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ABSTRACT

We have calculated the redshift space two-point correlation function, &(r), for galaxies in the QDOT redshift
survey. In the range 1-30 h~! Mpc, the data are well described by a power law &(r) ~ (r/ro)~? with
y=127+0.11 and r, = 4.82 + 0.81 h~! Mpc. Furthermore, we find that the sample exhibits clear multi-
fractal scaling properties, but with dimensions different from those extracted from the CfA survey. For
example, D, = 2.90, D, = 2.77 for QDOT on large scales (>10 h~! Mpc), compared with 2.1 and 1.3 obtained
from the CfA survey; on small scales (<10 h~! Mpc), the correlation dimension for QDOT galaxies is D, ~
2.25. The differences in these values between the QDOT data on large and small scales, and between the
QDOT and CfA data, provide further evidence that multifractal scaling properties are a useful diagnostic of

the dynamics of galaxy clustering.

Subject headings: galaxies: clustering — galaxies: formation — large-scale structure of universe

1. INTRODUCTION

The increasing availability of well-controlled samples of
galaxy redshifts allows us to study the clustering of galaxies on
larger and larger scales and in greater and greater statistical
detail. To match the increasing amount of data, more sophisti-
cated statistical descriptors have been added to the traditional
tools for studying galaxy clustering, the correlation functions
(Peebles 1980). One particular galaxy sample—the QDOT red-
shift survey of IRAS galaxies—has, in the last few years,
yielded extremely important information about the statistical
properties of galaxy clustering on very large scales using a
variety of descriptors (Efstathiou et al. 1990; Saunders et al.
1991; Moore et al. 1992; Saunders, Rowan-Robinson, & Law-
rence 1992; Moore et al. 1994).

In this paper we perform an analysis of the clustering of
QDOT galaxies on large scales, in which the more traditional
correlation function approach is complemented by a qualit-
atively different method based on the multifractal formalism.
This latter technique employs a “technology” drawn from
nonlinear dynamics to investigate the scaling properties of the
clustering pattern. The hope is ultimately to be able to relate
the scaling behavior of galaxy clustering to its dynamical
origin. Unfortunately, we do not at present know how to do
this convincingly (Efstathiou, Fall, & Hogan 1979; Jones,
Coles & Martinez 1992). Nevertheless, scaling is one way of
describing a spatial pattern, and it is, in some sense, orthogonal
to the study of correlations. Indeed, as we shall see, it reveals
properties of the spatial distribution which are only hinted at
in the correlation functions.

It is particularly interesting to apply the scaling description
to a sparsely sampled catalog like QDOT to see if it functions
effectively in the presence of sampling noise and selection
effects. Furthermore, these descriptors have usually been used
to describe clustering in the strongly nonlinear regime (Jones et
al. 1988; Martinez et al. 1990; Martinez & Jones 1990). If it is
true that the various scaling dimensions we can extract are a
diagnostic of the dynamical origin of galaxy clustering, then, at
the very least, they should demonstrate a clear difference
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between nonlinear and linear clustering. The results we obtain
for QDOT should, hopefully, be different from those obtained,
for example, from the CfA survey.

The layout of this paper is as follows: in the next section we
describe the main features of the QDOT catalog; in § 3 we
explain how we extract estimates of the two-point correlation
function and show the results. Section 4 is devoted to the
scaling analysis, and in § 5 we draw the conclusions.

2. THE SAMPLE

The QDOT redshift survey is described in detail by Law-
rence et al. (1994), so we give only an outline here. We use a
sample selected from the QDOT galaxy redshift survey of one
in six of IRAS point sources with 60 um flux, S¢,, exceeding 0.6
Jy. The catalog contains 2387 galaxies or other sources. We use
the revised version of the catalog; earlier versions suffered from
an error in some of the redshifts. Excluding sources with
|b| < 10° and those without a measured radial velocity leaves
2086 galaxies. Distances are calculated by means of the Mattig
formula

C
R= g o2+ @0~ D200z + 1= 11, @D

with Hy =100 h km s~! Mpc™! and g, = 0.5. We further
impose the condition that the distance to the galaxies in the
sample, R, must be in the range 10 h~! Mpc < R <200 h~!
Mpc, so that we are dominated neither by local structures nor
Jy large-scale sampling problems. The survey covers 74% of
the sky, after removal of the regions with low Galactic latitude
and the masked regions; see Lawrence et al. (1994) for a
detailed description of the survey and the mask.

We define the selection function, ¢(R), which gives the prob-
ability that a galaxy at a distance R is included in the sample. It
is straightforward to calculate this function using the published
luminosity function of IRAS galaxies (Saunders et al. 1990); in
this paper, we have used the parametric luminosity function
recommended by Lawrence et al. (1994). we must also,
however, impose an absolute luminosity cutoff in order that
o(R) =1 for R less than some critical distance R;; we select
R, = 40 h~! Mpc. The galaxies in the QDOT catalog all have
Se¢o = 0.6 Jy; the logarithm of the limiting luminosity at 40 h~!
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F1G. 1.—(a) Equal-area Lambert projection of the QDOT sample described in the text. The centers correspond to the south and the north Galactic poles. Galactic
latitudes | b| < 10° have not been considered. The circles representing galaxies are scaled proportionally to 1/log (R), R being its distance. (b) The luminosity of all the
galaxies in the sample as a function of the distance. (c) The selection function explained in the text.

Mpc is 9.19 in L units. The resulting sample has 1561 gal-
axies.

In Figure 1 we show the distribution of these galaxies on the
sky, the distribution of galaxy luminosities with R, and the
selection function of R.

3. THE TWO-POINT CORRELATION FUNCTION

We have estimated the two-point correlation function, &(r),
of the QDOT sample using the following estimators:

1Y D
L+a =5 % Wlf(’r)) , (3.1)
and
1 X py
b+ fw(r) - ?’:1 w; i;IWi VI’V(:")) ’ (3‘2)
where
r+dr/2
D(r) = _;/2w,- , (3.3)

and the weights w; = 1/¢(r;), with ¢ the selection function
defined in § 2. The quantity D(r) thus represents a sum over the
Jj neighbors of a given galaxy i in a shell of radius r and thick-
ness dr, with each neighbor assigned a weight w;. The mean

weighted density w = 1/V Y, w,. The total volume of the

sample is V and V(r) is the volume of that part of a shell of
thickness dr that lies within the survey region. This is less than
the total volume of such a shell because of the operation of the
Galactic latitude selection and the mask.

The estimator (3.1) is known to be very stable for the kind of
sample we are dealing with here, whereas estimator (3.2) tends
to emphasise the poorly sampled and most distant galaxies
(Rivolo 1986; de Lapparent Geller & Huchra 1988; Martinez
et al. 1993). Estimates of the redshift space correlation function
for QDOT galaxies £(r) have also been obtained by Moore et
al. (1994) using a different estimator:

_ DD(r) &
1+ {pr() = DR(r) (ND> s

where DD(r) is the number of pairs with separation r in the
catalog of N, objects and DR(r) is the number of pairs with
separation r between the actual data and a random catalog of
Ny objects. The weights used by Moore et al. (1994) are also
different and are based on the correlation integral J; (Peebles
1980). Our estimators (3.1) and (3.2) are not optimal (Hamilton
1993), but we use them to get some idea of the robustness of
different estimates of &(r). The estimators (3.1) and (3.2) are also
more closely related to the cell-count moment statistics we
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discuss in § 4, and it is therefore interesting in the context of
this paper to see how they perform relative to the traditional
estimator (3.4); we need to use the selection function ¢(r)
explicitly in our estimators for the generalized dimensions, so it
is useful to check that the corresponding estimates of &(r)
behave in a reasonable way. The results we have obtained (Fig.
2) show good agreement among the three estimators (3.1), (3.2),
and (3.4). We have assigned errors to the estimates using the
bootstrap resampling technique (Ling, Frenk, & Barrow 1986)
with 100 resampled catalogs. This is the simplest way of assign-
ing reasonably accurate errors to statistical estimators of this
kind. Even so, we use these error estimates only as a guide
because they almost certainly underestimate the true errors on
our statistics (Mo, Jing, & Borner 1992). )

In the range 1-30 h~! Mpc, the correlation function is well
fitted by a power law (r/ry)~? with y = 1.27 £ 0.11 and r, =
4.82 + 0.81 h~! Mpc. The open circles, corresponding to &,
are more scattered, but the power-law trend is clearly still
obeyed. The slope and amplitude we have obtained for the
QDOT galaxies is in good agreement with that obtained by
Moore et al. (1994) for the same catalog and with the estimate
of the redshift space correlation function of 1.2 Jy IRAS gal-
axies calculated by Fisher et al. (1994). Note, however, that the
real space correlation function inferred by Fisher et al. (1994)
differs significantly from the redshift space version because of
the effect of peculiar velocities; they find ro = 3.76 h™* Mpc
and y = 1.66 in real space. An indirect estimate of the real
space correlation function by Saunders et al. (1992) using a
cross-correlation technique produces a result consistent with
this. The slope of &(r) even after correcting for redshift-space
distortions is shallower than that of the correlation function of
optical galaxies (Davis & Peebles 1983) on small scales, consis-
tent with claims of extra large-scale power. On the other hand,
we find no evidence for a change in slope of the correlation
function with distance for the QDOT galaxies. Indeed, if we try
to fit a power law profile to 1 + &£(r) rather than &(r) itself, as
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F1G. 2.—Estimates of the redshift-space two-point correlation function for
the QDOT data. We show our results using two different estimators (filled
circles for ¢, ,, and open circles for £,,,, as well as the Moore et al. (1994) results
[asterisks]). The dotted line is the best power-law fit to &, , in the range 1-30
k™! Mpc. Errors are calculated from the 100 bootstrap resamples.
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suggested by Guzzo et al. (1992), we get a much poorer fit. The
QDOT data on large scales therefore do not seem to display
the same behavior as the Perseus-Pisces sample analyzed by
Guzzo et al. (1992). To investigate this question in some more
detail, we tried analyzing that part of the QDOT sample that
lies only within the Perseus-Pisces region covered by the
Guzzo et al. analysis: 22" < a < 4" 0° < § < 45°. Unfor-
tunately, however, there are too few galaxies to make any rea-
sonable fit to 1 + &£(r) so that this question must remain open.

4. SCALING AND DIMENSIONALITY

4.1. Motivation

Consider the relationship between the moments of counts of
neighbors and the two-point correlation function given by
Peebles (1980, § 36). If a spherical cell of radius r is centered
upon an object (labeled by i), then nyr) is the count of objects in
the cell excluding the central one. Averaging over all the N
points in the sample we get the mean count

1 N

n= N i;ni(r) . 4.1)
The relationship among the mean number density p, the mean
count of neighbors, 71, and the two-point correlation function
é(r)is

i=p j [1 + &r)]4ns®ds . 4.2)

0

We will say that the first moment of the counts of neighbors
scales if

it oc rP2 4.3)
where D, is a constant. Most previous analyses of galaxy clus-
tering probe the strongly nonlinear regime, where &(r) > 1. In
this regime, &(r) = (r/ry)”? (Davis & Peebles 1983) and we can
approximate D, = 3 — y. In the regime where clustering is not
strong—the case dealt with in this paper—it is not possible to
extract a value of D, (Martinez & Jones 1990) directly from the
slope of &(r).

An obvious generalization of the scaling of the first moment
of the counts of neighbors is to look at the scaling of the
moments of any order:

N
Z(g, 1) = 1 Y n{r)* tocr@, (4.4)
N &

where is principle one can have a different scaling exponent 7
for each value of q. Our Z(g, r) is normalized differently than
the “standard ” definition, which is obtained by replacing n(r)
with n(r)/N in equation (4.4). This makes no difference to the
analysis of scaling indices. When g = 2 we obviously recover
equation (4.3). The Renyi dimensions (or generalized
dimensions) are defined from the scaling exponents (q) by
D, = 1(q)/(q — 1). If the relationship (4.4) holds for a wide range
of r we will say that the point set we are analyzing is multi-
fractal in nature.

When g > 2 the meaning of the moments of the neighbors is
clear: as g increases the denser parts of the set dominate the
sum in equation (4.4). The scaling exponents t(q) (and therefore
the D,) give us information predominantly about the high-
density regions of the set. Likewise, if g > — oo the sum in
equation (4.4) will be dominated by low-density regions.
However, because the cell has been centered on a particular
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F1G. 3.—Scaling properties of the QDOT data. The panels show (a) the count-moment sum Z(g, r) (eq. [4.4]) for g = 2; (b) the count-moment sum Z(g, r) (eq.
[4.4]) for g = 5; (c) the inverse sum W[1(q), n] (eq. [4.5]) for T = —5; and (d) the generalized dimensions D, [for g > 2, we show (upper lines) the dimensions for the
range 10-50 5~ ! Mpc and (lower lines) those for the range 1-10 A~ ! Mpc; for g < 2, we have used all values of n in the range 10-550]. In all these panels, the dotted
lines correspond to the best fits taking errors into account and the solid lines are unweighted fits; errors are based on 100 bootstrap resamples of the data.

object (galaxy) and the gaiaxies tend to be clustered, the scaling
does not always hold for g < 2. This is a common numerical
problem in the estimation of the generalized dimensions for a
point set, even one which is known a priori to be multifractal.
To resolve this problem, we can consider instead an inverse
function of ny(r). Let us denote by r;(n) the radius of the smallest
sphere centered at a point i and enclosing n neighbors. In an
unbounded point set r(n) is just the distance to the nth nearest
neighbor. The inverse relationship we need to investigate
scaling is

i r{n) Tocnl™9,

WElahnl = % @s)

It is particularly interesting to evaluate equation (4.5)at g = 0:

W[t(0), n] = % rn) " @ ocn. (4.6)

The value of D, = —1, is an estimator of the Hausdorff dimen-
sion (or, more correctly, the capacity dimension: Grassberger,
Badii, & Politi 1988). This quantity is more directly related to
the geometry of the set than the correlation dimension D,. In a
multifractal set D, < D, while in a simple fractal D, = D,.
The dimension D, is also related to the scaling properties
of the void probability function (VPF). Let P(r) be the proba-
bility that a randomly selected cubic cell of side r contains
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no galaxies. If r is expressed in units of V!/3, where V is the
sample volume, then the number of occupied cells N (r) =
r3[1 — Py(r)]. The quantity N,(r) oc r~P° (Jones et al. 1992).
This turns out not to be a particularly effective way to estimate
D, because of problems with discreteness, but it does furnish a
simple way to interpret the geometrical information carried by
D,. We shall return to the relationship between D, and the
VPF in future work.

4.2. Analysis

It is well established that equation (4.4) converges better for
q > 2 (dominated by high-density regions) and equation (4.5)
converges better for g < 2 (dominated by low-density regions),
because n; increases in the presence of neighbors while r{n)
increases with a lack of neighbors. Our procedure is therefore
to use equation (4.4) to determine the dimensions with g > 2
and equation (4.5) for g < 2. The details of the procedure for
dealing with edge corrections and the effect of the selection
function can be found in Borgani et al. (1994). Applying this
procedure to the QDOT sample yields results displayed in
Figure 3 for various values of q.

In these plots we have used 100 bootstrap resamples to
determine the errors on equation (4.4) and 40 bootstrap
resamples for equation (4.5), and results are shown using the
errors in the fit and also, for comparison, the fits obtained
without errors. Note that the scaling exponents 7(q) = D,/(q
— 1) so the errors have been translated to D, for plotting the
relevant figure. It is clear that the effect of “lacunarity”
(Borgani et al. 1994) is much stronger in the case where g = 5
than when q = 2. One can see clearly that when one considers
different scale ranges 10-50 h~* Mpc and 1-10 h~* Mpc for
q = 2, a different value of D, is obtained. This is not surprising
since we expect these two regimes to be dominated by linear
and nonlinear clustering respectively. It is encouraging that
one obtains different D, in these two regimes, even when there
is no clear change in the behavior of &(r).

It is not possible to separate different scales clearly using the
function W(tr, q), so we have considered all values of
10 < n < 550. We do not use all n down to unity, because the
estimator is known to suffer from a systematic error when
n <€ N (Grassberger 1988). The figure shows W(—S5, n), from
which the slope obtained is 1 — g = 1.63, so ¢ = —0.63 and
D, = 3.06. Again, we have shown the corresponding D, plot
using error-weighted and unweighted data.

Notice that, because Z and W are both integral quantities
the errors get progressively smaller as the argument increases,
i, Z(q, r) is more accurate for large r and W(z, n) is more
accurate for large n. More generous and probably more realis-
tic error bars for the estimates for g > 2 are given by the differ-
ence between weighted and unweighted estimates, rather than
by these formal bootstrap errors.

We do obtain quite good scaling for the QDOT data, despite
the sparseness of the sample and the fact that it probes mainly
the weakly nonlinear regime. It is interesting to focus upon
D, and D,. From the CfA survey (Martinez et al. 1990),
one obtains Dy = 2.1 and D, = 1.3. We obtain an estimate of
D, = 2.90 + 0.02 for QDOT, which we can assume is valid for
all scales. The values for D, vary from 2.25 on small scales to
2.77 on large scales.
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Jones et al. (1992) defined an intermittency exponent by I =
(Do — D,)/2; for the CfA data this exponent is I = 0.4. The
intermittency exponent for the QDOT galaxies varies with
scale: I = 0.325 (<10 h~! Mpc), i.e., close, but not quite equal,
to the CfA number; I = 0.065 (> 10 h~* Mpc). This indicates
that the large-scale spatial distribution is less intermittent, i.e.,
less heterotopic (Jones et al. 1992), which, in turn, agrees with
the smaller amount of nonlinear dynamical evolution we
expect to see on scales probed by the QDOT sample compared
with CfA.

5. CONCLUSIONS

We have calculated the two-point correlation function, &(r),
for IRAS galaxies in redshift space and found that it is well
modeled by a single power law over the range of scales con-
sidered. Our results agree with those of Moore et al. (1994) and
Fisher et al. (1994) for the redshift space correlation function;
these analyses also suggest that the real space correlation func-
tion has a somewhat steeper slope than the redshift space
version.

We find no evidence for the significant shoulder in the corre-
lation function seen by Guzzo et al. (1992). This latter sample
may be dominated by a single large-scale feature.

The scaling analysis we have performed using the multi-
fractal formalism demonstrates the usefulness of this technique
as a diagnostic of galaxy clustering. Although there is not a
strong signal in the two-point correlation function between
small scales (nonclustering) and large scales (linear clustering),
the scaling dimensions are clearly different in these two
regimes. This shows that our descriptors can distinguish
between these two physically distinct domains. Moreover, even
on small scales (<10 h~! Mpc), the scaling properties of the
QDOT data are different from those of, for example, the CfA
survey. Since the latter contains a much larger fraction of
bright ellipticals than the QDOT data (which is dominated by
spiral galaxies), this is an interesting indication that our
method can elucidate differences in the clustering of these two
types of galaxy which are otherwise difficult to detect.

The ability of this method to show up differences between
linear and nonlinear regimes, and between different types of
galaxy, shows that it is indeed a potentially useful statistical
descriptor, though more theoretical work is needed to under-
stand the physical implications of these results.
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