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~ ABSTRACT

Using the OPAL opacity, we have calculated a seqence of optically thick wind solutions, which mimics a
time-dependent evolution of the decay phase of novae. Strong winds are driven by a large peak in the OPAL
opacity and, as a result, theoretical timescale of nova duration is drastically shortened compared with the use
of the old opacity. Thus, we are able to resolve a theoretical problem of nova duration: the theoretical time-
scale of nuclear burning for the initial envelope mass at ignition is too long to reconcile with the observational

durations of novae.

- Good quality light curves are automatically obtained from the combination of the optically thick wind
theory and the OPAL opacity. We have compared our theoretical light curves with the observations of a
well-studied classical nova, Nova Cygni 1978, and found that our 1.0 M white dwarf model shows an excel-
lent agreement with the observations both for the visual light curves and for the ultraviolet light curves and
also for the expansion velocities of the envelope. These results strongly suggest the validity of our steady state
approach and indicate that the optically thick wind really occurs on the white dwarf at least in the decay
phase of the nova. In other words, optically thick winds, in which the matter is accelerated deep inside the
photosphere, are the main acceleration mechanism in the decay phase of novae. Comparison of our theoretical
light curves with observational ones enables us to determine the mass of the white dwarf and the distance of
the star. The distance to Nova Cygni 1978 is estimated to be 2.9-3.1 kpc with the white dwarf mass of 1.0
M. Thus, quantitative studies of light curve fitting will be able to provide/add useful information of binary

parameters that have been poorly known.

The effects of the drag luminosity in the common envelope phase have also been estimated by a one-
dimensional (spherical) model. It is found that the drag luminosity is as small as or smaller than 1% of the
photospheric luminosity because the density of the envelope drops sharply near/outside the accelerating region
of wind. Only for relatively low-mass white dwarfs, the decline rate of the light curves is much affected by the
effects of a companion, for example, the decline rate of a 0.6 M, white dwarf and a 0.2 My companion shows
a similar rate of 0.7 M, without a companion. However, we may conclude that the accuracy of the mass
determination of the white dwarf is still within 0.1 M,

Subject headings: novae, cataclysmic variables — stars: evolution — stars: individual (Nova Cygni 1978) —

stars: interiors — stars: mass loss

1. INTRODUCTION

Nova have been widely accepted to be a thermonuclear
runaway event on a white dwarf (Gallagher & Starrfield 1978;
Starrfield 1989). During the outburst, an envelope on a white
dwarf expands to a large size of ~100 Ry and a significant
part of the envelope mass is ejected from the system. One of the
most important questions remaining until now is what deter-
mines the nova duration and the speed class. The outburst of
classical novae usually lasts from a few months to 1 year, that
of slow novae lasts few tens of years, and that of recurrent
novae from 10 days to several months (e.g., Payne-Gaposchkin
1957; Seitter 1990). On the other hand, thermonuclear
runaway models yield too long durations of novae (2 10? yr),
which are simply derived from the timescale of nuclear burning
for the envelope mass at ignition.

Several ideas have been proposed to reconcile the short nova
duration and the long nuclear burning timescale: (1) a part of
the envelope may be ejected at the first dynamical phase. (2)
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Wind mass loss may occur in the decay phase of novae. (3)
Mass ejection may be accelerated by the drag luminosity due
to the motion of a companion star in the common envelope
phase of novae.

Many time-dependent calculations of nova outburst have
been presented so far (e.g., Sparks, Starrfield, & Truran 1978;
Prialnik, Shara, & Shaviv 1978; Nariai, Nomoto, & Sugimoto
1980; Prialnik 1986; Kato, Saio, & Hachisu 1989; Prialnik &
Kovetz 1992, and references therein). Most of these works
concern only very early stages of the outburst just after the
hydrogen ignition and do not follow one or more cycles of
novae. One of the reasons is that numerical difficulties in the
extended envelope phase prevent us from continuing the calcu-
lation. Prialnik’s work (1986) is one of a few exceptions. She
followed a few cycles of nova. In her calculation, a part of the
envelope matter is ejected by a shock wave at an early phase of
the outburst, and then ejected by wind in the following phase.
She was able to obtain a short t; time of 25 days for a massive

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...437..802K

OPTICALLY THICK WINDS 803

white dwarf of 1.25 M. Here, t; time is defined by the time
that the visual magnitude drops by three from the peak lumi-
nosity. Such a strong mass loss is expected only on a massive
white dwarf because shell flashes are too weak to eject a signifi-
cant part of the envelope mass on less massive white dwarfs of
<$1.0 M. Thus, novae had ever been considered to occur on a
relatively massive white dwarfsuch as 1.2 M.

Nova outbursts have also been studied in a different
approach, the steady state approach, where nova evolutions
are followed by sequences of steady state envelope solutions on
a white dwarf instead of a full time-dependent calculation.
Since the pioneering work by Finzi & Wolf (1971) appeared,
many works have followed it so far (e.g., Zytkow 1972, 1973;
Ruggles & Bath 1979; Kato 1983b). Now we have an estab-
lished way to follow the evolution of nova outburst by using a
sequence of steady state solutions (Kato 1983b, 1985, 1991;
Kato & Hachisu 1988). In this approach, we are able to treat
mass loss from the system without unphysical treatments. The
mass loss is automatically incorporated into the so-called con-
tinuum radiation driven wind, in which the acceleration occurs
deep in the envelope (Friedjung 1966). This kind of wind is
called optically thick wind because the matter is accelerated
deep inside the photosphere.

The optically thick wind theory or method has an advantage
that various physical values such as the wind mass-loss rate
and the photosphere are accurately determined because, for
example, the mass-loss rate is determined as an eigenvalue of
the basic equations. As a result, we are able to obtain good
quality light curves in the decay phase of novae as will be
shown later. The recent results calculated by Kato & Hachisu
(1988, 1989, and Table 1 of 1991b) show that the nova duration
is as short as 1 year for a 1.3 M and 30 years for a 0.9 M
white dwarf under the assumption of solar composition of
nova envelope.

It has been believed that some of the recurrent novae are
also a thermonuclear runaway event on a very massive white
dwarf (2 1.3 M ). Using the optically thick wind theory, Kato
(1990a, b; 1991) calculated theoretical light curves of three
recurrent novae, U Sco, RS Oph, and T Pyx. She fitted the
theoretical light curves with the observational ones and to
determine the white dwarf mass and the chemical composition
of ejecta. The white dwarf mass is determined to be 1.38 M,
for U Sco (Kato 1990a), 1.36 M, for RS Oph (Kato 1991), and
~1.33 M, for T Pyx (Kato 1990b). Such high accuracies in the
determination of the white dwarf mass come from the com-
bination of the accurate light curves and the steep dependency
of the decline rate of visual light curve on the white dwarf mass.
However, she showed no light curves for other types of novae,
neither classical novae nor slow novae.

Thus, the theoretical works told us that the observed short
decay time of novae can be reproduced only for massive white
dwarfs. This conclusion seems to be inconsistent with the
observational aspect that most of the central stars of planetary
nebulae and white dwarfs in binaries have mass as low as
about 0.6 M, (Weidemann 1990). Truran & Livio (1986) and
Ritter et al. (1991) tried to resolve this problem and concluded
that more massive white dwarfs have a much shorter recur-
rence period and, as a result, a significant part of novae can be
explained by explosions on very massive white dwarfs (1.2
M)

However, the advent of new opacities may change all of
these pictures because a strong peak in the opacity has been
reported at the temperature of log T(K) ~ 5.2 (Iglesias,

Rogers, & Wilson 1987, 1990; Iglesias & Rogers 1991, 1993;
Rogers & Iglesias 1992). This peak in the new opacity is about
3 times larger than that of the Los Alamos opacity (Cox &
Stewart 1970a, b; Cox, King, & Tabor 1973). Such a large
enhancement of the new opacity certainly drives a strong wind
in novae, because the acceleration of envelope matter is
directly affected by the opacity value especially when the lumi-
nosity is very close to the Eddington luminosity as seen in nova
envelopes (Kato & Iben 1992). It is, therefore, necessary to
recalculate wind solutions and examine the effects of the new
opacity.

A part of our recalculations has already been reported in
Kato (1994). Her results clearly show that the decay timescale
of novae is drastically shortened by the effects of the new
opacity. Moreover, the shape of the theoretical light curve
becomes so smooth that it can be directly fitted with the obser-
vational light curves. This is a remarkable progress in the sense
that we are able to determine various physical parameters of
novae by directly comparing the theoretical light curves with
the observational ones. For example, we have succeeded in
determining the mass of the white dwarf of a classical nova,
Nova Cygni 1978. Simultaneous fitting of classical and ultra-
violet (UV) light curves indicates the white dwarf mass of 1.0
M, and the distance of 3.0 + 0.1 kpc to the star.

Moreover, the light curves for the other types of novae, slow
novae and recurrent novae, can also be reproduced with the
optically thick wind theory and the new opacity (Kato &
Hachisu 1994). Thus, we are now able to construct good
quality light curves for various kinds of novae. It also covers a
wide range of evolutional timescale from very slow to fast
novae. It should be noted that these are obtained unphysical
treatments but with a single theory of the optically thick wind
and the OPAL opacity. This suggests the plausibility of the
strong peak of the new opacity, that is, it really exists! Good
quality of the theoretical light curves will certainly open a new
world to determine the physical parameters of novae such as
the white dwarf mass and the distance to the star.

Our modeling of the optically thick wind does not include
the effect of the companion star in nova system. The impor-
tance of the common envelope phase in nova systems has
firstly been discussed by MacDonald (1980) for slow novae.
The envelope on the white dwarf expands to a large size of
'~ 100 R, after the onset of nova outburst and, as a result, the
companion star is engulfed by the expanding nova envelope
because the orbit is usually ~ 1 Ry when the companion star is
a zero age main-sequence star. The companion star moves
supersonically in the nova envelope and there exists a friction
between the envelope and the companion. He showed in his
one-dimensional hydrodynamic calculation that the energy
deposition‘into the envelope due to frictional processes causes
rapid increase of the expansion velocity and visual magnitude.
MacDonald, Fujimoto, & Truran (1985) examined the effects
of the common envelope phase under the assumption of one-
dimensional static polytropic envelope but for a wide range of
white dwarf masses. They concluded that the drag luminosity
is essentially important to shorten the nova duration. Their
motivation was to resolve a theoretical problem that the
nuclear burning time of the initial envelope mass is too long
(=103 yr) compared with the observational ones (~ 10 yr).

Recent time-dependent calculations, however, showed the
results against the MacDonald et al. (1985) conclusion. Livio et
al. (1990) showed, in their two-dimensional adiabatic calcu-
lation of a 1.0 M, white dwarf and a 0.5 M companion, that
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the energy deposition due to the frictional processes quickly
drops to a very small value of ~50 L, because the density near
the orbit decreases quickly. After the envelope settles down to
a steady state, the drag luminosity is too small to affect the
mass-loss rate. Their value of the mass-loss rate finally drops to
1 x 10~® M yr~*, which is much smaller than the wind mass-
loss rate obtained by Kato & Hachisu (1989) with the old
opacity. Therefore, we may conclude that the drag luminosity
is too small to affect the nova duration or the light curve.

The same conclusion that the drag luminosity is not effective
can be derived from another time-dependent calculation by
Shankar, Livio, & Truran (1991). They calculated common
envelope evolution (in one-dimension) and concluded that the
mass ejected from the system is increased by 8% (in their high-
resolution calculation) and 67% (low-resolution calculation)
by the effect of a companion. They defined the amount of
matter ejected from the system by the condition that the veloc-
ity of matter exceeds the escape velocity calculated only from
the white dwarf mass. It is interesting that if the gravity of the
companion (0.5 M) is included in the definition of escape
velocity, their high-resolution model (in Fig. 6 of their paper)
shows that the amount of mass ejected is exactly the same as
that of the case without'a companion. In their low resolutions
calculation (95 zones), the velocity of the envelope matter
jumps from zero to the escape velocity at the innermost one
mesh (in Fig. 7 of their paper). It seems difficult to draw a
definite conclusion from this calculation. Therefore, it is very
unlikely that companion motion in common envelope contrib-
utes much of the acceleration of nova envelope matter.

It should be stressed that the gravity by the companion is
important to correctly estimate the ejected mass. It works
against the mass ejection. For example, the nova system men-
tioned above contains a 1.0 My white dwarf and a 0.5 M
companion (zero age main-sequence) so that the escape veloc-
ity is increased by 22%. Kato & Hachisu (1991a, b) examined
how effective is the drag luminosity including the gravity of a
companion star within the framework of one-dimensional
steady-state assumption. They found that the drag luminosity
becomes as large as the diffusive luminosity only when the
mass of white dwarf is as small as 0.6 M or less, mainly
because the envelope on more massive white dwarfs is too
tenuous to generate large drag luminosity. However, wind
mass loss does not occur on these low-mass white dwarfs,
because it is suppressed by the additional gravity of compan-
ion. Moreover, the companion gravity increases the local
Eddington luminosity and, as a result, the fractional energy
generated by the companion can escape from the system by
diffusion. So that the frictional heat does not directly accelerate
the matter. It seems unlikely that the nova duration is much
shortened by the presence of a companion. Thus, we cannot
expect any drastic changes in nova evolution or nova duration
only by the effect of a companion. However, we must still
examine the effect of drag luminosity because the new opacity
changes the envelope structure and, as a result, the light curves
of low-mass white dwarfs may be affected by the presence of a
companion. So we calculate several sequences of wind solu-
tions including these effects.

The most important motivation of this paper is to fully
describe the optically thick wind theory developed by us and
its wide applicability to nova studies, because we have heard so
many times groundless objections against the optically thick
wind theory. For this reason, we try to dot our i’s and cross our
t's in writing this paper. It consists of several sections. We
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describe in § 2 the basic equations and the boundary condi-
tions of the optically thick wind theory. Physical properties of
wind solutions are shown in § 3 and also shown is the way how
to make evolutional sequences from each steady state solution.
A detailed case study of the light curve fitting is presented also
in § 3 for Nova Cygni 1978. In § 4, effects of the OPAL opacity
on steady state solutions and light curves are examined by
comparing them with the previous works with the old opacity.
The effects of the drag luminosity are discussed in § 5. Our
assumptions in the present paper, that is, steady state assump-
tion in the decay phase of novae, neglecting the convective
energy transport, and neglecting the acceleration outside the
photosphere, are examined in detail in § 6. The dependence of
light curves on the chemical composition of nova envelope is
also discussed in § 6. We summarize our results in § 7. Surface
boundary conditions of wind mass loss solutions are described
in detail in Appendix A. Since our numerical techniques are
not popular in this field, we briefly explain the trapezoidal
implicit method in Appendix B.

2. BASIC EQUATIONS OF OPTICALLY THICK WIND

2.1. Optically Thick Wind Theory

Figure 1 shows a schematic diagram of the evolutionary
course of a nova outburst. Before the onset of a nova outburst,
the accreting white dwarf stays at point A. When the envelope
mass exceeds a critical value, unstable hydrogen burning
ignites to trigger a nova outburst. The star brightens up and
goes up in the H-R diagram. The hydrogen-rich envelope
absorbs energy generated by nuclear reactions and expands to
a large scale. Then the star moves redward. Mass loss begins at
point B. At point C the envelope reaches a thermal equi-
librium: the energy generated by nuclear burning balances
with the energy lost from the photosphere. After the maximum
expansion of the photospheric radius, the star moves blueward
as the envelope mass decreases. A large part of the hydrogen-
rich envelope has been lost until the mass loss stops at point D.
Hydrogen shell burning still continues to point E and then the
white dwarf gradually cools down to point A.

D «
C
E B
3
-
o
Ke]
A
logT

F1G. 1.—Schematic H-R diagram for an evolutionary track of one nova
cycle. An accreting white dwarf stays at point A before the onset of hydrogen
shell flash. After hydrogen ignites, the hydrogen-rich envelope on the white
dwarf expands and wind mass loss begins at point B. The photospheric radius
reaches its maximum value at point C. As the envelope mass decreases due to
wind mass loss, the photosphere temperature increases and reaches point D
where the wind mass loss stops. After that, the mass of the hydrogen-rich
envelope gradually decreases due to hydrogen burning until the star reaches
point E at which the nuclear burning vanishes. The star gradually cools down
to point A.
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Such an evolutionary path of a nova has been followed by
time-dependent calculations with stellar-evolution code (e.g.,
Sparks et al. 1978; Nariai et al. 1980; Prialnik 1986). This
method works well before and after the onset of the unstable
hydrogen burning and also during the successive dynamical
expanding stages (corresponding to the stages from point A to
B). After the envelope expands greatly, however, some numeri-
cal difficulties prevent us from calculating nova evolution accu-
rately. This kind of numerical difficulty are inherent in Henyey-
type codes and no one succeeds in removing these difficulties
from their codes. Instead, we adopted a different type of
approach to follow the evolution of expanded nova envelopes.

In this expanded phase, the envelope is almost in a steady
state, in which the energy generated by nuclear burning is
balanced with the loss of energy radiated away from the photo-
sphere. If steady state is assumed, we are able to follow the
evolution further because we are free from the above numerical
difficulties. Then the evolution of nova is followed by a
sequence consisting of steady state (from point C to point D)
and static (from D to A through E) envelope solutions. We
believe that only this kind of approach enables us to compute
the very expanded phase of novae.

Optically thick wind is a continuum-radiation driven wind
in which the acceleration occurs deep inside the photosphere.
Historically, the importance of radiation pressure in mass ejec-
tion of novae was suggested by Friedjung (1966). Such mass-
losing envelope solutions were obtained first by Finzi & Wolf
(1971) in relation to planetary nebula formation. Their solu-
tions contain three free parameters because they did not
impose boundary conditions. Ruggles & Bath (1979) con-
structed sequences consisting of steady wind solutions to
follow nova evolution. Their inner bounary conditions,
however, are not consistent with the energy generation by
nuclear burning, that is, their inner boundary condition is
inadequate.

Kato (1983b) firstly obtained consistent envelope solutions
in thermal equilibrium and constructed sequences which
follow the decay phase of novae. Surface boundary conditions
were examined in detail by Kato (1985) to detect the
occurrence of optically thick winds. Now, we have an estab-
lished way to construct steady-state nova sequences. The
method has been applied to the case of recurrent novae. The
light curves thus obtained are in good agreement with the
oberved light curves of recurrent novae (Kato 1990a, b; 1991).
Taking into account the recent progress of opacity (Rogers &
Iglesias 1992; Iglesias & Rogers 1993), we have applied this
method to a classical nova, Nova Cygni 1978, and succeeded in
reproducing the light curves (Kato 1994).

2.2. Basic Equations

We assume steady state and spherical symmetry to calculate
structures of mass-losing envelopes. The validity of steady-
state approximation will be discussed in detail in § 6.3. Other
acceleration mechanisms which may occur outside the photo-
sphere such as line or dust driven winds are not incorporated
from the reason that will also be discussed in § 6.2. When the
envelope expands to a large size of ~100 R, the companion
star is engulfed by the envelope. Then the frictional process
between the envelope and the companion star produces heat
and it behaves as an energy source like nuclear burning. It may
accelerate the wind mass loss. This effect will be separately
examined in § 5.
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The structure of the mass-losing envelope at any particular
stage in the decline phase of nova is described by the following
equations. The equation of motion is

dv
v— +——=0, 1
dr pdr r? - @
where M is the white dwarf mass, v the velocity, P the total
pressure, p the density, and r the radius. The total pressure P is
the sum of gas and radiation pressures, i.c.,

_PKT L g 2

P
um, 3

where T is the temperature, u the mean molecular weight, k the
Boltzmann constant, m, the atomic mass unit, and a the
Steffan-Boltzmann radiation constant.

The continuity equation in spherical steady flows is

4nr?pv = constant = M 03)

where M is the wind mass-loss rate. We assume that the radi-
ation energy is transported by the diffusion process from the
bottom of the envelope to the photosphere, i.e.,

T 3kpL,
=33 4
dr 16macT>r

where L, is the diffusive luminosity at r, k the opacity, and c the
velocity of light. Although the convective condition is some-
times satisfied somewhere in the envelope solutions, we have
neglected the convective energy transport because its effect is
very small in outflowing matter with supersonic velocities. The
effect of convection will be examined in detail in § 6.4. An
integrated form of the energy conservation equation is written
as

. [v? GM
L+ M<% +w— —) = constant = A, , ®)
r
where w is the specific enthalpy, which is given by
5 kT 4aT* ’
W= ©)
2 um, 3p

The total luminosity L,,, measured in a stationary frame is the
summation of the diffusive luminosity and the advection lumi-
nosity,

Ltot = Lr + Ladv ’ (7)

where the advection luminosity is the energy flux of radiation
trapped in-the gas and moves with it, i.e.,

4
Luay =220 yr ®
3p

The photospheric luminosity is therefore the summation of the
diffusive luminosity and the advection luminosity at the photo-
sphere, but usually the advection luminosity is very small, that
is, as small as 1% or less and it can be neglected.

These equations are essentially the same as those in previous
works (Finzi & Wolf 1971; Zytkow 1972; Ruggles & Bath
1979; Kato 1983b). We have solved these equations from the
bottom of the envelope (i.e., the white dwarf surface) to the
photosphere.
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2.3. Conditions at the Critical Point

In order to specify a solution for a particular stage of the
decay phase of nova, we need four boundary conditions for
four basic differential equations described in the previous sub-
section. These four boundary conditons are set at the sonic
point, the photosphere, and the bottom of the envelope. The
first boundary condition is set at the sonic point, because we
need a wind solution in which the velocity is very close to zero
near the bottom of the envelope but it gradually increases in
the envelope and finally exceeds the sound speed far from the
white dwarf surface. There exist well known conditions to
specify such a solution. Differentiating equation (3) by r and
substituting it into equation (1), we have

dlnv KT GM dinT (kT 4aT*\]| =
=2 +
dinr um, r dinr \um, 3p

<02 - k—T) .9
pm,

Then the solution must satisfy the following conditions,

T M InT (kT  4aT*
L KT _GM _dinT (KT  4a )=0, (10)
um, r dlnr \um, 3p
and
T
uz—k =0, (11
pm,

at the same time (Bondi 1952): The position where both condi-
tions (10) and (11) are satisfied at the same time is called critical
point. This point usually lies in the middle of the acceleration
region. When the critical point lies inside the envelope, i.e.,
between the bottom of the envelope and the photosphere, we
consider it as an optically thick wind solution.

The acceleration mechanism of the flow can be understood
analogously to the Laval nozzle. After the flow passed the
narrowest position of the nozzle, gas is accelerated from sub-
sonic to supersonic according to the increasing cross section of
the nozzle. In our spherical wind mass loss, the increase of the
cross section corresponds to the increase in the area of spher-
ical shell, i.e., r>-dependence in equation (3). Therefore, the
upper region of the critical point has a spherical structure
(Kato 1983a) rather than a plane-parallel structure because the
pressure scale height there is the same order of magnitude as
the radius r.

2.4. Surface Boundary Condition and Occurrence of Optically
Thick Wind

The second boundary condition is the photospheric bound-
ary condition. Eddington approximation is widely used in the
calculation of stellar evolution. The photosphere in the
Eddington approximation is defined as the point where the
optical depth  reaches % in the integration from far outside the
star. This is valid for a star with a static plane-parallel atmo-
sphere but inappropriate for a mass-losing envelope with a
very extended structure. In such a case the density does not
drop quickly as in usual cases. Instead it decreases as slow as
r~2 near the photosphere. This is easily seen from equation (3)
assuming a constant velocity.

Here, we adopt the surface boundary conditions proposed
by Kato (1983a):

(12)

Ly, =4nrk, 0Ty, .
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Ton = Kph Pph Tpn ~ 2.7 . (13)

The optical depth, T = kpr, is defined by a product of local
variables not by an integral from far outside the star. In steady
state mass-losing envelopes, the optical depth 7 at the photo-
sphere, where the equation (12) is satisfied, is always larger
than 8/3 (Kato 1983a; Quinn & Paczynski 1985). Therefore, we
practically adopt condition (13) in our calculation. These
surface boundary conditions (12) and (13) are the same as those
in Paczynski & Proszynski (1986) for mass-loss solutions in
X-ray bursts, though they adopt slightly larger values of 7,
B<tm<?I).

These photospheric conditions for extended envelopes were
theoretically examined by Kato (1985) in relation to the
occurrence of optically thick winds. She assumed several types
of the surface boundary conditions with spherical structure
and found the condition whether optically thick winds occur
or not. More detailed discussions appear in Appendix A.

In what follows we briefly explain the reason why condition
(13) is adopted. When the diffusive energy flux, which comes
from deep inside the envelope, is much smaller than the
Eddington luminosity, a static envelope exists and it has a
plane-parallel structure. When the luminosity increases up
very close to the Eddington luminosity, the envelope begins to
expand. The photospheric radius increases and the structure of
the envelope near the surface region changes from plane-
parallel to spherical. In other words, the pressure scale height
of the envelope becomes as large as the radius of the envelope
itself. When the luminosity, L,, exceeds the maximum value,
L., there exists no static solution as shown in Appendix A.
Here, L,,,, is defined as

Imax = LEdd(l - %X) > (14)
where Ly, is the Eddington luminosity defined by
4ncGM
Edd = > (15)
K
and
= 2KTon Tpn ) (16)
GMum,

This maximum value is very close to but slightly smaller than
the Eddington luminosity, because y is less than 0.01 for typical
nova case. In the solution with the maximum luminosity (14),
the optical depth at the photosphere becomes

T= K:ph pphrph = % . (17)
The value of £ is a characteristic property of the static solution
with the maximum luminosity (see Appendix A for more
details).

Here we define two special solutions, one for static and the
other for wind solution. The first one is the static solution with
the maximum luminosity L, defined by equation (14) so that
we call it maximum static solution. The second one is the wind
solution in which the critical (sonic) point is close to the photo-
sphere. We call it minimum wind solution. In wind solutions,
matter is accelerated inside/near the sonic point. So there
cannot exist optically thick wind solutions having the sonic
point far outside the photosphere. When and only when condi-
tion (13) is applied, the structures of these two special solutions
are almost identical with each other, that is, optically thick
winds start from the maximum static solution continuously. In
other words, we may consider that the occurrence of optically
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thick winds can be detected by the condition of L = L, for
static solutions and such static solutions are smoothly replaced
by wind solutions that has similar structures to the maximum
static solutions.

If we assume a larger value of t at the photosphere, such as
1000 instead of 2.7, for example, the structure of the minimum
wind solution deviates largely from that of the maximum static
solution. Only when we assume that 7 at the photosphere is
close to or as small as 8/3, the structure of the minimum wind
solution becomes almost identical to the structure of the
maximum static solution. These properties indirectly support
the acceptance of the boundary conditions (12) and (13). More
detailed discussions appear in Appendix A.

The envelope solution at point D in Figure 1 corresponds to
the static structure with the maximum luminosity. On the
other hand, the structure of the minimum wind solution, in
which the critical (sonic) point is close to the photosphere, is
almost identical to that of the static solution at point D. We
have wind solutions sufficiently close to point D as shown by
Kato (1985).

2.5. Inner Boundary Condition

The third boundary condition is set at the bottom of the
envelope, i.e., at the surface of the white dwarf. In the course of
nova decay phase, nova envelope is in the thermal equilibium.
Here we mean by the word “thermal equilibrium” that the
energy lost from the photosphere is balanced with the energy
generated by nuclear burning (e.g., Fig. 1 of Prialnik 1986). We
assume that no diffusive energy is coming from inside the white
dwarf, ie.,

L =L, at r=Ryp. (18)
where the energy flux by nuclear burning is calculated from
rph
L,= f XeydM, , (19)
Rwp

and X is the hydrogen mass content, €, the nuclear energy
generation rate of hydrogen per unit mass, M, the mass within
the radius r. We construct a sequence of steady state and static
solutions to follow a decay phase of nova. In this sequence, the
envelope mass is gradually decreasing with time. Therefore, we
need to specify the solution with a given envelope mass, i.e.,

rph
AM = f " AM, = given . 20)
Rwp

where AM is the envelope mass around the white dwarf. This is
the last (fourth) boundary condition.

2.6. Numerical Method

Originally we have four basic equations, i.e., equation of
motion (1), continuity equation (3), energy transfer equation
(4), and energy conservation equation (5), each of which is a
first order differential equation. Two of these equations can be
integrated as seen in equations (3) and (5). Two integral con-
stants, M and A,,, are determined as eigenvalues of the
boundary-value problem when we specify four boundary con-
ditions, i.e., equations (10) and (11) at the critical point, equa-
tion (12) at the photosphere (13), equation (18) at the bottom
of the envelope, and equation (20). Thus, one unique solution is
specified for a given envelope mass of nova. Therefore, we
obtain one solution corresponding to one point in the course
of nova decay phase, i.e., from point C to point D in the theo-
retical H-R diagram (Fig. 1).
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The fact that the mass loss rate is an eigenvalue of the
boundary-value problem means that the value itself is deter-
mined with high numerical accuracy. One of the advantages of
the optically thick wind theory lies in the accurate determi-
nations of the mass-loss rate, the photospheric temperature,
the luminosity, and so on. This accurate determination is
essential to construct reliable light curves. On the contrary,
time-dependent calculations often encounter numerical diffi-
culties near the surface region when the envelope expands con-
siderably. These numerical difficulties prevent from repro-
ducing the light curves.

Equations (1) and (4) are integrated numerically by using a
trapezoidal implicit method (Appendix B for more details). We
first assume trial values of temperature T, and position r . at
the critical point. We integrate outwards with a trial value of
the density p_, and get a value of t at a point where equation
(12) is satisfied. If 7 is not sufficiently close to 2.7 (~8/3), we
repeat the integration with different p_, until we reach the final
value which satisfies both equations (12) and (13).

After that, we integrate inward from the sonic point to the
surface of the white dwarf, r = Ry,p, and find an appropriate
value of T, which satisfies inner boundary condition (18).
Finally, we find an appropriate value of r_, which satisfies con-
dition (20). We need several to ten iterations for each step of
iterations so that typically about four to five hundred iter-
ations in total (for example, 10 x 7 x 7 = 490) are needed to
satisfy a given accuracy of 0.1%.

We have constructed sequences for the white dwarf masses
of 1.33, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4 M. The
Chandrasekhar radius is assumed for white dwarfs less massive
than 1.3 M. For more massive ones, a value calculated
by Nomoto, Thielemann, & Yokoi (1984) is assumed, i.e.
log (Rwp/Rp) = —2.417 for 1.33 M white dwarfs.

The chemical composition of the envelope is assumed to be
uniform with X =035, Y =033, C=0.1, O=0.2, and
Z = 0.02 for hydrogen, helium, carbon, oxygen, and heavy ele-
ments, respectively, for classical novae. For comparison, we
also examine the solar composition case of X = 0.7, Y = 0.28,
and Z =0.02 in § 4. Other chemical compositions such as
neon-rich or CO-rich are discussed in § 6.1. We used the
OPAL opacity tables (Rogers & Iglesias 1992; Iglesias &
Rogers 1993) with Fe intermediate coupling, in which the
density extends to log R > —7.0, where R = p(g cm ™~ 3)/(T/10°
K)>. A quadratic interpolation formula has been used to get a
value between two grid points of the opacity table. The devi-
ation of the interpolated value from the true value is expected
to be as small as a few percent (Rogers & Iglesias 1992). To
obtain the mean molecular weight of electron, we solved Saha’s
equations of ionization equilibrium among various ionization
stages of hydrogen, helium, carbon, oxygen, and neon.

3. WIND SOLUTIONS OF NOVAE

Specifying the white dwarf mass and the envelope mass, we
obtain a steady state wind solution. First, we describe the basic
characteristics of each wind solution. Next, we construct a
sequence consisting of steady state solutions and static solu-
tions by decreasing the envelope mass gradually. Finally,
several light curves are made based on the sequences thus
obtained. These theoretical light curves should be compared
with observed ones to draw various physical parameters on
novae, e.g., the white dwarf mass, the envelope mass, the
chemical composition, the distance to the nova, and so on.
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F1G. 2—Run of the opacity against the temperature for two Wwind ‘solutions
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on 1.0 M, white dwarf with the critical point of r., = 0.65 R, (dotted curve)
and r., = 0.2 R, (thick curve), The strong peak due to iron lines is prominent
around log T(K) = 5.2. The small peak around log T(K) = 4.58 is- due to
ionizations of carbon and oxygen. We have assumed the chemical composition
of the envelope to be X = 0.33, Y = 0.35,C = 0.1,0 = 0.2,and Z = 0.02.

3.1. Wind Solutions

Two typical wind solutions on a 1.0 M white dwarf are
shown in Figures 2-4 to explain the basic characteristics of
steady state wind solutions. Dotted lines correspond to the
solution in which the critical point lies at r,, = 0.65 R,. Solid
lines denote the case of the critical point at r,, = 0.2 Rg. The
photospheric temperatures of these solutions are log T,,(K) =
4.182 and 5.007, the photospheric radii are r,, = 24.5 Ry and
0.643 Ry, the envelope masses are 9.46 x 107¢ and
2.86 x 10”° M, the wind mass-loss rates are 1.14 x 10™*and
529 x 1078 Mg yr, the velocities of matter at the photo-
sphere are 361 and 817 km s~ 1, respectively.

“Figure 2 shows the opacity distribution of these two solu-
tions against the temperature. The sharp peak around
log T = 5.20is due to the effect of iron lines and the small peak
around log T = 4.58 corresponds to ionization zones of
carbon and oxygen. Such a large enhancement in the opacity is
the origin of strong acceleration of winds. The Eddington lumi-
nosity and the diffusive luminosity of the solution are shown
in Figure 3. The Eddington luminosity sharply decreases
and reaches the minimum at logr(cm)= 1092 and
log r(cm) = 10.42, respectively. These positions correspond to
the opacity peaks due to iron lines. This strong decrease in the
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F1G. 3.—Diffusive luminosity is plotted together with the Eddington lumi-
nosity for the same solutions as in Fig. 2. There is a strong super-Eddington
region around log R(cm) = 10.92 and 10.42, each of which corresponds to the
opacity peak due to iron lines. The filled circle denotes the critical point.
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FiG. 4—Density, the temperature, the velocity, and the escape velocity are
plotted against the radius. The thick and dotted curves denote the models with
r, = 02 R, and r,, = 0.65 M, respectively.

Eddington luminosity blocks the diffusive luminosity and
causes strong acceleration of matter. Figure 4 clearly shows
that the velocity increases steeply around the critical point
where the Eddington luminosity drops. At the same time, the
density goes down quickly and the diffusive luminosity also
decreases as shown in Figures 3 and 4. A part of the diffusive
energy flux is consumed to push envelope matter up against
the gravity near the critical point.

Then, we have obtained so many wind solutions (about 500
in total) for various envelope and white dwarf masses. In what
follows, we briefly summarize the basic characteristics of wind
solutions. The position of a wind solution in the H-R diagram
is shown in Figure 5 for various envelope and white dwarf
masses. The dashed line corresponds to wind solutions while
the solid line denotes static (no wind) solutions. No optically
thick winds occur on a 0.4 M, white dwarf. Figure 6 shows the
mass decreasing rate of the envelope against the envelope
mass, where the decreasing rate is the summation of the wind
mass-loss and the mass decreasing rate due to hydrogen
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F1G. 5.—Evolutionary tracks of the decay phase of novae are plotted in the
theoretical H-R diagram. Each curve corresponds to different white dwarf
mass, i.e., 1.33,1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4 M ;. The mass of white
dwarf is attached to each curve. Dashed part of the curve denotes the wind
phase.
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Fic. 6—Mass decreasing rate of the envelope (solid lines), the summation
of the wind mass-loss rate and the mass decreasing rate due to hydrogen
burning, is plotted against the envelope mass. The mass of the white dwarf is
attached to each curve. The dashed one denotes the wind mass-loss rate.

burning, i.e.,

M, =M+M (2D

where the mass decreasing rate due to nuclear burning is esti-
mated by

env nuc ?

. L,
Mnuc = *
Xey

(22)

As the envelope mass is decreasing, the wind mass-loss rate is
also decreasing. When the envelope mass reaches some critical
value, the wind stops. The folded portions of each curve in
Figure 6 correspond to point D in Figure 1, ie., the critical
static solution with maximum luminosity. After that point, the
envelope mass is further decreasing but due only to hydrogen
burning.

The mass-loss rate is gradually decreasing with the envelope
mass being decreased as shown in Figure 6. On the other hand,
the photospheric temperature is increasing as shown in Figure
7. The photospheric luminosity is also increasing a little bit as
shown in Figure 5. This is because a part of the diffusive energy
flux is consumed to drive the wind mass loss, mainly to push
the matter up againt the gravity. The lower the surface tem-
perature, the larger the mass-loss rate, i.c., as large as 1074 Mg
yr~ L. Therefore, the diffusive luminosity is much more con-
sumed for solutions with lower surface temperatures. The wind
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FIG. 7—Mass decreasing rate of the envelope is plotted against the photo-
spheric temperature.
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mass-loss rate becomes as small as 107¢ M, yr ™! or less just
before it stops near point D.

It is remarkable that the slopes in Figure 7 are almost the
same among various white dwarf masses at least for the region
of log T, (K) = 4-5. Therefore, we are able to make a simple
empirical formula of mass-loss rate:

log M (gs™ ') = —149 log (T,,/10° K) + b,  (23)

where b depends on the white dwarf mass and is tabulated in
Table 1. The maximum errors of these empirical formulae are
smaller than 0.04.

3.2. Sequence of Wind Solutions

Constructing a sequence consisting of steady wind and static
solutions described in the previous subsection, we can follow
the evolution of decay phase of novae (Kato 1983b, 1990a, b,
1991; Kato & Hachisu 1988, 1989). If the white dwarf mass is
given, one particular solution on the sequence is specified by
the envelope mass. The envelope mass is large at early phase
and then gradually decreases in time due both to wind mass
loss and to hydrogen burning. Then the star moves blueward
in the H-R diagram. When the envelope mass decreases to
some critical value, the wind stops. This point corresponds to
point D in Figure 1. After the wind stops, the envelope mass is
decreased only by hydrogen shell burning until point E in
Figure 1. After point E, hydrogen shell burning vanishes, the
envelope cools down to point A.

We introduce an evolutionary timescale in our steady state
sequences by calculating time interval between two wind solu-
tions as follows:

M,
At = d

b
M Menv

(24)

where the subscripts 1 and 2 denote two wind solutions with
envelope mass M, and M,, respectively. Therefore, the total
duration of the wind phase (from point C to point D in Fig. 1)
is calculated as

Mc d

- (25)

b
Mp Menv

t

wind =

where M and M, are the envelope mass at points C and D,
respectively. After the wind mass loss stops at point D, the

TABLE 1

EMPIRICAL RELATION OF MASS-LOSS RATE
VERSUS PHOTOSPHERIC TEMPERATURE®

My,

M) b
133 20.78
12 20.72
Ll 20.67
10 20.62
09 .o 20.55
08 . i 20.49
0.7 i 20.38
06 . ccciiiiiiiinn. 20.24
05 . i 20.01

* Mass-loss rate is given by equation (23). We
assume the chemical composition of the envelope
to be X =033, Y=035 C=0.1, O=0.2, and
Z =002 and use the corresponding OPAL
opacity.
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TABLE 2

TIMESCALES OF DECAY PHASE
OF CLAssICAL NOVAE?

MWD twind tsta!ic

(Mg) (\J] o)
133 0.11 0.038
12 0.26 0.15
O 0.39 0.34
10 . 0.61 0.74
09 .o 0.87 1.40
08 . v, 1.4 2.7
L 24 53
06 . v, 4.0 8.9
0.5 i 7.4 16.8
04 ..o . 61 S

* We assume the chemical composition
of the envelope to be X = 0.33, Y = 0.35,
C=0.1,0=0.2,and Z = 0.02 and use the
corresponding OPAL opacity

envelope mass decreases only by nuclear burning. The dura-
tion of static phase is also calculated by
Mp aM
MEg M ’

env

tstatic = (26)
Thus, we have calculated evolutional time of our sequences in
Table 2 (see also Kato & Hachisu 1988, 1989).

3.3. Theoretical Light Curves »

Now we are able to obtain theoretical light curves of novae
as shown in Figure 8. Light curves are plotted for the white
dwarf masses of 1.33, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5 M.
It should be noted that we cannot reproduce the rising phase of
novae or around the luminosity peak because the steady state
assumption is not valid there.

More massive white dwarfs show more rapid development
in their light curves. It is because the envelope mass is much
smaller on more massive white dwarfs than on less massive
ones as shown in Figure 6, whereas the wind mass-loss rate is
almost the same for the same photospheric temperature as
shown in Figure 7, i.e., its weak dependence on the white dwarf
mass.
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FiG. 8.—Theoretical light curves of classical novae are plotted for various
white dwarf masses. The zero point of the abscissa should be determined from
the initial envelope mass.
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F1G. 9.—Theoretical UV light curves for the same sequence as in Fig. 8

Figure 9 shows ultraviolet (UV) light curves for the same
sequences as in Figure 8. The flux of UV, F(UV), covers the
region of wavelength 911 A-3250 A and measured in units of
ergs cm 2. The distance to the star is assumed to be 2.2 kpc in
the left side ordinate but 1.0 kpc in the right side ordinate. The
peak of UV light curves is always reached after the peak of the
corresponding visual light curves. This is because the wave-
length at the spectral maximum enters UV region after it
passes through the visual band with the constant bolometric
luminosity.

The wind mass-loss rate, M, is also plotted in Figure 10
against time for the same sequences as in Figure 8. The photo-
spheric temperature, the photospheric radius, and the velocity
of matter at the photosphere are also shown in Figures 11, 12,
and 13, for the same sequences as in Figure 8.

3.4. Light Curve Analysis of Classical Nova, Nova Cygni 1978

Now our theoretical light curves should be compared with
the observational data to see whether or not our wind theory is
applicable to real nova phenomena. Nova Cygni 1978, a mod-
erately fast nova, is a good candidate in the sense that it has
been well observed in many wavelengths. The data in two
wavelengths of visual and UV are fitted to our theoretical
visual and UV light curves as shown in Figure 14. The optical
data observed by Gallagher et al. (1980) are plotted in Figure
14a by open circles. It should be noted that these are y-band
magnitude. The y-band is a rather narrow band compared
with the V-band and supposed to be almost line-free, that is, it
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FiG. 10.—Wind mass-loss rate is plotted against time for the same
sequences as in Fig. 8.
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F1G. 11.—Change of the photospheric temperature in time for the same
sequences as in Fig. 8.

is a good tracer of the continuum. On the other hand, the
V-band is contaminated by line emissions in the nebula phase
of novae and does not represent the continuum.

In this sense, the y-band magnitude is suitable to our fitting
of light curves, because our theoretical light curves does not
include line emissions/absorptions but trace only the contin-
uum radiation. The y-magnitude does follow the V-band mag-
nitude at the relatively early phase of novae but gradually
deviates in the later phase of novae (Duerbeck, Rindermann,
& Seitter 1980; Kaler 1986), where emission lines dominate
(after m, > 10). If the radiation has no line emissions/absorp-
tions, y-magnitude is very close to V-magnitude. Therefore,
our theoretical y-magnitude is almost equal to our theoretical
V-magnitude.

Figure 14b shows a light curve in UV observed by the IUE
satellite (Stickland et al. 1981). Open circles denote the UV flux
(1140-3290 A). The infrared (IR) flux becomes large and com-
parable to the UV flux (Stickland et al. 1981) in the late phase
of the outburst. It is most likely that the IR emission is dust-
origin in the circumstellar and that this IR flux comes from the
UV radiation which is emitted at the photosphere. Therefore,
the original UV flux is equal to the sum of UV and IR fluxes
observed. Such an estimated original UV flux is denoted by
filled circles in Figure 14b.

Our theoretical light curves, which are the same models as in
Figures 513, are also plotted in Figure 14. In this figure, we
move our theoretical light curves in the vertical direction to fix
the distance to the star or in the horizontal direction to fix the
origin of time. First, we will fit our UV light curves to the
observed UV data: it has a peak at about t = 785 days (i.e., 23
days after the optical maximum). The peaks of five theoretical
UV light curves are fixed at t = 785 days then we easily find
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F1G. 12—Change of the photospheric radius in time for the same sequences
asin Fig. 8.
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F1G. 13.—Velocity of matter at the photosphere is plotted against time for
the same sequences as in Fig. 8. It is gradually increasing up to ~ 1000 km s ™!
during the decay phase of novae.

that among five theoretical UV light curves, the 1.0 M ; model
is the best fit one around/near the peak. The 0.9 M model still
seems to be consistent with the data, but the 1.1 M model is
too steep. The other two light curves of the 1.2 and 1.3 M
models are also too steep and may be excluded. So we adopt
the model of 1.0 M as the best-fit model and obtained the
distance of 2.87 kpc.

Next, we seek the best fit one for the optical light curve.
Since we have already fixed the origin of time by the UV peak,
we can move the light curves in the vertical direction and get
the distance to the star which is independent of the distance
determination by the UV light curves. We easily see that the
1.0 M5 model is the best fit one. The models of 0.9 and 1.1 M
seem not to be consistent with the observational data. The
other models of 1.2 and 1.33 M are too steep and may be
excluded. The distance to the star is independently obtained by
the fitting of the 1.0 My model to be 3.21 kpc with the
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FiG. 14—Theoretical and observational light curves for the decay phase of
classical novae. Theoretical ones are denoted by lines. White dwarf mass is
attached to each curve. (a) Optical light curves. The left ordinate shows the
absolute visual magnitude for the theoretical curves. Observational data of
Nova Cygni 1978 (Gallagher et al. 1980) are shown by open circles. Its appar-
ent y-magnitude is written on the right ordinate. (b) UV light curves. Open
circles denote the UV flux (1140-3290 A) and filled circles do the summation of
the UV and IR fluxes (> 12000 A) in the units of ergs cm ~2 s~ ! (Stickland et al.
1981). Theoretical UV flux, F = Lyy/4nD?, is also shown by lines, where D is
the distance to the star and assumed to be 2.88 kpc.
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reddening of 4, = 1.2 (Stickland et al. 1981) or 3.06 kpc with
Ay = 1.3 (Gallagher et al. 1980). This is in a reasonable agree-
ment with the 2.87 kpc distance obtained from the UV light
curve fittings.

The distances thus obtained seem to be consistent with the
other determinations of distance, for example, ~ 1.0-3.3 kpc by
Duerbeck et al. (1980). Another estimate of the distance may
come from the UV flux. If the star emits only UV radiation at
the Eddington luminosity, the distance is calculated to be
D = 3.6 kpc by equating the flux, F = Lg,,/4nD?, equal to the
observed peak flux, log F = —7, where the opacity is assumed
to be 0.316 from the model at the peak of the UV light curve.
This is an upper limit to the distance.

The expansion velocity in Nova Cygni 1978 has beenesti-
mated as v = 760 km s ™1, i.e,, log v(km s~ !) = 2.88 at 56 days
after the optical maximum from an IUE high-dispersion spec-
trum (Stickland et al. 1981). The corresponding time in Figure
13 is t = 44 days. As our theoretical curve for 1.0 M, gives
log v(km s~ ') =2.80 at that time. Thus, the observational
velocity is also in good agreement with our theoretical value
for the 1.0 M white dwarf model.

In summary, two independent light curve fittings of Nova
Cygni 1978 consistently indicate that the white dwarf mass is
about 1.0 M and the distance to the nova is between 2.9 and
3.2 kpc. These results also support the validity of our optically
thick wind theory, at least, for the decay phase of novae.

4. EFFECT OF OPAL OPACITY

The advent of the OPAL opacity enables us to reproduce
reasonable light curves. In the present section, we show the
reason why the OPAL opacity makes good quality light curves
compared with the old opacity. Figure 15 shows the run of the
opacity for wind solutions on a 1.0 M white dwarf; one for
the OPAL opacity (solid line) and the other for the old opacity
(dashed line). The solid curve denotes the model with the
OPAL opacity for the chemical composition of X = 0.70 and
Z =0.02. This solution has the critical point at logr,
(cm) = 10.843, the surface temperature log T, = 3.846, the
wind mass-loss rate M =228 x 1074 M o yr~ ', the envelope
mass AM =272 x 107> M. The dashed curve denotes the
model with the old capacity for the chemical composition of
X =0.73 and Z = 0.02, which is taken from Kato (1983b). For
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F1G. 15—Run of the opacity against the temperature for two envelope
solutions on the 1.0 M, white dwarf. The thick curve denotes a model with the
OPAL opacity of X =0.70, Y = 0.28, and Z = 0.02, and the dotted curve
denotes the old opacity of X = 0.73, Y = 0.25, and Z = 0.02. Peaks are due to
iron lines [log T(K) ~ 5.2], carbon and oxygen [log T(K) ~ 4.5] and hydro-
gen [log T(K) ~ 4] recombination lines. The position of the critical point is
denoted by filled circles.
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the old opacity we used the interpolation formulae proposed
by Iben (1975) for log T > 6.0 and by Stellingwerf (1975) for
log T < 6.0. These formulae are based on Los Alamos opa-
cities (Cox & Stewart 1970a, b; Cox, King, & Tabor 1973).
This solution has the critical point at log r,, (cm) = 12.500,
the surface temperature log T, = 3.824, the wind mass loss
rate M =142x10"* Mg yr~!, the envelope mass
AM = 5.61 x 1073 M. The prominent peak due to iron lines
appears near log T(K) ~ 5.2 in the OPAL opacity whereas the
largest peak of the old opacity lies at log T(K) ~ 4.0 due to the
hydrogen recombination lines.

It is easily understood that the new opacity may resolve
difficulties in the nova wind theory that either the timescale of
nova or the wind velocity cannot be successfully reproduced
with the old opacity. As shown in § 2.4 optically thick winds
occur only when the diffusive luminosity exceeds the minimum
value of the Eddington luminosity. With the old opacity, there
is a small opacity peak near log T(K) < 4.0, which is due to
ionization of hydrogen. Then the matter is accelerated just
inside this region where the opacity quickly increases outward.
The critical point lies in this region, as shown in Figure 15,
because it is always located in the region of acceleration. With
the OPAL opacity, matter is accelerated at the largest peak of
log T(K) ~ 5.2, which lies deep in the envelope where the
density is very high. This is the reason why the mass-loss rate is
so large for the case of the OPAL opacity compared with the
old solutions.

Figure 16 shows the evolutionary tracks in the H-R diagram
for various white dwarf masses with the OPAL opacity for the
chemical composition of X = 0.70, Y = 0.28, and Z = 0.02. A
part of the 0.6 M, sequence cannot be obtained due to numeri-
cal difficulties in which the density is increasing outward near
surface region. It is easily seen that point D for various white
dwarf masses, where the wind mass loss stops, lies at the same
photospheric temperature of log T(K) ~ 5.3. This is because
the main acceleration region lies at log T(K) ~ 5.2 in both the
cases of C/O enhanced and hydrogen-rich materials. The wind
mass loss stops after the surface temperature increases higher
than that of this strong peak because no prominent peak exists
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F1G. 16.—Theoretical H-R diagram for the decay phase of novae are
plotted. The OPAL opacity for the chemical composition of X = 0.70,
Y =0.28, and Z = 0.02 is used. The white dwarf mass is attached to each
curve. A part of the 0.6 M sequence has not been calculated because of
numerical difficulties. Dashed parts of the curves denote the wind phase, while
solid parts correspond to the static phase. No optically thick wind occurs for a
0.5 M, white dwarf.
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F1G. 17—Wind mass-loss rate is plotted against the envelope mass. Solid
lines denote the wind mass-loss rate with the OPAL opacity, while dotted lines
represent those with the old opacity, which are taken from Kato & Hachisu
(1988, 1989).

above that. In the old opacity cases, point D is located at much
lower temperature. For example, point D lies at
log T(K) = 4.74 for 1.3 Mg, log T(K)=4.03 for 1.0 M,
log T(K) = 3.99 for 0.9 M, white dwarfs (Kato & Hachisu
1988, 1989). This is because the main opacity peak is reached at
the helium recombination zone for massive white dwarfs or at
the hydrogen recombination zone in less massive white dwarfs,
both of which lie at lower temperature region.

Figure 17 shows the comparison of the wind mass-loss rate
of nova solutions. Here solid curves denote the value with the
OPAL opacity and dotted with the old opacity. The slope of
the wind mass-loss rate is similar between them, but the posi-
tions of the OPAL ones are systematically shifted leftward
compared with the old ones. For the same envelope mass, the
mass-loss rate is about several to 10 times larger with the
OPAL opacity than that with the old ones. Much higher mass-
loss rates for the same envelope mass result in much shorter
timescales of nova outbursts.

The timescale of nova duration is summarized in Tables 2—4,
where the durations of the wind and static phases are calcu-
lated by equations (25) and (26), respectively. The wind phase is
defined as from point C to point D, but point C may depend on
the initial envelope mass at the ignition. Here, we regard point

TABLE 3

TIMESCALES OF DECAY PHASE FOR
SoLAR COMPOSITION®

MWD twind ts(alic
(Mo) ) (yr)
1377 i, 0.14 0.028
13 041 0.22
12 0.85 0.90
10 oo, 23 4.5
0.7 oo 12. 33.
06 ....coeiininnnn. 24. SS.
0.5 i, . 270

* We assume the chemical composition
of the envelope to be X = 0.70, Y = 0.28,
and Z = 0.02 and use the corresponding
OPAL opacity.
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TABLE 4

TIMESCALES OF DECAY PHASE
FOR THE OLD OPACITY?

My Lyina Lyatic

M) (yn) (yr)
13, 1.1 0.28
12, 2.0 2.1
10, 32 14
[1X B 52 29
[ .. 150
06...cc........ el 330

3300

® Taken from Kato & Hachisu 1988,
1989, 1991b with chemical composition
of X =073, Y =025, and Z = 0.02.
Here, point C is defined by r,, = 10

Ro.

C as the solution having the lowest temperature in Figure 16. It
should be noted that the duration is hardly affected by the
exact position of point C, because the mass-loss rate near point
C is so large that the star quickly moves leftward. The dura-
tions thus obtained are very short compared with the results in
our previous papers with the old opacity (Kato & Hachisu
1988, 1989). For example, the durations of the wind and the
static phases in the previous results are (1.1 yr, 0.28 yr) for 1.3
M  white dwarf (3.2 yr, 14 yr) for 1.0 M white dwarf (5.2 yr,
29 yr) for 0.9 M , white dwarf, respectively. On a 0.7 M white
dwarf, no wind occurs, instead the static phase lasts 150 yr as
shown in Table 4. With the new opacity, no steady wind occurs
on a 0.5 M white dwarf, but the timescale itself is much
shortened (see Table 3). This is because the envelope mass is
much reduced by the large enhancement of the new opacity.
With the old opacity, we have failed to reproduce nova light
curves. There are two main reasons: one is a long duration
time of the wind phase and the other is the low surface tem-
perature of point D. The long duration time forced us to con-
clude that very massive white dwarfs such as ~1.3 My are
needed to obtain rapid evolution of novae. The low tem-
perature of point D causes a sudden change at ¢ ~ 400 day in
the light curves as seen in Figure 18, because the evolutionary
speed is much different between the wind and the static phases.
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F1G. 18.—Comparison of light curves between the OPAL and the old opa-
cities. Solid curves denote the light curves with the OPAL opacity. Dashed
ones represent those with the old opacity. The white dwarf masses are attached
to each curve. It is easily seen that the new opacity drastically improves the
quality of light curves.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...437..802K

814

With the OPAL opacity, the large peak at the high-
temperature region drastically improves the light curves. The
rapid evolution of mass-loss phase smoothly switches to the
static phase at point D. This is the reason why we have a
smooth light curve during the decay phase of nova through
point C to E. Moreover, point D shifts into much higher tem-
perature region so that the connection from the wind to the
static phase moves below M, > 2 in the figure, where little
interests arise to fit with the observations.

5. EFFECT OF DRAG LUMINOSITY

In this section we examine the effects of drag luminosity
during the common envelope phase. As shown in § 3 nova
envelope expands greatly and, as a result, the companion star
is engulfed by the envelope. Frictional processes between the
gaseous matter and the companion star produces thermal
energy because the companion star moves in the envelope with
supersonic velocity. Although it is unlikely, as mentioned in
§ 1, that the drag luminosity strongly accelerates mass loss and
shortens the nova duration, it is necessary to examine, under
the use of the OPAL opacity, whether or not mass ejection is
greatly accelerated during the.common envelope phase.

We treat the drag luminosity in the same way as our pre-
vious paper (Kato & Hachisu 1991a, b): the companion star is
assumed to be a zero age main-sequence star just filling its
inner critical Roche lobe. Its orbit is also assumed to be circu-
lar. We use Patterson’s (1983) mass-radius relation for zero age
main-sequence stars and Eggleton’s (1983) expression for the
effective radius of the inner critical Roche lobe. Then the orbit
is automatically determined if we specify the masses of the
white dwarf and the companion star. For example, the radius
of the orbit is 6.6 x 10!° cm for a white dwarf mass Myp = 1.0
Mg and a companion mass M., = 0.2 My as shown in
Table 5.

The most important assumption in our treatment is that our
calculation is based on one-dimensional (spherical) approx-
imation. The drag luminosity in the common envelope phase is
estimated as follows: when the companion star is moving
supersonically in the envelope, the drag luminosity generated
in the region between r and r + dr can be approximated as

derag =p [ Vot — U, 13 s, (27)
where p is the density of the envelope, v, — v, is the relative
velocity between the envelope and the companion star, dS is
the cross-sectional area of the circular strip between r and
r + dr and the circle with a radius R,, the center of which is
located at r = r,,,. Here the modified accretion radius, R,, is
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defined as

R R
71 + (Ry/2H)?’

where H is the local density scale height, and R, is the gener-
alized Bondi (1952) radius defined by
2GM
R = comp_
0 (vrot - ve)z + Cs2 ’

where C; is the sound velocity at the companion orbit r,, (€.g.,
Shima et al. 1985; Livio et al. 1990). When the accretion radius,
R,, is smaller than the radius of the companion star, R ,,,, We
take the real radius of the companion as R, in equation (27)
instead of equation (28).

Then the total drag luminosity is calculated from

Ldrag = J-plvrot - ”ela das .

If both the density p and R, are constant in space, the drag
luminosity (30) becomes the standard expression, i.e.,

28

(29)

(30)

Ldrag = TCprlvro! - ve|3 ’ (31)

(e.g., Bodenheimer & Taam 1984; Livio & Soker 1988; Taam
& Bodenheimer 1989; Livio et al. 1990). In our one-
dimensional calculation the drag luminosity, dL,,,,, is redis-
tributed over the entire spherical shell between r and r + dr.

We assume that the envelope has no rotational velocity but
a large expansion velocity due to wind, i.e.,

Ve = (Vwina> 0) (32)

where the first component denotes the radial component and
the second one the azimuthal component in the orbital plane,
and the rotational velocity of the companion star is given by

Vot = (09 vorb) ’ (33)
where
G(M M 172
Vgt = [M%_ﬁﬁ] . (34)
orb

The gravity of the companion star is also an important
factor to alter solutions of the optically thick wind because it
has the same effect as that the white dwarf mass has been
increased by M., at the outer envelope. In our one-
dimensional treatment, we assume the companion mass is uni-
formly distributed in a spherical shell between 7,,;, — R omp and
Torb + Reomp- The envelope is attracted by the gravity of the

TABLE 5
EFrFecT OF COMPANION STAR

My,p M omp Ter Lrag Loy log T, Ton Dwind,ph Torb log Pgrg Vorb_ Cs.orla vwind,grll)

(M) Mo)  (Re) (Le)  (10°Ly) (K) (Ry) (kms™) (Rg) (gem™) (kms™!) (kms™') (kms™)
06...... 035 1.626 4.423 6.04 317
06...... 0.1 0.35 349 1.637 4.355 8.31 205 0.545 —8.601 495 325 270
06...... 0.2 0.35 35.7 1.635 4.259 129 131 0.833 —9.085 428 246 358
08...... ... 0.50 . 2.273 4.299 12.7 353 . . .. ... s
08...... 0.2 0.50 98.6 2.291 4.207 19.4 226 0.897 —8.654 461 301 313
08...... 0.4 0.50 114 2.289 4.137 26.8 152 1.393 —9.105 405 223 369
10...... 0.65 2.898 4.182 24.5 361
10...... 0.2 0.65 218 2.958 4.135 30.7 256 0.954 —8.203 490 314 196
10...... 04 0.65 222 2.927 4.087 38.1 195 1.47 —8.821 427 255 360
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mass, Myp, + M, outside the companion orbit. Therefore,
equations (1) and (5) has been modified to include the gravity
of the companion star, i.e., M is replaced by M, which is equal
to Myp inside the radius of 7, — Roomp OF equal to Myp
+ M, outside the radius of r,, + Romp- Between rg,
— R omp and 7o, + Reopps My, is gradually increased in a way
that the secondary is uniformly distributed within the spherical
shell.

Thus, we have calculated six sequences of solutions for the
various sets of white dwarf and companion star masses, i.e.
(Myp, M) = (0.6 M, 0.1 M), (0.6 M, 0.2 M), (0.8 M,
02 M), (0.8 M,04 M), 1.0 My,02 M), and (1.0 M, 0.4
M ). Figure 19 shows the structure of wind solutions with and
without a companion for a 0.6 M white dwarf. The chemical
composition of the envelope are assumed to be the same as
that in § 3. These solutions have a critical point at r_, = 0.35
R, and similar envelope masses of 2.33 x 10~ M. The solu-
tion without a companion is denoted by the solid curves.
Those with a 0.1 M, and with a 0.2 Mg companion are
denoted by dotted and dashed curves, respectively. The struc-
ture is hardly changed by the presence of a companion. It
deviates from the structure without a companion only when
the companion is rather massive and the uppermost part of the
envelope is very extended.

Figure 20 shows the diffusive luminosity for the 0.6 M
white dwarf cases with and without a companion. The diffusive
luminosity, L,, hardly increases even for the 0.2 My compan-
ion case, because the drag luminosity, Ly, is as small as
0.22% of the total diffusive luminosity. (See also Table 5 for
various physical values.) Such a small fraction of the drag lumi-
osity stems from very low density of the envelope near the
orbit. As shown in Figures 19 and 20 or Table 5, the compan-
ion orbit is outside the critical point. The matter is quickly
accelerated near the critical point, and, as a result, the density
drops sharply there. Therefore, the motion of the companion
star is not able to generate large drag luminosity as can be
easily understood from equation (27) or (31). The drag lumi-
nosity estimated by MacDonald et al. (1985), for example, is
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F16. 19—Wind velocity, the temperature, and the density are plotted
against the radius for three mass-loss solutions of My, = 0.6 My and r,, =
0.35 Ry The position of the critical point is denoted by a filled circle. Thick
lines denote the envelope solutions without a companion star, dotted ones
denote a 0.1 M companion, and dashed ones denote a 0.2 M companion.
The position of the companion orbit is also denoted by an arrow. The left
arrow denotes the position of the 0.1 M ; companion.
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FiG. 20—Diffusive luminosity, L,, and the Eddington luminosity,
4ncGM , /x, are plotted against the radius for a 0.6 M, white dwarf. Solid
curves denote the solutions without a companion star, and dashed ones denote
those with a 0.2 M, companion. The position of the companion orbit is
denoted by an arrow. The Eddington luminosity (thin dotted curve) increases
around the position of the companion star. This is due to the contribution of
the companion mass.

clearly an overestimation. The reason is that they assumed a
static envelope around the white dwarf and did not include the
response of the envelope to the energy input by the drag lumi-
nosity.

The presence of a companion increases the gravity outside
the orbit and, as a result, the local Eddington luminosity goes
up there. Therefore, even if the heat by drag is deposited at the
orbit, this additional energy can easily escape from the
envelope by diffusion and cannot be used to accelerate
envelope matter. On the other hand, the gravity of the com-
panion deepens the gravitational potential and the wind is
decelerated. Figure 19 shows that the velocity is decreased a
little by this effect especially for more massive companions.

Figure 21 shows the light curves for various white dwarf
masses. The solid curves denote the solutions without a com-
panion, that is, they are identical to the light curves in Figure 8.
Dashed and dotted curves are the cases with a companion.
Long-dashed lines correspond to a 0.1 M companion star.
Short-dashed lines denote a 0.2 M and dotted ones a 0.4 M ;.
For the 1.0 and 0.8 M white dwarfs, we have examined two
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F1G. 21.—Theoretical light curves for various sets of the white dwarf and
companion masses. Thick curves denote the solution without a companion
(the same as in Fig. 8). Two other sequences are added each for My, = 0.6, 0.8,
and 1.0 Mg including the effects of companion star. The mass of the compan-
ion is assumed to be 0.1 M, (long-dashed curve), 0.2 M ;, (short-dashed curve),
and 0.4 M, (dotted curve).
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cases of the companion mass, i.e. 0.2 and 0.4 M. It is easily
seen that these light curves are hardly changed by the presence
of a companion star. Only for the 0.6 M white dwarf, in which
we have examined 0.1 and 0.2 M companion, the slope of
light curves becomes steeper and close to that of the 0.7 M
white dwarf. '

The rate of decline in the light curves is affected by the
change in the photospheric temperature even if the bolometric
luminosity is constant. In the presence of a companion, the
envelope must be extended in order to balance with stronger
gravity compared with the case of no companion if the
envelope mass is fixed. Then the surface temperature becomes
lower in the case of more massive companion. Therefore, we
obtain larger visual magnitude for more massive.companion.
This effect is stronger in earlier phase and becomes weaker in
later phase so that we-have a more rapid decline in the light
curve of a more massive companion. However, the duration of
nuclear burning, i.e. the evolutional timescale, is not changed
by the presence of a companion, because the mass-loss rate is
mainly determined near the critical point and, therefore, not
changed in the presence of the companion.

6. DISCUSSIONS

6.1. Dependence on Chemical Composition of Envelope

We have assumed chemical composition of the envelope to
be uniform with X =035, Y =0.33, Z = 0.02, C = 0.1, and
O = 0.2 as a standard model. In this subsection we examine
how the light curve depends on ‘the chemical composition of
the envelope. We change the values of X, Y, C, or O, but still
assume the uniformity of the chemical composition in the
envelope.

Figure 22 shows light curves of the decay phase for various
sets of chemical composition. Thick and thin solid curves
denote the light curves with the abundance of the standard
model (ie, X =035 Y =033 C=01, and O =0.2) as
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F1G. 22.—Theoretical light curves but for various sets of the chemical com-
positions. Thick type curves denote the light curves for 1.0 M, white dwarf.
Thin type curves represent light curves for other white dwarf masses. Solid
(thick and thin) curves denote the models with the standard chemical composi-
tion as mentioned in § 3 (the same as in Fig. 8). Thick dotted and dashed lines
denote two other typical classical nova cases of (X, Y, C, O) = (0.35, 0.23, 0.20,
0.20) and (X, Y, C, O) = (0.35, 0.13, 0.10, 0.40) on a 1.0 M, white dwarf. Thick
dot-dashed line denotes an extreme case of hydrogen-rich and no helium
matter, i.e., (X, Y, C, O) = (0.70, 0.0, 0.1, 0.18) on a 1.0 M, white dwarf. Thin
dashed lines denote neon novae of (X, Y, C, O, Ne) = (0.30, 0.2, 0.0, 0.3, 0.18)
on 0.9 and 1.1 M, white dwarfs. Thick dot-long dashed lines denote the case of
solar abundance, ie., (X, Y, Z) = (0.70, 0.28, 0.02) on a 1.0 M, white dwarf.
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described above, but for various white dwarf masses. Various
kinds of thick curves denote light curves of the 1.0 M white
dwarf but for various sets of chemical composition. Thick
dotted and dashed curves correspond to (X, Y, C, O) = (0.35,
0.23, 0.2, 0.2) and (0.35, 0.13, 0.1, 0.4), respectively. These two
curves have almost the same decline rate as the thick solid
curve especially in early stage. Composition changes among
helium, carbon, and oxygen causes only small (several percent)
changes both in the opacity and the mean molecular weight.
Therefore the envelope structure is not so changed and then
the light curve itself depends weakly on the change of helium,
carbon, and oxygen content.

Next we have checked the variation between helium and
hydrogen content with fixed carbon and oxygen content. Using
the opacity table of (0.70, 0.0, 0.1, 0.18), we have obtained an
extreme case of hydrogen abundance. The results are plotted
by the dot-dashed curve in Figure 22, which has a slightly
slower decline rate than the above three cases. However, their
difference is so small that these four curves have almost the
same decline rates. The chemical composition of Nova Cygni
1978 has been estimated to be X =047, Y =0.22, and
CNO = 0.3 from UV observation by Stickland et al. (1981). If
the envelope has this composition, its theoretical light curve
lies between the thick solid and the thick dot-dashed curves in
Figure 22. Thus, even if we take into account the ambiguity of
the chemical composition determination, we may conclude
that our “standard curves” (solid curves for various white
dwarf masses) will approximate the observed light curve of
Nova Cygni 1978.

The envelope structure depends on the chemical composi-
tion through the opacity and the mean molecular weight.
When the mass fractions of carbon, nitrogen, and oxygen are
changed among them with the total amount of these three
elements being fixed, the mean molecular weight slightly
changes. As for the contributions of carbon, nitrogen, and
oxygen to the opacity, are almost the same because they have
successive atomic number and similar ionization energy levels.
Therefore the opacity does not change so much if the total
content of CNO elements is fixed. This is the reason why the
light curves have almost the same decline rates. If helium is
reduced and hydrogen is increased with the heavy elements
being fixed, both the mass loss rate and the envelope mass
decrease by the amount of 10%. These effects are canceled with
each other in calculating the timescale of the decline phase of
nova. As for the light curves, the photospheric temperature
becomes smaller when hydrogen content is increased. This
causes the increase in visual magnitude. But the bolometric
luminosity decreases because the opacity increases. As a result,
the resultant light curves are almost similar when the contents
of heavy elements are fixed.

If the contents of carbon and oxygen are reduced equal to
the solar value, i.e., 2%, we obtain light curves with very differ-
ent decline rates. A thick dot-long dashed line denoted by sol
in Figure 22 shows such a light curve of solar abundance, i.e.,
(X,Y,Z)=(0.7,0.28,0.02), on a 1.0 M, white dwarf. This kind
of slow decline rate stems from a large envelope mass. If we
compare two models having the same surface temperature but
the different hydrogen content, the envelope mass of solar
composition matter is much larger than that of CO-rich
matter. This is because the temperature in the burning zone
must be higher in order to generate the same nuclear energy as
the case of CO-rich matter. Therefore, we obtain much slower
light curves.
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Further, we examine solutions for neon-rich material, which
may be a model of neon novae. The abundance is assumed to
be X=03 Y=02 Z=002, C=00, O=0.3, and
Ne = 0.18 by weight. We use an opacity table for this special
composition calculated by F. J. Rogers & C. A. Iglesias (1993,
private communication). The corresponding light curves are
shown in Figure 22 for 0.9 and 1.1 My white dwarfs (thin
dashed lines). These light curves are almost the same as those of
CO-rich materials.

To summarize, the differences in light curves are small if the
total amount of CNO or CNO + Ne elements is larger than
~0.2. Therefore, even if they have a large ambiguity of the
heavy element abundance, we can distinguish the difference of
white dwarf mass by ~0.05 M as far as the CNO or
CNO + Ne enriched novae are concerned. Roughly speaking,
our light curve analysis has an accuracy of 0.05 M in the
determination of white dwarf mass.

6.2. Acceleration outside the Photosphere

We have neglected other acceleration mechanisms such as
line-driven and dust-driven winds, which may occur outside
the photosphere. These are not so important acceleration
mechanisms compared with the optically thick wind, because
the matter has been sufficiently accelerated deep inside the
photosphere. Such an additional mechanism plays an impor-
tant role only when the photon outside the photosphere has
large momentum compared with that of the outflowing matter.
However, the wind has much larger momentum than that of
photon in most of our nova solutions. We show the ratio of the
matter momentum to the photon momentum at the photo-
sphere and less importance of the acceleration outside the
photosphere.

Here we define the ratio of the matter momentum flux to the
photon momentum flux at the photosphere as

"=Muph= 3 M Von Loy -t .
Ly/c 1021 gs= 1 A\107ecms ™! /\ 1038 ergss !

(33)

The momentum flux ratio, #, of optically thick winds is evalu-
ated at the photosphere as shown in Figure 23. The value of
is as large as 30 or more in early stages of nova and then
decreases as the photospheric temperature increases. The
reason of low values at low surface temperatures in the 0.6 and
0.5 M, sequences is due mainly to their low wind velocities.
When 7 is larger than unity, we cannot expect effective acceler-
ation outside the photosphere. It may work, however, when the
optically thick wind almost stops and after that (i.e., from near
point D to point A through point E in Fig. 1).

In optically thick winds, # increases much larger than unity
whereas it cannot in line-driven winds. We briefly explain why
n becomes much larger than unity. The maximum momentum
flux that matter can get during its travel from r to r + Ar is
equal to the difference of pressure between r and r + Ar. In
other words, when the matter get momentum from the photon
momentum flux, its maximum value corresponds to the differ-
ence of radiation pressure between r and r + Ar. It is easily
estimated from the diffusion equation, i.e.,

tL,
4nric’

APmd = (36)

where we use the relation 7 = xp Ar. Thus, the maximum
momentum flux for entire spherical shell is equal to tL,/c. We
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FiG. 23—Ratio of matter momentum flux to photon momentum flux at the
photosphere, 7, is plotted against the photospheric temperature for various
white dwarf masses. When # is larger than unity, we cannot expect effective
acceleration outside the photosphere.

understand that the effective photon velocity decreases to ¢/t
by diffusion effect. In an optically thick and radiation domi-
nant region, therefore, we estimate the maximum value of 7 as

tL,/c
= =1
nmax Lr/C

As shown in § 3, the acceleration of matter occurs at
log T(K) ~ 5.2. This acceleration region is deep inside the
photosphere, i.c., at large 7 region, in relatively early phase of
novae. As the photospheric temperature increases close to
log T(K) ~ 5.2, the acceleration region approaches the photo-
sphere, i.e., T ~ 1. Therefore, the momentum flux ratio becomes
small and close to unity when log T,,(K) > 5.2.

The effective velocity in equation (37) is also derived from
the random walk theory. The photon collides with matter
N = 72 times during its travel of interval D with optical depth t
(kpD = 7). As the photon walks NI in total until it reaches the
distance D. Here, [ is the mean free path between collisions, i.e.,
kpl ~ 1. So the effective velocity of photon is estimated to be
D/(Nl/c) = c¢/z. When the effective velocity of photon decreases
to ¢/t, we regard that the photon momentum flux increases to
7L,/c. In other words, matter can get the momentum from
photon through multiple collisions by much larger amount
than that of the momentum flux of photon itself.

Thus, it is clear that in the optically thick wind radiation can
impart momentum to matter much larger than that of the
photon momentum flux at the photosphere.

(37)

6.3. Steady State Approximation

Now we discuss the validity of steady state assumption.
Many time-dependent calculations of shell flash on a white
dwarf show that nuclear energy generation rate is very large
just after the onset of nuclear burning, but gradually decreases
and settles down to a constant rate, where the nuclear energy
generation rate balances with the bolometric luminosity
(Sparks, Starrfield, & Truran 1978; Iben 1982; Prialnik 1986;
Prialnik & Kovetz 1992). This thermal equilibrium lasts until
hydrogen burning vanishes (at point E in Fig. 1). One of the
steady-state assumptions, equation (3), has been directly con-
firmed in the dynamical calculation by Prialnik (1986), where
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the mass flux, 4nr?pv, is almost consitant throughout the
envelope in the decay phase of nova.

We have examine whether or not our steady state solutions
can reproduce Prialnik’s results of 1.25 M, dynamical models.
Here the chemical composition is assumed to be uniform with
X =0.7,Y = 0.27 and Z = 0.03 and we use the opacity formu-
lae proposed by Iben (1975) and Stellingwerf (1975) which are
based on the Los Alamos tables. Taking the same position of
the critical point r,, = 3.4 R, as that of Prialnik’s model, we
obtain the almost identical physical values with those of Prial-
nik’s dynamical models. We show such various physical values,
as in the form of (the present model, Prialnik’s), that
log T(K) = (5.085, 5.053), log v, (cm s~ ') = (6.89, 6.98), the
mass above the critical point is (1.1 x 107¢ Mg, .1.x 10~°
M), log r,p, (cm) = (12.32, 12.40), and M= (124 x 107* M,
yr 1, 126 x 10°* Mg yr~'). These results show -that our
steady state solutions do reproduce Prialnik’s model. The
small difference between two results may originate from the
differences in the opacities, the surface boundary conditions
and other physical inputs.

A direct comparison between steady state models and time-
dependent calculations has been done by Kato et al. (1989).
They calculated one complete cycle of helium shell burning
nova in two different ways, ie., steady state approach and
time-dependent calculation, using the same stellar parameters
and physical inputs. Their two numerical results agrees very
well with each other both in the evolutionary path of H-R
diagram and in the interior structure such as the entropy dis-
tribution. Thus, we may conclude that our steady state
approach is a good approximation to the decay phase of nova.

6.4.. Effects of Convective Energy Transfer

We have neglected the convective energy transfer in the
present work. In this subsection we discuss whether the con-
vective energy transport is negligible or not. A part of the mass
losing envelope becomes convectively unstable when the
opacity decreases outward. Using the mixing length theory, we
estimate how efficient is the convection in our solutions which
are obtained without the convective energy transport. Here we
assume that the ratio of the mixing length to the pressure scale
height is 0.5. For example, the envelope model of 1.0 M ; white
dwarf with the critical point at r,, = 0.65 R, which is the same
model as shown in Figure 2, has two convectively unstable
regions: one is a wide region outside the iron peak and the
other is a narrow one inside the iron peak.

The outer unstable region extends widely just outside the
strong peak of the OPAL opacity between log T(K) = 5.213
and 4.253 (ie., from r = 1.17 Ry to 18.6 Ry). In this region,
however, the efficiency of convective energy transport is very
small, because the density quickly drops as shown in Figure 4.
The efficiency factor of convection (Henyey, Vardya, & Boden-
heimer 1965),

V-V

S S A 38
V -V, (38)

Y

reaches the maximum value of 0.078 at the inner edge of this
region (at r = 1.17 R) and quickly drops to less than 0.01 at
r = 1.39 R and log T(K) = 5.126. Here,

dinT
dlnP’

v (39)

Vol. 437

and V' is the gradient describing the internal changes in con-
vective bubbles as they move, and V,, the adiabatic tem-
perature gradient. This indicates that the convective motion
can transport only a small part of the total energy due mainly
to low density. So we expect that even if we include the convec-
tive energy transfer, it will not affect the structure.

The velocity of eddies is estimated based on the mixing
length theory. The convective velocity reaches the maximum
value of v, = 70 km s~ ! at the inner edge of the unstable
region (at r = 1.17 Ry) and decreases quickly to 1 km s~ ! at
r = 1.67 Ry, and further to 0.1 km s ™! at r = 1.81 Ry, where
the wind velocity v,;,q = 300-360 km s~ ! is much faster than
the convective velocity. Even at the inner edge of the unstable
region where the convection is most effective, it takes
2.28 x 10% s that eddies move to a half the pressure scale
height, 0.23 R,. On the other hand, this unstable region is
carried out to r = 2.16 R, where the efficiency of convection is
already negligibly small (the efficiency factor cannot be
obtained there because the structure is slightly superadiabatic).
Therefore, we may conclude that eddies cannot turn over in
such a supersonic outflowing envelope.

The inner unstable region appears between log T(K) =
5.739 and 6.303 (from r = 0.225 to 0.493 R). This is caused by
a small peak in the opacity just inside the iron peak. In this
region, the convective energy transport is effective but its
region is very small. The efficiency factor itself is larger than 0.5
between log T(K) = 6.293 and 6.159 (from r = 0.230 to 0.287
Rs), and reaches the maximum value of 0.74. Such a small
region of convection does not affect the entire structure of the
envelope. For example, we have calculated a solution for a 1.1
M ,, white dwarf. If we assume the convective energy transport
to be adiabatic in this region as an extreme case, the wind
mass-loss rate increases 4.3% and the envelope mass also
increases 4.1% for solutions with the same critical point, r_, =
0.5 Ry. This implies that if we compare these two sequences
with and without the convection effect, the mass loss rate is
almost the same between these two sequences for the same
envelope mass. Therefore, the timescale of the light curves,
AM/M, is not changed.

6.5. Inner Boundary Condition

We have adopted the inner boundary condition, equation
(18), in which the nuclear luminosity L, is estimated from the
solutions calculated without nuclear energy generation. To
check this assumption, we have replaced the integrated form of
energy conservation equation (5) by the differential form,

ds dL,
- X

where s is the specific entropy, and obtained the new solutions.
The boundary condition is set as

L,=0 at (41)

The new light curves thus obtained are shown in Figure 24 for
three white dwarfs masses of 1.3, 1.0, and 0.7 M as well as the
light curves in Figure 8. The new light curves are almost identi-
cal with the old ones except in the upper part of the figure. The
difference between the new and old envelope solutions are
summarized as follows, for example, in the case of 1.0 Mg
white dwarf: For a solution with the critical point of r,, = 0.65
Ry, the wind mass loss rates are (eq. [18], eq.
[41]) = (7.20 x 10%!, 6.95 x 10*! g s~ '), and the envelope

MT (40)

r = Ryp -
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FiG. 24—Same as for Fig. 8, but inner boundary condition (41) and differ-
ential form (40) are used to calculate the solutions. The solid curves are the
same light curves as those in Fig. 8. The dashed curves denote the solutions
calculated with egs. (40) and (41).

masses are (9.46 x 1075, 1.15 x 10™° M ). For a solution with
re =02 Ry, the wind mass loss rates are (3.336 x 10%°,
3.378 x 102° g s71), and the envelope mass (2.859 x 1076,
2.657 x 107® M ). For the static solution at point D in Figure
1, the envelope masses are (1.807 x 107, 1.702 x 10~% M).
As a result, the slope of the light curve becomes slower by
20%-30% at the upper part but slightly steeper in the lower
part.

If we replace boundary condition (18) with (41), the tem-
perature at the bottom of the envelope slightly changes. This is
because the high temperature-dependence of nuclear energy
generation rate; only a slight change in temperature at the
burning zone is required to adjust the new boundary condi-
tion. The density increases in the burning region and, as a
result, the envelope mass increases. These changes are
restricted only in the nuclear burning region, and most part of
the envelope remains unchanged. Therefore, the light curve is
almost identical except for the very early phase, where the
steady state assumption itself may break down.

Another problem for our inner boundary condition is
related to equations (3) and (5), which come from the definition
of the steady state (Eulerian steady state assumption). These
equations result in nonzero velocity, nonzero wind mass-loss
rate, and nonzero energy flow at the white dwarf surface. We
cannot avoid this type of unphysical situation as long as
Eulerian steady-state is concerned. If the mass-loss rate is
small, however, this steady state approximation is good,
because the bottom of the envelope is hydrostatic and the
second term in the left hand side of equation (5) is small. When
the mass-loss rate is large enough, however, the velocity at the
bottom of the envelope is not so small and the inertia term in
equation (1) and the second term in equation (5) cannot be
neglected near the white dwarf surface (near the inner
boundary). In this case, our steady state assumptions (Eulerian
steady state) must be replaced with other type of definitions.

One possible way to avoid this difficulty has been proposed
by Kato (1988), in which the equations are the same as those in
Eulerian steady state in the upper part of the envelope, but
approaches static equations at the bottom of the envelope. In
this new definition of the steady state, the velocity and the
mass-loss rate vanish at the bottom of the envelope. Kato
(1988) confirmed that the solutions in this new steady state are
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essentially the same as those in the Eulerian steady state except
that the velocity becomes zero at the white dwarf surface. This
is because the bottom of the envelope is almost in a hydrostatic
equilibrium, so that the zero-velocity solution has essentially
the same structure as in the finite-velocity solution. Therefore,
we can use the usual Eulerian steady state solutions as far as
the mass loss rate is not so large. This Kato’s new definition of
steady state may be useful when the mass-loss rate is very large,
i.e., just around the peak of the optical light curves.

7. CONCLUSIONS AND REMARKS

Under the assumption of steady-state, we have succeeded in
constructing a sequence of steady state wind solutions which
mimics a time-dependent evolution of the decay phase of
novae, and have reproduced good quality light curves of
novae. Comparison with a classical nova, Nova Cygni 1978,
shows an excellent applicability of our theory. Our conclusions
are summarized as follows:

1. Using the optically thick wind theory and the OPAL
opacity, we have succeeded in reproducing good quality light
curves in the decay phase of classical novae. The timescale of
nova duration is drastically shortened by strong wind. The
wind is driven by a strong iron peak of the OPAL opacity. This
strong peak in the opacity is essentially important to repro-
duce a good quality light curves of novae. In other words, the
optically thick winds are successful only when we use the
OPAL capacity.

2. The optically thick wind occurs for white dwarfs more
massive than 0.5 M, ie., Myp 2 0.5 M. The wind phase
lasts several months and the following static phase lasts a year
for a 1.0 M, white dwarf. A significant part of the envelope
mass is blown off during the wind phase. Even for a 0.6 M
white dwarf, the wind phase becomes as short as several years
and the following static phase is shorter than 10 years. Thus,
we have resolved a theoretical problem of nova duration: it has
been argued that the theoretical nova duration, which is esti-
mated to be ~ 103 yr from the nuclear burning period of the
original envelope mass, is too long to agree with the observa-
tions (~ 10 yr).

3. A detailed case study of Nova Cygni 1978 shows a good
agreement with the observational properties, i.e., the visual and
ultraviolent light curves and the wind velocities of the decay
phase of novae. This strongly supports the validity of our
steady state approach and implies that optically thick winds
really occur at least in the decay phase of novae.

4. Comparison of our theoretical light curves with the
observational ones will provide a new way to determine the
white dwarf mass and the distance to the star. The accuracy of
mass determination may be less than 0.1 M even if we include
the ambiguity of chemical composition. Thus, if the mass of
white dwarf is determined for many nova systems, it will be
very useful for studies of novae and binary evolutions.

5. The drag luminosity in the common envelope phase is not
so important either for the wind mass-loss rate or the light
curves. The reason is that the companion orbit is placed
outside the critical point (i.e., the main acceleration region of
the wind) and the density drops sharply there. Since the drag
luminosity depends linearly on the density, it drops to smaller
than 1% of the photospheric luminosity. The mass-loss rate is
determined mainly inside/near the critical point and, therefore,
it is not affected by the presence of a companion star. The
duration of nuclear burning is also not affected by the presence
of a companion star. For relatively low-mass white dwarfs, the
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decline rate of light curves is a little affected by the presence of
a companion. For example, the decline rate of 0.6 M, white
dwarf with a 0.2 M, companion is similar to that of 0.7 M
white dwarf without a companion. Thus, the accuracy of mass
determination may be still within 0.1 M,

Our optically thick wind theory has succeeded in repro-
ducing reasonable light curves of the decay phase of novae.
Such good quality of light curves enables us to determine the
mass of white dwarf and the distance to the star by fitting the
theoretical light curves with the observational ones. This may
be a powerful method for the mass determination of novae
especially when the binary components are not known to us. If
the masses of many nova systems are determined by this
method, it will provide us unique information concerning the
study of binary evolution.

For the white dwarf masses in nova systems, we have esti-
mated in § 3.4 that Nova Cygni 1978 contains a 1.0 M 5 white
dwarf. This value is much smaller than that of the “typical
values” such as ~1.2-1.3 M, for classical novae, which have
been assumed in many theoretical works (e.g., Truran & Livio
1986; Prialnik 1986; Kato & Hachisu 1988, 1989) from the
reason that such a short duration of nova is obtained only
when the white dwarf mass is as large as 1.2-1.3 M. On the
other hand, much less massive white dwarfs than the “typical
values ” are expected when we use the OPAL opacity because
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much stronger wind mass loss occurs even on less massive
white dwarfs. Thus, we are forced to conclude that many nova
systems contain much less massive white dwarfs such as <1.0
M, than has ever been considered. Further study and com-
parison with the observations are required in order to reach a
definite conclusion, however.

From the theoretical point of view, we need the following
observational data:

1. Light curves of the optical (y-magnitude is recommended)
and the ultraviolet band for the same outburst. Infrared is also
necessary to correctly estimate the UV emission;

2. Chemical abundance of the ejecta and its change during
the outburst;

3. Mass of the ejecta.

These are compared with the values estimated from the opti-
cally thick wind theory and provides independent information
to check the results of the light curve analysis.
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of the Japanese Ministry of Education, Science, and Culture.

APPENDIX A
SURFACE BOUNDARY CONDITIONS AND OCCURRENCE OF WIND MASS LOSS

As mentioned in § 2, the usual surface boundary condition with the plane-parallel assumption is not appropriate because the
mass-losing envelope has an extended structure near the surface region. In this appendix, we discuss what kind of surface boundary
condition is reasonable for such an extended envelope with and without mass loss. Kato (1985) examined several kinds of boundary
conditions and concluded that boundary conditions (12) and (13) are most appropriate for mass-losing envelopes. Here, we will
examine the surface boundary condition in the same way as done by Kato (1985).

When the envelope is in hydrostatic equilibrium, we may solve

1dP GM

= +=5=0,

/_) dr r? (A1)

and equation (4) with L, = constant instead of equations (1) and (3)—(5). Assuming that the opacity is a function only of temperature
and that the mean molecular weight p is constant, we can integrate these equations as

aT3um C
=2 Plalp . = _
=T ( + e ls) , (A2)
=T (pi & A3
KT T*)’ A3
where F and [, are defined by
4x T3
F= —Tgﬂ f —dT, (Ad)
L
I E( r ) s A5
LEdd ph ( )
and C is an integration constant. Substituting these relations into equation (4), we obtain
dinT um, GMxk C
dinr  4kTw,r ( T+ IS) (A6)
This can be also integrated as
_ pm,GM 1
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where
K dT
H=-e" t .
T U K[F + (C/TH — 13 T " a’“} (A9

Thus, all physical variables can be solved as a function of temperature only. Substituting equations (12), (15), and (A2) into (A6), we
also obtain a relation at the photosphere, i.e.,

dinT 3
( dlm)ph = — 15 (kP (A9)

We assume that the diffusion equation (4) is valid up to the photosphere. Then the photon flux from the blackbody, 4nr?6 T4, should
be greater than the diffusive flux L, in the interior and equal to that at the photosphere. In other words, the temperature must be
higher than the effective temperature, i.e.,
L 1/4
TzTeffE< ’) . (A10)

4nric

In static envelopes the diffusive luminosity L, is constant, therefore, this condition is equivalent with

dinT 1
(dlnr>pf—§’ (ALD)

in the vicinity of the photosphere. Substituting this condition into equation (A9), we obtain a condition

(kpP)pn = 5 - (A12)
Therefore, we prove that 7 = kpr cannot become smaller than 8/3 at the photosphere. Correspondingly, the photospheric lumi-
nosity has an upper limit because we can derive a condition

C
lsSl;naxEth"'_‘;——Xa (A13)
Ton

from condition (A11) and equations (A6) and (16). This maximum photospheric luminosity depends clearly on the choice of the
integration constant C, or in other words, depends on the definition of the photosphere.

To specify the integration constant C, we consider several surface boundary conditions. Here, we assume that the density
distribution outside the photosphere is a power function of radius, i.e.,

pocry, (A14)
and that the opacity k is constant outside the photosphere. Then we consider the following three photospheric conditions, i.e.,

(* o

K r 8 ‘
T = Kpdr=—:m—lpih—np—h=§, (BC1)
orph P
2 = -2 Kon Ppntpn 2
Ton =Tpn | Kpr~*dr = —P——P——Ll =3 (BC2)
Jrpn P
[ Kph Pph T'ph 2 ‘
Toh = | Kpdr= on T3 (BC3)
Jrph ) ‘p; ,

Photospheric definition (BC1) is adopted in this paper and also in our previous papers to obtain the critical static solutions just
after/before mass loss begins/stops. This comes from the condition that the static solution is smoothly connected to the wind
solution where the density is decreasing with r~2 (the wind velocity is constant outside the photosphere). It is easily seen that when
Iy~ I§™, n, » —2 because (kpr),, — 8/3 at [, - I7™*. Photospheric definition (BC2) with n, = —2 was used by Ruggles & Bath (1979)
for nova wind solutions and also by other authors mainly because spherical effect is taken into account. However, when I, — I™*,
n, — — 3. This is not consistent with the wind solution of n, = —2 at the junction of static/wind solutions. Photospheric definition
(BC3)is the most popular one and has been used by many authors. This is also not consistent with the wind solutions at the junction
because n, - — 5, when [ — [,
The density gradient n, and the optical depth kpr at the photosphere are also rewritten as

dinp 1 c
" (dlnr>p., 2x< o+ e+ 3l ) (A19
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8 C 1
Koh Pph Tph =§<th+T_:'h—ls> ; (A16)

Substituting these equations into photospheric definitions (BC1)—-(BC3), we obtain the integral constant C as follows:

C 4 —2y—1
—_— _F + - A s ,
TH ™ 3 (A17)
C 4+ 2y + 51
—— _F TT LTI
Th- et T o (A18)
C 4 —2y+ 5l
—— = _F —_r s
TS, ph 9 ) (A19)
for (BC1)—(BC3), respectively. Therefore, from equafioh (A13), we have obtained the maximum luminosity, i.e.,
> =1-3x, (A20)
> =1-1x, (A21)
1 -y (A22)

for conditions (BC1)—(BC3), respectively. Equation (A20) is the same as equation (14), which is used to detect the junction of
static/wind solutions in this paper. Substituting relations (A17)—-(A19) into equation (A16), we obtain the photospheric optical depth
defined by © = kpr as

321—1,—y/2
Koh PphTpn = 9 __X — (A23)
321 -1+ x/2
o P = 33— (A24)
321—1,—yx/2
Kph pph rph = E P ) (AZS)
for conditions (BCI)—(BC3), respectively. It is easily seen that when [, — I7**, xpr at the photosphere becomes 8/3.
We consider one more example, i.e., the plane-parallel approximation, where we solve
1dP GM
-—+—=0, A2
p dr + R? (A26)
dT 3kpL,
el e A27
ar 16nacT3R? (A27)

instead of equations (A1) and (4). Here R is the radius of the star. We assume that the opacity « is constant outside the photosphere.
Then, we can integrate equation (A26) as

P(t)=P(x=0) + oM

AR (A28)
Substituting a relation calculated by Nomoto & Sugimoto (1974) on the plane-parallel photosphere, i.c.,
P(t=0)= 3P4t =3) =1 $aT}, (BC4)
into equation (28), we have
2 1 2 GM
P, = P<r = 5) = 6 an;h + 3%R2 (A29)
where P, denotes the radiation pressure. Equating two relations (A3) and (A29), we obtain the integral constant C as
C 141
" = oh T T (A30)
for the plane-parallel condition (BC4). Then the maximum luminosity and the photospheric optical depth are written as
l;nax - 1 - 2X s (A31)
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TABLE Al

SURFACE BOUNDARY CONDITIONS

Boundary <
Conditions Th Ko Po Teph N ) Vi V1) max
4 -2y —1 21—, —y/2 8 2—yx—2 2 5
BCI ....... _p, izl R21ZLo2 8 42—x-2) 5,
s 3 9 x 3 x4 —2x—1) 1—y/4 4
442745, 21— +y2 8 22l + 2 7
BC2 ....... —F+ X 2 Y 8 A X 1,
9 27 X 3 A+ SL+2y) 1-—3y/4 4
4 -2 Sl 211, —y/2 8 2-2,— 2 11
BC3 ....... —F,, xSl 21—y 8 e2-2—-» L
9 27 x 3 x4 + SI; — 2y) 1-—Ty/4 4
141 41-1) 8 211y 2
BC4 ....... —F = _ - s - 1-2
mt T 3y 3 A +1) 1—y x
41—1
Kpn PpnTon =3 - A32
ph pph ph 3 X ( )

Other various surface values for these different definitions of the photosphere are summarized in Table A1.

When the luminosity is equal to the maximum luminosity, these four definitions of photosphere converge into the same condition,
ie,(dInT/dInr) = —1/2,and kpr = 8/3 atr = r,,. The only difference is the numerical value of I{™, which is very close to the unity
as shown in equations (A20)—(A22) and (A31) or in the last column of Table Al. The value of x are as small as ~ 1073 for typical
nova solutions so that the critical static solutions with the maximum luminosity is almost the same among these four different
photospheric conditions. As a result, the structure can be determined almost independently of the photospheric conditions of
(BC1)-(BC4).

The occurrence of wind mass loss can be detected by the condition of I, = II"**, If the luminosity coming from deep inside the
photosphere is less than the maximum value, i.e., [, < I a static solution exists. When the luminosity exceed this value, static
solutions are replaced by wind solutions. The transition from static to wind solution occurs smoothly because these two critical
solutions have very similar structures.

The structure of the envelope changes from plane-parallel to spherical before the wind mass loss occurs as mentioned in § 2.4.
When the luminosity is small compared with the Eddington luminosity, the static solution has a plane-parallel structure. The
luminosity goes up close to the Eddington value, the surface structure changes from plane-paarallel to spherical. A critical point
appears near the photosphere when steady mass loss occurs. As the luminosity deep inside the photosphere becomes large, the wind
mass-loss rate increases and the critical point moves inward relative to the photosphere.

This structure change can be well understood in terms of the homology invariant ¥V = GMp/rP, the ratio of the thermal energy to
the gravitational energy. In the theory of stellar structures it is one of the popular characteristic properties that ¥ becomes as small
as 2 in extended spherical structures (Hayashi, Hoshi, & Sugimoto 1962). When the luminosity is small, the envelope around the
white dwarf is thin. Then, V is large as seen from Table A1 because y depends weakly on T and is always small compared with the
unity. As the luminosity increases, V,, decreases to ~ 2. This can be understood from

GMp 3 TLEdd
V = ——=
rP 4 L ° (A33)
here we use equations (12) and (15) and t = kpr. For the critical static solution, T = 8/3, (A33) becomes
L
V=254, (A34)

L

Therefore, V is very close to 2 at the junction of static/wind solutions. On the other hand, V,,, is also close to 2 for steady mass-loss
solutions. This is because we adopt the surface boundary condition of 7:= 2.7. If we use a different boundary condition like
7 ~ 1000, for example, the surface region should have plane-parallel structure and be inconsistent with wind solutions. These
properties support that our definition of the photosphere is reasonable and useful to detect the junction of static/wind solutions,
that is, T must be as small as 8/3 at the photosphere for extended envelopes both for static/wind solutions.

APPENDIX B
NUMERICAL TECHNIQUES
A trapezoidal implicit method is used to integrate the basic equations. This method is rather different from popular Runge-Kutta

method used by many other people such as Ruggles & Bath (1979). So that we briefly explain our numerical method for obtaining
wind solutions.
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For simplicity, we rewrite the basic equations as follows:

where

==/ Y2 %,
dy,
X

Y1
dx
y
d12 =f2())1’ Va2, X) ’
x=logr,
yi=logT,
yp=logv,

_dlog T 3kpL,
" dlogr  16macrT*’

dlogv [2kT GM kp 4aT? 3kL, , kT
fa= = ——+|—+ —|/{ v’ — .
dlogr um, r um, 3 16macrT um,

fi

It is noted that the density p is a function of v and r as seen from equation (3).
Then, the trapezoidal implicit is written as

yilx + Ax) = p1(x) + 3AX{ f1[y1(x), y2(x), X] + fily1(x + Ax), y,(x + Ax), x + Ax]},
Y2(x + AX) = p,(x) + 3Ax{ f5[y1(x), y2(x), x] + foly1(x + Ax), y,(x + Ax), x + Ax]} .

If we assume a set of trial values y9 and y9, the differences from the true values, i.e.,

0y1 = yi(x + Ax) — y(l) s

0y, = ya(x + Ax) — y3,

can be estimated from

where

1
det A

Ul AIZ
U2 A22

oy, =

_ 1
T det A

4, U,

)
V2 Ay U,

2109, ¥9, x + Ax)
0y,
1 0£109, ¥3, x + Ax)
12 =3 Ax )
2 0y,

1 afZ(y?9 y(Z)’ X+ Ax)
2 0y

_ l afZ(y(l)s y(Z)a x + Ax)
T2 0y,

1
A11=§ Ax—-l,

Ay = Ax ,

A,, Ax -1,

Uy =) — yi(x) = ${iln1(%), y2(x), x] +£10%, ¥9, x + Ax)}Ax ,

Uz = y2 = y2(%) — ${/oln1(x), 20), ] + 209, ¥3, x + Ax)}Ax ,

All A12

det 4 =
A21 A22

Vol. 437

(BD)

(B2)

(B3)
(B4)
(BS)

(B6)

(B7)

(BY)
(B9)

(B10)
(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)
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(B20)
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We start the iteration by asuming trial values of y9 and y9, and repeat the iteration until | §y/Ax| becomes smaller than 1077
Usually it takes several cycles. Here we fix the mean molecular weight p during the iteration. Therefore, we use the following
formula:

g—ﬁ =1n10 x f; x (jllr’:; + 2111:1]; - 4) , (B21)
2—2 —1n10 x f; x (ZE'Z a;:;’;* - 1) , (B22)

2o nt0 ¢ e D [ ar e+ () s (Gier ey )
(B23)
Z_){z =10, x v? —_kz;;uma t —lr;clTo/um,, I:_ %, % + (% + 4a3Ta> 167iZfr'T3 (‘;l;: + ‘;ﬁf;)] > (B2

and

)
i, 4T
e o

The partial derivatives (01nk/d1n T), and (01n /0 In p) are calculated from the opacity tables.

Usually we start the calculation from a vicinity of the critical point assuming rough initial values. Fortunately,the trapezoidal
implicit method converges even if we start the calculation from a very rough estimation of f,.

The mesh number we have used is typically several hundreds for the region upper to the critical point. We use 2000 meshes for the
region lower to the critical point. The total number of mesh points may be reduced to several hundreds if an enough number of mesh
points are allotted to the regions where the physical variables change quickly, that is, near the opacity peak and the photosphere.

When the wind mass loss rate is relatively low, ie, M = 107°-10"7 M yr~*, we can obtain the solution even if we use the
Runge-Kutta method. However, the Runge-Kutta method breaks down when the wind mass-loss rate increases to M~ 107% M,
yr~! or more. It usually fails to follow the transonic solution at the first integral step from the critical point. The solution sometimes
migrates from the transonic solution to the other type of solution, i.., the subsonic solutions which are the solutions of the same
basic equations. Therefore, even minute deviations in the trial values of y{ = log T° and y3 = log v° from the true value result in
large deviations of the solution at a little outside/inside the critical point when we use the Runge-Kutta method.

Another type of difficulty appears as the mass-loss rate increases. In order to obtain the solution which satisfies surface boundary
conditions (12) and (13), we must specify the value of the density at the critical point with very high accuracy. For example, we need
at least eight digits of the density value, i.e., its relative accuracy reaches ~ 1072 for M ~ 107% M yr~!. Much more accuracy is
needed for higher mass-loss rates. The same kind of situation appears when we directly integrate stellar structures starting from the
center of the star. If we take a set of trial values at the center, we experience that the solution diverges near the photosphere. To
obtain the solution which satisfies the surface boundary conditions in such a situation we need the same order of high accuracy as
wind mass-loss solutions.

Finally we show an example of numerical integration for the readers who want to follow our method. It is an envelope solution on
a 1.0 M, white dwarf, which is the same one as in Figures 2 and 3 (thick solid'curve). This solution has the density of p,, = 2.4674537

x 1078 g cm ™3, the temperature of log T,,(K) = 5.5163, the diffusive luminosity of L, = 1.560 x 10°® ergs s ' at the critical point
r =02 Ry, ie., logr, (cm)= 10.14364. We start the calculation from a point which deviates from the critical point by

TABLE B1
ExAMPLE OF WIND SOLUTION®

logr log p log T log v log L, K

Position (cm) (gem™3) (K) (cms™!)  (ergss™Y) Kpr (cm?2s™Y)
Photosphere....... 10.651 —-9.790 5.007 7912 38.182 2.71 0.373
Critical point...... 10.144 —17.6077509 5.5163 6.744 38.193 1.09 x 10? 0.316
Bottom ............ 8.7326 0.660 7.956 1.298 38.256 548 x 108 0.222

a The wind mass-loss rate is M = 3.336 x 102° g s~ ! and the envelope mass is AM = 5.69 x 1027 g for this example.
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A log r = 0.001 with initial guesses of (dlog T/dlogr) = —1.98 and (dlog v/dlogr) = 9.16 for the region above the critical point but
(dlogv/dlogr) = 13.1 for the region below the critical point. The corresponding photospheric values are log T, (K) = 5.007,
log 7., (cm) = 10.651, L, = 1.52 x 10°® ergs s, log v, (cm s~!) = 7.912. At the bottom of the envelope, log T(K) = 7.956, log p
(gem~3) = 0.660,log v (cm s~ ') = 1.298,log P (dyn cmg) = 17.317 at log r (cm) = 8.7326. The mass-loss rateis M = 3.336 x 10*° g
s- ' and the envelope mass is AM = 5.69 x 10?7 g, i, AM = 2.51 x 10** g above the critical point and AM = 5.69 x 1027 g below
the critical point. Various physical values are also tabulated in Table B1. You may use these values to examine whether your code is

correct or not.
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