactic line strengths for velocity dispersion broadening.

Also, for each set of spectroscopic data we used the ESO midas package for the basic data reduction. Bias and dark current were initially subtracted from all science frames. Small-scale sensitivity variations (determined from highcount quartz lamp exposures) were subsequently removed; twilight sky exposures were used to produce the correction for the variable vignetting along the slit. After removing cosmic rays and faulty pixels, the star and galaxy spectra were wavelength-calibrated by fitting, row by row, a thirdorder polynomial to the positions of the emission lines of the
corresponding thorium or HeAr arc frames. The accuracy of the wavelength calibration was checked on the sky emission lines present in the galaxy spectra; an average accuracy of $\simeq 15 \mathrm{~km} \mathrm{~s}^{-1}$ was reached for both the NTT and the $2.2-\mathrm{m}$ data. A spectrum of the sky present in the science frame was generated by averaging, frame by frame, the outermost 25 rows on each side of the CCD; this sky was then subtracted from the corresponding star or galaxy spectrum. Just as for the data presented in Paper I, some tests were made to check the influence of the sky subtraction on the reported measurements (e.g. under- and over-sky subtraction, by 10 per cent, were applied to the galaxy spectra; these tests have shown that the line-strength and kinematic profiles reported in the following sections are reliable to the outermost measured radii within their error bars). The spectra were corrected for Galactic extinction and finally corrected for instrumental response by using the conversion derived from the spectrophotometric standards. The photometric conditions of the $2.2-\mathrm{m}$ run allow one to consider the latter correction as an absolute flux calibration for the spectra taken during that run.

2.3 The sample

In Table 3, some physical parameters for the galaxies of the sample are given. In the following, we also give a brief summary of the morphological classification, the environmental conditions and any known peculiarity or non-stellar emission for each of the five galaxies. Excluding NGC 3706, which is a well-studied object, the other four galaxies were chosen because they had not yet been studied in detail.

NGC 439. It is classified as a lenticular by de Vaucouleurs et al. (1991, hereafter RC3) and as E-S0 by Lauberts \& Valentijn (1989, hereafter ESOLV). It is the brightest member of a group containing six other members, one of which is a lenticular, the other five being spirals (Maia, Da Costa \& Latham 1989). The group mass-to-light ratio is about 40 (Gourgoulhon, Chamaraux \& Fouqué 1992). The galaxy is not a known X-ray or $\operatorname{IR} A S$ source, and has no H_{I} emission and no emission lines. A compact faint nuclear

Table 3. Physical parameters for the galaxies of the sample.

Name	Type	$\mathrm{Vel}_{\text {hel }}$	m_{B}	P.A.	ϵ	$\mathrm{Re}_{\text {e }}$	(B-V)	Mgacentr	σ 。
NGC 439	E	5679	12.38	158	. 33	45	-	-	-
NGC 2434	E	1388	12.50	138	. 08	24	. 91	. 268	205
NGC 3706	E	3045	11.87	74	. 32	27	. 92	. 310	281
NGC 6407	E	4625	12.88	63	. 17	33	-	-	-
NGC 7192	E/cD	2763	12.21	20	. 02	28	. 95	. 250	185

Column: 1 - name of the galaxy; 2 - morphological type; 3 - heliocentric velocity; 4 - apparent blue magnitude; 5 - position angle of the major axis (NE); 6 - ellipticity; 7 - effective radius, i.e. half-light radius; 8 - corrected $(B-V)$ colour within 67 arcsec; 9 - central value of Mg_{2} index; 10 - central velocity dispersion.
Units: position angle of major axis in degrees; heliocentric velocity and velocity dispersion in $\mathrm{km} \mathrm{s}^{-1}$; effective radius in arcsec; Mg_{2} and $(B-V)$ in mag.
All parameters are from ESOLV or RC 3 , with the exclusion of Mg_{2} and σ_{0} (from Davies et al. 1987) and $(B-V)_{0}$ from Burstein et al. 1987).
radio source has been observed (Bregman, Hogg \& Roberts 1992).

NGC 2434. The galaxy is classified as elliptical by both RC3 and ESOLV. Together with two other galaxies, it is a member of Huchra \& Geller (1982) group number 1. A possible dwarf elliptical (or blue compact dwarf) companion has been identified by Vader \& Chaboyer (1992).

NGC 3706. The galaxy is classified as lenticular in RC3 and elliptical in ESOLV. It is a shell galaxy (Malin \& Carter 1983), has a compact elliptical companion (Vader \& Chaboyer 1992), and has been detected in the radio continuum and in the FIR (Wilkinson et al. 1987; Sadler, Jenkins \& Kotanyi 1989; Roberts et al. 1991).

NGC 6407. Not much is known about this galaxy. It is classified as lenticular by RC3 and as elliptical by ESOLV.

NGC 7192. The galaxy is classified as elliptical by both RC3 and ESOLV. It belongs to a group of seven galaxies, including four spirals (Maia et al. 1989). It contains diffuse dust, as it has been detected at $100 \mu \mathrm{~m}$ (Roberts et al. 1991); $\mathrm{H} \alpha$ and $\mathrm{N}_{\text {II }}$ emission have been detected (Phillips et al. 1986).

3 RESULTS

3.1 Photometric profiles

The galphot package (written by M. Franx; in iraf) was used to derive the photometric profiles through ellipsefitting; deviations from perfect ellipses were measured by computing the C_{i} and S_{i} coefficients of the Fourier expansion of the intensity along the ellipses ($i=3,4,6$; see Paper I). Following the same definitions given in Paper I, the final errors reported for the photometric profiles are the sum of the formal errors derived from ellipse-fitting, plus the errors in sky subtraction; errors in the colour profiles are the sum of the errors in the two bands. Listed in Appendix A, for the five galaxies and for each filter, are the individual measurements, as functions of galactocentric distance, of surface brightness, ellipticity, major axis position angle and S_{i} and C_{i} coefficients $(i=3,4,6)$. The $(B-R)$ colour profiles were derived; the corresponding logarithmic gradients, computed excluding the innermost seeing-affected 3 arcsec, are listed in Table 4. Also listed are the central $(B-R)$ values, computed by averaging the innermost 3 arcsec. Errors on these values are the formal rms deviations around the given averages. For a comparison of the colour gradients with those shown by a larger sample of galaxies, see, for example, FI and Peletier et al. (1990).

Table 4. The $(B-R)$ gradients and central $(B-R)$ values for the five galaxies.

name	$(B-R)_{\text {centr }}$	$\operatorname{err}(B-R)_{\text {centr }}$	$\frac{d(B-R)}{d L o g r}$	$\operatorname{err} \frac{d(B-R)}{d L \operatorname{logr}}$
NGC 439	1.52	.04	-.07	.01
NGC 2434	1.59	.10	-.12	.02
NGC 3706	1.53	.16	-.06	.01
NGC 6407	1.60	.07	-.10	.01
NGC 7192	1.41	.06	-.12	.01

3.2 Stellar kinematic profiles

In all the galaxy spectra, at least the Mg_{b}, the Fe_{5270} and the Fe_{5335} bands were present. A Fourier quotient package (Sargent et al. 1977) was run on all the galaxy spectra to derive the kinematical profiles, after spatial software rebinning of the CCD in order to maintain the signal-to-noise ratio $(\mathrm{S} / \mathrm{N})$ above the fixed threshold of 30 . As the $2.2-\mathrm{m}$ spectra had a relatively high S / N until ≈ 2 half-light galactic radii, they were also analysed with a version of the Fourierfitting program (Franx \& Illingworth 1988) developed by van der Marel \& Franx (1993), and we were able to measure the two lowest moments of the line-of-sight velocity distribution (rotation velocity and velocity dispersion) and also the next two higher moments. The analysis of such higher moments is reported in a separate paper (Carollo et al. 1994, hereafter CMZD). The Fourier quotient and the Fourier-fitting programs gave comparable rotation velocity and velocity dispersion profiles for both NGC 2434 and NGC 3706; for consistency with CMZD, we report here the profiles derived with the Fourier fitting program for these two galaxies. For both the NTT and the 2.2-m data and for each galaxy, all the templates available were in turn used to derive the rotation velocity and velocity dispersion profiles. The latter showed systematic shifts of maximum $\approx 30 \mathrm{~km} \mathrm{~s}^{-1}$ with different templates. The templates used to derive the final kinematic profiles reported here are HR 6049 for the three galaxies observed at the NTT, and a synthetic best-fitting template, derived by superimposing with different weights all the observed K-giants, for the two galaxies observed at the $2.2-\mathrm{m}$ telescope (see CMZD for details).

For the three galaxies in common with Davies et al. (1987, hereafter D87; NGC 2434, NGC 3706 and NGC 7192), our central velocity dispersions are systematically larger than those published by these authors. For NGC 2434 and NGC 3706, the discrepancy is explained by (possibly seeing) aperture and spectral resolution effects. The velocity dispersion profiles that we observe in these two galaxies are in fact very steep within $\approx 10 \operatorname{arcsec}$. Mimicking in our CCD frames an instrumental setting analogous to that used for the Lick measurements, i.e. averaging together a few central CCD's rows to simulate the Lick aperture, we obtain central σ values in good agreement with those measured by Davies et al. (within $10 \mathrm{~km} \mathrm{~s}^{-1}$). In NGC 7192, a steep velocity dispersion gradient is not observed, and the central value obtained by mimicking the Lick aperture is still $\approx 40 \mathrm{~km} \mathrm{~s}^{-1}$ higher than the value of Davies et al. In this case, the differences between the metallicities and abundance ratios of the template stars used by Davies et al. to derive the kinematical parameters and those used by us might play a significant role (as mentioned, we used a single template for the galaxies observed at the NTT, since we did not have enough templates to attempt any proper star-galaxy matching). The slightly higher resolution of the NTT data, as well as the already mentioned differences in the stellar templates used to derive the kinematical parameters, might also produce a systematic offset between the $2.2-\mathrm{m}$ and NTT velocity dispersion profiles we present. This shift (if present) is difficult to quantify, since none of the galaxies and templates were observed at both the telescopes. However, the values obtained by mimicking the Lick instrumental setting suggest an upper limit of about $30 \mathrm{~km} \mathrm{~s}^{-1}$ for such an offset.

The single measurements of rotation velocity and velocity dispersion as functions of galactocentric distance are listed, for all five galaxies, in Appendix B.

3.3 Line-strength profiles

The galaxy spectra were de-redshifted, and the system of line strengths of Burstein et al. (1984) was used to compute the radial $\mathrm{Mg}_{2}, \mathrm{Mg}_{1}, \mathrm{Mg}_{b}, \mathrm{Fe}_{5270}$ and Fe_{5335} line-strength profiles (as well as the $\mathrm{H} \beta$ profiles for the galaxies observed at the $2.2-\mathrm{m}$ telescope). Errors due to photon statistics and sky subtraction were computed according to CDB.

All line strengths were standardized to zero velocity dispersion. The correction for velocity dispersion was negligible for the Mg_{2} band, while it ranged from a few per cent up to some tens of per cent for the remaining bands (at $\sigma \simeq 300 \mathrm{~km} \mathrm{~s}^{-1}$, these corrections were about 19 per cent for Mg_{b}, 21 per cent for Fe_{5270} and 36 per cent for Fe_{5335} for the NTT data, and 13 per cent for $\mathrm{Mg}_{b}, 16$ per cent for $\mathrm{H} \beta, 19$ per cent for Fe_{5270} and 30 per cent for Fe_{5335}, for the 2.2-m data). The measured velocity dispersion profiles, appropriately smoothed, were used to correct the line strengths (following the same procedure outlined in Paper I).

As in Paper I, all the line strengths were also standardized to a spectral resolution of $9 \AA$, in order to minimize the discrepancy with the results of the Lick group (D87). A further comparison with the Mg_{2} values reported by D87, performed as described in Paper I, showed an average shift of $-0.010(\pm 0.005) \mathrm{mag}$ for the $2.2-\mathrm{m}$ measurements relative to the Lick system. Of the galaxies observed at the NTT, only NGC 7192 is present in the list of D87; we find $\delta \mathrm{Mg}_{2}\left(\equiv \mathrm{Mg}_{2 \mathrm{NTT}}-\mathrm{Mg}_{2 \mathrm{D} 87}\right)=0.022$. These offsets have not been added to the Mg_{2} measurements reported in the tables, (i) because of the approximate nature of the derived corrections, due to the fact that only one or two comparison points were available; (ii) because the analogous corrections are not available for the other line strengths, and (iii) because individual measurements have not been published by the Lick group. For such line strengths, however, the residual systematic differences with the Lick values are expected to be rather small (see DSP and Paper I).

In Appendix C we report, for each position angle of all five galaxies, the $\mathrm{Mg}_{2}, \mathrm{Fe}_{5270}$ and Fe_{5335} values as functions of galactocentric distance (the measurements for Mg_{b} and $\mathrm{H} \beta$ are available on request). Central $\mathrm{Mg}_{2}, \mathrm{Fe}_{5270}$ and Fe_{5335} values and the radial logarithmic gradients of Mg_{2} were computed, and are listed for all galaxies, for each position angle, in Table 5.

The central values were obtained by averaging the radial measurements inside the innermost 3 arcsec. Errors in these values are the root-mean-squares of the averaged points. To minimize seeing effects, radial logarithmic line-strength gradients excluding the points in the innermost 3 arcsec were obtained. Errors in the gradients are the formal ones obtained from the linear fit.

In the following, the results for each individual galaxy are summarized separately.

NGC 439. The photometric profiles for NGC 439 are shown in Figs $1(\mathrm{a})-(\mathrm{d})$ for the B, V, R and I filters, respectively. From top to bottom, each left panel shows the profiles of the surface brightness, the ellipticity and the position angle of the major axis. In the right panel, the C_{i} (left) and the S_{i}

Table 5. Central $\mathrm{Mg}_{2}, \mathrm{Fe}_{5270}$ and Fe_{5335} values and the radial logarithmic gradients of Mg_{2} for all galaxies.

Name	P.A.	Mg_{2}	Fe_{5270}	Fe_{5335}	$-\frac{d M g_{2}}{d l o g r}$
NGC 439	158	$.300(.008)$	$2.67(.26)$	$2.70(.26)$	$.062(.004)$
NGC 439	48	$.304(.011)$	$2.94(.14)$	$2.64(.16)$	$.060(.002)$
NGC 2434	318	$.252(.018)$	$2.78(.12)$	$2.56(.13)$	$.055(.009)$
NGC 2434	48	$.256(.015)$	$2.68(.28)$	$2.45(.21)$	$.065(.010)$
NGC 2434	90	$.250(.014)$	$2.87(.08)$	$2.66(.21)$	-
NGC 3706	73	$.304(.010)$	$3.19(.13)$	$2.81(.19)$	$.074(.005)$
NGC 3706	163	$.307(.017)$	$3.18(.32)$	$2.77(.21)$	$.080(.009)$
NGC 6407	153	$.305(.007)$	$2.94(.20)$	$2.48(.26)$	$.036(.009)$
NGC 6407	63	$.312(.012)$	$2.81(.24)$	$2.10(.24)$	$.036(.010)$
NGC 6407	108	$.311(.008)$	$2.61(.19)$	$2.03(.26)$	$.041(.011)$
NGC 7192	20	$.278(.009)$	$2.81(.14)$	$2.62(.11)$	$.070(.009)$
NGC 7192	110	$.269(.009)$	$3.12(.16)$	$2.62(.14)$	$.060(.020)$
NGC 7192	65	$.270(.013)$	$2.91(.26)$	$2.46(.28)$	$.060(.009)$

Units: position angle in degrees; Mg_{2} in mag; two iron lines in \AA; Mg_{2} slope in mag dex.
1σ errors are given in parenthesis. They are defined as the rms of averaged points for central values. Formal errors of the fits are given for the gradients.
(right) coefficients are shown, with $i=3,4$ and 6 from top to bottom. The ellipticity profile rises very steeply and continuously from the innermost regions out to the outermost measured points, reaching the value of ≈ 0.4 at ≈ 100 arcsec. No isophotal twisting is observed. Apart from a positive C_{4} outside the innermost 10 arcsec, other significant deviations of the isophotes from pure ellipses are not detected. The $(B-R)$ colour profile is plotted in Fig. 2. Both the central colour and the colour gradient are typical for an elliptical of its luminosity class.

The stellar kinematic profiles of NGC 439 are shown in Figs 3(a) and (b), for the major and minor axes, respectively (velocity dispersion in the top panel and rotation velocity in the bottom panel). Along the major axis, the rotation curve rises very smoothly and reaches an amplitude of $\approx 50 \mathrm{~km} \mathrm{~s}^{-1}$ at about one half-light radius, while the velocity dispersion profile declines smoothly from ≈ 300 to $\approx 200 \mathrm{~km} \mathrm{~s}^{-1}$ in the same radial range. No rotation is observed along the minor axis.

The line-strength profiles of NGC 439 are shown in Figs 4(a) and (b), for the major and minor axes, respectively. No particular feature is observed along either of the two axes.

NGC 2434. The photometric profiles for NGC 2434 are shown in Figs $5(\mathrm{a})-(\mathrm{c})$, for the B, V and R filters, respectively (panels are as in Fig. 1). The galaxy is very round; the $(B-R)$ colour profile is normal (Fig. 6).

The stellar kinematic profiles of NGC 2434 are shown in Figs $7(\mathrm{a})-(\mathrm{c})$, for the major, minor and $\mathrm{PA}=90^{\circ}$ axes, respectively (panels as in Fig. 3). No significant rotation is observed at large radii along the major axis of NGC 2434, while a very modest rotation might have been detected along the minor axis. The velocity dispersion profile is rather steep within the innermost 5 arcsec. Peculiar core kinematics are detected along all three axes, i.e. the core is counter-rotating rapidly with respect to the main galactic body.

The line-strength profiles of NGC 2434 are shown in Figs $8(\mathrm{a})-(\mathrm{c})$, for the major axis, minor axis and $\mathrm{PA}=90^{\circ}$, respec-
tively）．The Mg_{2} index shows a strong enhancement in the innermost region，where the kinematically decoupled core is observed．The major axis Mg_{2} and $\langle\mathrm{Fe}\rangle$ indices and rotation velocity are plotted together in Fig．9，on a linear radial scale； a sharp change in slope in the Mg_{2} profile is observed at the radius of the core．Also，the $\langle\mathrm{Fe}\rangle$ index shows an enhance－ ment in the same radial range，but much less pronounced than that shown by the Mg_{2} index．

NGC 3706．The B and R photometric profiles used in the following for NGC 3706 have been taken from C93； for easy reference，they are shown again in Figs 10（a）and（b）， respectively（panels as in Fig．1）．The $(B-R)$ colour profile
is plotted again in Fig．11．As reported in C93，the ellip－ ticity within ≈ 40 arcsec shows rapid variations in the range $0.25-0.4$ ；a small（ 15° amplitude）but systematic isophotal twisting is observed；the C_{4} coefficient shows scatter around 5 arcsec ，and increases outside this radius（reaching the value of 0.04 at 40 arcsec ）．

The stellar kinematic profiles of NGC 3706 are shown in Figs 12（a）and（b），for the major and minor axes，respectively （panels as in Fig．3）．NGC 3706 is a fast rotator along its major axis（ $\approx 150 \mathrm{~km} \mathrm{~s}^{-1}$ at ≈ 2 effective radii）；the rotation velocity profile rises very steeply，displaying the same kind of bump already observed in the innermost region of NGC

NGC 439 B

Figure 1．（a）B photometry for NGC 439．Left panel：surface brightness（upper），ellipticity（central），major axis position angle（lower）．Right panel：C_{i}（left）and S_{i}（right）coefficients $\left(i=3,4,6\right.$ from top to bottom）．Abscissa is $\log _{10}($ radius $)$ ，in arcsec．（b）As（a），for the R band of NGC 439．（c）As（a），for the I band of NGC 439.

NGC 439 R

Figure 1 - continued

5018 (Paper I). The minor axis velocity curve is consistent with no rotation.

The velocity dispersion profiles along the two position angles appear rather peaked in the centre; no evident structure is observed at large radii.

The line-strength profiles of NGC 3706 are shown in Figs 13(a) and (b), for the major and minor axes, respectively. No evident feature is observed.

NGC 6407. The photometric profiles for NGC 6407 are shown in Figs 14(a)-(c), for the B, V and R filters, respectively (panels as in Fig. 1). A very bright star is close to the galaxy; even though subtraction was performed iteratively, it is likely that it might have affected the isophotal geometrical parameters. We therefore describe the observed profiles with a warning that there is the possibility that most of the features
could actually arise from the imperfect subtraction of the bright star. In all three bands, the ellipticity shows a steep increase from an almost round shape to the value of ≈ 0.3 at ≈ 100 arcsec. A lot of scatter is present in the S_{i} and C_{i} coefficients, hinting at significant deviations of the isophotes from pure ellipses. In particular, C_{3} and C_{4} show a pronounced valley centred around $\approx 15 \mathrm{arcsec}$, where a strong bump upward is observed in S_{3} and S_{4}, and where the maximum of isophotal twisting is reached. The $(B-R)$ colour profile, plotted in Fig. 15, shows a peculiar knee at the same radius, outside of which it decreases very rapidly.

The stellar kinematic profiles of NGC 6407 are shown in Figs $16(\mathrm{a})-(\mathrm{c})$ for the major, minor and $\mathrm{PA}=108^{\circ}$ axes, respectively (panels as in Fig. 3). A good deal of scatter is also present here; the rotation velocity curves along the three

Figure 1 －continued

Figure 2．$(B-R)$ versus $\log _{10}($ radius $)$ for NGC 439.
axes are，in any case，all consistent with no rotation．The data hint at core－decoupling，but the evidence is very marginal．

The line－strength profiles for NGC 6407 are shown in Figs $17(\mathrm{a})-(\mathrm{c})$ ，for the major，minor and $\mathrm{PA}=108^{\circ}$ axes， respectively．No obvious features are evident．

NGC 7192．The photometric profiles for NGC 7192 are shown in Figs 18（a）－（c）for the B, V and R filters，respec－ tively（panels as in Fig．1）．The galaxy is very regular and round．The $(B-R)$ colour profile，plotted in Fig．19，is rather steep．

The stellar kinematic profiles of NGC 7192 are shown in Figs $20(\mathrm{a})-(\mathrm{c})$ ，for the major，minor and $\mathrm{PA}=65^{\circ}$ axes， respectively（panels as in Fig．3）．Peculiar core kinematics are observed，i．e．the innermost $\approx 8 \operatorname{arcsec}$ rotate faster and in

（s／uy）Λ 4igure 3．Solid lines are the best－fitting dynamical model to the two axes（see text）．

 of NGC 439．（b）As（a），for the minor axis of NGC 439.
the direction counter to the bulk of the galaxy (whose kinematics along any of the three axes observed is consistent with no rotation).

The line-strength profiles of NGC 7192 are shown in Figs $21(\mathrm{a})-(\mathrm{c})$ for the major, minor and $\mathrm{PA}=65^{\circ}$ axes, respectively. As in NGC 2434, a strong enhancement of Mg_{2} and a moderate enhancement of $\langle\mathrm{Fe}\rangle$ is observed in the core region (see Fig. 22, where the Mg_{2} and $\langle\mathrm{Fe}\rangle$ indices and the rotation velocity are plotted together on a linear radial scale).

4 AXISYMMETRIC DYNAMICAL MODELLING

Following the approach introduced by Binney, Davies \& Illingworth (1990), already used in Paper I (see also references therein), we have used a family of axisymmetric dynamical models to derive information on the dynamical state and structure of the galaxies of the sample, from their measured photometric and kinematic profiles. The galaxies are described with a modified Jaffe (1983) mass density

NGC 2434 B

Figure 5. (a) B photometry for NGC 2434. Left panel: surface brightness (upper), ellipticity (central), major axis position angle (lower). Right panel: C_{i} (left) and S_{i} (right) coefficients ($i=3,4,6$ from top to bottom). Abscissa is $\log _{10}$ (radius), in arcsec. (b) As (a), for the V band of NGC 2434. (c) As (a), for the R band of NGC 2434.

Figure 5 －continued
profile，which is fitted to the observed light curve to derive the scalelength for the dynamical model．With the assump－ tion of a distribution function dependent only on the energy E and on the z－component of the angular momentum L_{z} ，the Jeans equations of stellar equilibrium are solved to derive， for oblate models，the theoretical rotation velocity and velocity dispersion profiles．Prolate rotators are also modelled，by assuming the longest axis to be the symmetry axis；in that case the separation between ordered and ran－ dom motion is unnatural，and the total azimuthal velocity $\left\langle v_{\phi}^{2}\right\rangle$ is fitted to the quantity $\left(\sigma^{2}+v^{2}\right)$ derived from the observed σ（velocity dispersion）and v（rotation velocity） profiles．For a more detailed description of the models and of the steps leading to the best－fitting parameters，we refer to Paper I．

For each galaxy，the results are summarized in the follow－ ing．

NGC 439．Both the rotation velocity and the velocity dispersion profiles of NGC 439 are reasonably well fitted by an edge－on，rotating，oblate model，with flattening equal to the（averaged）observed one（E2；see solid line in Fig．3）．The luminous mass inferred from the model is $1.2 \times 10^{12} \mathrm{M}_{\odot}$ ，and the corresponding M / L is $19 \mathrm{M}_{\odot} / \mathrm{L}_{\odot B}$ ．A dark halo is not required to fit the available data．However，the data extend until only one half－light radius，and it is therefore not appropriate to draw any strong inference from them about the amount and distribution of dark matter．This galaxy has an ellipticity that changes substantially with the radius；our modelling（at constant ellipticity）might thus lose some details of its dynamical structure．

NGC 2434．The kinematic profiles of NGC 2434 are well fitted by both an oblate and a prolate model．The best－fitting oblate model（solid line in Fig．7）has a flattening of E3 and a viewing angle of about 60° ；it is surrounded by a spherical

NGC 2434 R

Figure 5 - continued

Figure 6. As Fig. 2, for NGC 2434.
dark halo with dark to luminous matter ratio ≈ 2 and dark to luminous scalelength ratio ≈ 2.5. The luminous mass inferred from the model is $5.7 \times 10^{10} \mathrm{M}_{\odot}$, and the corresponding M / L is $4.4 \mathrm{M}_{\odot} / \mathrm{L}_{\odot B}$.

The best-fitting prolate model (dashed line in Fig. 7) has an E4 flattening and is seen at an angle of about 45°. (For simplicity we have superimposed the fit, made to the total $\sigma^{2}+v^{2}$ profile, to the velocity dispersion measurements. The contribution of rotation is very small, and would not change the visual representation significantly.) A spherical dark halo is required, three times as massive and twice as diffuse as the luminous matter. The luminous mass inferred from the model is $4.7 \times 10^{10} \mathrm{M}_{\odot}$, and the corresponding M / L is $4 \mathrm{M}_{\odot} / \mathrm{L}_{\odot B}$.

Figure 7 - continued

Independent of the particular model, NGC 2434 thus seems to be a pressure-supported stellar system [(V) $\left.\sigma_{\text {intrinsic }}\right) \leq 0.1$], seen at an intermediate viewing angle and surrounded by a massive dark halo.

For both shapes, a rather large range of models is able to fit the data, as might be expected, given the small observed flattening of this galaxy. Acceptable models give luminous masses up to $6 \times 10^{10} \mathrm{M}_{\odot}$.

NGC 3706. The rotation velocity and velocity dispersion profiles of NGC 3706 are very well fitted by an oblate model with fast rotation $\left[\left(\mathrm{V} / \sigma_{\text {intrinsic }}\right) \geq 1\right]$. From the model (solid line in Fig. 12), the galaxy is a very flattened rotator (E6), seen close to face-on (at about 25°); it is surrounded by a dark halo at least as massive as the luminous galaxy, with a scalelength twice as large as the luminous scale and with the same flattening as the luminous component. The luminous mass inferred from the model is $4.5 \times 10^{11} \mathrm{M}_{\odot}$, and the corresponding M / L is $6.6 \mathrm{M}_{\odot} / \mathrm{L}_{\odot B}$.

NGC 6407. The data for NGC 6407 present a sizeable scatter which makes it difficult to formulate very firm conclusions. The best-fitting model is an E5 object, seen at an angle of 35° (solid line in Fig. 16). Dark matter is not required to fit the data, which, however, sample only the region inside $\approx 1.3 R_{\mathrm{e}}$. The luminous mass inferred from the
model is $1.8 \times 10^{12} \mathrm{M}_{\odot}$, and the corresponding M / L is 29 $\mathrm{M}_{\odot} / \mathrm{L}_{\odot B}$. In addition, this galaxy has an ellipticity that changes substantially with the radius, so that, as in this case of NGC 439, our modelling, performed at constant ellipticity, might not account for all the features present in the galaxy.

NGC 7192. As the projection of NGC 7192 on the sky is round, a rather wide range of models is able to fit the data (which are insufficient to remove the degeneracy in the allowed triaxial shapes). Both prolate and oblate models have been fitted to the data.

The best-fitting oblate model (solid line in Fig. 20) is almost round, and it is seen edge-on. It is surrounded by a flattened (E6) dark halo, twice as massive and three times as extended as the luminous galaxy. The luminous mass inferred from the model is $4 \times 10^{11} \mathrm{M}_{\odot}$, and the corresponding M / L is $15 \mathrm{M}_{\odot} / \mathrm{L}_{\odot B}$.

The best prolate model (dashed line in Fig. 20; again, the best fit to $\sigma^{2}+v^{2}$ is superimposed on the velocity dispersion measurements) gives a more satisfactory fit along the minor axis, but a less satisfactory one along the major axis. Also in this case, the galaxy is rather round and the major axis is roughly perpendicular to the line of sight. A flattened (E3), twice as massive and doubly extended dark halo

Figure 8．（a） $\mathrm{H} \beta$（lower）， Mg_{b}（second from bottom）， Fe_{5335}（third from bottom）， Fe_{5270}（second from top；all the last four indices in \AA ）and Mg_{2}（upper；in mag），as functions of log ${ }_{10}($ radius $)($ in arcsec）for the major axis of NGC 2434．（b）As（a），for the minor axis of NGC 2434．（c）As（a），for PA＝90．

Figure 8 - continued
surrounds the luminous galaxy. The luminous mass inferred from the model is $4.8 \times 10^{11} \mathrm{M}_{\odot}$, and the corresponding M / L is $18 \mathrm{M}_{\odot} / \mathrm{L}_{\odot B}$.

5 DISCUSSION

To date, how and when galaxies formed has been a crucial, open question. With the current knowledge and instrumental tools, attempts can be made to put strong constraints on and reduce the many alternatives to a few plausible scenarios. For example, depending on the type of dark matter and on the primordial fluctuation spectrum, cosmological simulations make such different predictions about the statistical distribution of the shapes of dark haloes, that delineating the shape
of dark haloes for a large, statistically significant sample of galaxies would justify by itself the efforts spent in detailed studies of galactic dynamical fields. The discovery of the relation between central velocity dispersion and line strength (Terlevich et al. 1981) has, however, shown that dynamics and stellar populations are very closely related, although not in a simple way, as, for example, (i) the relation between σ and Mg_{2} index among nuclei seems different from the relation within galaxies (DSP); (ii) the behaviour of different metallicity indicators as a function of σ is not always the same, i.e. it seems as if the abundance ratio between Mg and Fe increases as a function of galaxy mass, or that most bright galaxies have suffered from Mg-enriching, occasional star formation bursts in their nuclei (WFG; DSP; CDB).

Figure 9. Mg_{2} (upper), $\langle\mathrm{Fe}\rangle$ (central) and rotation velocity (lower), as functions of radius (in arcsec) for NGC 2434.

Thus it appears that, in order to reconstruct how galaxies formed from diffuse material in space, it is necessary to study not just their shapes and kinematics, but also their stellar populations, in order to understand, for example, (i) what is the connection between the dynamical structure and the distribution of metallicity and abundance ratios within elliptical galaxies; (ii) whether the observed peculiarities in the inner regions of both kinematic and metallicity profiles are an artefact of projection of highly triaxial systems, or are signatures of additional star formation events; (iii) what are the intrinsic shapes of elliptical galaxies, and what is the connection between intrinsic shapes and the stellar population properties; (iv) whether elliptical galaxies have dark mat-
ter haloes, what are the intrinsic shapes of the haloes, what is the connection between the structure of the halo and the structure and population of the luminous galaxy.

To answer these questions, it is necessary to combine (individually for each galaxy of a statistically significant sample) the information derived from detailed dynamical modelling with that derived from accurate stellar population modelling. The latter is beyond the purpose of this paper, and will be published separately. In the following we limit our discussion to a presentation of some possible constraints to the above framework, from the observational and theoretical results presented in the previous sections.

5.1 The $\mathbf{M g}_{2}-(B-R)$ relationship

Since the work of Burstein et al. (1988, hereafter B88), it is known that a rather tight $\mathrm{Mg}_{2}-(B-V)_{0}$ relationship exists linking the central line strength to the global galactic colour. This strongly suggests that the nuclear stellar population is closely related to the stellar population of the whole galactic bulk (see also BBF2). Although the more anisotropic galaxies seem to be slightly redder for their values of Mg_{2} than isotropic galaxies, this latter result might actually be driven by the inclusion in the sample of galaxies with bluer stellar discs (BBF2 and references therein). It appears, therefore, that colours are able to trace rather well the main features of the rather homogeneous galactic stellar populations. Indeed, when the local relationship between colours and line strengths is also explored, it strengthens the evidence that both these observables are mostly measuring small variations in the galactic metallicities, and in a consistent way (see, e.g., DSP). In Fig. 23 the local relationship between Mg_{2} and $(B-R)$ derived from our data is shown. Only NGC 3706 (triangles in Fig. 23) on this diagram shows a slope different from that of the relationship between nuclear Mg_{2} and $(B-R)$ integrated inside 67 arcsec (B87; D87; DSP). It is indeed possible that the light from this galaxy is contaminated by a disc component which makes the galaxy bluer (this hypothesis is supported by the very fast rotation and by the discy isophotes). For the remaining galaxies, an offset of only about 0.05 mag is observed, i.e. the slope within galaxies is equal to that of the $\operatorname{Mg}_{2 \text { nuclear }}-(B-R)_{67 \text { arcsec }}$ relationship. The offset might partially arise from the uncertainties in our photometric calibration; however, an analogous shift was found also by DSP. Thus it seems plausible that it might partially arise from using, without any scaling, integrated and local colours (the former systematically lowered by the presence of small but significant colour gradients). Assuming an average colour gradient in $(B-R)$ of about -0.08 per dex in radius (Franx, Illingworth \& Heckman 1989; Peletier et al. 1990), and using a power-law description for the light profiles of ellipticals, one indeed gets a shift of $\approx 0.05-0.07 \mathrm{mag}$ in the $\mathrm{Mg}_{2 \text { nuclear }}-(B-R)_{67 \text { arcsec }}$ relationship, for colours measured in an aperture comparable to the slit used to obtain the Mg_{2} values (D87). The above results, taken together, lead one to speculate that stellar populations in normal ellipticals are not only rather homogeneous in both metallicity and age within galaxies, but also they are not strongly dependent on the details of their orbital structure and their intrinsic shapes (once bulge and disc components are appropriately decoupled).

5.2 The $\mathrm{Mg}_{2}-\sigma$ relationship

The $\mathrm{Mg}_{2 \text { nuclear }}-\sigma_{\text {nuclear }}$ relationship is very tight for bright elliptical galaxies (see, e.g., BBF2 and references therein). A large scatter is observed in smaller galaxies. This scatter might hint either at distinct physical processes occurring in massive and small galaxies or at a quantitative difference in, for example, the amount of stellar/gaseous mergers suffered from by the two kinds of systems (BBF1; BBF2). None the less, no significant zero-point difference is observed between dwarf and very bright ellipticals. Thus, although the formation histories of these two families of objects might be quite different, their stellar populations seem to show a close connection with their kinematic temperature (as measured
through the velocity dispersion σ). Again, this result hints at a distant connection between the galactic stellar populations and the details of the dynamical structure, as, for example, boxy and discy galaxies, rotating and non-rotating galaxies, field and cluster galaxies basically follow the same $\mathrm{Mg}_{2 \text { nuclear }}-\sigma_{\text {nuclear }}$ relationship.

Relatively recently, there have been questions about whether the local metallicity within ellipticals is a function only of the local depth of the gravitational potential well (which could be traced also by σ; FI), i.e. whether, for example, the $\mathrm{Mg}_{2}-\sigma$ relationship holds not only for galactic nuclei but also as a local property (FI; see also DSP). In Fig. 24 we plot the local $\mathrm{Mg}_{2}-\sigma$ relationship for the five galaxies of the sample. No significant difference is observed when

NGC 3706 B

Figure 10. (a) B photometry for NGC 3706 (from C93). Left panel: surface brightness (upper), ellipticity (central), major axis position angle (lower). Right panel: C_{i} (left) and S_{i} (right) coefficients ($i=3,4,6$ from top to bottom). Abscissa is $\log _{10}$ (radius), in arcsec. (b) As (a), for the R band of NGC 3706.

Figure 10 －continued

Figure 11．$(B-R)$ versus $\log _{10}($ radius $)$ for NGC 3706 （from C93）．
considering the various position angles available．It appears that the points do not lie on a line parallel to that followed by the nuclei，but rather scatter around a steeper line．This has also been noticed by DSP．The very rapid rise in velocity dispersion observed for some of the galaxies of the sample within the innermost few arcsec－to be compared to the central velocity dispersions used to derive the nuclear relationship，which are averaged down inside the area of the used aperture（D87）－increases the discrepancy．Further－ more，the local relationship shows an average spread in Mg_{2} of $\approx 0.06 \mathrm{mag}$ at a given value of σ ，with a typical scatter from galaxy to galaxy of about 0.04 mag．The latter is twice as large as the typical scatter within a single galaxy（with the exception of NGC 7192）．Part of the large global spread might be due to possible systematic differences between the

(s/wи) Λ

Figure 12. (a) and (b) As Fig. 3, for NGC 3706. Solid lines are the best-fitting dynamical model to the two axes (see text).

Figure 13. (a) and (b) As Figs $8(\mathrm{a})$ and (b), for NGC 3706.

NTT and the $2.2-\mathrm{m}$ measurements of velocity dispersion．It seems likely，however，that a residual intrinsic spread remains，since the maximum offset between the NTT and the $2.2-\mathrm{m}$ measurements is estimated to be smaller than $\approx 30 \mathrm{~km}$ s^{-1} ，since the galaxies observed at the NTT and at the $2.2-\mathrm{m}$ telescope mix in the $\mathrm{Mg}_{2}-\sigma$ plane，and since a large intrinsic spread is also observed by DSP for a sample of galaxies observed in identical conditions．Thus our results，combined with those of DSP，seem to lead to the conclusion that velocity dispersion and Mg_{2} within galaxies are poorly related to one another．This result still needs to be properly understood．In any case，the velocity dispersion seems to be a poor tracer of，for example，the escape velocity from the galactic potential well，a parameter which would appear to be more physically relevant for the problem at hand（see，e．g．， FI；DSP）．

5．3 The $\mathrm{Mg}_{2}-v_{\text {escape }}$ relationship

Fig． 25 shows the local correlation between Mg_{2} index and escape velocity within the five galaxies of the sample．The escape velocity has been derived from the best－fitting dynamical models presented in the previous section．The correlation between Mg_{2} and escape velocity is good；the scatter for the sample is，however，larger than that within a single galaxy（a similar result was found by DSP）．As all position angles and all models（when more than one model was able to fit the data）give compatible results within each single galaxy，the scatter is plausibly real．A systematic shift of about 25 per cent in velocity is observed with respect to the DSP sample，while the slopes appear to be identical．The shift might be due to the inclusion of massive dark haloes in most of our models．The lack of a significant difference in

NGC 6407 B

Figure 14．（a）－（c）As Fig．5，for NGC 6407.
slope for objects such as NC 2434，flattened by velocity anisotropy，and NGC 3706，flattened by rotation，indicates either that no significant flattening of gradients due to radial orbits is present，or that different effects are synchronously acting to smooth down intrinsic differences．Indeed，the above result supports the idea that，to some extent，the galactic metallicity is influenced by the local potential depth； the scatter in the data suggests，however，that some other factor is also contributing in determining the metallicity distribution within elliptical galaxies．As discussed by BBF2， the scatter is well understood in a hierarchical scheme of galaxy formation，as it would be difficult to understand a
tight local relationship between escape velocity and metall－ icity in objects that have suffered many merging events．Some other factor must therefore be coupled to any purely dynamical indicator，in order to understand the observed local metallicity distribution in ellipticals．

5．4 The $\mathbf{M g}_{2}-M^{2} \rho$ correlation

In the attempt to understand the physical origin of the nuclear $\mathrm{Mg}_{2}-\sigma$ correlation， BBF 2 have noticed that the local stellar density (i) is an indicator of the amount of dissipation occurring during the formation epoch；（ii）reflects the stellar

$$
\text { NGC } 6407 \text { V }
$$

Figure 14 －continued

NGC 6407 R

Figure 14 －continued

Figure 15．As Fig．2，for NGC 6407.
density of the merging subunits，and（iii）reflects the efficiency of density－dependent processes such as the cooling rate or the star formation rate．Thus they have represented the stellar population P of an elliptical galaxy as a function of the total mass and of the local density，i．e．$P=f\left(M^{a} \rho^{\beta}\right)$ ． Assuming $M \propto \sigma_{0}^{2} R_{\mathrm{e}}$ and $\langle\rho\rangle \propto M / R_{\mathrm{e}}^{3}$（with R_{e} being the half－light radius），and considering the fit to the observed $\mathrm{Mg}_{2}-\sigma$ relationship for galactic nuclei，BBF2 have derived $\quad \mathrm{Mg}_{2}=0.033 \log \left(M^{2}\langle\rho\rangle\right)+$ constant．Although this relationship is，by construction，a different way of expressing the $\mathrm{Mg}_{2}-\sigma_{0}$ relationship that holds for galactic nuclei，it provides a way to investigate the dependence of the metallicity on the stellar density ρ ．Should the present stellar

Figure 16. (a) and (b) As Fig. 3, for NGC 6407. (c) $\mathrm{PA}=108^{\circ}$. Solid lines are the best-fitting dynamical model to the three axes (see text).

Figure 17 －continued
density remember the original mass density，and retain infor－ mation on the local processes leading to the observed chemical enrichment，one would expect a tight connection between Mg_{2} and ρ within galaxies as well（once the proper scale for the global galactic mass is again taken into account）． We have used the data presented in the previous sections to test the validity of the $\mathrm{Mg}_{2}-M^{2} \rho$ relationship on a local scale， extending to the outermost galactic regions（Fig．26）．In order to do so，we have represented the density ρ through the R－band light profile in mag；this converts the quantity $M^{2} \rho$ into the quantity $\mu^{\prime}=\mu_{R}=5 \log M$ ．The masses M used are those derived from the dynamical modelling previously described，although a test has been done by using the mass scale $\sigma_{0}^{2} R_{\mathrm{e}} / G$ ．The correlation between Mg_{2} and μ^{\prime} within the galaxies of the sample is rather good；the slope of the local relationship is consistent with that shown by galactic nuclei．A shift towards higher masses is observed，which could be due to the addition of the matter present in the dark
haloes when computing the total M（an addition that reduces the scatter in the relationship）．Thus it seems that the proposed combination of a global parameter（the galactic mass M ，which accounts for the effects of depth of the galactic potential well，such as the retention of supernovae－ produced elements and the delay of any galactic wind）and a local parameter（the stellar density ρ ，as described by the surface brightness，which accounts for the effects of local density driven processes such as the star formation rate）is able to embrace the essential mechanisms leading，even in dynamically different objects such as NGC 2434 and NGC 3706 ，to the observed metal distribution within galaxies．Still， a significant spread is present．Errors in the photometric calibration alone cannot account for it，while the possibility remains that it is entirely due to uncertainties in the determi－ nation of the mass（since，for example，the dark haloes here considered are the＇minimum＇allowed by the data）．Both the correlation itself and its spread need，however，to be
understood in the context of recent studies，which show that giant ellipticals could be much older，could have suffered less dissipation，and could have formed more efficiently and on much shorter time－scales than smaller galaxies（WFG；CDB； Gonzales 1993；Matteucci 1993）．This might imply that part of the scatter is＇intrinsic＇，i．e．caused by a residual dependence on the galactic size（e．g．through differences in the efficiency and time－scale of star formation in larger objects），and that a more accurate determination of the two parameters α and β might be required．More detailed data and modelling，involving deeper theoretical investigations， are called for．

5．5 Pecular kinematics and stellar populations in the cores

Two of the galaxies，NGC 2434 and NGC 7192，show a core that is kinematically decoupled from the bulk of the galaxy． The first examples of core decoupling were reported by Franx \＆Illingworth（1988），Jedrezejewski \＆Schechter （1988）and Bender（1988）．There，the evidence for an anomaly in the inner regions was only kinematical，and it was thus unclear whether it arose from，for example，projection effects of highly triaxial shapes（see，e．g．，Statler 1991）．More recently，Bender \＆Surma（1992）and DSP have studied the Mg_{2} radial profiles of some ellipticals with peculiar core

Figure 18．（a）－（c）As Fig．5，for NGC 7192.

Figure 18 －continued
kinematics，and have noticed that such profiles show a sharp change of slope at the radius of the core，i．e．an enhancement in metallicity in the kinematically decoupled inner regions with respect to the main body．Those authors have suggested that such an enhancement might result from star formation episodes following the formation of the bulk of the galaxy， due to possibly already enriched，infalling gas，which might have generated the inner counter－rotating stellar disc also observed in the rotation curve（see also BBF2）．The two gal－ axies NGC 2434 and NGC 7192 present the same anomalous features，i．e．their Mg_{2} profiles show a sudden rise in the radial slope at the radii of the kinematically decoupled
cores．The same qualitative behaviour is observed also in their $\langle\mathrm{Fe}\rangle$ profiles，although，there，the rise is less sharp and the relative enhancement of this index appears much more moderate．This latter result strengthens the suggestion that a later star formation event has produced the counter－rotating stellar disc in the core，and suggests that such an event has occurred on relatively short time－scales．An enhanced $[\mathrm{Mg}$／ $\mathrm{Fe}]$ is in fact what one might expect to observe if the star for－ mation episode had occurred on time－scales shorter than those typical of（iron－producing）Type Ia supernovae． Although the statistics are not yet large，it seems that such inner stellar discs are a rather common phenomenon in the

NGC 7192 R

Figure 18 - continued

Figure 19. As Fig. 2, for NGC 7192.
cores of elliptical galaxies, as demonstrated by the normal occurrence of discy isophotes in the core of large boxy ellipticals (Nieto et al. 1991).

5.6 The $\mathbf{M g}_{2}-\langle\mathbf{F e}\rangle$ relationship

Fig. 27 shows the local correlation between the Mg_{2} and the $\langle\mathrm{Fe}\rangle$ indices for the five galaxies of the sample. The solid line indicates the correlation observed for the ellipticals' nuclei (Burstein et al. 1984). The effect already pointed out by WFG, DSP and CDB of a statistically steeper dependence of $\langle\mathrm{Fe}\rangle$ on Mg_{2} within galaxies, with respect to galactic nuclei, is also observed here. Despite the many hints for a general

Figure 20. (a) and (b) As Fig. 3, for NGC 7192. (c) PA $=65^{\circ}$. Solid lines are the best-fitting oblate dynamical model to the three axes; dashed lines are the best-fitting prolate model (see text),

Figure 20 - continued
behaviour that is not dependent on the details of the orbital structure, it is interesting to note that NGC 3706, which is a rotation-supported galaxy, seems to follow the slope of the nuclei. We still need to understand the influence on this diagram of galaxies that have suffered from central Mg_{2} enhancement, and whether any systematic effect (e.g. a difference in the star formation time-scales between rotationsupported and anisotropic galaxies, driven, for instance, by differences in the stellar/gaseous ratio of the merging subunits) is present. Further and more accurate investigations are required.

5.7 Dark matter content and shapes of the haloes

For most of the galaxies in the sample, the dynamical modelling has given strong evidence for the presence of a massive, extended dark halo around the luminous galaxy. The values of the luminous M / L_{B} are in the range 4-29. (The very high M / L value derived, for example, for NGC 6407 might reflect the inadequacy of constant-ellipticity models in representing galaxies with rapidly varying ellipticity.) The best-fitting haloes show a variety of intrinsic shapes, and, most interestingly, flattened haloes seem to be required in many cases (the only exception in the sample studied here being NGC 2434, which has been well fitted with a spherical
halo). In the other cases, even haloes more flattened than the luminous galaxy itself are preferred, in order properly to fit the observed kinematic profiles (see also the fit to NGC 5018 presented in Paper I). Even if less than conclusive (as a third integral of motion might be required to represent the galactic dynamical fields properly), this result is intriguing, because in standard CDM cosmological models such very flattened dark haloes are naturally produced by dissipationless collapse of dark matter with very cold initial conditions (so that radial orbit instability can occur during the collapse; Dubinski \& Carlberg 1991. See also Bertin \& Stiavelli 1993 and references therein).

6 CONCLUSIONS

In this paper we have studied, through optical multiband CCD photometry and multiposition CCD long-slit spectroscopy, five early-type galaxies, namely NGC 439, NGC 2434, NGC 3706, NGC 6407 and NGC 7192. In two of the galaxies, NGC 2434 and NGC 7192, the innermost nuclear regions counter-rotate with respect to the main galactic bulk and show, corresponding with the kinematically decoupled core, an enhancement in the Mg_{2} index. Such behaviour had been detected before in a few other galaxies (Bender \& Surma 1992; DSP); it can be explained if the core has

Figure 21. (a) and (b) As Fig. 4, for NGC 7192. (c) PA $=65^{\circ}$.

Figure 23. Mg_{2} versus $(B-R)$ within the galaxies of the sample. The solid line is the fit to the nuclei (from DSP). Stars: NGC 439; open squares: NGC 2434; filled triangles: NGC 3706; open hexagons: NGC 6407, and filled circles: NGC 7192.

Figure 24. Mg_{2} versus $\log _{10} \sigma$ within the galaxies of the sample. Symbols as in Fig. 23. The two lines are the fits to the nuclei given by BBF2. The two error bars are those typical for the inner (small bar) and outer (large bar) regions.

Figure 25. Mg_{2} versus the escape velocity (derived from the dynamical modelling) within the galaxies of the sample. Symbols as in Fig. 23 (open and filled squares and circles discriminate oblate and prolate models for NGC 2434 and NGC 7192, respectively). The solid line is the fit to the DSP sample.
suffered from an additional star formation episode due to infalling gas which has enhanced the magnesium content of the central region and generated a stellar disc observed to be counter-rotating in the velocity profile. For both galaxies, we have also measured the $\langle\mathrm{Fe}\rangle$ profile, which is also found to show an enhancement relative to the galactic bulk. Such an enhancement is, however, much less pronounced than that detected in Mg_{2}. This and the red central colour, ensuring the absence of any younger stellar component, suggest that the additional star formation event has occurred at earlier phases and has been very rapid, i.e. on time-scales shorter than that occurring during the formation of the bulk of the galaxy, and also shorter than that typical of (iron-producing) Type I supernovae. If this phenomenon were a common feature in giant ellipticals, it might be at least partly responsible for the shallow slope in the $\langle\mathrm{Fe}\rangle-\mathrm{Mg}_{2}$ plane shown by galactic nuclei, as compared with that traced within galaxies,
where the outer regions (not affected by any Mg_{2} enhancement) dominate the measurement.

Axisymmetric dynamical models have been constructed for each galaxy, and in some objects they support the presence of a significantly massive and extended dark halo (in some cases at least as flattened as the luminous galaxy it surrounds). The availability of observations at several position angles for flattened galaxies has turned out to be a necessary ingredient to constrain the shapes of the haloes. In round galaxies, the degeneracy (in projection) increases enormously the freedom in modelling. The escape velocity from the gravitational potential well has been derived from the best-fitting dynamical model of each galaxy.

A local dependence of the metallicity (as traced by Mg_{2}) on the escape velocity has been found (supporting the results of FI and DSP); however, the spread in the local relationship hints at other physical parameters, in addition to the local

Figure 26． Mg_{2} versus $\mu_{R}-5 \log _{10} M$（i．e．versus $M^{2} \rho$ ；mass derived from the dynamical modelling）within the galaxies of the sample．Symbols as in Fig．23．The solid line is the fit to the nuclei given by BBF2．

Figure 27．$\langle\mathrm{Fe}\rangle$ versus Mg_{2} within the galaxies of the sample．Symbols as in Fig．23．The solid line is the fit to the nuclei given by Burstein et al． （1984）．The two error bars are those typical for the inner（small bar）and outer（large bar）regions．
potential affecting the metallicity distribution within galaxies． The local dependence of the Mg_{2} index on the local stellar density，as described by the R surface brightness，has been investigated．The mass derived from the dynamical modelling has been used to scale the density；the addition of the dark component has turned out to be crucial in reducing the spread in the $\mathrm{Mg}_{2}-M^{2} \rho$ relationship，which seems to follow the average relationship derived by BBF2 for galactic nuclei．It is remarkable that objects with kinematically decoupled cores and flattened by anisotropic pressure（such as NGC 2434），and rotation－supported objects such as NGC 3706 ，lie almost parallel and very close in the $\mathrm{Mg}_{2}-M^{2} \rho$ plane．It seems as if local phenomena，regulated by basic physical processes，such as the amount of dissipation that occurred or the star formation rate，are able to reproduce （once scaled to the size of the galaxy itself）the observed metallicity distribution．However，the relatively large scatter in the relationship might suggest a residual dependence on， for example，the details of the orbital structure or the galactic size．

ACKNOWLEDGMENTS

We are indebted to R ．van der Marel for kindly providing the Fourier fitting program．We also thank R．F．Peletier，M． Stiavelli and P．T．de Zeeuw for interesting comments on a preliminary version of this paper．CMC wishes to thank F． Matteucci and M．Stiavelli for enlightening conversations． This research has made use of the NASA／IPAC extragalactic database（NED），which is operated by the Jet Propulsion Laboratory，Caltech，under contract with the National Aeronautics and Space Administration．

REFERENCES

Bender R．，1988，A\＆A，202，L5
Bender R．，Surma P．，1992，A\＆A，258， 250
Bender R．，Burstein D．，Faber S．M．，1992，ApJ，399， 462 （BBF1）
Bender R．，Burstein D．，Faber S．M．，1993，ApJ，411， 153 （BBF2）
Bertin G．，Stiavelli M．，1993，Rep．Prog．Phys．，56， 493
Binney J．J．，Davies R．L．，Illingworth G．D．，1990，ApJ，361， 78
Bregman J．N．，Hogg D．E．，Roberts M．S．，1992，ApJ，387， 484
Burstein D．，Heiles C．，1984，ApJS，54， 33
Burstein D．，Faber S．M．，Gaskell C．M．，Krumm N．，1984，ApJ，287， 586
Burstein D．，Bertola F．，Buson L．M．，Faber S．M．，Lauer T．R．，1988， ApJ，328， 440

Carollo C．M．，1993，PhD thesis，Ludwig－Maximilians Universität （C93）
Carollo C．M．，Danziger I．J．，1994，MNRAS，in press（Paper I）
Carollo C．M．，Danziger I．J．，Buson L．M．，1993，MNRAS，265， 553 （CDB）
Carollo C．M．，van der Marel R．，de Zeeuw P．T．，Danziger I．J．， 1994，MNRAS，submitted（CMZD）
Davies R．L．，Burstein D．，Dressler A．，Faber S．M．，Lynden－Bell D．， Terlevich R．，Wegner G．，1987，ApJS，64， 581 （D87）
Davies R．L．，Sadler E．M．，Peletier R．F．，1993，MNRAS，262， 650
de Vaucouleurs A．，Longo G．，1988，Catalogue of Visual and Infrared Photometry of Galaxies from $0.5 \mu \mathrm{~m}$ to $10 \mu \mathrm{~m}$ （1961－1985）．Univ．Texas，Austin
de Vaucouleurs G．，de Vaucouleurs A．，Corwin H．G．Jr，Buta R．J．， Paturel G．，Fouqué P．，1991，Third Reference Catalogue of Bright Galaxies．Springer－Verlag，New York（RC3）
Dubinski J．，Carlberg R．G．，1991，ApJ，378， 496
Franx M．，Illingworth G．D．，1988，ApJ，．327，L55
Franx M．，Illingworth G．D．，1990，ApJ，359，L41（FI）
Franx M．，Illingworth G．D．，Heckman T．，1989，AJ，98， 538
Gonzales J．J．，1993，PhD thesis，Univ．California，Santa Cruz
Gourgoulhon E．，Chamaraux P．，Fouqué P．，1992，A\＆A，255， 69
Huchra J．P．，Geller M．J．，1982，ApJ，257， 423
Jaffe W．，1983，MNRAS，202， 995
Jedrezejewski R．J．，Schechter P．L．，1988，ApJ，330，L87
Lauberts A．，Valentjin E．A．，1989，The surface photometry catalogue of the ESO－Uppsala Galaxies．ESO，Garching
Longo G．，de Vaucouleurs A．，1983，A General Catalogue of Photo－ electric Magnitudes and Colors in the U，B，V，System 91936－ 1982．Univ．Texas，Austin
Maia M．A．G．，Da Costa L．N．，Latham D．W．，1989，ApJS，69， 809
Malin D．F．，Carter D．，1983，ApJ，274， 534
Matteucci F．，1994，A\＆A，in press
Nieto J．－L．，Bender R．，Arnaud J．，Surma P．，1991，A\＆A，244，L25
Peletier R．F．，Davies R．L．，Illingworth G．D．，Davis L．E．，Cawson M．C．M．，1990，AJ，100， 1091
Phillips M．M．，Jenkins C．R．，Dopita M．A．，Sadler E．M．，Binette L．， 1986，AJ，91， 1062
Roberts M．S．，Hogg D．E．，Bregman J．N．，Forman W．R．，Jones C．， 1991，ApJS，75， 751
Sadler E．M．，Jenkins C．R．，Kotanyi C．G．，1989，MNRAS，240， 591
Sargent W．L．W．，Schechter P．L．，Bocksenberg A．，Shortridge K．， 1977，ApJ，212， 326
Statler T．S．，1991，ApJ，382，L11
Terlevich R．，Davies R．L．，Faber S．M．，Burstein D．，1981，MNRAS， 196， 381
Vader J．P．，Chaboyer B．，1992，Publ．Astron．Soc．Pac．，104， 57
van der Marel R．，Franx M．，1993，ApJ，407， 525
Whitford B．C．，1971，ApJ，169， 215
Wilkinson A．，Browne I．W．A．，Kotanyi C．，Christiansen W．A．， Williams R．，Sparks W．B．，1987，MNRAS，224， 895
Worthey G．，Faber S．M．，Gonzalez J．J．，1992，ApJ，398， 69

APPENDIX A: PHOTOMETRIC DATA

NGC 439

	R	-_R	011	-.011	C4	- 44	B-R	-_B-R
0.8800	17.4900	0.0035	0.0599	0.0005	-0.0110	0.0005	1.5760	0.0052
0.9680	17.5100	0.0036	0.0619	0.0005	-0.0100	0.0005	1.5840	0.00
1.0650	17.5500	0.0037	0.0	0.0005	-0.0090	0.0005	1.5780	0.0054
1.1	17.5900	0.0039	0.0699	0.0005	-0.0080	0.0005	750	0.0056
1.2850	17.6300	0.0040	0.0755	0.0005	-0.0070	0.0005	770	0.0058
1.4	17	0.00	0.08	0.0005	-	0.	00	0.0060
1.5580	17.7300	0.0043	0.0915	0.0005	-0.0010	0.0005	567	0.0059
1.7	17.	0.0	0.	0.	0.0000	0.	1.5550	
1.8	17.8800	0.0	0.	0.0005	0.0000	0.0005	1.5450	0.0056
2.07	17.9600	0.00	0.	0.000	-	0.0005	1.5360	0.0054
2.2	18.0500	0.0	0.	0.0005	-0	0.	1.5280	0.0051
2.50	18.1100	0.0033	0.15	0.000	-0.0020	0.	1.5490	0.0048
2.7	18.	0.0	0.	0.0	-0	0.0005	1.5380	
3.03	18.3200	0.0031	0.187	0.00	0.000	0.000	1.5220	0.0052
3.3	18.	0.00	0.2	0.00	-0.001	0.	1.5420	
3.6780	18.5300	0.0032	0.2225	0.0005	-0.0030	0.0005	120	0.0053
4.0	18.6300	0.00	0.23	0.00	-	0.0005	1.5190	
4.4	18.7	0.00	0.2	0.0005	-0	0.	230	0.0060
4.8930	18.8600	0.0035	0.2629	0.0005	-0.00	0.000	1.5220	0.0067
5.386	19.	0.003	0.27	0.00	-0		1.5050	
5.9220	19.1	0.00	0.29	5	-0	0.0005	1.4700	0.0079
6.5120	19.2400	0.0	0.	0.0005	-0	0.0010	1.5080	0.0097
7.1	19.3	0.0	0.3090	0	-0	0.0020	90	0.0093
7.8	19.4900	0.0046	0.3240	0.0	-0.00	0.	020	0.0084
8.6	19.	0.0	0.3	0.0	-0.	0.0005	20	
9.53	19.7400	0.00	0.3	0.00	-0.0090	. 0	1.5020	0.0107
0.4	19.87	0.	0.	0.	-0	0.0005	1.4900	
11.5400	20.0	0.0	0.3	0.0	-0.00	0.	1.4860	0.0114
12	20.	0.	0	0.	-0.	0.0010	1.4790	
13	20.3100	0.0	0.3	0.0005	-0	0.	30	
15.	20.	0.0	0.3227	0.0005	-0.00	0.	1.4780	0.0115
16	20.6	0.	0.3	0.	-0	0.0010	1.	
18.5800	20.7	0.0	0.3	0.0	-0.0010	0.0	1.4710	
20	20.9	0.0	0.3	0.	0.	0.	1.4630	
22.4800	21.1000	0.0	0.3630	0.0005	0.0070	0.0010	10	
24.7300	21.2600	0.0	0.3	0.0005	0.0020	0.0	1.4640	0.0194
27.20	21.4	0.00	0.3	0.0005	0.	0.0010	1.4460	
29.9200	21.5600	0.00	0.3825	0.0005	0.0000	0.0010	1.	
32.9100	21.	0.00	0.3824	0.0005	-0.0030	0.0020	1.4330	
36.200	21.9000	0.00	0.3	0.0005	0020	0.0010	340	0.0200
39.8300	22.0	0.0	0.3	0.0	0.0070	0.0010	1.4080	0.
43.	22.2400	0.008	0.3912	0.0005	0.0100	0.0010	1.4110	0.
48.1900	22.4200	0.0106	0.40	0.0005	0110	0.0020	1.4030	
53.0	22.6100	0.009	0.399	0.000	0.0100	0.002	1.4060	
58.3100	22.7800	0.0084	0.3987	0.0005	0.0090	0.0010	1.4180	
64.1400	22.9600	0.0126	0.4253	0.0005	0.0110	0.0020	1.4050	
70.5	23.1500	0.0119	0.408	0.0	0.0110	0.0020	1.409	
77.6200	23.3400	0.0113	0.3865	0.0005	0.0100	0.0020	1.4020	0.
85.3800	23.5500	0.0137	0.3966	0.000	0.0090	0.0020	1.3750	
93.9100	23.7500	0.0	0.3	0.0005	0.0130	0.0020	1.4130	
103.3000	23.9700	0.0136	0.36	0.0005	0.0050	0.0030	1.3940	
113.6000	24.1800	0.0213	0.4068	0.0005	0.0100	0.0040	1.4270	0.
125.0000	24.3600	0.0243	0.4068	0.0005	0.0200	0.0060	1.3860	
37.5000	24.5500	0.0256	0.3425	0.000	0.0120	0.0070	1.4270	
151.2000	24.7100	0.0269	0.3425	0.0005	0.0240	0.0290	4080	

NGC 2434

	\boldsymbol{R}	-_R	-11	- _011	c4	-_c4	B-R	8-R
0.6640	15.9300	0.0012	0.0090	0.0005	0.0010	0.0005	1.6010	0.0046
0.7304	15.9600	0.0013	0.0099	0.0005	0.0010	0.0005	1.6140	0.0048
0.8034	16.0100	0.0014	0.0188	0.0005	-0.0030	0.0005	1.6020	0.0052
0.8831	16.0600	0.0017	0.0294	0.0005	-0.0040	0.0005	1.5930	0.0056
0.9694	16.1200	0.0021	0.0380	0.0005	-0.0050	0.0005	1.5880	0.0062
1.0690	16.1800	0.0025	0.0400	0.0005	-0.0060	0.0005	. 5870	0.0070
1.1750	16.2500	0.002	0.0339	0.0005	-0.005	0.0005	1.5890	0.0078
1.2950	16.3500	0.0032	0.0269	0.0005	-0.0050	0.0005	1.5500	0.0085
1.4210	16.4200	0.003	0.0247	0.0005	-0.0050	0.0005	1.5520	0.0088
1.5670	16.5000	0.0035	0.0341	0.0005	-0.0060	0.0005	1.5530	0.0091
1.7200	16.5900	0.003	0.0469	0.0005	-0.0060	0.0005	1.5530	0.0094
1.8920	16.6900	0.0036	0.0550	0.0005	-0.0050	0.0005	1.5490	0.0094
2.0850	16.7900	0.0036	0.0600	0.0005	-0.0040	0.0005	1.5390	0.0097
2.2910	16.9000	0.0035	0.0624	0.0005	-0.0020	0.0005	1.5200	0.0095
2.5230	17.0300	0.0034	0.0664	0.0005	-0.0010	0.0005	1.4910	0.0088
2.7760	17.1800	0.0032	0.07	0.0005	-0.0020	0.0005	1.4510	0.0085
3.0480	17.2600	0.0027	0.0750	0.0005	-0.0020	0.0005	1.4970	0.0081
3.3530	17.4400	0.0026	0.0790	0.0005	-0.0020	0.0005	1.4190	0.0079
3.6920	17.5400	0.0024	0.0831	0.000	0.000	0.000	1.43	0.0078
4.0640	17.6500	0.0020	0.0858	0.0005	0.0000	0.0005	1.4610	0.0075
4.4690	17.780	0.0019	0.0909	0.0005	-0.0020	0.0005	1.4600	0.0070
4.9140	17.9100	0.0017	0.0931	0.0005	-0.0030	0.0005	1.4530	0.0067
5.4050	18.0500	0.0019	0.0965	0.0005	-0.0030	0.0010	1.4440	0.0068
5.9430	18.1800	0.0020	0.0960	0.0005	-0.0020	0.0005	1.4460	0.0063
6.5400	18.3400	0.0017	0.0903	0.0005	-0.0020	0.0005	1.4480	0.0065
7.1910	18.5000	0.0016	0.0879	0.0005	0.0000	0.0005	1.4470	0.0061
7.9150	18.6600	0.001	0.0867	0.000	0.0000	0.0005	1.4370	0.0068

NGC 2434

	1	- \boldsymbol{R}	11	-_011	44	-	8-2	8-2
8.7050	18.8200	0.0025	0.0786	0.0005	0.0010	0.0010	1.4280	0.0079
9.5750	18.9800	0.0022	0.0791	0.0005	0.0030	0.0010	. 4300	077
10.5300	19.1400	0.0024	0.0791	0.0005	0.0020	0.0010	50	085
11.5900	19.2900	0.0024	0.0874	0.0005	0.0030	0.0020	40	088
12.7400	19.4300	0.0029	0.0924	0.0005	0.0020	0.0020	1.4210	11
14.0200	19.5700	0.0027	0.0966	0.0005	0.0030	0.0020	1.4110	96
15.420	19.7100	0.0032	0.089	0.0005	0.0030	0.0010	. 4100	. 0111
16.9	19.8500	0.0033	0.	0.0005	0.0000	0.0020	4100	0.0117
18.6600	20.0100	0.0033	0.0868	0.0005	0.0020	0.0010	1.4020	. 0124
20.5	20.1800	0.0031	0.0808	0.0005	0.0030	0.0010	1.4050	36
22.5	20.3600	0.0032	0.0835	0.0005	0.0000	0.0010	1.3960	150
24.8	20.5500	0.003	0.08	0.0005	0.000	0.0010	750	59
27.3200	20.7500	0.0044	0.0848	0.0005	0.0000	0.0010	. 3660	93
30.0500	20.9600	0.0049	0.086	0.00	0.0020	0.0010	. 3670	. 0217
33.0	21.1500	0.00	0.0873	0.0	0.0	0.0010	. 3590	. 0254
36.360	21.3400	0.00	0.0937	0.0005	0.0030	0.0020	500	279
40.	21.5000	0.0	0.1155	0.0005	0.0030	0.0010	00	0.0325
44.00	21.6800	0.00	0	0.0	0.0010	0.0010	1.3240	380
48.4000	21.8600	0.0098	0.1189	0.0005	0.0020	0.0020	1.3090	0.0423
53.2	22.0500	0.0118	0.1265	0.0	0.0	0.0020	1.3480	38
58.5600	22.2600	0.0127	0.1213	0.0005	0.0	0.0020	880	08
64.4200	22.5000	0.0151	0.1156	0.0005	0.0000	0.0020	. 2760	. 0765
70.8	22.	0.0	0	0.0	-0.0020	0.0	1.2570	43
77.9500	23.0100	0.0231	0.1063	0.0005	0.0010	0.0020	1.1920	24
85.7400	23.2700	0.0292	0.1183	0.0005	-0.0020	0.0040	1.1900	0.1438
94	23.	0.03	0.0	0.0	0.000	0.004	. 0	64
103.8000	23.8100	0.0461	0.0726	0.0005	0.0070	0.0050	. 0050	. 2046
114.1000	24.0500	0.0584	0.0781	0.0005	0.0190	0.0060	0.9258	0.2417
125.5000	24.4000	0.0850	0.1087	0.0005	0.0130	0.0050	0.8293	0.2794
138.1000	24.6800	0.1229	0.1087	0.0005	0.4490	0.2330	0.7232	0.3208
51.9000	25.0400	0.	0.	0.0	-0.00	0.	0.6065	0.3664

NGC 6407

rad	R	-_R	011	11	c4	-.c4	B-R	-R
0.8800	17.2400	0.0012	0.0150	0.0005	-0.0090	$0.00 \cdot 05$	1.681	0.0040
0.9680	17.2700	0.0013	0.0153	0.0005	-0.0070	0.0005	1.6800	0.0042
1.065	17.3100	0.001	15	. 00	-0.0070	0.00	1.6840	0.0042
1.1700	17.	0.00	0.0154	0.0	-0.00	0.0005	1.6940	0.0044
1.28	17.	0.00	0.01	0.00	-0.0	0.0	1.6700	0.0
1.4170	17.460	0.001	0.020	0.00	-0.00	0.00	1.68	0.0051
1.5580	17	0.001	0.0231	0.0005	0.0000	0.0005	1.6710	0.0054
1.7160	17.	0.0019	0.0261	0.0005	0.	5	1.6520	58
1.8830	17.6800	0.0018	0.0290	0.0005	0.0040	0.0005	1.6820	0.0056
2.0770	17.78	0.0019	0.0323	0.0005	0.003	0.00	1.6640	0.0058
2.2790	17.9000	0.0020	0.037	0.000	. 003	. 000	1.6410	0058
2.5080	18	0.002	0.0419	0.0005	0.0050	0.0005	1.6100	62
2.763	18	0.0021	0.0468	0.0005	0.0050	. 00	1.6420	. 0062
3.036	18.	0.0021	0.0527	0.0005	0.0050	0.0005	1.5920	. 00
3.3440	18.340	0.001	0.05	. 00	0.00	0.00	1.6150	0.00
3.6780	18.430	0.00	0.06	. 0	0.0020	0.0	1.6340	0.0053
0	18.	0.0019	0.0	0.0005	0.0010	0.0005	1.	0.0053
0	18.	0.0020	0.	0.0005	0.0000	0.0005	1.6230	0.0054
4.8930	18.	0.0	0.0935	0.0	0.0000	0.0005	1.6	57
5.3860	18.	0.0	0.1035	0.00	0.0000	0.00	1.	61
0	19	0.0024	0.1071	0.0005	0.0000	0.0010	1.6090	60
6.5	19	0.0024	0.1075	0.0005	0.0010	0.0010	1.6000	60
7.1630	19.3200	0.002	0.1140	0.00	0.0	0.00	1.5920	0.0076
7.8760	19.4600	0.002	0.1196	0.00	0.00	0.002	1.58	0.0078
8.6680	19.	0.002	0.1	0.0	0.00	0.0020	1.5	0.0073
. 5300	19.7	0.0	0.1133	0.0005	-0.00	0.0010	1.5	0.0076
0.4900	19.8800	0.00	0.0982	0.0005	-0.0050	0.00	1.5720	0.0094
11.5400	20.0200	0.0063	0.0961	0.0005	-0.010	0.0030	1.5650	0.0135
12.6	20.160	0.	. 1103	0.0005	-0	0.00	1.5570	00
3.	20.	0.0137	0.1214	. 00	-0.0380	0.0050	1.5550	254
15.	20.4	. 01	0.1214	0.00	-0.	0.0	1.5490	0.0292
16.890	20.580	0.016	0.109	0.000	-0.02	0.00	1.538	0.0289
. 5	20.7	0.0137	0.11	0.00	-0.0350	0.0030	1.6	0.0242
20.	20.	0.00	0.1	0.0	-0.02	0.0	.	0.0205
22.48	21.0500	0.0081	0.1230	0.0005	-0.009	0.0020	1.4710	0.0194
24.7300	21.2200	0.0073	0.1673	0.0005	0.0050	0.0030	1.4390	0.0176
27.2000	21.4000	0.006	0.1599	0.0005	0.0070	0.0030	1.405	0.0179
29.9200	21.5900	0.006	0.1647	0.0005	0.0040	0.0020	1.3790	0.0193
32.9100	21.7500	0.00	0.2024	0.000	0.0130	0.003	1.3470	0.0256
36.2000	21.9200	0.011	0.2339	0.000	0.014	0.003	1.309	0.0328
39.830	22.100	0.010	0.195	0.00	0.0110	0.0030	1.26	0.0336
43.8200	22.3	0.0112	0.17	0.0	0.007	0.0030	1.22	0.0367
48.1900	22.490	0.0126	0.1655	0.0005	0.000	0.0020	1.1790	0.0409
53.0100	22.7100	0.0168	0.1698	0.0005	-0.0090	0.0030	1.1420	0.0478
58.3100	22.9200	0.0199	0.1475	0.0005	-0.0210	0.0050	1.0970	0.0518
64.1400	23.0800	0.0243	0.1550	0.0005	-0.0240	0.0060	1.0830	0.0624
70.5600	23.2700	0.0336	0.1550	0.0005	-0.0600	0.0060	1.0840	0.0751
77.6200	23.4400	0.0422	0.1550	0.0005	-0.0690	0.0080	1.1110	0.0838
85.3800	23.5800	0.0531	0.2989	0.0005	0.0390	0.0110	1.1620	0.1007
3.9100	23.8200	0.0584	0.2451	0.0005	-0.0020	0.0060	1.1500	0.1174
103.3000	24.1100	0.0678	0.2919	0.0005	0.0240	0.0060	1.0590	0.1350
113.6000	24.4300	0.0818	0.2826	0.0005	0.0200	0.0070	1.0380	0.1671
125.0000	24.7400	0.0879	0.2811	0.0005	0.0240	0.0070	0.9124	0.1823
137.5000	25.1800	0.1182	0.2811	0.0005	0.0040	0.0080	0.7846	0.2473
151.2000	25.5900	0.1400	0.2811	0.0005	0.0130	0.0120	0.6599	0.3361
166.4000	26.0600	0.1857	0.2811	0.0005	-0.0150	0.0120	0.5228	0.4338
183.000	26.6600	0.310	0.2811	0.000	-0.03	0.015	0.371	0.541

NGC 7192

	R		011	-0.011			B-R	
0.8800		0.0032	0.0451	0.0005	. 008	0.0005	1.5740	0.0073
0.9680	16.	0.0	0.	0.	-0	0.0005	1.5970	0.0076
1.0650	16.7500	0.0	0.	0.	-0	0.	1.5470	8
1.1700	16	0.0035	0.0439		-0.0080			. 0082
1.2850	16.8800	0.0	0.0	0.0005	-0	0.0005	1.5400	85
70	16.9600	0.0038	0.0455	0.0	-0.	0.0005	1.5250	91
	17	0.0039	0.0449					
1.7160	17	0.00	0.0	0.00	0.0010	0.0005	1.4890	94
1.8830								
2.0770	17	0.0033	0.0332		-0	0.0005	. 4680	3
2.								
2.5080			0.	0.	-0	0.0005	1.4730	0
2.	17	0.	0.0	0.	-0	0.0005		
3.0360								
3.3440	17	0.0	0.	0.0005	0.0000	0.0	1.4350	58
3.6	18							
4.0390	18	0.	0.	0.	-0	0.	1.4640	54
4.4440	18	0.0	0.0	0.	-0	0.0005	1.4620	1
		0.0						
5.3860	18	0.0031	0.028	0.0005	0.0000	0.0010	1.3910	60
5.9220								
6.5120	18	0.	0.	0.0	0.0000	0.0005	1.4090	39
			0.0					
								46
8.6	19	0.0			0.0			. 0049
					-0			
10.4		0.002			0.001			. 0047
11.5400					-0			
12.6900		0.0			-0.	0.0	1.3890	0.0061
	20	0.0		0.0005	0.	0.0		
					-0			
16.8	20	0.0						0.0091
	20	0.						1
20.4400		0.						0.0087
	20	0.						. 0084
								91
					-0			0.0093
29.9200		0.0	0.0		0.	0.	1.3310	0.0117
32.9100	21	0.	0.0238		-0.00			
		0.0	0.	0.	-0.	0.	. 3120	0.0144
39.8		0.	0.					54
43.8		0.0						86
48.1900		0.0	0.0		0.	0.	.	0.0225
53.0	22	0.0104					1.2100	3
		0.0	0.0		0.0	0.0	1.165	0.0331
. 1	23	0.0144	0.	0.	0.0	0.0	1.1270	385
70.5	23	0.01	0.0		-0.			
77.6	23	0.	0.		-0.008			
85.3	23	0.02	0.0					
93	24	0.	0.0		-0.0		0.	0.
103.3	24.	0.0	0.0	0.0	-0.010			
113.	24.	0.04	0.0	0.0	0.0	0.0	0.	0.0983
125.00	24.9	0.06	0.0	0.0	0.0	0.0	0.	0.
13	25.2	0.092	0.0134	0.0	0.0	0.0	0.5302	0.1698
151.2	25.	0.1238	0.0	0.0	0.0300	0.0240	. 4747	0.2179
166.400	25.5500	0.1421	0.013	0.0	0.07	0.0	0.4131	0.2749
183.0000	25.6	0.1647	0.108	0.0	0.001	0.005	0.3	0.3376
201.3000	25	. 181	0.118	0.000	0.04	0.01	0.27	0.4065

APPENDIC B: KINEMATIC DATA

NGC 439 major

radius	\boldsymbol{v}	$\bullet . \nabla$	Signa	\bullet-Sigma
	-45.3	-110.0	32.4	209.0
-40.8	-64.0	55.8	237.2	47.4
-31.5	-41.0	29.8	242.2	42.2
-24.1	-14.0	30.5	282.1	38.9
-21.6	-12.0	23.3	284.5	33.9
-18.9	-23.0	29.0	289.9	37.2
-14.9	-4.0	19.8	263.1	32.9
-12.5	-18.0	14.8	270.1	27.9
-11.9	-26.0	16.2	259.9	29.8
-9.7	-17.0	20.0	281.6	31.6
-7.9	-23.0	15.8	274.5	28.4
-6.2	-20.0	19.3	307.7	29.5
-4.8	-6.0	17.0	297.2	28.3
-4.0	0.0	18.7	283.9	30.4
-3.2	4.0	18.0	314.0	28.1
-2.3	-1.0	19.5	332.7	28.4
-1.4	-14.0	14.8	295.7	26.5
-0.5	-3.0	17.2	310.9	27.7
0.4	-1.0	14.7	296.9	26.3
1.2	-15.0	16.0	307.1	27.0
3.0	6.0	15.1	288.7	27.1
3.9	8.0	18.2	301.2	29.0
4.3	-10.0	16.3	288.6	28.2
6.8	9.0	15.1	273.0	28.1

NGC 439 major

radius	v	- - V	Sigaa	-_Sigra
7.8	5.0	18.2	266.1	31.2
9.6	11.0	20.1	297.7	30.6
11.1	17.0	16.1	296.8	27.4
14.8	15.0	24.8	317.2	33.0
18.5	19.0	21.4	312.7	30.8
23.9	27.0	28.6	295.8	36.7
31.3	53.0	38.2	338.6	39.3
36.2	31.0	33.2	276.3	41.1
42.7	21.0	45.8	213.6	56.3

NGC 439 minor

-70.8	4.0	53.9	192.7	79.8
-53.1	7.0	52.7	272.1	66.9
-33.3	-3.0	54.1	247.3	69.7
-15.0	-7.0	33.0	282.1	40.4
-9.1	-1.0	28.4	287.8	37.1
-5.7	16.0	24.9	316.9	33.1
-4.5	1.0	19.4	312.1	29.4
-3.5	-10.0	20.7	306.2	30.6
-2.3	1.0	17.2	273.3	29.9
-1.8	3.0	15.2	289.1	27.2
-1.4	7.0	19.4	304.5	29.7
-0.5	-9.0	21.6	296.5	31.8
-0.1	-4.0	17.2	282.9	29.3
0.4	0.0	19.3	268.7	32.1
1.2	12.0	17.3	298.1	28.5
1.6	3.0	16.4	290.0	28.2
2.1	-10.0	20.7	278.4	32.5
3.4	6.0	20.4	290.1	31.3
4.6	10.0	17.1	292.4	28.6
5.5	16.0	19.7	295.3	30.5
8.9	-1.0	27.9	305.4	35.6
15.4	-7.0	47.9	281.5	48.3
17.7	-8.0	39.8	303.8	42.6
33.3	-6.0	66.6	305.3	56.7

NGC 2434 major

-61.8	-11.0	45.3	189.8	47.7
-36.5	-22.0	23.6	186.3	30.7
-26.1	-10.0	15.3	177.6	16.2
-20.4	-24.0	15.5	158.3	24.6
-13.6	-27.0	11.6	185.8	14.5
-11.4	-23.0	13.2	198.6	19.7
-6.5	-22.0	12.8	179.8	18.3
-5.4	-29.0	10.8	167.4	14.0
-4.8	-36.0	9.5	189.8	11.9
-2.4	-40.0	2.7	215.9	3.0
-2.1	-45.0	8.2	212.3	8.8
-1.5	-39.0	3.5	224.4	3.5
-0.8	-31.0	2.9	242.0	2.7
-0.1	-23.0	2.9	260.5	3.7
0.5	-10.0	2.8	252.9	3.7
1.2	-3.0	2.8	226.6	4.0
2.8	20.0	2.7	209.7	3.9
6.9	5.0	2.8	196.2	3.3
9.4	7.0	10.8	189.8	14.3
11.9	-5.0	13.1	189.8	13.9
13.3	-4.0	12.5	175.9	17.8
16.3	4.0	12.1	196.4	14.2
25.0	0.0	15.4	193.0	19.8
27.9	-6.0	5.3	188.8	16.9
34.2	-6.0	21.5	195.3	20.5
56.6	0.0	40.1	187.8	37.5

NGC 2434 minor

-29.8	-36.0	24.8	172.6	20.3
-23.1	-30.0	25.2	138.2	30.7
-18.4	-22.0	19.9	130.3	21.7
-15.3	-22.0	13.4	158.3	15.8
-13.0	12.0	14.9	192.0	16.0
-11.1	-17.0	13.6	163.8	14.9
-9.4	16.0	12.6	170.3	16.6
-8.1	15.0	11.8	188.4	11.6
-6.8	11.0	9.4	152.3	11.1
-5.8	5.0	10.5	176.6	12.1
-5.1	-8.0	11.8	169.4	11.1
-4.5	-12.0	9.6	178.3	12.7
-3.8	9.0	8.1	201.5	8.5
-3.2	-8.0	10.1	185.1	9.7
-2.5	9.0	7.0	194.9	7.8
-1.8	11.0	7.1	205.2	7.2
-1.2	14.0	7.4	217.2	7.0
-0.5	6.0	6.7	236.5	5.9
0.1	17.0	6.7	250.3	5.8
0.8	20.0	6.5	230.9	6.0
1.5	17.0	7.6	218.9	7.0
2.1	0.0	6.7	194.1	7.7
2.8	-1.0	7.3	169.0	7.9

NGC 2434 minor

radius	V	－V	Sigma	Q＿Sigma
3.4	6.0	7.7	189.5	9.8
4.1	0.0	9.7	191.8	11.5
4.8	20.0	11.0	169.6	12.8
5.4	5.0	12.0	187.5	13.2
6.1	-11.0	12.1	185.0	12.9
7.1	15.0	14.2	153.8	16.8
8.4	6.0	11.0	155.1	12.4
9.7	26.0	12.8	156.0	12.3
11.3	15.0	11.6	184.2	16.6
13.6	9.0	14.1	168.6	14.1
16.6	12.0	17.4	221.5	20.5
21.2	28.0	17.4	191.5	17.5
29.3	13.0	25.4	205.1	18.2

NGC 2434 PA 90°

	17.8	32.0	21.7	146.8
-13.6	-16.0	19.5	155.0	19.0
-10.7	-6.0	14.8	187.4	18.2
-8.4	-17.0	15.8	188.2	19.4
-6.8	13.0	14.7	200.6	14.6
-5.5	10.0	11.1	199.0	15.1
-4.5	-11.0	12.4	205.7	13.5
-3.8	16.0	13.1	187.9	10.5
-3.2	35.0	10.8	191.1	12.2
-2.5	27.0	10.1	192.9	12.4
-1.8	11.0	8.9	204.2	9.5
-1.2	28.0	9.6	226.4	9.0
-0.5	15.0	8.8	239.1	8.5
0.1	14.0	9.7	265.4	7.9
0.8	8.0	9.2	238.9	8.0
1.5	-3.0	9.5	222.2	10.2
2.1	-15.0	9.1	189.8	10.9
2.8	-14.0	10.7	195.3	14.1
3.4	-2.0	12.5	209.9	11.1
4.1	7.0	14.4	215.8	16.9
4.8	-31.0	15.4	192.1	15.4
5.7	15.0	13.6	206.9	15.5
7.0	-16.0	12.9	158.0	15.9
8.7	-28.0	15.6	148.5	17.1
10.9	-46.0	18.5	210.5	21.6
13.9	-30.0	22.7	163.7	26.4
18.4	-42.0	25.4	191.3	29.4

NGC 3706 major

ஸ் m		
隹		

NGC 3706 minor

radius	v	－－V	Sigma	－＿Sigra
－29．7	－57．0	8.6	219.6	8.7
－14．2	－50．0	4.7	232.4	4.2
－9．4	－42．0	4.3	259.9	4.3
－6．8	－13．0	4.5	247.5	4.3
－5．2	－32．0	4.3	253.7	3.6
－3．9	－11．0	4.0	282.5	3.7
－2．9	－10．0	4.0	270.5	3.4
－2．2	17.0	4.2	284.6	4.1
－1．6	－5．0	3.4	303.0	3.0
－0．9	0.0	3.5	325.2	3.1
－0．3	8.0	3.4	339.6	3.0
0.4	－8．0	3.4	339.7	2.9
1.1	－17．0	3.3	314.9	3.0
1.7	1.0	3.7	306.5	3.1
2.4	－2．0	4.0	307.5	3.5
3.0	－35．0	4.2	287.3	4.1
4.0	－14．0	3.9	278.4	3.8
5.6	－28．0	4.1	290.7	4.2
7.9	－31．0	4.4	258.8	3.8
11.4	－3．0	4.4	246.8	4.2
19.2	－14．0	5.5	226.6	4.9

NGC 6407 major

-31.4	5.0	43.8	284.1	51.8
-24.0	14.0	29.4	244.9	48.7
-21.8	13.0	26.3	225.1	41.7
-19.7	19.0	29.6	213.8	46.0
-16.7	30.0	33.5	259.3	43.2
-14.3	39.0	29.6	352.9	34.0
-11.9	20.0	22.5	260.1	35.3
-10.0	22.0	20.8	290.8	31.8
-8.3	35.0	25.4	326.7	32.9
-6.9	25.0	19.8	339.6	28.4
-4.8	10.0	17.1	316.2	27.4
-3.5	24.0	19.9	315.4	29.5
-2.6	16.0	17.5	317.2	27.7
-1.8	-15.0	15.7	321.6	26.0
-0.9	2.0	15.9	339.3	25.4
0.0	26.0	17.3	341.7	26.4
0.9	34.0	14.6	323.6	25.1
1.8	29.0	15.7	324.5	25.9
2.6	52.0	17.3	321.8	27.3
3.9	14.0	15.7	311.9	26.6
5.7	-3.0	19.3	314.0	29.3
6.2	11.0	25.8	318.7	33.6
7.8	-10.0	21.8	328.0	30.4
11.3	3.0	20.1	308.0	30.1
14.0	18.0	25.2	277.5	36.1
16.8	10.0	31.7	310.3	37.7
19.7	-9.0	32.0	276.8	46.7
24.0	17.0	39.1	366.6	42.7
27.4	-12.0	35.6	327.9	44.1
30.9	-22.0	44.0	371.6	48.6
42.8	-29.0	47.8	290.6	57.3

NGC 6407 minor

-14.8	32.0	28.1	312.8	35.3
-10.2	4.0	19.4	304.3	29.8
-6.8	-4.0	19.1	286.8	30.6
-4.4	-15.0	17.0	307.9	27.7
-3.3	-14.0	21.3	332.3	29.8
-1.9	-27.0	17.0	322.0	27.1
-0.7	-9.0	19.2	340.9	27.9
0.2	27.0	16.9	344.7	26.0
1.1	11.0	17.8	351.5	26.4
2.3	10.0	18.7	339.2	27.6
4.8	-12.0	18.5	318.5	28.3
5.9	-16.0	20.6	297.0	31.2
8.0	14.0	20.0	271.0	32.3
10.7	25.0	20.4	290.0	31.4

NGC 6407 PA 108°

-10.0	13.0	28.0	296.0	36.3
-5.2	-14.0	25.3	301.8	34.2
-2.7	0.0	19.0	327.0	28.4
-1.8	12.0	24.2	334.3	31.6
-0.9	8.0	22.4	362.0	29.2
0.0	-12.0	22.2	370.0	28.8
0.9	-27.0	24.7	370.7	30.4
2.1	21.0	19.9	316.0	29.7
4.3	6.0	20.8	306.1	30.7
6.7	12.0	22.4	343.0	30.1
8.0	5.0	32.6	339.0	35.1
16.9	0.0	43.0	332.9	40.6

NGC 7192 major

radius	∇	-_V	Sigma	- Siga
-36.5	2.0	58.4	259.8	55.4
-27.4	23.0	38.3	209.6	52.7
-25.8	9.0	30.9	237.7	43.8
-21.3	4.0	29.9	254.7	41.3
-17.0	4.0	30.1	263.7	40.5
-14.8	9.0	18.3	246.4	33.1
-13.9	-2.0	23.8	266.0	36.1
-11.8	9.0	18.9	218.2	36.2
-9.9	5.0	16.1	256.6	30.2
-8.2	28.0	16.0	262.1	29.8
-6.9	21.0	13.2	255.5	27.4
-6.0	18.0	17.7	267.6	31.0
-4.7	-5.0	13.8	265.3	27.4
-3.4	24.0	13.0	261.4	26.9
-2.6	8.0	12.4	244.3	27.3
-1.7	7.0	13.1	261.0	27.0
-0.8	0.0	11.0	247.6	25.6
0.1	0.0	11.6	247.6	26.3
1.0	-6.0	12.5	257.1	26.6
1.8	-13.0	12.8	274.6	25.9
2.7	-23.0	12.5	246.8	27.4
4.0	-18.0	12.2	250.9	26.7
5.4	-20.0	12.5	250.7	34.4
6.2	-35.0	16.0	211.7	34.0
7.5	-12.0	13.9	219.4	31.0
9.3	-15.0	17.8	237.0	33.4
11.3	-6.0	17.1	252.7	30.8
13.2	0.0	27.2	292.0	36.2
17.9	-23.0	24.4	279.9	35.2
20.2	-18.0	36.7	305.1	41.1
25.4	17.0	40.0	248.7	48.8
34.2	50.0	48.3	279.5	49.5

NGC 7192 minor

-35.0	23.0	29.9	124.7	66.7
-15.9	-12.0	16.9	198.8	36.3
-10.1	-5.0	12.1	214.5	29.3
-6.1	-2.0	12.5	216.3	29.6
-3.9	-10.0	11.7	222.1	28.3
-2.6	-7.0	11.2	220.3	27.7
-1.2	-3.0	9.4	226.6	25.0
-0.9	-6.0	10.1	231.7	25.5
0.0	-7.0	9.7	225.3	25.4
0.9	-19.0	9.6	218.3	25.8
1.2	-18.0	9.0	220.9	24.8
3.6	-8.0	10.0	223.6	26.0
6.1	-32.0	12.9	218.8	29.8
9.5	-4.0	13.6	209.0	31.6
10.2	-14.0	12.1	224.0	28.4
15.7	-18.0	23.4	248.8	37.2
33.1	44.0	27.6	138.3	59.5

NGC 7192 PA 65°

APPENDIX C: LINE STRENGTHS

major mg2		n439 minor mg			
-65.2	0.224	0.005	-77.7	0.232	0.011
-42.6	0.227	0.005	-35.9	0.205	0.005
-30.1	0.233	0.005	-15.0	0.247	0.005
-22.3	0.235	0.005	-8.2	0.265	0.005
-17.1	0.263	0.005	-4.8	0.287	0.004
-13.2	0.266	0.004	-2.6	0.296	0.004
-10.1	0.268	0.004	-1.4	0.300	0.004
-8.0	0.286	0.005	-0.5	0.319	0.004
-6.2	0.273	0.004	0.4	0.307	0.004
-4.9	0.281	0.005	1.2	0.313	0.004
-4.0	0.285	0.004	2.1	0.282	0.005
-3.2	0.290	0.004	3.3	0.276	0.004
-2.3	0.299	0.004	5.5	0.282	0.005
-1.4	0.306	0.003	9.2	0.266	0.005
-0.5	0.312	0.003	17.6	0.240	0.005
0.4	0.302	0.003	46.6	0.227	0.005
1.2	0.298	0.003			
2.1	0.291	0.003			
3.0	0.286	0.004			
3.9	0.285	0.004			
4.8	0.272	0.005			
6.1	0.274	0.004			
7.8	0.276	0.004			
9.9	0.277	0.004			
12.6	0.265	0.005			
15.7	0.253	0.005			
20.0	0.266	0.005			
26.5	0.253	0.005			
36.6	0.241	0.005			
55.8	0.190	0.005			
86.8	0.124	0.008			

n2434 major me
丘
n2434 minor mg

0.164	0.004	-65.2	0.110	0.004
0.194	0.004	-32.1	0.145	0.003
0.195	0.004	-17.4	0.162	0.003
0.184	0.003	-11.0	0.176	0.003
0.186	0.003	-7.4	0.193	0.003
0.200	0.003	-5.1	0.218	0.003
0.194	0.003	-3.5	0.224	0.003
0.202	0.003	-2.5	0.228	0.003
0.207	0.003	-1.9	0.249	0.003
0.201	0.003	-1.2	0.267	0.003
0.208	0.003	-0.5	0.274	0.002
0.223	0.003	0.1	0.272	0.002
0.213	0.003	0.8	0.261	0.002
0.233	0.002	1.5	0.243	0.003
0.241	0.002	2.1	0.239	0.003
0.254	0.002	3.1	0.221	0.003
0.268	0.002	4.4	0.205	0.003
0.274	0.001	6.0	0.201	0.003
0.265	0.002	8.6	0.185	0.003
0.250	0.002	13.1	0.175	0.003
0.242	0.002	23.1	0.169	0.003
0.219	0.002	55.4	0.154	0.003
0.209	0.003			
0.208	0.003	$n 2434$ pa90	ng 2	
0.214	0.003			
0.207	0.004	-31.1	0.102	0.004
0.208	0.003	-8.1	0.195	0.004
0.203	0.003	-3.3	0.230	0.004
0.192	0.003	-1.5	0.249	0.003
0.191	0.003	-0.2	0.268	0.003
0.187	0.003	1.1	0.251	0.003
0.190	0.004	2.9	0.229	0.003
0.201	0.003	7.4	0.198	0.003
		33.0	0.094	0.004

APPENDIX C - continued

n2434 major fo52			n2434 minor fe52		
-40.2	2.69	0.26	-32.1	2.24	0.26
-27.6	2.26	0.26	-17.4	2.45	0.25
-20.9	2.10	0.26	-11.0	1.47	0.25
-16.3	2.38	0.24	-7.4	2.37	0.25
-13.0	2.18	0.26	-5.1	2.43	0.23
-10.7	2.13	0.26	-3.5	2.70	0.22
-8.7	2.31	0.22	-2.5	2.85	0.26
-7.1	2.65	0.23	-1.9	2.93	0.22
-5.8	2.83	0.20	-1.2	2.74	0.19
-4.8	2.46	0.25	-0.5	3.01	0.16
-4.1	2.71	0.23	0.1	2.88	0.15
-3.5	2.91	0.21	0.8	2.88	0.16
-2.8	2.72	0.18	1.5	2.26	0.20
-2.1	2.80	0.16	2.1	2.13	0.24
-1.5	2.60	0.14	3.1	2.51	0.21
-0.8	2.86	0.12	4.4	2.30	0.26
-0.1	2.93	0.10	6.0	2.52	0.26
0.5	2.85	0.11	8.6	2.57	0.25
1.2	2.84	0.13	13.1	2.39	0.26
1.9	2.67	0.15	23.1	2.23	0.26
2.5	2.68	0.17	55.4	1.55	0.26
3.2	2.77	0.20			
3.9	2.68	0.22	n2434 pa90	f. 52	
4.5	2.97	0.24			
5.2	2.65	0.26	-31.1	3.22	0.29
6.2	2.50	0.21	-8.1	2.86	0.26
7.5	2.57	0.24	-3.3	2.78	0.26
9.1	2.53	0.23	-1.5	2.72	0.25
11.4	2.34	0.23	-0.2	2.94	0.19
14.4	2.84	0.24	1.1	2.91	0.22
18.0	1.92	0.26	2.9	2.94	0.24
23.2	2.64	0.25	7.4	2.38	0.26
32.0	2.86	0.26	33.0	2.98	0.29

n3706 major fe52

-76.0	2.13	0.30
-53.7	2.19	0.26
-40.0	2.96	0.25
-31.7	2.63	0.26
-23.9	2.67	0.26
-19.5	2.79	0.24
-16.5	2.56	0.23
-14.3	2.55	0.23
-10.5	3.18	0.23
-8.0	2.84	0.19
-7.0	3.00	0.25
-6.3	2.93	0.23
-5.6	3.18	0.22
-5.0	2.92	0.20
-4.3	3.06	0.18
-3.7	3.12	0.16
-3.0	3.19	0.14
-2.3	3.09	0.12
-1.7	3.14	0.10
-1.0	3.30	0.08
-0.3	3.32	0.07
0.3	3.40	0.07
1.0	3.27	0.09
1.7	3.14	0.11
2.3	3.11	0.13
3.0	2.99	0.15
3.7	3.17	0.16
4.3	3.20	0.18
5.0	3.15	0.20
5.6	2.95	0.22
6.3	3.11	0.23
7.0	2.65	0.25
8.0	2.49	0.19
9.3	2.68	0.21
10.6	3.07	0.23
11.9	2.75	0.25
13.6	2.88	0.23
15.6	2.55	0.25
17.9	2.55	0.24
20.9	2.79	0.25
24.5	2.61	0.26
29.4	2.16	0.25
37.0	2.31	0.26
52.7	2.76	0.26
81.9	1.55	0.26

APPENDIX C - continued

n6407 major fo52		
-17.1	2.22	0.16
-14.0	2.39	0.16
-11.9	2.89	0.18
-10.1	3.47	0.16
-8.3	2.42	0.14
-7.0	2.34	0.17
-6.2	3.03	0.16
-5.3	3.11	0.15
-4.4	2.92	0.13
-3.5	2.88	0.12
-2.6	3.05	0.10
-1.8	3.11	0.08
-0.9	2.67	0.07
0.0	2.72	0.07
0.9	3.07	0.07
1.8	3.07	0.09
2.6	3.07	0.10
3.5	3.27	0.12
4.4	2.62	0.13
5.3	2.88	0.15
6.2	2.34	0.16
7.0	1.95	0.17
8.4	2.63	0.14
10.1	2.06	0.16
11.9	3.05	0.17
14.0	2.11	0.16
17.1	2.37	0.16
20.9	1.97	0.17

n6407 minor fe52

-22.2	2.44	0.18
-12.6	2.54	0.17
-8.0	2.50	0.16
-5.5	2.84	0.18
-3.7	2.73	0.14
-2.5	2.53	0.16
-1.6	2.73	0.13
-0.7	2.86	0.11
0.2	3.17	0.11
1.1	2.91	0.12
1.9	3.13	0.14
2.8	2.62	0.17
4.0	2.39	0.15
6.2	2.95	0.16
9.2	2.25	0.18
14.0	2.23	0.18
22.9	2.25	0.18
$n 6407$	pa108	1052
-8.3	2.61	
-4.2	2.27	0.17
-2.1	2.65	0.14
-0.9	2.88	0.16
0.0	2.83	0.15
0.9	2.43	0.16
2.1	2.56	0.15
4.2	2.63	0.17
8.3	2.64	0.18
20.2	2.27	0.18

n7192 major fe52		
-36.6	2.23	0.18
-27.4	2.13	0.18
-21.3	2.39	0.17
-17.0	2.05	0.17
-13.9	2.56	0.17
-11.8	2.02	0.18
-10.0	2.32	0.16
-8.2	2.27	0.14
-7.0	2.33	0.18
-6.1	2.61	0.16
-5.2	2.81	0.15
-4.3	2.87	0.13
-3.4	2.86	0.11
-2.6	2.67	0.10
-1.7	2.84	0.08
-0.8	2.77	0.07
0.1	3.11	0.07
1.0	2.83	0.07
1.8	2.66	0.08
2.7	2.83	0.10
3.6	2.64	0.12
4.5	2.68	0.13
5.4	2.59	0.15
6.2	2.38	0.17
7.6	2.48	0.13
9.3	2.26	0.15
11.1	2.21	0.17
13.2	2.51	0.16
16.3	2.29	0.17
20.2	2.03	0.18
25.4	2.30	0.18
33.3	2.22	0.18
53.3	2.34	0.18

n7192 minor fe52

-18.1	2.55
-9.8	2.61
-6.1	2.36
-3.9	2.94
-2.6	2.93
-1.8	2.96
-0.9	3.07
0.0	3.22
0.9	3.05
1.8	3.42
2.6	3.44
3.9	3.09
6.1	3.04
9.8	1.96
17.8	2.15

n7192 pa65 f052

-16.0	2.26
-9.2	2.71
-5.8	2.46
-3.6	2.45
-2.4	3.03
-1.5	3.42
-0.6	2.78
0.3	2.92
1.1	3.13
2.0	2.80
3.3	2.77
5.5	3.09
8.8	2.80
15.3	2.40

0.18
0.18
0.17
0.15
0.16
0.14
0.12
0.11
0.13
0.15
0.14
0.16
0.17
0.18
n439 minor fe53

-15.0	1.90	0.17
-8.2	2.10	0.17
-4.8	2.74	0.16
-2.6	2.47	0.13
-1.4	3.02	0.15
-0.5	2.57	0.13
0.4	2.64	0.13
1.2	2.65	0.14
2.1	2.60	0.17
3.3	2.44	0.16
5.5	2.10	0.17
9.2	2.35	0.17

n3706 minor fe52

n439 major 1053

n2434 major f53		
-40.2	2.41	0.25
-27.6	2.52	0.25
-20.9	2.37	0.25
-16.3	1.93	0.24
-13.0	2.50	0.25
-10.7	2.20	0.25
-8.7	2.47	0.21
-7.1	2.24	0.22
-5.8	2.24	0.19
-4.8	2.41	0.24
-4.1	2.61	0.22
-3.5	2.62	0.20
-2.8	2.59	0.18
-2.1	2.82	0.16
-1.5	2.46	0.13
-0.8	2.62	0.11
-0.1	2.72	0.10
0.5	2.49	0.11
1.2	2.46	0.12
1.9	2.42	0.15
2.5	2.64	0.17
3.2	2.46	0.19
3.9	2.62	0.21
4.5	2.29	0.23
5.2	2.61	0.25
6.2	2.58	0.20
7.5	2.06	0.23
9.1	2.40	0.22
11.4	2.21	0.23
14.4	2.78	0.24
18.0	2.58	0.25
23.2	2.18	0.25
32.0	2.73	0.25

n2434 minor fo53

-32.1	1.62	0.26
-17.4	1.95	0.25
-11.0	1.88	0.25
-7.4	2.10	0.25
-5.1	1.39	0.22
-3.5	1.96	0.21
-2.5	2.49	0.25
-1.9	2.47	0.22
-1.2	2.37	0.18
-0.5	2.59	0.15
0.1	2.65	0.14
0.8	2.65	0.16
1.5	2.55	0.19
2.1	2.65	0.23
3.1	2.15	0.20
4.4	2.25	0.25
6.0	2.46	0.25
8.6	1.75	0.25
13.1	2.07	0.25
23.1	1.12	0.26
n2434 pa90	$\mathbf{f e 5 3}$	
-8.1	1.81	0.25
-3.3	2.90	0.25
-1.5	2.81	0.24
-0.2	2.80	0.19
1.1	2.40	0.21
2.9	2.42	0.23
7.4	2.10	0.25

n6407 major fe53

-21.0	2.21	0.16
-14.0	2.14	0.16
-10.1	2.18	0.15
-5.3	2.30	0.14
-4.4	2.07	0.13
-3.5	3.01	0.11
-2.6	2.65	0.10
-1.8	2.67	0.08
-0.9	2.45	0.07
0.0	2.03	0.07
0.9	2.54	0.07
1.8	2.41	0.08
2.6	2.60	0.10
5.3	2.21	0.14
8.4	2.06	0.13
17.1	1.95	0.16
20.9	2.34	0.16
26.5	2.28	0.16

n6407 pa108 fo53

-4.2	1.72	0.17
-2.1	1.82	0.14
-0.9	2.18	0.16
0.0	2.50	0.15
0.9	2.24	0.16
2.1	1.97	0.14
4.2	1.77	0.17
8.3	2.15	0.17
20.2	1.61	0.17
36.3	1.37	0.45

n6407 minor fo53

0.16	-12.6	2.59	0.17
0.16	-8.0	2.01	0.16
0.15	-3.7	1.78	0.14
0.14	-2.5	1.96	0.15
0.13	-1.6	1.85	0.13
0.11	-0.7	2.34	0.11
0.10	0.2	2.22	0.10
0.08	1.1	2.27	0.11
0.07	1.9	2.50	0.14
0.07	2.8	1.85	0.17
0.07	4.0	1.89	0.15
0.08	6.2	2.45	0.16
0.10	9.2	2.33	0.17

n7192 major fe53

$\underset{i}{m} \underset{1}{\infty} \dot{\sim} \text { i p }$

1.53
n3706 minor fe53

$\begin{array}{rrr}-31.1 & 2.91 & 0.25 \\ -13.6 & 2.31 & 0.25 \\ -7.7 & 2.13 & 0.24 \\ -4.8 & 2.55 & 0.25 \\ -3.2 & 2.76 & 0.22 \\ -2.3 & 2.66 & 0.24 \\ -1.6 & 2.44 & 0.19 \\ -0.9 & 3.01 & 0.15 \\ -0.3 & 3.04 & 0.11 \\ 0.4 & 2.94 & 0.12 \\ 1.1 & 2.79 & 0.16 \\ 1.7 & 2.72 & 0.21 \\ 2.7 & 2.56 & 0.20 \\ 4.2 & 2.50 & 0.23 \\ 6.8 & 2.23 & 0.25 \\ 11.6 & 2.57 & 0.25 \\ 23.4 & 2.25 & 0.25\end{array}$

NH NHOO
n3706 major fe53

1.93	0.17	
1.80	0.18	
2.02	0.15	
2.22	0.14	
2.19	0.17	
2.35	0.16	
2.33	0.14	
2.39	0.13	
2.38	0.11	
2.54	0.09	
2.72	0.08	
2.72	0.07	
2.66	0.07	
2.62	0.07	
2.77	0.08	
2.64	0.10	
2.65	0.11	
2.50	0.13	
2.37	0.15	$n 7192$
2.33	0.16	
2.27	0.13	
2.17	0.15	
2.13	0.17	
$2.3:$	0.16	
2.04	0.16	
2.05	0.17	
1.96	0.18	
1.94	0.17	
1.86	0.17	

-42.7
-18.1
-9.8
-6.1
-3.9
-2.6
-1.8
-0.9
0.0
0.9
1.8
2.6
3.9
6.1
9.8
17.8
1.59
1.63
2.04
1.78
2.70
2.52
2.82
2.85
2.47
2.58
2.56
2.49
2.55
2.47
2.52
2.21
0.20
0.18
0.17
0.17
0.16
0.17
0.14
0.12
0.11
0.12
0.14
0.17
0.15
0.17
0.16
0.17
-12.9
-16.0
-9.2
-5.8
-3.6
-2.4
-1.5
-0.6
0.3
2.0
3.3
5.5
8.8
15.3
35.6

0.18
0.17
0.17
0.16
0.15
0.16
0.13
0.11
0.11
0.15
0.14
0.16
0.17
0.17
0.18

APPENDIX C - continued

[^0]: * Present address: Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, The Netherlands.

