THE ASTROPHYSICAL JOURNAL, 436:642-653, 1994 December 1
© 1994. The American Astronomical Society. All rights reserved. Printed in U.S.A.

EVIDENCE FOR AXISYMMETRIC HALOS: THE CASE OF IC 2006

MARUN FRANX
Harvard-Smithsonian Center for Astrophysics; and Kapteyn Laboratory, P.O. Box 800, 9700 AV Groningen, The Netherlands

J. H. vAN GORKOM .
Astronomy Department, Columbia University, 538 West 120th Street, New York, NY 10027

AND
TiM DE ZEEUW

Sterrewacht, Huygens Laboratorium, Postbus 9513, 2300 RA Leiden, The Netherlands
Received 1994 February 9; accepted 1994 May 31

ABSTRACT

We present a new method to derive the shape of the potential from the velocity field of a gas ring, or a gas
disk with a flat rotation curve. The method is an extension of previous work by Binney and Teuben, and it
can detect deviations from axisymmetry at the level of a few percent. The velocity field of the ring or disk is
expanded into harmonics, and we present analytic expressions which relate these harmonic terms to the intrin-
sic parameters, and the viewing angles. We show that both the velocity field and the geometry of the ring are
necessary to give complete information on the shape of the potential in the plane of the ring. The velocity field
alone gives incomplete information for small ellipticities. We present new neutral hydrogen data on the H 1
ring around the early-type galaxy IC 2006, which was discovered by Schweizer, van Gorkom, & Seitzer (1989).
The new data show that the ring is filled and has a remarkably regular velocity field. Application of our
method to this gas ring shows that the halo must be close to perfectly axisymmetric. We detect a nonsignifi-
cant ellipticity of the potential of 0.012 + 0.026. The 95% confidence limit on the ellipticity is 0.05. This
implies that the potential is nearly circular in the plane of the ring. The analysis indicates that the circular
velocity is nearly constant from 0.5R, to 6.5R,. We confirm that the M/L ratio in the outer parts increases
(Schweizer et al. 1989). The stellar component probably has a strong disk. The data demonstrate that galaxies
other than spiral galaxies have massive halos. The inferred shape of the halo can be contrasted to the strongly
triaxial halos found in simulations of dissipationless halo formation. As suggested by Katz & Gunn (1991), the
inclusion of baryonic matter in the simulations may be necessary to resolve this issue.

Subject headings: galaxies: individual (IC 2006) — galaxies: kinematics and dynamics — galaxies: structure —

radio lines: galaxies

1. INTRODUCTION

The discovery of dark halos around spiral galaxies poses the
obvious question whether elliptical galaxies and SO galaxies
have similar halos. This question is fundamental to under-
standing the nature of dark matter and to understanding the
process of galaxy formation and evolution. The presence of
dark matter in clusters, which contain many early-type gal-
axies, demonstrates clearly that these galaxies exist in environ-
ments that are “rich” in dark matter. Nevertheless, the
information on the density distribution in individual elliptical
galaxies is much scarcer than the available information on
spirals (e.g., Kent 1990; de Zeeuw 1992).

The matter distribution of spiral galaxies is usually inferred
from extended gas rotation curves. Unfortunately, very few
ellipticals show filled gas disks. Furthermore, the modeling is
often uncertain because of poor signal-to-noise ratio, and the
uncertainty in viewing angles. Additionally, dark halos may
well have triaxial shapes (Binney 1978). If one ignores the devi-
ation from axisymmetry, one would infer the wrong viewing
angles and the wrong circular velocity. Fortunately, the tri-
axiality of the halo produces a characteristic signature in the
velocity field of the gas (Binney 1978; Teuben 1991). Thus the
velocity field itself can be used to constrain the shape of the
halo.
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Here we extend the previous work of Binney and Teuben,
and we analyze in detail the effects of triaxial potentials on the
observed velocity field. We adopt the approach introduced by
Teuben, in which he expands the observed velocity field into
harmonics. We apply this method to the case of a gas ring
around a galaxy. We show how the harmonic expansion can be
related directly to the intrinsic parameters of the ring and the
galaxy.

The purpose of the analysis is twofold: we derive the shape
of the galaxy potential in the ring, and, simultaneously, we
derive the total mass inside the ring. We apply the method to
IC 2006, an early-type galaxy in the Fornax cluster. Schweizer,
van Gorkom, & Seitzer (1989) discovered that this galaxy has a
regular H 1 ring at ~6.5R,. We obtained high-resolution and
high signal-to-noise ratio H 1 data at the VLA. The regular
appearance of the ring allows us to put tight constraints on the
deviation from axisymmetry and on the mass of the galaxy
inside the ring.

We proceed in the following way. In § 2 we analyze the
velocity field produced by a triaxial potential. We present the
method we adopt to derive the elongation of the potential from
the gas kinematics. Section 3 presents the new H 1 data, which
are analyzed in § 4. In § 5 the available optical data is modeled,
and a mass model is constructed. The results are discussed in
§ 6.
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2. SIGNATURES OF ELONGATED POTENTIALS
2.1. Projection of Epicyclic Orbit

We analyze the case where gas is moving along stable closed
orbits in a triaxial potential. If the galaxy potential is near to
circular and nonrotating, the cold gas is expected to move
along stable closed orbits in a symmetry plane (Tohline,
Simonson, & Caldwell 1982). Shocks are not important in this
case, and an equilibrium configuration can be reached. The
stable closed orbits are generally elliptical and are elongated
perpendicular to the elongation of the potential. Epicyclic
theory provides a good approximation to the shape and veloc-
ity field of such orbits in slightly elongated potentials (Gerhard
& Vietri 1986; Binney & Tremaine 1987). We consider the case
of a gas ring, i.e., a single closed orbit.

In a potential with constant ellipticity €,,, and circular veloc-
ity v, oc R% the closed orbit is an ellipse to first order, with
ellipticity
Rmin 1 + o
R - 11—« Epo! . (1)

We assume the orbit lies in the (x, y)-plane and is elongated
along the y-axis. We use R and ¢ to denote polar coordinates
defined by x = R cos ¢, y = R sin ¢ (Fig. 1a). Three viewing
angles i, ¢, and I',,, specify the projection of the orbit on
the sky. The angles ¢,,,, i define the line of sight by (¢, ) =
(Pobs> 1), Where ¢ and i are the usual spherical polar angles.
The angle I',,, specifies the angle between the observer’s coor-
dinates in the plane of the sky and the projected x- and y-axis
(Fig. 1b).

We introduce a new coordinate along the orbit, Y = ¢
— ¢.ps — ®/2. This coordinate is zero along the line of nodes,
i.e., it is zero along the apparent major axis of the projected
circular orbit R = constant. As a consequence, the velocity
field of a circular ring is simply given by V,,4 = v, sinicos .

For an elliptic orbit, the line-of-sight radial velocity is not so
easily expanded. In the Appendix we show that the radial
velocity can be expressed as

€R= 1 -
max

v, =y COS Y + 5, sin Y + c3 cos 3y + s5 sin 3y, (2a)
where
¢; =[1—-(1 — a)eg cos 2¢ v, sin i,
s; = [(1 — a)eg sin 2¢,, Jv, sin i,
- (2b)
c3 = (aeg cos 2¢p v, sin i,
53 = —(aeg sin 2@y )0, sin i,
yA
(b) Y"
A 1—‘abs
Gl
X
X Y
X

F1G. 1.—(a) Geometry of the projected orbit. The orbit is indicated by the
solid ellipse. The orbit lies in the (x, y)-plane and is elongated along the y-axis.
The viewing angles i and ¢, are equal to the polar coordinates of the line of
sight. The line of nodes is indicated by the dashed line. The angle ¥ is the angle
in the plane of the orbit and is defined to be zero at the line of nodes. (b) The
angle I' ,, is the position angle of the z-axis with respect to the observers frame.
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and we have written a = $a/(1 + «). This result is valid for
small €. In the case of a flat rotation curve (a = 0), both c; and
s5 vanish, and the resulting expression,

v, = v, sin i[(1 — €g cos 2¢,) COS Y + €g sin 2¢,,, sin Y] ,
(©)

is valid for a full disk, if the ellipticity and inclination i are
constant with radius. Kuijken & Tremaine (1994) give a
number of other properties of the gas kinematics in an elon-
gated potential.

The above expressions are obviously more complex than the
formula for a circular orbit, for which ez =0 and all terms
except the cos Y term vanish. The sizes of the additional terms
s1, 83, and ¢; depend both on the internal parameters and on
the viewing angles. The main effect caused by the ellipticity of
the potential is the additional s, sin { term. It depends on the
viewing angle ¢,,,: if we are looking along the major or minor
axis of the ellipse, then it is zero. Along the intermediate axis
(sin 2y, = 1), the term is maximal.

This s; sin ¢ term produces the two characteristic effects of
noncircular potentials noted by Binney (1978): (1) the velocity
gradient along the projected axis of rotation will be nonzero,
and (2) the projected axis of zero radial velocity will not be
perpendicular to the projected axis of maximum radial veloc-
ity. It is straightforward to show that the velocity along the
projected axis of rotation equals | v, ., | = €gv, | sin 2¢ | sin i.
The position angles of zero and maximum radial velocity I’y
and I',,, are easily derived from equation (2). We note that the
angle ¥ is related to the position angle on the sky I" by

tan (I' — I'poqe) = tan Y cos i, 4)

where I, 4. is the position angle of the line of nodes. It follows
that for small eg, the position angles of zero and maximum
velocity are given by

5y —s 1 €g Sin 2
IqO—r‘node=g'}' 1 2 =E+ R '¢obs
¢y —3c3cosi 2 cos i
; )
sy + 3s .
[ox — Doode = ———> ¢0s i = (1 — 4a)eg sin 2¢,, cOS i .
¢; +9c;

As a consequence, the difference between these two angles is
approximately given by

1
| R g + €g sin 2¢o,,s[— — (1 — 4a) cos i] )

cos i

Thus, the nonperpendicularity of the kinematic axes is largest
for nearly edge-on galaxies, with sin 2¢_,, = 1. At small incli-
nations (nearly face-on galaxies), the nonperpendicularity will
be small. It follows that the measurement of I'y — I',,, con-
strains only the € sin 2¢,,, term, and not €g cos 2¢,,,, or the
total ellipticity. The sensitivity depends on the inclination
angle i.

2.2. Measuring the Ellipticity of the Potential

Equation (2), above, can be used to fit the observed velocity
field. In principle, the ellipticity €,,, and the viewing angles,
can be derived from such a fit. In practice, such a fit will often
not work very well, because the parameters are highly corre-
lated and are sometimes ill-determined.
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Here we choose another approach: we fit a circular orbit to
the geometry of the ring or to the velocity field of the ring. This
gives approximate v1ew1ng angles i, ' yps- These will generally
not be equal to the true viewing angles, because the ring might
be elliptical. Then we deproject the velocity field in the coordi-
nate system defined by i, I, and expand it into harmonics. If
the ring is truly circular, then only the cos § term will be
sxgmﬁcant If the potential is elliptical, then nonzero sin ¥, cos
3y, sin 3y terms will be measured. A similar method was intro-
duced by Teuben (1991), who performed numerical simulations
of his technique.

In the Appendix we show how the results from the harmo-
nics expansion can be directly related to the internal param-
eters and the viewing angles. Two effects play a role; first, the
ellipticity of the potential introduces nonzero s,, c3, s; terms
when the velocity field is expanded in the correct coordinate
system. The difference between the correct viewing angles Iy,
i and the approximate viewing angles fobs, i will add additional
terms. This changes the observed ¢é,, §;, ¢;, 5. Below we sum-
marize the results.

2.2.1. Case I—Approximate Viewing Angles T, { from a Fit
to the Geometry of the Orbit
The observed radial velocxty is expanded with respect to the
angle ¥, which is the angle in the plane of the deprOJected ring
and which is zero at the line of nodes. This definition is very
similar to that of the true angle . The resulting expression for
the velocity field becomes

v, =¢&, cos § + 5, sin §f + &; cos 3 + 5, sin 3§, (7a)

3
¢y = l:l - <Z - a>eR cos 2¢obs:|vc sin i,
) 5—¢q2 . .
S = {I:m — a]eR sSin 2¢obs}vc sini,
(7b)
1
éy= l:(a - Z)eR cos 2<i>‘,,,s:|vc sini,
. 1 . .
§3 = [(Z - a)eR sin 2(15(,,,&]1;c sini,

where g = cos i. It is the apparent axis ratio of the projected
orbit. The above expressions are valid only for small €5 and
large i. As expected if the orbit is intrinsically circular, all
terms §;, €3, and $; will be zero. If the ellipticity is nonzero,
then we can measure significant c2s i, sin {J, cos 3, and sin 3y
terms.

We show an example of a deprojected velocity field in Flgure
2. The velocity field is dominated by the cos { term, which is
the term typical of a circular orbit. The next largest term is the
sin Y term, which also produces the “minor axis” rotation. A
measurement of the sin {y term is a very sensitive measurement
of €g sin 2¢,,,. This term is the difference in elongation of the
potential along the axes ¢ = ¢, + 7/2 and @ = P ps — 7/2.
This coefficient was labeled s, by Kuijken & Tremaine (1994).
It is zero when the potential (and the ellipse) are viewed down
their long or short axis. The complementary term e cos 2@,
can be derived from the cos 3y coefficient in the fit to the
velocity field. Unfortunately, the maximum amplitude of this
term is lower by at least a factor of 5 than the maximum
amplitude of the sin y term (for a ~ 0). Thus, in many cases,
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F1G. 2—An example of the observed radial velocity along a projected ellip-
tic orbit. The potential has an ellipticity of 0.1 in the plane of the ring. A
circular orbit is fitted to the projected ellipse, and the velocity field is expanded
in harmonics defined by this coordinate system. Panel (a) shows the radial
velocity as a function of the angle i, which is zero at the line of nodes. The
dashed curve is the best-fitting circular orbit. For such an orbit, the radial
velocity is proportional to cos . The additional terms are caused by the
ellipticity of the potential. Panel (b) shows the residuals from the circular orbit
fit. The dashed curves show how this residual can be expanded into the sin J,
cos 3y and sin 3y harmonics. The sin § term is by far the largest term caused
by the ellipticity of the potential.

€g sin 2¢,,, will be much better determined than eg cos 2¢,,,
and it may be better to view these as the two independent
terms which are measured by the fit.

2.2.2. Case I11.—Approximate Viewing Angles from a Fit of a
Circular Velocity Field

Second, we can determine the approximate viewing angles
from a fit of a circular velocity field to the observed velocity
field, ignoring the geometry of the ring. In the Appendix all
necessary expressmns are given. We find that the approximate
inclination i is equal to the true inclination i for the case of a
flat rotation curve. Thus, in this special case, a fit of a circular
velocity field to the velocity field of an elliptic orbit produces the
correct inclination of the elliptic orbit. This result was used
earlier by Franx & de Zeeuw (1992). The implication is that
galaxy inclinations from a fit to the velocity field are much less
influenced by a noncircular potential than inclinations derived
from galaxy photometry.

The velocity field can be expressed as

v, =&, cos Y + §, sin Y + §, sin 3y, (8a)
él =0, sin l(l — €g COS 2¢obs) >

(1 — ¢*[3¢*> + 1 — 2a(q* + 1)]}
Bg®2+ 1) +(1 — ¢%?

§1=vcsini{l—a—

X €g Sin 2¢ s »

0,

(8b)

(e}

3

A

§3 = v, sin i{—a—

(1 —g»)[3¢* + 1 — 2a(g® + 1)]}
(Bg* + 1> + (1 — ¢?)?

X €g SIN 2¢,ps

where g = cos i. This quantifies Teuben’s (1991) result, who
numerically analyzed noncircular velocity fields. As expected,
all terms except the cos i term disappear if the orbit is circular.
If the orbit is noncircular, then both terms ¢; and §; are pro-
portional to € sin 2¢ .
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If we take v, sin i, € cos 2¢,,s, and €, sin 2¢,,, as indepen-
dent parameters, then it becomes clear that they cannot be
determined uniquely from equation (8), if the ¢,, §,, §; terms are
measured. For most practical purposes, however, it will be safe
to assume that e, is small, and then, v, sin i and € sin 2¢,,, can
be well measured. The term €, cos 2¢,, remains undeter-
mined. Hence, for small € it is impossible to measure the total
ellipticity of the potential from the velocity field alone.

2.3. The Final Method for Measuring the
Elongation of the Potential

The above results show that the first method is the most
sensitive method to measure the ellipticity of the potential. In
this case, the geometry of the ring is used to derive the approx-
imate viewing angles under the assumption that the orbit
is circular. The velocity field is expanded in harmonics, v, =
Y é, cos ny + §, sin m. The §; term is directly proportional
to € sin 2¢.,, and the ¢; and §; terms are proportional to
€g COS 2¢ ,, and eg sin 2¢,, (but with a smaller constant of
proportionality). It follows that a definite measurement of
these three terms is sufficient to determine €g, ¢ps. It € is
significant, then the slope of the rotation curve, a, can also be
estimated. Equation (8) gives the constants of proportionality
for the epicyclic orbits. In principle, equation (8) can be solved
to give Pps, o, €, and v, explicitly as a function of é,, §;, ¢35,
and §. In practice, this will require ultraprecise measurements,
mainly because « is poorly constrained.

It is more convenient to assume a value for o and then to
derive the remaining parameters. We give the general expres-
sions in the Appendix. For a flat rotation curve we have o = 0

and obtain
1—g»)1|s
€r ! Sin 2¢obs| = 4[( qz)j' 'f_l >
5-499) 1 )
_ @
R — n .
C1

The potential shape can be measured very accurately with this
method. If we can measure the individual terms ¢;, §; to 1%,
then e sin 2¢,,,, can be determined very accurately from the §;
term (to better than 1%). The coefficients $;, ¢; can also be
used to estimate the shape of the potential. An error of 1% in
each implies an error of 0.06 in the overall ellipticity. Although
much larger than the error in ey sin 2¢,,,, this still gives useful
results. Furthermore, as we will show in § 4, the terms ¢;, §; can
be determined to high accuracy from high signal-to-noise ratio
H1data.

We now define several statistical tests which can be used to
test certain hypotheses concerning the shape of the potential.
We can use two criteria to rule out the hypothesis that the
potential is circular, one based on the §; coefficient, and the
other on the §,, é; terms. We can rule out a circular potential
at the 95% confidence level if

|81 > 1.9606(3,) , (10)
or

82 + 62 > 2.450(5,) . (11)
We have assumed that the errors are distributed like a Gauss-
ian, and that ¢(5;) = (). Similarly, we can calculate an upper
limit to € sin 2¢,,, and the ellipticity of the potential e;. To
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this end, we calculate upper limits to §;, and ./§2 + ¢2 under
the assumption that the probability distribution of the true
parameters is a Gaussian around the observed values. The
95% confidence upper limits for each quantity are given by

(5 —4¢* [I3:] + 1.960(,)]

€R | sin 2¢obs | <

41 - g? 1é,] ’ 12
< glim ( $2+¢%
. < 4lim (/85 +83)
K A

We performed various numerical simulations to test the reli-
ability of these upper limits, and found that these tests work
very satisfactorily.

3. 21 CENTIMETER LINE OBSERVATIONS OF IC 2006

The original Schweizer et al. (1989) observations were done
as a detection experiment, with low angular and velocity
resolution. The main motivation for reobserving the galaxy
was to get much better velocity resolution, in order to derive
the shape of the dark halo, The observations were made in
1989 October with the Very Large Array (Napier, Thompson,
& Ekers 1983) with the array in its 1 km (D) configuration, but
with an extended north arm (3 km) to compensate for the low
declination of the source. The observations were spread over 4
days, resulting in a total of 24 hr on source. A total band-
width of 3.125 MHz was used, centered at a heliocentric veloc-
ity of 1390 km s~ ! (optical definition). Online Hanning
smoothing was employed, after which every other channel was
discarded. This results in a set of 63 independent channels,
separated by 10.4 km s~1, for each of the two polarizations.
The flux density scale is based on an assumed value of 15.81 Jy
for 3C48 at our sky frequency. The field center was at the
optical center of IC 2006, «;950 = 3"52™3539, 8,950 =
—36°06'47"4 (Schweizer et al. 1989).

Standard calibration procedures were followed. A uniform
weighted cube was made and a continuum image was formed
by averaging a set of line-free channels on either side of the
band. This image was subtracted from the cube. The channels
showing line emission were CLEANed and finally the cube was
convolved to a circular beam (40”). The rms noise in the
channel maps is 0.8 mJy per beam.

The main result of these new observations is that the neutral
hydrogen ring around IC 2006 is filled and that its velocity
field is remarkably regular. The surface density distribution is
rather smooth. Figure 3 shows the individual channel maps
centered on the systemic velocity of IC 2006. The velocity of
each channel is given in the upper right-hand corner, and the
small cross marks the optical center of the galaxy. The channel
maps form a textbook example of a ring in circular rotation.

The integrated hydrogen image is shown in Figure 4. The
regularity of the ring is again striking. It appears filled with gas
at our resolution. There is some structure along the ring. The
flux distribution is depressed toward the southeast. The noise
is always smaller than the lowest contour, so the features along
the ring are real. Although the ring is very narrow, it is slightly
resolved. We address this issue in § 4.

Figure 5 presents the intensity-weighted velocity field. This
is our main result; the velocity field is remarkably regular.
The mean flux-weighted velocity of the ring is 1389 km s~ .
This agrees with the velocity of 1385 + 7 km s~ ! derived by
Schweizer et al. (1989).
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4. MODELING OF THE H 1 RING

4.1. Ring Geometry

RA (1950)

F16. 3.—Individual channel maps of the H 1distribution in IC 2006. The contour interval is 2 mJy per beam. Negative contours are dotted. The heliocentric radial
velocity (km s™?) of each channel is indicated at the top right in each frame. The plus signs mark the optical center of IC 2006. The hatched circle in the lower
right-hand frame shows the size of the synthesized beam (HPBW).

The first step in the modeling is to fit an ellipse to the H 1
flux map. We tested a variety of algorithms for this purpose
and decided to use the following procedure. Assume a center
(xo> ¥o), position angle T* ring» and major and minor axes of the

ellipse a and b. Hence, the ellipse can be written as

nN| x:)

+

Q'I‘c:»
N N

1,

(13)

where X and j are a suitably defined coordinate system with
origin at the center of the ellipse, and coordinate axes parallel
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Fi1G. 4—Map of total H 1 distribution in IC 2006. The contour interval is
3.4 x 10'° atoms cm ~2. The regularity of the ring is striking. The plus marks
the center of the optical galaxy, and the ellipse shows the ellipticity and posi-
tion angle of the outer well-defined isophotes of the optical galaxy (taken from
Schweizer et al. 1989). The ellipticity and position angle of this ellipse appear to
agree well with those of the H 1.

to the major and minor axis of the ellipse. We calculate the
values of x,, Yo, @, b, f‘,ms which minimized the residual

2* =Y [(% — acos ¥)? + (; — b sin Y)*] Flux, (14)
where the angle |/ is given by

» _Jb
tan Y == Ya’ (15)
For a perfectly thin ellipse, this residual is zero. The minimum
is found by a straightforward linearized least-squares fitting
routine. No more than 10 iterations were needed to find the
final solution.

An advantage of this approach is that it produces error
estimates. The error results directly from the linearized least-
squares fit. Furthermore, the shape of the fitted ellipse is not
strongly influenced by any irregular flux distribution along the
ellipse. Any method employing the moments of the flux dis-
tribution would be strongly influenced by such an irregular
flux distribution. Finally, we can estimate the width of the
ellipse from x2. We verified with numerical simulations that
this method gave unbiased estimates of the ring parameters.

Table 1 presents the results of the ellipse fitting procedure.
We repeated the ellipse fitting routine on maps in which pixels
below a given flux limit were omitted. We chose two flux limits
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FiG. 5—The intensity-weighted mean H 1 velocities in IC 2006. The con-
tours are spaced by 20 km s™!, and some of the velocities are marked. The
systemic velocity of the galaxy is 1385 km s~ . The gray-scale map represents
the total H 1 flux distribution.

such that one-third and 2/3 of the pixels fell below the limits.
The results are given in the second and third columns of Table
1. It is evident that the axis lengths of the ellipses vary some-
what with higher limits, but that the ellipticity and position
angle remain very stable. This gives us confidence that ellip-
ticity and position angle are well determined.

The radial distribution of the flux is presented in Figure 6.
The total flux in elliptical bins is plotted in Figure 6a. Figure 6b
shows the cumulative flux inside elliptical annuli as a function
of the major axis of the annulus. The radial coordinate is nor-
malized to the size of the fitted ellipse. Also plotted are the
expected distributions for an infinitely narrow ring, convolved
with the beam width. The ring is clearly more extended. We are
able to produce the observed distribution very well with a ring
which has a Gaussian flux distribution in the radial direction.
The dispersion in radius is 0.12 times the major axis length.

The ring is deprojected under the assumption that the ring is
circular. The implied inclination angle is 31°. Figure 6¢ shows
the flux distribution as a function of the angle ¥ in the plane of
the depro_pected ring. The flux distribution is not quite regular
and there is a depresswn at J ~ 90°. This depression is also
apparent in the flux map in Figure 4.

4.2. Ring Kinematics

Figure 7a shows the velocities of the ring as a function of the
angle . The velocities are resampled into bins of Aj = 18°.

TABLE 1
GEOMETRY OF THE RING

FrLux
>1 >70 >157
PARAMETER (mJybeam ' kms™!) (mJybeam 'kms~')  (mJy beam~!'kms™')
144" £2" 1417 2" 139" + 2"
0.14 + 0.02 0.13 + 0.02 0.13 £ 0.03
34° + 5° 35°+ 5° 36° + 5°
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FiG. 6.—The flux distribution measured in coordinates defined by the best-fitting ellipse. (a) Flux distribution of the ellipse as a function of normalized radius. For
each point, the normalized radius is calculated as the ratio of the observed to predicted distance to the center of the ellipse. The predicted distance is the distance to
the fitted ellipse measured along the line through the center and the observed point. The dashed line shows the prediction for an infinitely narrow ring, convolved
with the beam. The thin, drawn, line shows the prediction for a ring with a relative intrinsic width of 0.12. (b) As (a), but now showing the cumulative flux distribution.
(c) The H 1 flux as a function of the angle . The data have been summed into independent bins. The distribution is quite regular but shows a dip near § = 90°.

This distribution is predicted to be flat, for a regular, circular orbit.

Because of this resampling, the noise is nearly independent,
and the error estimates from the harmonic fit are reliable.

It is striking how regular the velocity field is. We expand the
velocities in the form described in § 2.

4
=Y ¢&,cosy +§,sin

(16)
and find
é,=11354+04kms !, § =06+05kms™ !,
é=114+04kms™ 1, S, =0.6iO.4 kms™!, a7
é3=—-034+04kms™ ', §3=-02+04kms !,

The errors are the formal errors of the harmonic fit. We again
test the robustness of the fit by omitting pixels with fluxes
lower than a certain limit. We choose the same limits as for the
geometrical fit and repeat the velocity fit. The coefficients
change slightly with increasingly higher flux cutoff. The largest
relative variation is in the §, term, which varies between —2.5
and 0.6 km s~ *. This is mostly due to variations in the position
angle of the ellipse. The third-order terms are always below 1
km s~!. We remark that the amplitude é; of the rotation is
somewhat lower than the value of 122 + 5 km s~ ! estimated
by eye by Schweizer et al. (1989).

The residuals of the velocity fit after subtraction of the cos
term are shown in Figure 7b. It is reassuring to see how small
the residuals are. The residuals at §y = 90° are related to the dip
in the flux at that angle. The finite spatial resolution of the
observations causes the flux from neighboring regions to
unduly influence the velocity at this location. The strongest
residuals are the ¢,, §, terms. These terms indicate that the
center of the velocity field does not coincide with the center of
ellipse. We repeated the ellipse fit but fixed the center to be the
optical center of the galaxy. The ellipticity and position angle
of the best-fitting ellipse changed very little. The resulting har-
monic fit to the velocity fit gives much smaller residuals; see
Figure 7c. The é,, §, are now smaller than 0.2 km s~ !, which
shows that the kinematic center coincides with the optical
center of the galaxy.

The observations imply that the potential is nearly circular
in the plane of the ring. We have measured no significant §,, é;,
and §; terms. Table 2 presents the resulting values of g sin ¢,
and eg, which have been calculated from the harmonic expan-
sion terms by equations (9) and (12). The second column gives
the values when only the errors from the velocity fit are taken
into account. None of the measurements indicate an ellipticity
which deviates significantly from 0. An axisymmetric potential
is completely consistent with the results. Table 2 also gives
upper limits to the ellipticity. These limits are chosen such that
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F1G. 7—The observed velocity field along the ring. The measured velocities have been averaged into 20 independent bins. (a) v, as a function of . The size of
the points is indicative of the H 1 flux at that point. The curve is the circular orbit fit. (b) The residuals from the circular orbit fit as a function of . The residuals
are dominated by the cos 2iJ and sin 2yj terms, which are caused by a slight offset between the geometric center of the ring, and the kinematic center. (c) The residuals
from the circular orblt fit if the center of the ellipse is fixed to the center of the optical galaxy. The relatively large residuals near ) = 90° are caused by beam-smearing

effects near the “ gap ” in the ring. The sin |, cos 3y, and sin 3y terms are all smaller than 1 km s

—l
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TABLE 2

MEASUREMENT OF THE SHAPE OF THE POTENTIAL

ERRORS FROM BOTH ELLIPSE
ERRORS FROM F1T AND VELOCITY FIT

VELocity FiT

PARAMETER Detection Detection Upper Limit
€pSIN2¢ s ....... 0.001 + 0.001 0.001 + 0.019 <0.038
€R ceeniiniiieeaen 0.012 + 0.015 0.012 + 0.026 <0.050

the probability that the true values of eg sin 2¢,,,, €x are higher
than the upper limits are smaller than 0.05.

The errors which are used in the second column are based
on the errors in the velocity field only. These errors do not
incorporate the errors in the ellipticity and position angle. It
turns out that a variation in the position angle of 5° produces a
much larger variation in §, than the formal error in §;. One
might argue that such errors are only bound to give a higher
ellipticity for the ring, and not a smaller. Although this is
undoubtedly the case, if we want to derive a reliable error
estimate, or a reliable 95% confidence limit, then we cannot
ignore this effect. The third and fourth columns in Table 2
incorporate all the sources of errors and are therefore more
reliable.

4.3. Numerical Simulations

In order to test the reliability of the result, we have per-
formed Monte Carlo simulations of our full procedure. We
simulate the ring as a collection of discrete H 1 clouds. The
clouds are put on an elliptic closed orbit in a potential with
arbitrary elongation. The radial distribution is Gaussian and
set to reproduce the observed width of the ring (§ 3.2). The
number of clouds and the ellipticity of the potential are varied.
We compute 1000 realizations for each of these models and
derive estimates of the ellipticity and upper limits for each
realization.

We find that the upper limits are reliable for intrinsic ellip-
ticities smaller than 0.06. This gives us further confidence in the
result. If the ring is given no intrinsic width, then the errors are
overestimated, and the upper limits are also overestimates,
which makes us err on the safe side.

The main uncertainty in the analysis is the physical noise in
the ring, i.e., the fact that the material may not be distributed in
a narrow, homogeneous ring. Our simulations give us con-
fidence that we have estimated the uncertainty due to this effect
in a reasonable way. We note however, that this uncertainty
relates directly to the underlying assumption throughout this
work that the ring is in equilibrium. We cannot rule out the
possibility that the ring is not in equilibrium and that our
measurement of very low ellipticity is incorrect. This is possible
if the shape of the ring deviates from the shape of a closed
orbit. We consider this unlikely, however, in view of the fact
that the velocity field is extremely regular. A definite test can
only be made by observations of a large sample of galaxies
with narrow rings. '

5. MODELS OF THE LIGHT AND MASS DISTRIBUTION

5.1. Luminous Material

The very small elongation of the potential derived in the
previous section implies that the viewing angles of the ring are
well determined by the standard assumption that the ring is
intrinsically circular. We next assume that the ring lies in the
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symmetry plane of the galaxy. Although it is not possible to
verify this assumption independently, it appears to be reason-
able, given the regular velocity field of the ring, and the small
difference in position angle and ellipticity between the ring and
the outer parts of the galaxy.

Under these assumptions, the inclination of the galaxy is the
same as that of the ring, 31°. We deproject the surface photo-
metry of Schweizer et al. (1989), assuming that the galaxy is
axisymmetric, and that the surfaces of constant density are
stratified on spheroids. We applied the formulas which are
valid for galaxies which are stratified on similar spheroids (e.g.,
Stark 1977) to find the intrinsic ellipticity €,,(r). The resulting
ellipticity profile is shown in Figure 8. The ellipticity is seen to
increase to very high values of 0.6-0.7 in the outer parts. Such
ellipticities are never observed for “normal ” ellipticals, and we
therefore conclude that the galaxy probably has a strong disk.
By itself, this conclusion is not very surprising. Many galaxies
classified as ellipticals contain weak or strong disks (see, e.g.,
Carter 1987; Capaccioli 1990; Bender 1988; Rix & White
1990). The fact that IC 2006 follows an r'/* law reasonably well
is not very decisive, as the low central surface brightness of a
face-on disk makes it very hard to detect.

The isophotal twist found by Schweizer et al. (1989) indicates
that IC 2006 is not perfectly axisymmetric. We deproject the
observed ellipticity and position angle profile with the formal-
ism of Stark (1977) for triaxial ellipsoids. We fix the inclination
and vary the azimuthal viewing angle ¢,,. The deviation
from axisymmetry is smaller than 5% for most values of ¢,.
This gives us confidence that the axisymmetric modeling is
appropriate.

5.2. Mass Distribution

Finally, we construct a mass model to compare to the avail-
able data. First, we construct an axisymmetric model based
on the surface photometry, using the techniques designed
by Binney, Davies, & Illingworth (1990) and adapted by van
der Marel (1991). The last author kindly made available his
software.

We introduce a small modification to this software. We re-
project the galaxy to an inclination of 90° (edge-on), under the

25 [ |

T

0 o0
R (arcsec)

F1G. 8.—Deprojection of the light distribution, under the assumption that
the H 1 ring defines the viewing angles, and that the galaxy is axisymmetric.
The upper drawn line gives the curve of intrinsic ellipticity. This line has been
smoothed to reduce the noise. The points indicate the observed ellipticity. The
bottom curve shows the reprojection of the upper curve of intrinsic ellipticity.
The large intrinsic ellipticity of 0.6—0.7 at large radii indicates that the galaxy
has a disk in the outer parts.
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assumption that the density distribution is axisymmetric. This
procedure improves the deprojection algorithm. We assume
first that the M/L ratio is constant. The central velocity disper-
sion predicted by the model can be compared to the measured
dispersion of 128 km s~ ! by Davies et al. (1987). The resulting
mass-to-light ratio M/L = 5.6 M,/L, which agrees very well
with the value estimated by Schweizer et al. (1989) using the
core-fitting formula.

The resulting curve of circular velocity as function of radius
is given in Figure 9. The circular velocity has a peak of 242 km
s~1 at r = 11” and declines gently further out. The measured
rotation velocity of the H 1 gas is also indicated in the figure
and is clearly inconsistent with the predicted value based on a
constant M/L. Thus we confirm the radial gradient in the M/L
ratio found earlier by Schweizer et al. (1989). Our model
implies that M,,/M,,, = 3.2 inside 6.5R,, where M, is the
luminous mass, assuming a constant (M/L),,.-

The similarity between the circular velocity at v(r = 11") =
242 km s~ ! and o(r = 120”) = 221 + 14 km s~ ! is surprising,
and suggests that the circular velocity is nearly constant at
radii larger than 11" ~ 0.5R,. Thus the mass distribution in IC
2006 is probably very well described by an r~2 density profile,
and it is very similar to the mass distribution in spiral galaxies.
We construct a second model with a very flat curve of circular
velocity. We add a density component of the form p = p,/
[1 + (r/ro)*], with r, = 33” and an asymptotic circular velocity
of 259 km s~ 1. The resulting curve of circular velocity is shown
in Figure 9. It is constant to 4 km s ! outside of 11” from the
center. The predicted circular velocity at the ring is slightly too
high, 248 km s~ !, as compared to 221 + 14 km s~ !. The uncer-
tainty in the model value is fairly large, since it is based only on
a central velocity dispersion.

Our central M/L ratio is sensitive to (small) anisotropies in
the velocity distributions. Long-slit kinematical data taken at
several position angles will help to test the assumptions
required for the modeling. Our present conclusion is that the
data implies a strong increase in the M/L ratio with radius and
is consistent with a curve of circular velocity which is nearly
flat at large radii. The logarithmic gradient between the model
value at r = 11" and the observed value at r = 144" is —0.05.

S N

0 50 100
R (arcsec)

150

F16. 9.—The model curves of predicted circular velocity v,. The drawn line
shows v, under the assumption that the M/L ratio is constant. The M/L is
derived from the central velocity dispersion of the stars. The circular velocity at
the ring is shown in the upper right, and it exceeds the predicted circular
velocity by a factor of 1.8. The dashed line shows the predicted circular velocity
curve when a halo is added which results into a flat rotation curve. It agrees
much better with the circular velocity indicated by the ring.
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6. DISCUSSION

We have shown that the E/S0O galaxy IC 2006 has a signifi-
cant dark matter component within the radius of the ring (r =
144" = 6.5R,). This confirms the previous result by Schweizer
et al. (1989). The radial change in M/L ratio is about 3.2. Our
models indicate that the curve of circular velocity is nearly flat
outside 11”. The potential is nearly axisymmetric.

We have developed a sensitive method to measure the elon-
gation of the potential in the plane of the ring. This extends
earlier analyses by Binney (1978) and Teuben (1991). A circular
orbit is fitted to the geometry of the ring, and the velocity field
of a ring is expended into harmonic terms. We present expres-
sions which relate these harmonic terms directly to the viewing
angles, and to the intrinsic parameters of the ring. The expres-
sions are valid for small eg, the ellipticity of the ring. We find
that the ellipticity of the ring can be fully determined in this
way. When only the velocity field is used, and not the geometry
of the ring, then the ellipticity cannot be fully measured. In this
case, one obtains a measurement of ex sin 2¢,,,, Where @, is
one of the viewing angles.

We note that complementary expressions have been derived
by Kuijken & Tremaine (1994), who considered the observable
effects of elongated orbits in our Galaxy.

When we apply our method to new data on the ring in IC
2006, we find that it is nearly circular (e,, = 0.012 + 0.026).
This result is surprising, given the ease by which dissipationless
simulations of halo formation produce triaxial halos (Frenk et
al. 1988; White & Ostriker 1990; Dubinski & Carlberg 1991).
However, it extends the previous result by Franx and de Zeeuw
(1992) that the potentials of spiral galaxies have small system-
atic elongation in the plane of the disk. The discrepancy
between the current results and the dissipationless simulations
may be caused by the infall of baryonic matter in the dark
matter halo, as suggested by recent simulations of Katz and
Gunn (1991) and Navarro & White (1994). These authors find
that the halos are more nearly oblate axisymmetric when bary-
onic matter is included in the simulations.

Models for the light distribution show that IC 2006 is prob-
ably very flat in the outer parts, suggesting that it has a disk. It
may therefore be better classified as an SO. The presence of a
dark matter halo is further proof for the continuity between
early-type galaxies and late-type spirals and suggests that both
may contain sizeable fractions of “dark matter,” and were
formed in a qualitatively similar way.

The current sample of galaxies with measured halo shapes is
still small (e.g., Sackett & Sparke 1990). The method presented
here can be applied easily to other systems with regular gas
rings. It should be possible to measure the flattening and circu-
larity of halos by analysis of high signal-to-noise ratio, high-
resolution kinematic observations of (polar) ring galaxies. The
best results are obtained when the shape and velocity field of
the ring can be used. Unfortunately, the number of known
galaxies with regular gas rings is small.

Furthermore, the method can be used to analyze the velocity
fields of spiral galaxies. The first analyses by Bosma (1978) did
not show large effects due to noncircular potentials, but this
result has not been quantified yet.
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APPENDIX
HARMONIC ANALYSIS OF THE VELOCITY FIELD OF A RING

Al. EPICYCLIC APPROXIMATION

The orbit is assumed to lie in the (x, y)-plane and to be elongated along the y-axis. To first order in the ellipticity €, of the
potential, standard epicyclic theory (Gerhard & Vietri 1986; Binney & Tremaine 1987) shows that the orbit is given by

R =Ryl —3egcos2Q,t), ¢ =Qot+ Heg +¢€,)sin 2Q,¢, (A1)

where R and ¢ are the usual polar coordinates defined by x = R cos ¢, y = R sin @, t is time, and Q, is the circular frequency of
the orbit with radius R,. For a potential with constant ellipticity and circular velocity v, oc R* the coefficients € and €, are

1+a 2eg

€R=m€pot9 €v=l+d' (AZ)
The components vg and v, of the orbital velocity at the point (R, ¢) are given by
vr=V.€gsin2¢, v,=0,1+ %€, cos 2¢), (A3)

and v, is the circular velocity evaluated at R,,.
The orbit is observed along a line of sight defined by the polar coordinates (i, @,)- The resulting velocity field along a single orbit
is given by

v, = [0 Sin ($ — Pops) — V& €OS ( — Pops)] sin i . (A4)

We introduce a coordinate Yy = ¢ — ¢, — /2. This coordinate is zero along the apparent major axis of the projected circular orbit
R = constant. Substituting equation (A3) into the general expression (A4), eliminating ¢ in favor of ¥, and expressing the result in a
harmonic series in y then produces

v, = v, sin i{[1 — (1 — a)eg cOS 2¢ops] cOs Y + [(1 — a)eg sin 2¢h,,,] sin Y + (a€g COs 2¢,,) €Os 3P — (aeg sin 2¢,y,) sin 3y} ,
(AS)
and a = 3o/(1 + «). Expressions valid for a general rotation curve v, = v,(R) can be derived in a similar way.
A2. GENERAL DEPROJECTION UNDER THE WRONG VIEWING ANGLES

When the viewing angles for deprojection I',,,, { are not equal to the true viewing angles I, i, then v, will again be given by an
expression of the form of (A5), but with slightly different coefficients. It is straightforward to express the original terms cos ny, sin nys
in harmonic expansions Y ; a; cos ity + b; sin iy. These can be used to derive the general expression for the velocity field

v, =&, cos § + 8§, sin § + & cos 3 + §; sin 3 + &5 cos 5§ + 85 sin S + -+, (A6)

6q> 1(3 > 3 dq 3 (1 )
=]+ s~ —+q)s1—>—c3+=0T sl = —q )53,
7 bs 4 p q )51 4g 37, b P q |S3

1
4
14 1 1 3 1 34
§, = 81<1 +3 “qg> — 0lobs 7 (311 + ;)Cl ~3 6robs<a - q)ca ~2 ;q 535

where

16 1/1 3 1
3 =03 +Z;qc1 +5F°bsz(5-q>sl +5F°bsi<q+21->s3,
, (A7)
X 1 1 16g 3 1
S3=s3—7 5robs(a - 61)01 +3 7 S35 5robs(q + 5)03 )
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and we have defined g by g = cos i and éq = § — q. It follows that g equals the axis ratio of the orbit only if it is circular. For small
deviations from a circular orbit, 5,, c3, and s, are small quantities, and so are g and 6T . Ignoring second-order terms, equations

(A7) then reduce to
N 109
ei-af1-35),

(A3)

w
|
by
+
|
|
o
-

R 1 1

S3 =83 — 2 6Fobs<a - ‘1>C1 .
We now use these equations to calculate the expected values of ¢, §;, é;, and 3, for two different ways of determining approximate
values of g and I' .

A3. DEPROJECTION USING THE GEOMETRY OF THE RING

If the geometry of the ring is used to derive the approximate viewing angle, assuming the ring is intrinsically circular, then to first
order dq and JI', are given by

o in 2
W —eqcos 2, 0Ty, = - IBT I, (49

These expressions are valid for small dg/q and 6T, and assume that sin? i > e, so that the ring is not nearly face-on. The resulting
expressions for the measured harmonic terms along the deprojected ring are

& = |:1 - <4_31 - a>eR cos 2¢obs]vc sini,
. 5—¢? . ..
5, = {[4(1 s - a:IeR sin 24)0,,3}0‘ sini,

1 .
éy = [(a — Z)ek cos 2¢obs]vc sin i,

1 .
[(Z - a)e g Sin 2¢°bs]vc sin i,
This completes the proof of equation (8).

We can now derive a velocity amplitude ., with the usual assumption that the orbit is circular. This is related to the true circular

(A10)

©>

3

velocity by
. ¢ 3+ ¢?
b, = sin‘ r= vc{ 1— [m - a]eR cos 2¢obs} . (A11)
The apparent radius of the ring R is not equal to the true radius of the ring R, but is given by
R = R(1 + 4eg cos 2¢,) . (A12)

A4. DEPROJECTION USING KINEMATIC FIT

Let us first consider the general case of a fit of a circular velocity field to an observed velocity field. The angles I, andi will be
chosen to minimize the residuals from the circular model v, = ¢, cos {. We can expand the velocity field into the harmonics &, §;. If
these measured coefficients are independent, then the residual will be proportional to the sum §2 + Y., (¢? + $?). Equation (AS)
can be used to calculate the change in these coefficients if ", and ¢ = cos i are changed by a small amount 6T obs and dq. If we
ignore the higher order terms, then the residual from the circular orbit fit can be written as

1 1\ T 169 \? 1 1 2
2 _|s _2 1 N 199 $. — = or 1 )
X [51 P 5robs<3‘1 + q)ﬁ] + (Cs + 4 01) + I:ss ! o obs(q ‘1)] (A13)

It is straightforward to calculate the best-fitting values of 6T, and dq

éq = - A;4q_C:3A— s
Cy + Cj3
) . - (A14)
ST, = 4q Bg” + 1)5; + (1 —g*)3;

[Bq + 1 + (1 — ¢)*1@; + &)
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These expressions for oI, and dq will generally be used in an iterative way. One calculates these values at each iteration step from
the harmonic terms, updates the viewing angles, and recalculates the harmonic terms. Although circular velocity fields have been
fitted to H 1 radio maps since the early 1970s (Warner, Wright, & Baldwin 1973), we have not been able to find these rather simple
expressions in the literature.

We can now apply these equations if a circular model is fitted to an elliptic orbit. We start by taking the correct viewing angles.
The harmonic terms are given by equation (A5). Equation (A14) gives the first-order change in inclination and position angle to
achieve the best circular fit. It is straightforward to derive

0q = —4aeg cos 2¢,, »
_ q[3q* + 1 — 2a(g* + 1)]
B+ ) +(1-¢)7]

We deproject the velocity field with the new viewing angles [',.s and £, given by equation (A15). The resulting velocity field in the new
coordinate i is

(A15)

oI’ €g SIN 2¢ s .

v, =&, cos Y + §; sin § + §, sin 3¢, (A16)
where
¢; = v, sin i(1 — eg cos 2¢,,,) ,
. . 1 —g*[3¢* + 1 —2a(g* + 1 )
e ’{1 —a- e )]} € in 2o A17)
é3 =0,
§3 =, sin i{—a _a= q2)2[3q2 + 1 2ag” + l)]}eR sin 2¢,, -
c (3q +1)2+(1_q2)2 obs

For a flat rotation curve (a = 0), these expressions simplify considerably (see eq. [8]). Equation (A15) implies that g = i = 0. In
other words, a fit with a circular velocity field produces the correct inclination for a galaxy with a flat rotation curve. The best-fitting

position angle will still be offset from the true position angle. We can define the apparent deprojected circular velocity #, by
B, = é;/sin = v(1 — € €OS 2P,y,) - (A18)

Again, the apparent deprojected circular velocity will not be equal to the true circular velocity. For the case considered here of a flat
rotation curve, the circular velocity estimated from the fit of a circular velocity is nearer to the true circular velocity than the circular
velocity estimated from a geometric fit to the ring (§ A3 of the Appendix).
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