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ABSTRACT

In the absence of a priori information, nonparametric statistical techniques are often useful in exploring the
structure of data. A least-squares fitting program, based on cubic B-splines has been developed to analyze the
periodicity of variable star light curves. This technique takes advantage of the limited domain within which a
particular B-spline is nonzero to substantially reduce the number of calculations needed to generate the
regression matrix. By using simple approximations adapted to modern computer workstations, the computa-
tional speed is competitive with most other common methods that have been described in the literature. Since
the number of arithmetic operations increases as N2, where N is the number of data points, this method
cannot compete with the FFT modification of the Lomb-Scargle algorithm. However, for data sets with
N < 10%, it should be quite useful. Examples are shown, taken from the MACHO experiment.

Subject headings: methods: data analysis — methods: numerical — methods: statistical

1. INTRODUCTION

The process of identifying the periodicity of a variable star
boils down to finding a particular frequency at which the
period-folded data can be adequately described by a curve with
many fewer parameters than the number of original data
points. If the shape of the curve is known a priori, the problem
resolves to finding the frequency which leads to the best least-
squares fit. Unfortunately, the folded light curve behavior is
almost never known in advance so a large number of methods
have been developed which circumvent this problem in various
ways. An excellent review of various techniques can be found
in a paper by Fullerton (1986).

One approach, the Lomb-Scargle method (Lomb 1976;
Scargle 1982; Horne & Baliunas 1986), computes the Fourier
power over an ensemble of frequencies. The significant period-
icities correspond to the frequencies where the power is maxi-
mized. The most attractive feature of this method is that an
FFT-like algorithm (Press & Teukolsky 1988; Press & Rybicki
1989) can be used so that the number of computations scales as
N log N rather than N2, where N is the number of data points.
Some of the disadvantages include the need for the light-curve
data to be approximately homoscedastic (i.e., uniform variance
of all the data points) and the loss of statistical power for
nonsinusoidal behavior.
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A totally different idea is embodied in the so-called string
length method. As the name implies, the statistical measure of
the significance of a particular frequency is the sum of the
successive absolute differences of adjacent points of the period-
folded light curve. Shorter lengths correspond to greater order-
ing of points and thus indicate the significant oscillation
frequencies. A variation on this technique is to compare the
interpolation of adjacent points with each actual light-curve
value (Friedman 1984; McDonald 1986). The sum of the absol-
ute values of these deviations will be a similar string length
statistic. A nice feature of this approach is that the method is
unaffected by the light-curve shape, but the requirement that
the data points be ordered at each test frequency leads to
inherently long computation times.

In the method to be described below, an attempt has been
made to retain the computational speed of the Lomb-Scargle
procedure while taking advantage of the greater functional
degrees of freedom provided by string length algorithms. The
basic procedure is to least-squares-fit a sum of cubic spline
functions to period-folded light curves. The significant fre-
quencies are those which produce minimum values of the 2
statistic. This technique asymptotically requires N2 arithmetic
operations, but some reasonable approximations can keep the
computation time modest as long as N < 10* This technique
is particularly suited for modern workstations with several
megabytes of memory since efficient evaluation of the x? sta-
tistic requires lookup tables which grow linearly with the
number of data points. Even if this spline-fitting technique is
not used for the initial task of finding the fundamental fre-
quency, the method provides a well-behaved smooth curve
which can be used for further analysis. For example, the simple
polynomial nature of cubic splines permits the easy evaluation
of curve extrema or spectral analysis with Fourier series.

In summary, the periodic cubic spline-fitting procedure
described in this paper is particularly attractive for large
survey programs such as MACHO or Sloan Digital Sky
Survey (SDSS) where a substantial number of objects with
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initially unknown characteristics must be investigated. The
beauty of the spline method is that the restricted domain of
each individual B-spline plus various other tricks lead to a very
fast algorithm for an exhaustive search. At the same time, a
spline curve nicely expresses the expected smoothness of the
period-folded light curve while retaining the degrees of
freedom to conform closely to all of the gross features. To the
best of our knowledge, the advantage of using splines in this
context has not been previously exploited. The work described
below followed a number of conversations with the members of
the statistics department at Berkeley and elsewhere. We
embarked on this project only after realizing that the tradi-
tional methods for searching for periodic behavior could be
drastically improved. In the following pages, the mathematical
content is fully described, but to use this method, the reader is
strongly urged to obtain copies of our own computer code. It
took a considerable programming effort to realize the inherent
computational efficiency implicit in the fitting procedure which
would be senseless to reinvent.

2. CUBIC B-SPLINES

The starting point for the least-squares cubic spline method
is the set of functions called B-splines (de Boor 1978; Powell
1981). Assume that a function is to be approximated on the
interval a < x < b. A sequence of values, called knots, are
chosen in this interval such thata = x¥ <x¥ <+ < x*_, =
b. A cubic spline curve defined with respect to this knot vector
is a piecewise cubic polynomial with coefficients arranged so
that the curve and the first two derivatives are continuous in
value at each interior knot point. If there are n knot points,
4(n — 1) coefficients are required to specify the cubic poly-
nomial in each of the n — 1 knot intervals. The continuity
conditions provide 3(n — 2) constraints, leaving n + 2 degrees
of freedom to be resolved by other considerations. The defini-
tion of B-splines incorporates the continuity constraints
directly in the construction of sets of basis spline functions for

0<p<n+2, —w<x<ow,
pt+t1 pt+1 1
B(x) = (x3+1 — X;-3) | —xP3,
? et ? 3j=§—3 i=1;1-3(x?—xf) o
i#j
u, = max (0, u) . (1)

This definition guarantees that
B(x)>0, xj_3<x<x}i,
=0, elsewhere, ?2)

and the continuity conditions are satisfied for all x. It follows
that any linear sum of these basis functions will be likewise
continuous. A spline approximation of a function can thus be
written in the form

n+1

fx) = % B ©

by specifying only n + 2 coefficients. If the knot points are
equally spaced so that

xf=xF+A, @
the B-splines obey the following trivial recursion relation

B;,1(x + A) = B(x) . %)
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Under these conditions, equation (1) simplifies to
d—-6u*+3u¥, 0O<uc<l,
B,(x) =3%(2 —u)?®, l<ux<2, 6)
0, 2<u,

where u = |(x/A) — p + 1|. This leads to a significant compres-
sion of the computations required to manipulate spline curve
representations. To provide a more graphic idea of how B-
splines behave, Figure 1 shows the set of spline functions
required to approximate a function on the interval 0 < x < 5,
with knots at the integer values along the x-axis. Eight B-spline
functions constitute the basis set.

3. FITTING PERIOD-FOLDED LIGHT CURVES

The least-squares technique can be easily applied to the B-
spline representation to estimate the coefficients c; through the
normal equations

p] N
. Z wilflx) —y]*=0. M
Oc; =y

Since for any x, f(x) is the sum of only four adjacent B-spline
functions, each data point, x;, only contributes to a small
number of elements of the regression matrix, independent of
the number of knot points. The resulting regression matrix is
thus band diagonal with three subdiagonals above and below
the main diagonal. Solving such a sparse linear system is con-
siderably faster than for the case when the matrix elements are
all nonzero.

For modeling periodic behavior, it is convenient to map the
observation time variable ¢ into the unit interval via the pre-
scription

x=wtmod 1, (®)

where w is the assumed oscillation frequency. This requires a
slightly more complex computation of the spline coefficients.
Assume that the unit interval, [0, 1], is to be divided equally
into n subintervals. The corresponding knot vector contains
n + 1 points so that the cubic B-spline representation requires
n + 3 coefficients. This leaves the two ends of the spline com-

F1G. 1.—Set of eight cubic B-spline functions with knots at the integers
that approximate a function on the interval 0 < x < 5. A periodic function can
be represented on this interval by requiring that the spline coefficients obey
¢ =c

imod 5°

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...436..787A

ApJ: D T436- TT87A!

)
2

L

No. 2, 1994

pletely independent of each other. To make the representation
periodic, the three continuity conditions must be applied at the
boundaries. This means that the coefficients obey

Ci = Cimodn - (9)

When this condition is asserted, the regression matrix gains
nonzero elements in the upper-right and lower-left corners.
Cholesky decomposition can still be used to solve for the coef-
ficients, but the inversion algorithm must deal with a more
complicated matrix structure.

To be effective for frequency searches, these computations
must be adapted to the capabilities of computers. Two tech-
niques are used to simplify the calculations and reduce the
execution time: discretizing the modeling function (in this case,
the B-splines) to a finite number of values over the unit phase
interval and using a uniformly spaced grid of frequency values.

Truncating the precision of the light-curve phase data
reduces the computation of the B-spline functions to a table
lookup procedure. If we use only 8 bits to store the phase, a
spline function can be calculated for all possible phase values
and compactly stored in memory. Since the B-splines are trans-
lationally invariant for uniform knot spacing, only one of the
spline functions need be stored. We use 16 knot intervals, and
construct function tables for the 16 individual subinterval
argument values. There are 10 nonzero matrix elements in the
regression matrix and four B-spline components which must
be calculated for each of the 16 knot subintervals. If these
16 x 14 values are premultiplied by their appropriate signifi-
cance weighting for each of the data points of the light curve,
the total required storage is 16 x 14 x_ N floating point values,
where N is the number of photometric observations. This pre-
computation requires, at most, about 1 Mbyte of memory and
results in the innermost program loop, where the regression
matrix sums are calculated, consisting of just 14 floating point
additions per data point with no multiplications or divisions.

The remainder of the calculations required to find the y2
statistic at each sample frequency have a fixed cost which is
independent of the number of data points, since the y? statistic
can be obtained from a sum of products of the spline coeffi-
cients with no further iteration over the number of data points.

The use of an equally spaced grid of frequencies simplifies
computation of the light-curve phase. Since the y? statistic
must be evaluated at each test frequency, if the search is uni-
formly gridded in frequency space the light-curve phase for a
particular data point can be successively calculated by adding
a constant value to some initial value. This process can be
mapped to integer arithmetic in such a way that the most
significant 8 bits can be interpreted as the light-curve phase.
Table lookup can then be efficiently accomplished by simple
bit-mask and bit-shift operations.

4. COMPUTATIONAL RESULTS

The basic ideas presented here were encoded in a C program
and executed on a Sun IPC workstation. The algorithm was
segmented into a large number of subroutines, and each
routine was written with both single- and double-precision
versions for a total of over 8600 lines of code. The typical
performance for analyzing variable star light curves obtained
by the MACHO experiment (Alcock et al. 1993) was 85 s to
compute y? for 27,000 frequencies with a data set of 77 points.
About half of this time was spent by the linear equation solving
routines which will not increase for larger data sets. Approx-
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imately 500,000 bytes of free storage were required, mostly to
store information about the fit at each test frequency. Several
hundred light curves have been analyzed to date. Since the
MACHO imaging system consists of two separate CCD focal-
plane arrays illuminated through both parts of a dichroic beam
splitter, two color magnitudes are determined for each obser-
vation, corresponding roughly to the photometric V and R
bands. The parallel analysis of two independent light curves
has provided an important verification that the computer
program can identify the correct periodicity. Some examples of
fitted light-curve data are shown in Figures 2, 3, and 4, in order
of decreasing apparent luminosity.

As an additional check, 180 pairs of light curves were
analyzed for periodicity using both the least-squares spline
technique described above and the Stellingwerf method
(Stellingwerf 1978). Most of the data (75%) in this particular
sample corresponded to eclipsing binaries with the remainder
exhibiting totally aperiodic behavior. The frequencies obtained
by the two methods were compared and in most cases were the
same or else just differed by exactly a factor of 2. For 3% of the
light curves, the Stellingwerf code failed to find the appropriate
periodicity. In some cases, the selected frequency was a higher
harmonic or an alias, and in the rest, the value had no obvious
relation whatsoever to the correct number. No example was
found in which the Stellingwerf algorithm found a valid fre-
quency that was substantially different from the least-squares
spline estimate. From this sample we conclude that the least-
squares spline technique is at least as robust as a more conven-
tional method that has been widely adopted for variable star
data analysis.

5. FREQUENCY ERROR ESTIMATION

An important question about any determination of periodic
behavior is the confidence limits that should be associated with
the measurement. This aspect of spectral analysis seems to be
only rarely mentioned in the literature. One approach is to
explore the shape of the x> distribution in the neighborhood of
the appropriate minimum. If the measurement errors are all
Gaussian and independent, the 1 ¢ confidence limits for the
frequency are set by the points on either side at which the y?
curve increases to the value, y2;, + 1.

To obtain an estimate of frequency error, assume that the
light-curve data is approximated by the function f(x). Averag-
ing over all possible experiments with data points obtained
from the same variable star, the expectation value for the y?
statistic is

P> = CEwily — f(x)1> (10
which can be rewritten as
<X2> = <2wi{yi2 - <,Vi>2 — 2(y; — yD)f(x)
+ [y —fx)1*)
=N+ Zw[y» _f(xi)]2 s (11

where N is the total number of data points and (y,) is the true
mean of the observations, which might not necessarily be iden-
tical to f(x,).

As a simple example, assume homoscedasticity and sinu-
soidal light-curve behavior. We explore the situation where the
approximating function, f(x;), differs slightly in frequency from
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F1G. 2—Light curves for a Cepheid variable in the Large Magellanic Cloud (LMC). The upper two plots show the blue and red data as a function of observation
date. The lower two plots show the same data folded at the estimated oscillation frequency and extended over two full cycles.

the true value so that
y(x) = A sin 2wy t) ,
f(x) = A sin 2nw, t) . (12)

As long as the data is relatively uniformly sampled in time,
then summation can be replaced by an integral so that

g =N+ i JJrT/Z[(sin 2nw,yt) — (sin 2nw, )13 dt  (13)

2
To® )-1)2

0

0
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For o, ~ w, this expression is approximately given by

@Cm*(wo — ,)*T?4?

2\ ~
<x>=N|:1+ YW

|

Thus, the variance for the frequency estimation is

, 24 d \?
ol =— .
® N \2rnTA

(14)

(15)
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Fi1G. 3.—Light curves for an eclipsing binary star in the LMC. The upper two plots show the blue and red data as a function of observation date. The lower two
plots show the same data folded by the estimated eclipse period and extended over two full cycles.

A similar expression has been previously derived by Lucy &
Sweeney (1971, eq. [20]).

A more general and elegant derivation can be developed
from the methods of statistical regression analysis (Draper &
Smith 1981). Consider a statistical model of the form

yi=fﬂ(xi)+ei’ i=15---,N5 (16)
where fis a function of the x variable and a parameter vector f§
of dimension p; the errors e; have mean zero and constant
variance and are independent. Then, if N is large, the variance-
covariance matrix of the estimated parameters is approx-

imated by®
VP~ a’[Z2'Z] ", 17
where Zisan N x p matrix defined by
of(x;;
2, =% B iy N=1. . (19
oB;

As a simple example, assume sinusoidal light-curve behavior,
with f = (4, B, w) and f(x;; f) = A cos 2rwx;) + B sin 2nwx,).
We now need to calculate Z'Z; as an example, we present the

8 This approximation requires that the model can be locally approximated
as a linear function of the § parameters.
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F1G. 4—Light curves for an RR Lyra variable star in the LMC. The upper two plots show the blue and red data as a function of observation date. The lower two
plots show the same data folded at the estimated oscillation frequency and extended over two full cycles.

calculation of the (1, 3) element of Z'Z:
N
[Z'Z], 3= ) cos 2nwx)[2nBx; cos (2nwx;)

i=1

— 2nAx; sin (2nwx;)]

N T

r— f [2nBx cos? 2nwx)
T Jo

—2nAx cos (2nwx) sin (2nwx)]dx
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for large N, assuming observations are approximately uni-
formly sampled in time. Thus

2nBx
2

[Z'Z]13~—f0 dx

_ 2nBNT
==
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TABLE 1
SyNoPsis OF FREQUENCY ERROR ESTIMATES FOR THE B-SPLINE SEARCH PROCEDURE

Stellar Type f x*/dof Jrea = fore \/ Ol + Opiue \/ O %ea + O Fiue
(0] 2 3 @ ® 6)
Cepheid variable ......... 0.198192 0.26 +0.000023 0.000011 0.000335
Eclipsing binary ......... 0.813401 1.05 —0.000070 0.000056 0.000111
RR Lyra variable ........ 1.892037 1.84 +0.000048 0.000024 0.000028

NoTe—The values in each column are described in the text.

Similar calculations give

[ N 0 2n N
= ~— BNT
2 4
(Z'2) ~ 0 N 2n
— — = AN
2 4 T
_ 2
%T” BNT % ANT % (A2 + B)NT?

(20)

Thus, the appropriate variance-covariance matrix for all three
parameters is

[ 42 +4B2 -34B —6B |
N N 2rNT
202 44% + B? 64 ,
VA, B, 0) * ———
A B o)~ rm gy N 2INT
. 12
| (27)*NT? |
21
and the variance for the frequency estimate is
24 I 2
2 _ 7y 2
Te=N [2nT(A2 + 32)1/2] ‘ @

We expect that the variance for nonsinusoidal light curves
will be functionally similar, differing only by dimensionless
factors of order unity. This provides a useful guide to selecting
the frequency interval required to explore neighborhoods of y?
minima. As an example, the periodicity analysis for the data
graphed in Figures 2, 3, and 4 is summarized in Table 1. Since
the light-curve frequency was independently searched in both
red and blue wavelength bands, the difference between these
two values gives a primitive measure of the overall error (col.
[4]). This can be compared with the frequency error computed
from equation (15) (col. [S]). Finally, an independent estimate
is obtained by determining the frequency shift required to
increase the minimum y? value by one unit (col. [6]). For the
Cepheid variable, the photometric errors are quite small due to
the relative brightness of the object. In fact, the error bars for
bright stars were systematically overestimated in the early
MACHO photometric reductions, leading to a ratio of ¥? to
degrees of freedom substantially less than unity. This artifi-
cially broadens the frequency range computed in the last
column. The difference in frequency between the red and blue
light curves, 0.000023 cycles day ~*, is at the granularity limit of
the digital gridding algorithm, 1/256T. A more accurate deter-

mination of the y*> minimum could easily be explored if war-
ranted by data accuracy and number of observations. Since the
requisite number of computations is quite limited, calcu-
lational efficiency ceases to be an issue. For the eclipsing vari-
able, the ratio of x> to degrees of freedom is close to one and
the frequency error estimates are fairly comparable. The fit for
the RR Lyra variable is not so good, probably due to intrinsic
stellar fluctuations from the smoothed light curve. It should be
expected that the frequency errors determined from equation
(15) are close to a lower bound. That calculation was based on
the assumption that the original data exactly followed a sinus-
oidal shape. In the B-spline analysis, the light curve is allowed
an arbitrary continuous form and consequently the loss of
specificity increases the uncertainty of the location of the y?
minimum. Once the light-curve shape has been accurately
parameterized and the functional ambiguity reduced, a second-
pass analysis can optimally determine the most probable fre-
quency, should that be necessary.

In this general area of confidence interval determination, the
B-spline least-squares approach is likely to be superior to the
Lomb-Scargle method. The later technique is not amenable to
the type of analysis discussed above since no attempt is made
to represent the light-curve shape. It would be an interesting
exercise in statistics to compare the asymptotic relative effi-
ciencies of these two techniques (i.e., the ratio of frequency
variances) as the light-curve shape departs from simple harmo-
nic. One expects that the purely harmonic situation will be
handled better by Lomb-Scargle but that this will shift toward
the spline method for curves with increasingly higher Fourier
components. It is unclear what number of knot intervals for
the periodic splines is optimal for reducing the frequency
variance. These kinds of questions may only be susceptible to
answer by massive Monte Carlo simulations.

6. SUMMARY

In summary, a new method of analyzing the periodicity
of unequally spaced data has been described which can be
implemented efficiently on modern computer processors.
Copies of the code can be obtained via the Internet from
akerlof@mail.physics.lsa.umich.edu.
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