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Abstract — Departures from equilibrium and the associated symmetry breakdown are known to play an impor-
tant role in astrophysics. They lead to spatial anisotropy, as well as to anisotropy of thermodynamic properties,
to mixing of stratified layers, to changes of average properties, etc. Examples of such departures are fragmen-
tation and the formation of fibrils and filaments. Such departures may be due either to instability of stratified
layers in a gravitational field (Rayleigh—Taylor instability) or to velocity-field fluctuations (Richtmyer-Mesh-
kov instability). The simplest stratification model is obtained in a two-zone approximation with a density jump
at the contact boundary. This dynamical system was investigated. It is shown that the evolution of such contact
boundaries is not smooth. In particular, over a finite time interval, singularity appears at the contact boundary,
which leads to nondifferentiability of the functions and discontinuous jumps at the boundary, where initially all
the functions were infinitely differentiable. Such an evolution is not restricted by a special family of solutions.
On the contrary, singularity appears under arbitrary initial conditions. These phenomena result in both an
increase in the mixing rate and a decrease in the mixing zone depth. They may also be responsible for the

sharper profiles of flares, ejecta, etc.

The problem of the destruction of contact bound-
aries that separate media with different densities and
temperatures is of great importance for various applica-
tions. This problem is closely connected with the the-
ory of turbulent surface mixing, as well as with hydro-
dynamic Rayleigh-Taylor, Richtmyer-Meshkov, and
Kelvin—Helmholtz instabilities accompanying the
explosions of supernovae [1 - 8], fragmentation in plan-
etary nebulae [9, 10] and Wolf-Rayet stars [11], accre-
tion onto compact magnetized objects [12, 13], etc.
Similar problems arise in studies of subsonic stellar
convection (for example, solar granulation [14]), where
the Boussinesq approximation is not valid.

Consider the evolution of instability. The initial per-
turbation will be periodic along the surface. As a rule,
the evolution of the free surface S; is assumed to be
monotonic (see Fig. 1, where the symmetric half of the
period is displayed). For an initially slightly corrugated
surface, the singularities are most distant from the sur-
face. The singularities are assumed to asymptotically
approach the surface. The wind from the singularities
pushes away the Lagrangian particles. This process
leads to the formation of dents (“bubbles™) on the free
surface, with the top of a bubble being the retardation
point of two opposite flows.

In this paper, it is shown that the evolution (in par-
ticular, the freezing of singularities) proceeds in a way
different than that described above. The nearest singu-
larity does not freeze at a finite distance from S; and
coincides with the surface. Below, we evaluate the time
of coincidence ¢, as well as the bubble amplitude 1,
at the instant of coincidence.

The surface S; and the fluid enclosed by this surface
obey the well-known classic equations with the rele-
vant boundary conditions

Ap =0, o] =-v"/2|,-p|,-gn,

(1)
n = (pyln - (PxL‘Tl,-

The perturbation of the flat surface is considered, where
the x and y axes of the laboratory frame are directed
along the surface and inwardly, respectively. The anal-
ysis is limited by the assumption that the density of one
of the fluids may be disregarded. Assume that p=1 and
that the acceleration is g = 0, 1. The case g = 0 corre-
sponds to the Richtmyer-Meshkov instability with ini-
tial linear perturbations when the speed of the entropy
turbulent modes is small in comparison with the veloc-
ity of a shock wave (and, therefore, with the sound
speed behind the shock front). This fact implies that
compressibility can be disregarded. The cases g =1 and
g = -1 correspond to the Rayleigh—Taylor instability
and gravity waves, respectively. The following units are
used: |g| =k =1 for g =*1 and |wy| =k =1 for the Rich-
tmyer—-Meshkov instability, where w, is the initial
velocity at x = 0. In equations (1), assume that v= V.
Hereafter, subscripts designate differentiation with
respect to the corresponding variable. The boundary is
given by the function y =n(x, 7).

Consider the expansion in harmonics of the period-
ical perturbation:
Q= z&nc"e"/ n, ¢, = cos(nx),

€, = exP(—")’) .
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Fig. 1. Typical illustration of the monotonic evolution of the
boundary and the approaching of potential singularities
(semicircles show the instantaneous location of the nearest
singularity). Motion is represented in acomoving frame of
the top of the bubble. The numbers 1, 2, 3, and 4 correspond
to instants of time. Number 4 corresponds to the asymptotic
state when the nearest singularity is frozen at a distance of
~1.2/k from the top.
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Amplitudes a,(¢) are real functions. Then, for g = -1,
expansion (2) leads to standing waves. Below, this
consideration is limited by Rayleigh-Taylor and
Richtmyer-Meshkov instabilities. For periodical
perturbations, the surface S; is obviously characterized
by alternating convex and concave areas. These areas
are defined as bubbles and streams, respectively. The
top of a bubble is at x = 0. The power series expansion
of 1 over higher orders of curvature is

n= ZﬂjXZJ

=)+, () X+, ()5 + ... (3)

Initially, the kinematic boundary condition is consid-
ered. Expansions are substituted for ¢ and 7, and
cosine and exp are expanded into power series. Then,
the right-hand side of the boundary condition is

( 1)p+S

-m

22 15! 2p+s
S5 —~ (2p)!s!

2{2jnjx2j}m2p+s+l s

o 2 2j

+—i=l TFS xp[zfljx’),

j=1

- @
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m; = ana,,, n=12,... (&)

The amplitudes a, on the right-hand side of expression
(5) for the moments m; that appear on the right—hand
side of (4) are given in a comoving frame with the ori-
gin at the top of the bubble. These amplitudes are
related to those measured in the laboratory frame by a,

= a, exp(—nny). Then, the right- and left-hand sides of

the kinematic boundary condition are expanded into
series of powers of x2, and the coefficients are equated
with the corresponding powers. After tedious algebraic
manipulation, the first sixth-order differential equa-
tions for advection of the boundary with the given
velocity field are obtained:

n, = my/2+3mnm,,
Ny = -m /2445 (-myn, /6 -m,n’/2 +mm,),

M3 = mg/720+7 (msn,/120 + m,n>/12
+myn./6—-m,n,/6- myNi My +m M),

Ty = —mg/40320 - m,n,/560 - 3mm>/80
—mgn:/4-3mn;/8 +3mn,/40

fls = m,/3628800 + 11 (myn, /362880

+mgn2/10080 + mm>/720 + m¢n /144

+msn;/120 — mm,/ 5040 — mgn; M,/ 120
—mM M,/ 12— mnN,/6+mmi/12
+ msn,nZ/Z +msn;/120+ mn m;/6

+ m3‘n12'r|3/2 = myN,N; —myN,/ 6 —mn M, + mMns).

Here the cumbersome sixth-order expression is omit-
ted. Equations (6) are linear with respect to moments
(and, therefore, with respect to amplitudes), so that they

may be represented in the form dwn/dt = fim, where the
vectors dn/dt and m consist of N and 2N components,
respectively, and where 1] is the N X 2N rectangular
matrix, the elements of which depend only on .

The equation of the zeroth order with respect to x2 is
Mo = —Zan. As is shown below from the dynamical

equations, the unknown variable 1(z) splits off from
the system of equations; therefore, that equation can be
integrated separately for this variable.

Now consider the dynamical equations. Initially, the
acceleration potential @,(x, y, ¢) is estimated in the lab-
oratory frame. We have (O¢(x, y, 1)/d)l,, =

z (da,/dt)c,e,/n = 2 (Zne:)c,,e: /n, where e,? =
exp(=nny), ef = exp(-nA), and A = y — 1. Estimate
the acceleration at the boundary: @,|,,. We have A, =
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1 - MN,o. Expand ¢, and e,f in series of x and A, respec-

tively. The amplitudes are replaced by moments
according to formulas (5). Using the relationship

between a, and a,, we obtain

= 0 . . j= 0 . .
anen = a"+n‘noan, zn anen = mj+nomj+1,

n
. i
m; = Znan.

Finally, we obtain

Qx50 = Y, Y, DT/ ((2p)!sh)
s=0p=0 (7)

. . 2p s
X (m2p+s—1 +n0m2p+s)x (Aln) .

Now estimate the density of kinetic energy. From

@), vi= o’ +(py2 = EZEH&jcn_je“j. Expanding v2
in power series of x? and (y — 1), respectively, we have

V=YY DT/ 2p) s
s p n j
x (n-j)* (n+ ) a,ax"" (y-1,)°.

Expanding (n — j)?? and (n + j)* according to the bino-
mial theorem and using (5), we have

2p
MCEDED I

s=0p=0a=0b=0

s

(_1)p+s+a
alb! 2p-a)! (s—b)!

2 s
xma+bm2p+s—a-bx p()’—'ﬂo) . (8)

Now expressions (7) and (8) are substituted into the
right- and left-hand sides of the dynamical boundary
condition (1), respectively. The quantity 1\, is replaced
by the amplitudes, in accordance with the equation
To = —myg. The left- and right-hand sides are expanded
in power series of x2, and the corresponding coefficients
are equated. The zeroth-order equation involving 1,
should be omitted because of calibration consider-
ations, because the dynamical boundary condition is
correct to an arbitrary function of time. In the following
six orders, we obtain

lhs, = —rig/720 — i, /24 — 02/ 4
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lhs, = rir,/40320 + ragn), /720 + riegn /48
+m M/ 12 + 1N /24 = N,/ 24 — in M,/ 2
"”'127112712/2 + "'11112/2 +1yN3/ 2 + MMM — Mg,

Ths; = —rity/3628800 — rizgn /40320
— 13/ 1440 - i/ 144 — i /48
- mmf/zl 20 +rign,/ 720 -+ g M,/ 24
+ "'141111122/4 +mM M,/ 6 —mym,/4
=N M,/ 2 = myM3/ 24 - s M3/ 2

. 2 . .
=M M3/ 2+ MMM + rityN,/ 2
+mN N, — MmyNs,

ths, = —-mf/2-—gn1,
ths, = —m2/8 + mym,/6 + m,m,n,/2
-min,/2 - gn,,

ths; = —m§/72 +m,m,/48 —m;ms/120
3 2

ths, = —m./1152 + m,m/720 — m,m/ 1440
+m,m,/5040 + mym,m,/144 - m,mn,/80
+mm¢n, /144 =m0} /24 + mymn /48
+mmn-/24 + mymyn>/6—mm./12
—mn;/8 —m,mn}/6 + mym,n,/12
—mymN,/8 = MMM,/ 2 + 3mym,M 1N,/ 2

-mfnzz/2+m1mzﬂa/2—mfnm3—gn4, (10

rhs; = —m2/28800 + m,mg/ 17280 — mym., /30240
+ mymg/ 80640 — m,my/362880 + m,msn,/2880
—-mymgn,/ 1440 + m,m.n,/2016 — m mgn,/5760
—m2n>/288 + mym¢n’/360 + mymen /360
—mmm>/360 + mym,n}/48 — mmn>/48
—mmn:/144 - mn} /24 — m,mn; /48
+mmN;/24 + mymn, /12 + mymn. /24
+mym,M,/ 144 — m,msn,/80 + mymyn,/ 144
—mNM,/ 12+ mymn m,/ 24 + mymsn; M,/ 12

+ m2m3n12n2/2 - m1m4n,2n2/4 - mznfnz/Z
—2mmniN,/3 - min>/4 +3mmmnmi/2
+ myms3/ 12 = mym 1/ 8 — mym /2
+3m,m N M,/ 2 = MmNy + myman,/2
- m12n1n4_ 8Ms-

For the sake of convenience, the sixth-order expres-
sions are not given. The left-hand (lhs) and right-hand
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sides (rhs) of the dynamical equations are given by for-

mulas (9) and (10), respectively. The terms in (rhs);

quadratic in m; [and, as follows from (5), quadratic
1 ina;] give the expansion coefficients for v? at the
i, boundary. The last term of (rhs);, equal to (—gn;), is due

to the gravitational potential. Derivatives r; withj=0,
1, ..., (2i = 1) involve (lhs),. Differentiate (5) with
respect to z, express r1; in terms of d;, and substitute
the expressions obtained into (9). Taking into account
the linearity of (lhs) with respect to 7; and 4;, the fol-
lowing system of equations is obtained:

(fd); = (ths);,, 7 = fim, (11)

where ' = [ (m) is the N X N matrix, the elements of
which are algebraic polynomials of 1;:

T, =-1/2-m,, Ty =1/24+n,/2+70/2-7,,

Tp=-1-m,, Tp=1/3+2n,+07-1,,
F13 = "‘3/2_‘111,
Ty = 9/8+91,/2+302/2-1,,

Ty =-2-m;, Ty =8/3+8n,+2n-n,,
T =-5/2-1,

Ty = 125/244251,/2+ 50 /2-n,,
T, = -1/720-1,/24-1}/4
—M1/6+M,/2+ 1,1, -7,

T,, = —2/45-2n,/3-21>
—21113/3 +2m,+2n M, -"Ns,
~27/80-27n,/8 - 27M>/4
=30,/72+9M,/2 430N, - N3,

Ty = ~64/45-32n,/3 - 16n°
-8n,/3+8n,+4nM,-Nn,,

T, = —625/144 - 6257,/24 — 12512/4
—2513/6+251,/2 + 51,1, ~ M5,

T, = 1740320 +1,/720 +0}/48 +0;/12
+nf/242— n2/24—711112/2*11x2ﬂ2/2
+M3/2+M5/2+M M3 - Ny,

T, = 1/315+4m,/45+20}/3 +41>/3
+M1/3-2m,/3 -4, - 2n;m,
+1M, + 2N+ 2N N3 - N,

T,y = 243/4480 +81m,/80 + 811°/16 + 271 /4
+9M;/8 - 271,/8 - 27M,1n,/2 -9 ’n,/2
+313/24+90,/2+30m, -7,

T, = 128/315 + 2561, /45 + 6412/3 + 641°/3
+81,/3-32n,/3 - 32n,n, - 80’7, + 2n;
+8N;+4nM;-N,,

T,s = 15625/8064 + 31251, /144 + 31251 2/48

+6257;/12 + 1251 /24 - 6257,/24

~125n,n,/2-250"1,/2 + 512/2
+25M3/2 4 5N M3 - Ny,

T, = —1/3628800 —1,/40320 —1>/1440
—M;/144 -1}/48 -1} /120 +1,/720
+N M,/ 24 +MM,/4+1i0,/6-1,/4
—MM/2-M3/24 - M;/2-11,/2

+MN; + N/ 2+M N —Ms,

T, = -2/14175-21,/315-412/45-41/9
—2M1/3-20,/15 +41,/45 + 401,73 + 40’7,
+4m1M,/3 -2n; - 20,M; - 2n,/3 - 4nm,
—2N7M; + 20,05 + 20, + 20M, — 75,

Ts; = —243/44800 — 7297m,/4480 — 2431°/160
- 81n;/16 - 81n;/16 — 271 /40 + 811,780
+81n,1,/8 + 811°1,/4 + In’1,/2 - 27 /4
—9MM;/2 - 27M,/8 - 27n,M;/2 -9,/ 2
+3N,M; +9M,/2 4+ 3yM, - N5,

T, = -1024/14175 - 5121, /315 - 51212/45
—256M/9 - 6411/3 - 321/15 + 2561,/45
+128n,m,/3 + 64171, + 321 1,/3 - 16n]

- 81,0, -32n,/3 - 32n,n, - 80’7,

+4n,n; + 8N, +4N N, - N,
I'ss = -78125/145152 - 781257 ,/8064

~ 15625n/288 — 15625n/144 — 31257+ /48
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Fig. 2. Dependences m(). N is the number of harmonics
taken into account. (a) Rayleigh-Taylor instability and (b)
Richtmyer-Meshkov instability. The trajectories begin to
diverge at time ¢..

— 1250 /24 + 31251,/144 + 3125M,1,/24
+6251n71,/4 + 1250.1,/6 — 1251>/4
—25M,12/2 - 6251,/24 — 1250,1,/2

—25MM,/2 + 5N, + 250,72 + 51,1, - M.

Matrix elements of the sixth order are omitted. The
matrix I" can be obtained from geometrical consider-

ations, because this matrix depends on the changes of
the boundary shape. In particular, for the flat boundary,

we have 1;= 0 for i = 1, 2, ..., with the matrix I" con-
sisting of constant elements.

The main result of this study is that singularities on
the boundary S; were found. This is the result of the

degeneration of the matrix I" for infinite accelerations.
The matrix determinant is

det, = -1/2-7,,
det, = ~1/8-19n,/24-3n2/2-0)/2-0,/2,
det, = 1/48 +3897,/1440 + 6611 /480
+100>/3 + 1310} /36 + 31, /2 +15/6
FN,/4 43NN,/ 24+ 201, + 211, /3

—ni/z +N3/4+MM5/2,
det, = 1/384 + 6893m,/120960

+39277731 /7257600 + 174471 /6048
+150505771 /161280 + 160497} /864
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Fig. 3. Dependences K(¢). (a) Rayleigh-Taylor instability
and (b) Richtmyer-Meshkov instability. The trajectories
begin to diverge at time z,..

+128089m7/5760 + 5451, /36 + 5151}/96

+5M,/6 +1,°/24 + 1431,/2304 (12)

+4380911,1,/483840 + 2451°1,/48
+333701,/240 + 2795111,/ 144 + 42700,/ 32
+25M1,/6 + 51M,/12 +15/5760 - 51,15/8
~1630M2/96 - 50 0>/3 =50 02/12+ 51./4
+13n,n5/8 + 191,/192 + 59991,1,/5760
+151°1,/4 +1390.1,/24 + 1501, /4
+19m;1,/24 - 611,1,/96 - 51,M,1;/2
~17M,n,/8 -12/8 + 51,748 + 6111,/ 96

+51,/4 +170)1,/24 +,M,/8,

where the subscript on det designates the order of the
system N. The expressions for dets and detg involve 126
and 395 terms, respectively, and, therefore, cannot be
given in this paper.

The common trajectory with its origin in the vicinity
of the hydrostatic equilibrium point cannot avoid the
hypersurface det = 0 and necessarily reaches this hyper-
surface.

It should be noted that an assumption about the for-
mation of singularities for g = 0 was recently proposed
by Kuznetsov et al. [15], who observed the initial stage
of motion of singularities to the surface S;. Note, how-
ever, that these results do not allow one to conclude that
this singularity will reach the surface S;. First, this is
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Fig. 4. Change of the bubble-top velocity w(K). The curva-
ture K is used as the independent variable instead of time.
(a) Rayleigh-Taylor instability and (b) Richtmyer—Mesh-
kov instability. The trajectories begin to diverge at time £,

due to the fact that the theory of weak nonlinearity is
inapplicable near the singularity. The second argument,
however, seems to be the most important. There are
steady solutions with a singularity fixed at a distance on
the order of unity from the surface S;. Within the frame-

n2 €]

Z

INOGAMOV

work of the weakly nonlinear approximation, one can-
not decide whether the evolution leads to the location of
a singularity at a constant finite distance from the sur-
face or whether the singularity coincides with the
surface S;.

The system of equations (11) was integrated using
the predictor-corrector scheme with a variable integra-
tion step depending on the current error. The typical
dependences on line of the shift of the top of the bubble
No(?) characterizing the dent effect are shown in Fig. 2.
In Fig. 3, the inverse radius of curvature K = 1/R is plot-
ted as a function of time [where R(t) = —1/(2n,())],:
which characterizes the distortion of S;.

As is easily visible, the hydrostatic equilibrium is
represented by the saddle point of (11), with incoming
and outgoing separatrix. The eigenmodes are given by
harmonics in (2). As follows from the direct lineariza-

tion of (11), the eigenvalues are *1, +2, ..., +JN,
where N is the order of the system. Initial perturbations
of the principal mode with amplitudes of the velocity
perturbation and/or location of the boundary that were
not small in comparison with unity were used. Because
of the hyperbolic nature of the hydrostatic equilibrium
point, the trajectories are attracted to the outgoing sep-
aratrix even for arbitrary perturbation amplitudes.
Therefore, the value g = M(2.), corresponding to the

-0.01
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-0.07

®
Inldet|
=25
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1 U
-175
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Fig. 5. Approaching the surface det=0 for N =2 and g = 1. (a) The change of der along the trajectory. The trajectories labeled by 1
correspond to different initial conditions. (b) During the motion, the system approaches the surface det =0, and the quantity det falls
by several orders of magnitude. Labels RT and RM correspond to the Rayleigh-Taylor instability and Richtmyer—-Meshkov insta-

bility, respectively.
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trajectory approaching the hypersurface D, where
det = 0, depends weakly on initial conditions. For Ray-
leigh-Taylor instability, the corresponding time is
obtained from the linear theory: #, = In(2n, . /(a4 + ay)),
where a, and a, are the initial amplitudes measured
along the corresponding direction cosines. This for-
mula gives the logarithmic time delays for the appear-
ance of a singularity because of the smallness of initial
amplitudes. The quantity 7 . is discussed below.

As noted above concerning the initial conditions, we
have a, = a,(¢ = 0). Furthermore, because n(x, t=0) =
M0(0) +1,(0)x2 + N(0)x* + ... [see formula (3)] and, on
the other hand, n(x, ¢ = 0) = a,cosx, then N, (t = 0) =
-1*/2n)!,forn=0, 1,2, ....

These variables are shown in Figs. 2 and 3 as a func-
tion of time. Because these quantities depend on initial
conditions,” it is more convenient to consider the
change of geometrical characteristics instead of time,
because they are less sensitive to initial conditions. For
this reason, in the following figures, the motion along
the trajectory is parameterized by the curvature K.

The change of the bubble-top velocity w along the
trajectory is shown in Fig. 4. From calculations, we
found that, upon the appearance of singularity, the
parameters are

Noc=0.75(g=1), Mo c=0.55(g=0),
K.=028(g=1), K.=0.25(g=0),
w, =036 (g=1), w,=0.59 (g=0).

These parameters are called critical. The trajectory
does not intersect the surface det = 0 only for N = 1.
Otherwise, the parameters are virtually the same for
any N. Note that the case with g =1 and N = 1 was con-
sidered by Layzer [16].

The trajectory of the system with g=2and N=21s
shown in Fig. 5a. For N = 2, there are only two geomet-
rical characteristics: 1|; = —=K/2 and 1,. Therefore, the
trajectory in the geometrical space (1;, ), as well as
the surface det = 0, can be represented in the plane dia-
gram. As is shown, the system approaches the surface

1 For example, the Rayleigh-Taylor instability with large time
delays around the hydrostatical equilibrium and small amplitudes
of initial perturbations.
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det = 0, and trajectories intersect the surface. The tra-
jectories are labeled by the index 1 and correspond to
different initial conditions. Note also that trajectories
tighten with time.

The decline of det with time is shown in Fig. 5b; as
is evident, det decreases for all trajectories. The drop of
det by several orders of magnitude implies that the sys-
tem closely approaches the surface det = 0.

This work was financially supported by the Russian
Foundation for Fundamental Research (project
no. 93-02-3630).
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