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ABSTRACT

New additional terms in relativistic time transformation contributing to the pulsar timing formula are dis-
cussed. Their influence on the separately measurable parameters in the framework of the parameterized post-
Keplerian formalism constructed by Damour & Taylor (1992) is estimated.

Subject headings: gravitation — pulsars: individual (PSR 1913+ 16) — relativity — stars: neutron

1. INTRODUCTION

The physically important problem of testing of alternative
theories of gravity in the strong gravitational field regime can
be resolved by means of highly precise observations of binary
pulsars in relativistic orbits (Taylor 1992). Parameterized post-
Keplerian (PPK) formalism was developed by Damour &
Deruelle (1986) and Damour & Taylor (1992) as a phenomeno-
logical approach to the binary pulsar tests. In its present form
the formalism can be applied to measure five Keplerian and
eight post-Keplerian (relativistic) parameters which can be
directly (or separately) observed using pulsar timing data.
Moreover, there are 11 other parameters contained in pulse
structure data which can be used to give supplemental tests of
alternative gravity theories. At the same time, as Damour &
Deruelle (1986) have pointed out, there exist four additional
but not separately measurable post-Keplerian parameters.
They can be completely absorbed in the first relativistic
approximation by suitable redefinitions of the separately mea-
surable parameters. In other words, the fitting estimates of the
separately measurable parameters are shifted from their physi-
cally meaningful values. Therefore, one finds some specific
theoretical restrictions on the possibility of testing alternative
theories of gravity. To overcome these obstacles and to make
progress in getting the physically reasonable test of a gravita-
tional theory in the strong field regime, one needs to know the
explicit relationships between separately measurable and not
separately measurable parameters. Then, in some favorable
cases, the observational information about numerical values of
relevant, not separately measurable parameters allows one to
remove their “systematical error” influence on the directly
measurable parameters and to refine the test. An excellent
example of the application of such an approach has been
recently demonstrated by Damour & Taylor (1991) while
investigating the influence of the Galactic acceleration on the
relativistic parameter, P,, describing the damping of orbital
period of binary pulsar PSR B1913 + 16 due.to the emission of
gravitational waves (Damour 1983; Grishchuk & Kopeikin
1983). It is worthwhile to underline that Damour & Duruelle
(1986) had not pointed out all of the possible not separately
measurable parameters which are absorbed in the procedure of
data processing. Additional parameters exist which are directly
related to the relativistic part of time transformations. The aim
of this Letter is to give explicit expressisions for the new
parameters and estimate their physical significance.

2. TIME TRANSFORMATIONS

Physically consistent and mathematically justified deriva-
tion of a timing formula requires construction of six coordinate
systems, one of which is global and the other five of which are
local. They are as follows: (1) Galactic coordinate system
covering all the Galaxy; (2) barycentric coordinate system of
the solar system; (3) barycentric coordinate system of binary
pulsar system; (4) geocentric coordinate system; (5) pulsar
proper coordinate system; and (6) topocentric coordinate
system of observer.

The Galactic coordinate system is global whereas all others
are local. Therefore, it is impossible to use the barycentric
coordinate system of the solar system to describe orbital
motion of bodies in the binary system and propagation of
radio pulses from the pulsar to observer as is usually done.

Construction of the coordinate systems under consideration
should be based upon the relevant viable relativistic theory of
gravitation. The case of application of the general relativity
theory for solving this problem has been elaborated recently in
the works of Kopeikin (1988), Brumberg & Kopeikin (1989,
1990), Klioner & Voinov (1993), and from a slightly different
point of view by Damour, Soffel, & Xu (1991, 1992). The main
idea of these works is the solution of the Einstein equations in
global and local coordinate charts along with the following
matching of both solutions. I'n this way, one can generalize an
idea of the Fermi normal coordinate system (Misner, Thorne,
& Wheeler, 1973) for the case of a self-gravitating body (or
bodies) and write explicitly spacetime relativistic transfor-
mations between global and local coordinate systems con-
structed in the spacetime around the self-gravitating bodies.

We have used this procedure to reconsider the derivation of
the timing formula for binary pulsars (Kopeikin 1992). The
global Galactic coordinate system has been used as an inter-
mediate reference frame to obtain an unambiguous solution' of
the equation of radio signal propagation through gravitational
fields of binary and the solar systems. Subsequent application
of relativistic spacetime transformations in the solution has
allowed (as had been expected) for the cancellation of all essen-
tial terms depending on the absolute velocities of the binary
and solar systems with respect to the center of the Galaxy.
Nevertheless, we have found that in the solution under con-
sideration, there are two new terms arising directly from the
relativistic part of the time transformations. These terms can
be obviously interpreted as the Lorentz part of the relativistic
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transformation between coordinate times of the corresponding
reference frames.

More specifically, the relation between coordinate time ¢ of
the solar barycentric system and ¢, of the binary pulsar bary-
centric system has the form:

tb=l:t—i2(V'rp):|/\/l—L;, ey
C 4

where ¥ is the relative velocity of the barycenter of the binary
pulsar with respect to that of the solar system, r, is the radius
vector from the barycenter of the binary system to the pulsar,
and c is the speed of light.

The relativistic time transformation between t, and pulsar
(coordinate) time, T, is

T =1t,—c [B(t,) + (v," X)] + O(c” %), @

where v, is the velocity of the pulsar with respect to the bary-
center of the binary system, and X is the radius vector pointing
from the origin of the pulsar coordinate system toward the
point of the pulse’s radio emission (X = — KX, where K is the
unit vector along the line of sight). The function, B(t,), is
responsible for the quadratic Doppler and gravitational shifts
(Blandford and Teukolsky 1976) and can be found from the
equation:

dB 1 , Gm
ez e 3
dt, 2”"+ r 3

where the universal gravity constant is denoted by G, m, is the
pulsar’s companion mass, and r is the relative distance between
the pulsar and its companion.

The terms linear in velocity in equations (1) and (2) were

-never taken into consideration in pulsar timing data pro-

cessing. Altogether they are expected to contribute to the set of
the not separately measurable parameters in the PPK formal-
ism. To proceed further and clarify this point, let us introduce a
triad of the unit vectors (I, J,, K,) attached to the barycenter
of the binary system in the same manner as described in
(Damour & Taylor 1992, Fig. 1). The vector K, is pointing
from the solar system barycenter toward the binary system
one, and vectors I,, J, lie in the plane of the sky with
I, directed to the east, and J, to the north celestial pole.
Two other sets of unit vectors are suitable, namely (Z, J, K) and
(@, J, k). They are related to (1, J,, K,) by means of the follow-
ing transformations (Damour & Deruelle 1986):

i=1I,
Jj=cos iJ +sin iK , 4)

I = cos QI, + sin Q, ,
J = —sin QI + cos QJ, ,

. K=K,, k = —sin iJ + cos iK .

In the above transformations the angles Q (0 < Q < 2x) and i
(0 <i<mn) designate, respectively, the longitude of the
ascending node of the pulsar’s orbit and its inclination to the
plane of the sky. The radius vector of the osculating pulsar’s
orbit is represented as

r, = a,(1 — e sin u){i cos [0 + Aw)] +j sin [0 + A, W)]} .
&)
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The pulsar’s orbital velocity with respect to the binary system’s
barycenter has the form

v, = na,(1 — e?) " 2[{—sin [w + A ()] + esinw}i
+ {cos [w + A, ()] + e cos w}j], (6)

where a, is the semimajor axis of the pulsar’s orbit, n is the
mean orbital frequency, e is the orbital eccentricity, the angle w
is the longitude of periastron, u is the eccentric anomaly, and
A(u) is the true anomaly related to u by Kepler’s equation.

The relative velocity of the binary pulsar with respect to the
solar system is expressed as follows:

V=dy,l+ psJo) + vz Ko , )

where d is the (varying) distance between the binary and solar
systems, vg is the relative radial velocity (vg = d), and p, and p,
are components of the proper motion of the pulsar in the sky.
Using the relationships just given in this section, it is not diffi-
cult to generalize timing formula.

3. TIMING FORMULA

Let us designate A, =c %V -r,), and Ay =c %(v, - X).
Then an improved timing formula reads:

t—to=DT + AR +Ap +As + A, + Ag+ AL+ Ay, (8)
where D = (1 + vg/c)/1 —vi/c? is the (varying) Doppler

factor; Ag, Ag, Ag, and A, are the well-known propagation
delays in the binary system due to “Roemer,” “Einstein,”
“Shapiro,” and “aberration” effects, respectively. Their ana-
lytical expressions may be easily found, for example, in the
paper of Damour & Taylor (1992). Ay is the propagation delay
in the binary system caused by the relativistic effect of gravita-
tional deflection of the pulsar’s beam in the gravitational field
of its companion. This delay is important only for those binary
pulsars whose orbits are visible nearly edge-on. Detailed dis-
cussion of the effect and explicit expression for the function Ag
will be published elsewhere (Doroshenko & Kopeikin 1994).
Explicit expressions for the “ Lorentzian ” delays A;, Ay under
discussion are given by

A, = x{&[sin w(cos u — e) + (1 — €?)*'? cos w sin u]
+ F[cos w(cos u — e) — (1 — €?)*/? sin w sin u]}, (9)
and
Ay = dx{cos [w + A )] + e cos w}, (10)
where x = a,, sin i/c, and the new timing parameters &, %, and
O are defined as

1
=;[vk+dcot i(—u, sin Q + p; cos Q)] , (11)

d
F = — csc i(u, cos Q + u; sin Q) , (12)
¢

and

X
Ox = — = nx(l —e*)~1% . (13)
It is worthwhile to recall again that the quantity X in formula
(13) is the radial distance from the pulsar’s center of mass to the
point of the pulse’s emission.
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Doppler shift factor D and relativistic delays A, A;, and Ay
are not directly observable. The factor D redefines rotational
frequency v, of the pulsar and its orbital period, Py, as well as
time derivatives of these quantities (Doroshenko & Kopeikin
1990; Damour & Taylor 1992). Functions Ay, A;, and Ay are
absorbed into the classical “Roemer” delay Ap by suitable
redefinition of the five Keplerian parameters of the binary
pulsar orbit. Let us note that the statement of Damour &
Taylor (1992) that the Doppler factor D influences the observa-
tional value of parameter x (see eq. [2.4b] from that paper) is
not quite correct. It is the new parameter & which gives the
contribution (instead of D):

xobs — (1 + €, + éa)xintrinsic , (14)

where €, = &//x, and ./ is one of two aberration parameters
(Damour & Deruelle 1986) characterizing amplitude of the
aberration delay A,. Parameters # and 0y redefine, respec-
tively, the longitude of periastron and the initial epoch Tj:

wobs = wmtrmslc + F ,

(15)

and

T?)bs — Tgminsic _ eBn'l(l _ e2)1/2 + % , (16)
where €z = #/x, and £ is the second aberration parameter
(Damour & Deruelle 1986). Values of the other Keplerian
parameters are perturbed only by means of € , and €5 as well as
the Doppler factor D (Damour & Taylor 1992).

Time variations of the parameters are given by the following

expressions:

x obs % intrinsic ) di deA d&
<;> —<;) +COtlE+d_t+ i’ (17)
Lo dF
+ obs = intrinsic _ 18
» @ + it (18)

Here the first term in the right-hand side of equation (17) is
linked to the gravitational-wave damping of the orbital motion
(Damour 1983; Grishchuk & Kopeikin 1983), and @&™tri=sic in
equation (18) is the relativistic apsidal motion of the orbit
(Damour & Shifer 1985; Kopeikin & Potapov 1994). Since
the measurement of the binary pulsar periastron advance, °®,
serves as a tool in the determination of neutron star masses
and plays a crucial role in high-precision tests of alternative
theories of gravitation, it is quite important to know the contri-
bution of d% /dt to the ®°*. Knowledge of d&/dt is necessary to
provide a test of the spin-orbit relativistic interaction causing
temporal changing of € , (Damour & Taylor 1992).

4. DISCUSSION

To estimate contributions of d&/dt and d& /dt to the varia-
tions of the parameters x and w, let us show the explicit formu-
las for these time derivatives:

@ _11; + cti—dcsczié
at o RT\R dt

(19)

><(—uasinQ+u,,cosQ)]—3"cosi‘fi—?,
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dF csci

. di .
Pl [(vR —dcoti dt)(ua cos Q + p; sin Q)

Q
+ d(—u, sin Q + p; cos Q) %—] , (20)

where we have omitted terms depending on the proper motion
accelerations ji, and ji; since they are usually negligibly small.

Relevant quantities in the right-hand side of equations (19)
and (20) have the following numerical values in the case of PSR
B1913+16 (Taylor & Weisberg 1989; Damour & Taylor
1991): d = 8.3 + 1.4 kpc, p, = —3.27 +0.35 mas yr™ !, y; =
+1.04 £ 042 mas yr !, vg=2275 km s7!, dg/c~06 .
x 1078 571 and sin i = 0.734 (cos i = 0.679). Orbital incli-
nation, i, and longitude of the ascending node, Q, are changes
due to the existence of the relativistic spin-orbit coupling
(Brumberg 1991; Damour & Taylor 1992)

%= ag*(1 — e?)73?[S, 0, sin A cos n + 0,(S, *i)], (21)
dd_? — a‘;3(1 _ eZ)—3/2

x [S,0,(cos 1 + cot isin A sin n) + o (S, *j)] , (22)

where S, =|S,| and S, are the spin vectors of the pulsar and
its companion, respectively; o, and o, are the relativistic
parameters characterizing the spin-orbit part of the Lagran-
gian describing the orbital dynamics of the binary system
(Damour & Taylor 1992); and A and # are polar angles of the
pulsar’s spin vector. Our calculations show the maximal ampli-
tude of variation of di/dt and dQ/dt is about 1 x 10713 rad s~?
for PSR B1913 + 16 (within the framework of general relativity)
where we have taken the pulsar’s radius to be 30 km. Using this
estimate and observational parameters of PSR B1913 + 16, we -
conclude that the possible maximal contribution of time varia-
tions of the parameters & and & into the observational values
of @°* and (x/x)°® cannot be more than 0.3 mas yr~! and
2 x 1076 rad s~ !, respectively. It is completely beyond the
present observational accuracy for &°* and (%/x)°*. Neverthe-
less the contribution of time derivatives of the parameters &
and & may happen to be important for those pulsars whose
radial accelerations and proper motions have relatively large
values, while sin i is close to zero.

As for the Keplerian parameter, TS, the contribution of the
post-Keplerian parameter dy (in the form of X/c in eq. [16])
can lead, in principle, to a small difference in two values of T3
having been measured in two different electromagnetic fre-
quencies. This may happen because the emission at different
frequencies can arise at different altitudes (Taylor & Stinebring
1986).

I thank the staff of the National Astronomical Observatory
of Japan (Mitaka) for administrative support of this work. I
deeply appreciate the help of Azita Valinia for improving the
grammar of the text.
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