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ABSTRACT

The dependence is described of the gravitational-radiation luminosity on the changing internal character-
istics of the members of a binary system which are assumed to be realistic compact stars. The new, general
relativistic post-Newtonian contribution to the gravitational-radiation luminosity is due to the evolution of
the nonaccreting members of the stellar pair, and it is nonvanishing even in the case of equal inertial masses
of the members. For nonaccreting members of equal inertial masses in circular relative motion, the rate of
emission of gravitational radiation due to the change of the members’ internal characteristics is the same for
both kinds of change, namely deceleration or acceleration of the axial rotations, or/and increase or decrease of
the radii. In this case the value of the emission rate although generally small, can be comparable to the corre-
sponding purely orbital one of the same post-Newtonian order. Also the dependence of the gravitational-wave
phase change on the changing internal characteristics is examined and is compared with that due to simply
orbital, Newtonian, or post-Newtonian characteristics. Finally, the underlying theoretical framework permits
an analogous investigation for different inertial masses and, in principle, also for mass-accreting binaries.

Subject headings: binaries: close — radiation mechanisms: nonthermal — relativity — stars: evolution —

stars: interiors

1. INTRODUCTION

The recent revival of interest in the detection of gravitational
waves from astronomical sources, stimulated by the improve-
ments achieved in the antenna technology, has as a conse-
quence the need for as precise as possible calculation of the
energy emitted in the form of gravitational waves from various
astronomical sources.

One of the most promising sources for the detection of the
gravitational waves with a likely detection rate of (1-10%) yr~*
is the coalescence of the members of neutron-star binaries
(Schutz 1989a, b, 1993a, b). Due to the lack of general-
relativistic exact solutions for such systems, their study has
been based on the use of post-Newtonian (pN) approximation
(PNA) schemes.

If the binary’s members are well separated, even the lowest-
order, Newtonian treatment of the problem gives reliable,
although crude, results regarding the rate of evolution of the
system and of the energy emitted in the form of gravitational
radiation. Since the more accurate treatment needs the con-
sideration of pN methods of various orders, the inclusion of
these terms becomes more important as the distance of the two
bodies reduces and the system becomes more relativistic.
However, close to the coalescence the pN approximation
scheme seems to break down, and pN terms of all orders
should be included.

In this last phase becomes important to know the answer to
the following question: “Since in all the previous post-
Newtonian calculations mainly orbital characteristics have been
taken into account, what will be the contribution resulting from
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the changing internal characteristics of both bodies, i.e., changes
in their masses, radii, and periods of axial rotation?”

Furthermore, as is known, for the detection of the gravita-
tional waves, using the matched filtering techniques (Thorne
1987), it is of special importance to know the exact form of the
waveform. This is necessary since small phase changes produc-
ed due either to inaccuracies in the chosen theory for gravita-
tion (Kokkotas, Krolak, & Tsegas 1994) (i.e., omission of high-
er pN orbital effects) or to tidal effects (Kokkotas & Schifer
1993) influence the accuracy of the calculation of the physical
parameters of the system as well as its distance and position.
For example, the detection of a signal produced by a binary
system orbiting according to the pN theory, using a filter pre-
pared on the basis of the Newtonian theory, leads to a decrease
in their correlation of ~30%—40% (Kokkotas et al. 1994). This
implies that weaker signals will never be detected, and also that
we will not be able to receive signals from the distances that we
have expected based on Newtonian-theory calculations. For
this reason, it is of great importance to know as completely as
possible the influence of all possible effects on the generation of
gravitational waves.

The present work aims to fill partially such a gap in the
study of binary systems and to examine whether the changes of
the internal characteristics can contribute significantly to the
output of gravitational radiation. Here we shall be mainly
interested in the change of the self-energies of the binary’s
members. The case of changing masses, due either to evolu-
tionary effects or accretion effects will be examined indepen-
dently. For a first general exposition of the problem considered
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here see Spyrou (1993). Also for the importance of rotating
collapsed stellar cores to the emission of gravitational radi-
ation see Monchmeyer et al. (1991).

The paper is organized as follows: In § 2, the quadrupole-
radiation formulae are described and the gravitational-
radiation tensors are evaluated, to pN accuracy, in the case of a
binary star composed of two realistic compact stars in relative
motion. In § 3 the Newtonian total self-energies of the two
members are evaluated, and the expressions for their first three
time derivatives are given, assuming that the bodies are homo-
geneous, spherically symmetric compact stars (neutron stars
or/and white dwarfs), axially and uniformly rotating in a rigid-
body manner, endowed with a dipolar magnetic field, and
whose interior is composed of a degenerate Fermi-Dirac gas (of
neutrons or electrons, respectively). In § 4 the previous results,
specialized to the case of circular relative motion, are applied
in the evaluation of the gravitational-radiation luminosity of
the stellar pair to pN accuracy, and its dependence on the
changing internal characteristics of the two stars is given
explicitly. In § 5 the numerical results are given and discussed,
and possible future work is outlined. For reasons of clear expo-
sition, the proof of some formulae, either basic or auxiliary,
have been properly collected in three Appendices at the end. In
Appendix A the detailed proof of the gravitational-radiation
tensors is outlined, and a limited comparison and contrast of
the relevant underlying theoretical results is attempted. In
Appendix B the conditions are described under which the
binary’s relative position and velocity three vectors can be
given a form similar to their corresponding Newtonian ones.
Finally, in Appendix C the three first time derivatives of the
binary’s reduced inertial mass are evaluated in terms of the
derivatives of the member’s rest masses and self-energies.

2. QUADRUPOLE—RADIATION FORMULAE

For a nearly periodic, weakly gravitating and slowly moving
source, the near zone or radiation reaction quadrupole formula

(QF)
< - d_to> = g;? <Qaﬂ Qaﬂ> s (1)

where a dot denotes the total time derivative, and angle
brackets denote average over time intervals large compared to
some characteristic timescale of the source relates the rate of
loss of the Newtonian total energy E, with the rate of emission
of gravitational radiation described (Peters & Mathews 1963)
in terms of the “ quadrupole ” mass-distribution tensor” @, (o,
B =1, 2, 3). The above QF differs from the far-field or wave-
zone QF which describes the source’s gravitational-radiation
absolute luminosity (Landau & Lifshitz 1975)

G .. ..
L = _5? Qaﬂ Qaﬂ (2)

determining, in the wave zone or at the future null infinity, the
dependence of the radiation losses on the source’s motions and
internal structure.

Despite some open problems related to their proof (Persides
1991), the above formulae have been successsfully used in the
description, to lowest possible order, of the emission of gravita-
tional radiation from and its consequences on the motions of
the gravitating source. This means that these formulae are
given consistently up to and including terms of order €°/c,
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where c is the velocity of the light in vacuum and € is an upper
bound of the values of the source’s internal characteristics (see,
e.g., Chandrasekhar 1965). Similarly for the description to the
same order, the Newtonian Keplerian motions of the pair
suffice to be used. Especially the QFs were applied (Weisberg
& Taylor 1984; Damour 1987; Thorne 1987; Damour &
Schifer 1988, 1991; Taylor & Weisberg 1989; Damour et al.
1990; Damour & Taylor 1991) in the case of the well-known
binary pulsar PSR 1913 + 16 (Hulse & Taylor 1975), as well as
in the case of the possible change of the radii and periods of
axial rotation of compact stars due to their continuous evolu-
tion (Spyrou 1985, 1987; for the corresponding accretion-
induced changes for binary-participating neutron stars and
white dwarfs, see Spyrou 1988).

Although there are no pN generalizations of equation (1),
many authors (Epstein & Wagoner 1975; Thorne 1980,
Damour & Schifer 1988, 1991; Blanchet, Damour, & Schifer
1990; Lincoln & Will 1990; Junker & Schifer 1992) managed
to provide generalizations of equation (2). From the various
such generalizations we shall consider here the one due to
Epstein & Wagoner (1975) referring to a bounded perfect-fluid
gravitating source, namely,

G 1
e (VNS + 5
— 6N, N, + 22NQND — 24NQY N2, ]

afy afyy ayyp
M 2 4
o (5) () ) ®

where the spatial tensors N}, = denote time derivatives of
various multipole moments of the source. To this pN order the
rate of the orbital energy emitted in the form of gravitational
radiation from a binary system consisting of two equal-mass
neutron stars in circular relative orbit has been evaluated in
Spyrou & Papadopoulos (1985), along with the rates of change
of the orbital period and of the member’s mutual distance (For
further details on this see also Blanchet & Schifer [1989] and
the Appendix A at the end).

The basic assumption here, as in Spyrou & Papadopoulos
(1985), for an appropriate energy-balance equation is that the
time derivative of the source’s total energy, E, up to the first
PNA is equal to the corresponding gravitational-radiation
luminosity given by equation (3); i.e.,

[N NG

afy * Y apy

— 6NG), N

ayy

(-E>y=1L, Q)

meaning that, in principle, all the changing internal character-
istics of the source are taken into account in evaluating the rate
of emission of gravitational radiation, namely as some of its pos-
sible sources.

Application of equations (3) and (4) to a binary star presup-
poses the knowledge of the pair’s dynamical behavior and
orbital motion up to the first PNA. This knowledge has been
established long ago in the more general case of a realistic
many-body system (Spyrou 1977a, b; see also Spyrou 1978,
1981a, b, 1983), for which the various dynamical laws of the
pair (equations of motion, intrinsic and global conserved quan-
tities, the virial theorems, etc.) have been given the same func-
tional form as of their analogs for the Einstein, Infeld, &
Hoffman (1938) system (hereafter EIH) of the ideal gravitating
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point masses. In that context the mass of the idealized EIH
point mass is given a very precise physical meaning; namely, it
is identified with an extended and realistic (but not tidally
interacting) body’s inertial mass (Contopoulos & Spyrou 1976)

m=m+ é , %)
c
where m is the body’s rest mass (namely the rest mass of the
total number of baryons) and & is its total Newtonian self-
energy. Therefore, if the body’s rest mass remains constant, the
rate of change of the inertial mass

¢
C

= (6)
is of pN order.

Next we turn to the evaluation of the spatial tensor N(3. As
it will be seen, the evaluation of solely N will suffice for our
present purposes. Thus, first, as described in Appendix B at the
end, we refer the motions of the binary’s members to the pair’s
center-of-inertial-mass frame of reference, which is uniformly
moving to pN accuracy. It is straightforward to verify that

d? 1 1
NO = — eqb — — 5g2 {1 + —
@ =73 |[/,t<a a3 a ){ + %7

y [(1 _ 3—A’4‘>u2 _ (1 - Z—A‘D s 02)]}]] . O

where a* and u®* are the components of the relative position and
velocity three vectors of the two bodies’ centers of inertial
mass, and p, M are the reduced mass and total inertial mass of
the system, respectively, and O, denotes terms of order [ in the
ratio of the bodies’ linear dimensions over the mutual distance
of their centers of inertial mass. (For an outline of the proof see
the Appendix A at the end.)

From equations (5)—(7) it becomes transparent that in the
case of nonchanging rest masses

my=0, =0, ®)

namely for binaries whose members do not loose or/and
mutually exchange material, but simply evolve independently
of each other (as in the usual meaning of the term stellar
evolution), the changing inertial masses will contribute to L
only through the members’ changing (due to their evolution)
self-energies. It is exactly this property that enables us to use
the EIH equations of motion for point particles (namely, to
neglect tidal effects between the pair’s members) and at the
same time to consider changing (inertial) masses of the EIH
particles. Obviously such a possibility does not arise in the
context of the Newtonian theory of gravity, where changing
masses (due to mass loss or mass gain) is a notion complemen-
tary to that of tidal effects. Therefore, not considering changes
of the rest masses permits the bodies to preserve, in some sense,
their identity and integrity. Furthermore, as described also in
the Appendix C at the end, this contribution to L will be of
order €’/c’, and it will manifest itself through the time deriv-
atives of only the tensor N3, while all the other tensors in
equation (3) will contribute terms of even higher pN order.

3. SELF-ENERGIES AND THEIR TIME DERIVATIVES

Before turning to the evaluation of the contribution to the
gravitational-radiation luminosity of the changing self ener-
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gies, we evaluate the members’ self-energies and their first three
time derivatives. First, we recall that according to Spyrou
(1985, 1988) for a homogeneous, spherically symmetric
compact star of radius R and rest mass m, axially and uni-
formly rotating in a rigid-body manner with period P,
endowed with a dipolar magnetic field of induction B, and
whose interior is composed of a degenerate gas described by
the Fermi-Dirac statistics, the total Newtonian energy & is

B?’R3?

N

In equation (9) the function g(x) is defined by equation (23) of
Chandrasekhar (1939 chap. X), and the relativisticity param-
eter x of the degenerate gas obeys (Spyrou 1985)

xR = B'l3 . (10)
Finally the constants A and f are
m,

S for the electron gas ,
A= "21 » (11)

3 for the neutron gas ;
321r2c3>1/3 _ f(u,mZm,)~12 for the electron gas , 12
9h3 m, 43 for the neutron gas ; (12

where pu(<2) is the mean molecular weight per electron of the
electron gas, and m,, m,, and m, are the rest masses of the
electron, proton and neutron, respectively. In evaluating the
derivative & (and &, &) we shall use equation (10) to eliminate
the dependence on the time derivatives of x. Furthermore, we
shall assume that the Fermi-Dirac gas is nonrelativistic,
namely,

x<1, (13)

and that each member’s magnetic flux is conserved, namely,

BR? = constant . 14
Under the above conditions we find
&=A,m+ ApP + AgR, (15)
with
4n2 R?2 6G m m23
A_ —_— e 4 2,2
" 5 Pp? 5 R +44p R?’
8n% mR?
A==
8n?mR 3Gm*> 24 ., m*? 1 .
Agr 5 P2 +?F—?Aﬂc ?—EBR . (16)
Also

& = Amn(M)? + App(P)? + Agg(R)?
+ AmpmP + ApgmR + Agp RP, (17)
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with where
GuM
6G (m)’”3 Ey=— £
Azm = 5R +3 (Aﬂz 2) s 2a
is the Newtonian orbital energy, and, by definition,
247* mR?
App = 5 p*° Sup = a’d? — § 6% (24)
872 m  6G m2 (m)‘ 53 contains all the explicitly orbital terms. Therefore
AR = —— =5 — — =3 Ap*e? += BR
RR 5 PZ 5 R3 ( B ) 3 ’ d Eo . 64
t6n? R2 7 #1+W =u+termsoforderzz, (25)
Fis
Aﬁ = - 53 °
¥ 5 P and moreover
16n* R? T (m)*"~ )2’ ’ Ey \.c
=5 pt 126 = z2 — 16048 o5 NQ = y(l M;’2>sa,,g + 38, + 308, + 3uS,, - (26)
Agp = — 32n? MR (18) In view of equation (26), equation (3) becomes
5 .
L= Lorb + Lint ’ (27)
' Finally, glthough & wil! not be used, we shall give its expres- where by definition
sion retaining, for simplicity reasons, only first time derivatives
of m, P, and R. The physical justification for omitting these G 2E; \-
higher order derivatives is expressed mathematically as Low = §§ 1+ Mc? Saﬂ Saﬂ
T > T ) N W N
Ly, (Xx#)) 21 2(11NaﬁyNaﬂv—6NaﬂﬁNaw
x y ’
Ln>T (x#)), — 6N, NGy + 22NP NG,
. M 2 4
TxTx > ‘[y T, (x # y, X 9& Z) ) (19) _ 24N(0) N(O)yﬁ) + 0[(1)) u6<§> :|> R (28)
where x, y, and z are any of the parameters m, P, and R, and by and
definition G
L, = ? <2ﬂsaﬁ(3ﬂsaﬂ + 3ﬁSaﬂ + ﬂsaﬁ» . (29)

(20)

(similarly for y, z) are the characteristic time scales of the
change x, x, and X. Thus according to the first of equations (19)
the timescale of the change of, e.g., P is much larger than that
of P, etc. Thus we find

& = AnpgmPR , Q1)
with
64n2
Azpr = — 5 p (22)

Next we turn to the evaluation of L.

4. THE GRAVITATIONAL-RADIATION LUMINOSITY FOR
CIRCULARLY MOVING BINARIES

Since circularization of the orbit is expected during the late
stages of the binary, especially when the members are close to
coalesence, here we shall restrict ourselves to the case of circu-
lar relative orbit of radius a (for which in the Newtonian limit
u? = 2GM/a, a*u® = 0). In this case equation (7) is written

a3 E,
v =2,

(23)

It is obvious that all the spatial tensors in equation (28)
contribute only explicitly orbital terms up to first pN accuracy.
Hence L, is the gravitational-radiation luminosity due to
simply the orbital motion of the test particles (Spyrou & Papa-
dopoulos 1985; Damour et al. 1990; Lincoln & Will 1990;
Junker & Schifer 1992; see also the relevant discussion in
Appendix A at the end). On the other hand, L,,, is a new part of
the pair’s luminosity including the pair’s changing self energies.
Furthermore, L, is in general nonvanishing even if the binary’s
members have equal inertial masses:

(30)

in which case there are no tidal interactions between the
members, and hence no change of their internal characteristics
in the standard meaning of the term. In the latter case, addi-
tionally for nonchanging rest masses (see eq. [8]) and, finally,
in view of equations (C2)—(C4) of the Appendix C at the end, all
the time derivatives of u are of post-Newtonian order

o1,
ﬂ=zci(g1+gz),

m=mp;=m,

. 1 .. ..
.“=4_cz(‘g1+‘gz),

I BT
=@+ &), (1)

and hence L;, is of order €’/c’. More specifically, using the
Newtonian equations for the circular relative orbital motion,
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we verify that
gaﬂ §ap > Saﬂ S"aﬂ = 0 N (32)
v 8GM
Saﬁ Saﬂ = — uz . (33)

so that

6G ., = 24 /G*m
Line = 55 <MitSep Sap) = s <c Pl (&, + é”z)> - (39

It is rather unexpected that the changing internal character-
istics enter L;,, through the second time derivatives of the self-
energies. Moreover, according to equation (17), the
dependence (for constant m) of & (and hence A defined by eq.
[35] below) on R and P is the same independently of the
latters’ sign.

Furthermore, denoting by L{) the 1/c’ part of the total

orb
orbital luminosity, we readily verify that the ratio

L, 3 a* . .
=i~ (g 6+ 8)
is a measure of the relative importance of the 1/c” parts of the
gravitational-radiation luminosity due to the changing internal
characteristics of the binary’s members and to its orbital
motions.

Finally, before proceeding to the numerical applications in
the next section, we wish to recall that the knowledge of the
waveform is important for the detection of gravitational waves
by applying the matched filtering technique. The fact that the
waveform is changing with the time induces inaccuracies in the
calculation of the rate of change of the orbital period and leads
to the corruption of the waveform. Consequently, the changing
internal characteristics could lead to an analogous effect on the
period’s change. In order to examine this effect, we use the
generalized Kepler’s third law for the binary’s motion, correct
to pN accuracy, studied in Blanchet & Schifer (1989), keeping
in mind that the frequency of the gravitational wave, f, is twice
the binary’s orbital frequency. We readily verify that the
orbital period P, and the semimajor axis a are related to pN
accuracy through the above law, namely,

(33)

a® GM G
1- 1 =—. 36
P:M I: 2ac? (M 8>:| 4n? (36)
Direct consequence of equation (36) is the relation
P, 3a 1M [P, P,
—=c——-—= +(=) . 37
Pb 2a 2M (Pb>PN (Pbs G0
In equation (37) we put
P, P, GM
=) =(=)|1+—|=—-18 38
(Pb)PN <Pb>0|: * 6ac? (M ):I (8)
where
P, 3a
=) === 39
(P b)o 2a 39)

is the purely Newtonian orbital result for point masses and, for
constant rest masses,

P, 1 & +46,
R
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includes the changing self-energies, and (for constant rest
masses) is of pN order. Therefore the phase change due to the
changing internal characteristics (eq. [40]) could be compara-
ble to that due to (1) the Newtonian orbital parameters (eq.
[39]) provided that

P __16,+6

PJo & 2M
and (2) to the post-Newtonian parameters (the explicitly 1/c?
part of eq. [38]) provided that

Py\ GM _18 14,+8,
P,), 6ac? T oM

5. NUMERICAL RESULTS AND DISCUSSION

(41)

42)

Here first we show some numerical values of the relative-
importance factor A for a range of values of the distance of the
binary’s members, their radii and their masses, together with
an expected range of possible values of P and R (recall that

= 0).

We have chosen a binary system consisting of two typical
millisecond neutron stars with equal masses m, = m, = 1.4
Mg, radii R, = R, = 10 km and periods of axial rotation
P, =P, =103 s We list the values of the ratio 1 (namely
L, /L) for a range of values for the rate of period change
from 1077 to 107 ° s s~ ! and a rate of radius change from
10713 t0 10™% cm s~ ! used in Spyrou (1985). The results are
shown in Tables 1 and 2. From these results we conclude that
the ratio A is generally much smaller than unity. More specifi-
cally, when the stars are very close to each other, the
gravitational-wave emission due to the orbital terms of the
order €’/c” is very much larger than the energy emitted due to
the change of the internal characteristics of the bodies. This, in

TABLE 1

RATIO A AS A FUNCTION OF THE
CONTRACTION RATE R

R

(cms™") Ly, /LG

—107% 22 x 1073
-107° 6.6 x 10737
—10713 64 x 10737
—-1073 14 x 10727
—-10"° 4.1 x 1073+
—10713 40 x 10734
—107% 14 x 10723
—107° 4.1 x 1073°
—10713 40 x 1073°
-107% 22 x 1072
-107° 6.6 x 107!
—-10713 6.4 x 10~2!
—107% 7.0 x 1073
-107° 2.1 x107°
—10713 24 x107°

Notes—Several values of the ratio 4 of the
internal-energy contribution L, of order €’/c’ to
the orbital energy contribution L{ of the same
order are tabulated for various values of the
separation distance a and the rate of decrease of
the radii R, = R, = R < 0. The system is com-
posed of two neutron stars with equal masses
m1 =m,=m=14 M, and radii R, =R, =

= 10° cm, while their periods are P1 =P,=

=10"3s and the period change is P, = P =
P = 10717 s s~ 1. The range of values of R < 0 is
based on that used in Spyrou 1985.
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TABLE 2
RATIO 1 AS A FUNCTION OF THE PERIOD
DECREASE RATE P
a P

(cm) (ss™ Ly, /L3,
2x10% ........... 10°3 6.4 x 10713
2x10% ........... 10°° 6.4 x 10~2!
2x10% ........... 10713 6.4 x 10~2°
2x10% ........... 10~47 6.4 x 10737
107 ..o 1073 40 x 1071
107 oo 107° 40 x 10718
107 oo 10713 40 x 10724
107 oo 10717 40 x 10734
10% ...l 1073 40 x 107°
10% ... 10~° 40 x 10714
108 ... 10713 40 x 10~2°
108 ...l 10~17 4.0 x 1073°
2x10%° .......... 10°3 4.0 x 10*2
2x 100 ..., 10°° 4.0 x 107¢
2x 10 ... 10713 4.0 x 10714
2x 10%° ... 10~17 4.0 x 10722
1.5x10'2 ........ 1073 20 x 10%13
1.5x 10'2 ........ 10~° 2.0 x 10%7
1.5 x 10*2 ... 10713 20 x 1071
1.5 x 102 ........ 10717 20 x 107°

Notes.—Several values of the ratio 4 of the
internal-energy contribution L,,, of order €’/c’
to the orbital energy contribution L{) of the
same order are tabulated for various values of
the separation distance a and the change of the
period, P. The system is composed of two
neutron stars with equal masses m, =m, =
m=14 Mg and radii R, = R, = R = 10° cm,
while their periods are P, =P=P,=10"3s
and the change of radius R = —107'3 cm s~ 1.
The range of values of P is based on that used in
Spyrou 1985.

a sense, is nonunexpected. Actually, when the two compact
objects are very close to each other, the higher pN terms are
comparable even to the Newtonian ones, since in this case the
limits of the validity of the PNA theory have been almost
reached. Thus the higher pN terms contribute a significant
amount to the total energy emitted, which could be much
larger than the energy emitted due to internal changes in the
two stars. But, as we move to larger separations, since the
energy emitted, as calculated by the QF, is proportional to
a3, the ratio A increases, and circumstances can be met under
which, for appropriate values of P and R, the ratio A could be
of the order of unity. However, although this result is very
interesting from the theoretical point of view, the situation
does not appear the same from the observational point of view
as well. Actually the result is not important as far as
gravitational-wave detectors of this generation are concerned.
According to the numerical results, the €”/c” contribution to L
of the changing internal characteristics balances the €’/c’
orbital terms for values of the relative distance a in the range
10'°-10'? cm. Equivalently, through the Newtonian Kepler’s
third law (assuming m, = m, = 1.4 M), this happens for
gravitational-wave frequencies of at most a few tens of a mHz,
which, however, is far out the present observational window
(=~10-1000 Hz). Therefore the importance of our proposed
theoretical results to the observational ones is expected to be
checked with the aid of gravitational-wave detectors of the
next generation.
Analogous conclusions can be reached by considering the
phase changes in the waveform defined by equations (37)—(40).
For simplicity we shall assume that the only changing param-
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eter of each star is its period of axial rotation P(m = 0, R, =
0 = R,). Then, according to equation (41), for two identical
members, the phase change (P,/P,)s will be comparable to the
purely orbital Newtonian phase change (P,/P,),, provided that
the gravitational-wave frequency satisfies

f=436 x 10¥—P)*®* Hz . 43)

Direct consequence of the last equation is that, for the assumed
range of values of P in Tables 1 and 2, the corresponding range
of the values of fis from a few tenths of a mHz to at most of a
few hertz (For members with only radii changing we similarly
obtain f= 0.55(R)*® Hz with an upper bound of f of a few
megahertz). We notice that, according to the equation (42)
equating the self and orbital pN phase changes we obtain in a
similar way f = 1.98 x 10° (— P)*/® Hz. In this case the range of
values of f'is from a few millionths of a hertz to a few killihertz.
Therefore, for the currently accepted values of P for pulsars,
the derived frequencies are out of the range of possible applica-
bility of the matched filtering technique.

We shall conclude with some general remarks. To the extent
of our knowledge, this paper is the first one in the literature
dealing with the emission of gravitational radiation from a
nonaccreting binary star, resulting from the evolutionary (in
contrast to the accretion-induced binary star) changes of its
members’ internal characteristics. The use of the inertial mass
(and the corresponding center-of-inertial-mass position and
velocity three-vectors) for the description of each body permits
the study of the emission of gravitational radiation due to the
evolutionary change of their Newtonian total self-energies
without the necessity of taking into account tidal effects (as
appears to be the case in the Newtonian dynamical description
of a two-point-masses binary star). Our theoretical framework
is valid irrespective of the nature of the compact stars (white
dwarfs or neutron stars). Also the theoretical framework takes
into account all the internal characteristics of the members,
and, hence, the physics of the members is considered in an as
complete as possible and nontrivial way. It is important that
the assumption for using among others a nonrelativistic rather
than a relativistic, uniform Fermi-Dirac gas for describing the
member’s interior is only slightly changing the dependence of
the results on the relativisticity parameter y (see also § 4 of
Spyrou 1988). Furthermore it is worth mentioning that, for
binaries in circular relative motion, the newly proposed part of
the gravitational-radiation luminosity depends on the second
time derivatives of the member’s self-energies. This is a rather
unexpected result, because what one would have expected,
based on the standard QFs, is the dependence on, additionally,
the third time derivatives. As a consequence the luminosity
appears quadratic in P and R (and m), and is thus proved to be
explicitly independent of the sign of P and R, namely, the same
for both a deceleration or acceleration of the axial rotation
and, similarly, for both a contraction or expansion of each of
the two compact stars. Finally, from an observational point of
view, it is important that the frequency of the extra
gravitational-radiation emission is far out of the present obser-
vational window, and that the induced phase change, although
vanishing for the Newtonian Keplerian orbit, is nonvanishing
for the post-Newtonian relative orbit. The relative importance
of the purely orbital and the purely internal phase changes
depends on the evolutionary stages of each of the pair’s
members and of the point-masses pair as a whole.

In spite of all the above advantages, we have to stress that
our results are only approximate. Thus, our results have been
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based on the gravitational-radiation luminosity proposed in
Epstein & Wagoner (1975), and hence they carry all its dis-
advantages, as the latter have been exposed in Blanchet &
Schiifer (1989) and in Spyrou & Papadopoulos (1985). Further-
more, the compact stars have been treated as spherical bodies,
a property that along with the assumption of secularly station-
ary members cannot be true when their relative distance is
small. Also in deriving the gravitational-radiation luminosity
we have assumed that the last (cross) term in equation (A14),
being negligible compared to the first (purely orbital) one, has
similarly negligible time derivatives. This surely deserves a
further examination which will complete the present one on the
importance of the evolutionary changing internal character-
istics. Moreover, although our theoretical framework is valid
independently of the nature of the compact members, our
numerical results are valid only for pulsars, so that the cases of
pulsar—white dwarf and white dwarf-white dwarf binaries
could also present some at least theoretical interest.
“Furthermore, the fact that the possibility for the newly pro-
posed part of the gravitational-radiation emission to be cur-
rently detected is beyond present observational capabilities
could also be considered a disadvantage.” However, the further
examination of the phase changes induced in the Newtonian
and pN relative orbits could present some interest at least in
the context of other techniques, beyond the matched filtering
technique.

At the outcome, as far as future work is concerned, we have
to stress that the case of nonspherical bodies should be exam-
ined, because then the first term on the right-hand side of
equation (A9) (and its derivatives) is generally different from

Vol. 431

zero, and the role of the changing internal characteristics (due
either to evolution or accretion) becomes important to the
lowest (¢°/c®) approximation. Finally, and more important, the
case of rest mass exchanging binaries (m # 0) with the sub-
sequent accretion-induced changes of internal characteristics
should present additional interest, because then the full pN
relative orbit’s use become necessary, and tidal effects have to
be taken into account. All these problems are currently under
investigation in the context of a more general research
program on gravitational radiation initiated in Spyrou (1985,
1987, 1988), Spyrou & Papadopoulos (1985), and Kokkotas &
Schifer (1993), and continued with the present article.
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APPENDIX A

PROOF OF EQUATION (7) IN THE TEXT

In this Appendix we outline the proof of the equation (7) in the text, namely,

d? 1 1
NO — — aaf — — 5%8qa2 {1 + —
@ =73 |[u<a o —3 *a ){ + ¢

(-2 ~(-2) Savos]]

To this purpose we recall that according to equations (45)—(48) of Epstein & Wagoner (1975)

0 d3
NG =25 Ly (A1)
where, for a perfect-fluid source of three-dimensional volume V,
Ig= J. FOe*xf — 16%x2)dV . (A2)
14
In the case of a two-body system equation (A2), in an obvious notation, can be put in the form
2
Ig= 21 L, (A3)
=
with
ty= | st~ o, a9
J

where the subscript j denotes that the corresponding quantity is evaluated at the point x? in the interior of the body j taking into
account the existence of the other body.
Next we split x§ in the form

xj=aj+ ¢, (A5)
vj = X =uj + 7. (A6)

In equations (A5) and (A6) a5 and
ut = ¢ (A7)
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are, respectively, the components, in the system’s center of inertial mass frame, of the position and velocity three vectors of the
j-body’s center of inertial mass, properly defined to post-Newtonian accuracy. Also, £% and

=& (A8)

are, respectively, the components, in the j-body’s center of inertial mass frame, of the position and velocity three vectors at the point

x
xj.

Then it is a matter of same algebra to show that

Iy = U f<é, & - 5""6,>dV +m (a a -~ Wa})] x {1 + % [ -G Y a4+ 02)]}
3 2c k=j Jk
Vi

1 2 1
+?<a§u§‘5‘“+aj-‘u75””—§ajfa}6“”>f f,-é,”-y}‘udl’}+?ul j f(é“é” = 0%¢2 )y;‘d , (A9)
Vi Vi
where f; is the j-body’s inertial-mass density and, as already defined, O, will denote terms of order lin L/D < 1.
In the case of spherically symmetric bodies, the first and last terms in equations (A9) vanish. Moreover, we put

a=al—a5, u=ut —uj (A10)
for the relative position and velocity three vectors, which, as proved in Appendix B at the end, obey the Newtonian-like formulae to
1st pN accuracy

ai=—a", a=—-——a", ui=—u*, u‘§=——u—u". (A11)

So equation (A9) is written as

; 2 1 1 G 2 2

) j

where

’Y“=Lf15??dej (A13)
j

is the j-body’s angular-momentum tensor, defined by equation (44) of Spyrou (1978). Then equation (A3) becomes

1 1 3u 2u\ GM
= a B __ — 59842 F— — 2 - ) =
Ly u(a a 3 a ) X {1 2c? | (1 M>u (1 M> (1+0,) I}

'uz a1 SBY B, Sav 2uvaﬂ lnv luv
+? a’u* 6" + afu* 6 —gaué X m_fll +m_§lz , (A14)
Equation (A14) generalizes equation (AS5) in the Appendix of Spyrou & Papadopoulos (1985) in two ways, and also equation (A1) of
Blanchet & Schifer (1989). Thus, not only is it valid for circular relative orbital motion, but also it includes, in the form of its last
term, the first corrections due to the interaction of internal and orbital characteristics. Moreover, we wish to stress, as it has been
properly and correctly noted in Blanchet & Schifer (1989), that it corrects the same equation by the inclusion of the term

1 /1 G m
1+ (ju-S 8 )
c? <2 T2 iz 1% —

in equation (A4) of Spyrou & Papadopoulos (1985) which has not been printed therein. One may notice that in the case of circular
relative motion of two equal inertial masses, m, the omitted term equals (1 — Gm/2c?a), and as a consequence, equatlons (8) and (9)
of Spyrou & Papadopoulos (1985) for (E/E) and (— P,/P,), respectively, have to be multiplied by the term (1 — Gm/4c2a)’. This new
term induces in the relative (with respect to the corresponding EIH result of Peters & Mathews 1963) post-Newtoman correction in
(—B,/P,), as evaluated via equation (9) of Spyrou & Papadopoulos (1985), an extra term —5Gm/4ac?. In the case of the binary
pulsar PSR 1913 —16, this extra term is ~ —1.34 x 10~ %, and so the total post-Newtonian correction is —4.22 x 10~, namely,
only —£ (and not — 60, as noted in Blanchet & Schifer 1989) of their value. Hence the two corrections practically differ only in their
sign. It is of interest to notice that this remaining difference is surely attributed to the difference in the definition of the orbital period
used in Spyrou & Papadopoulos (1985) on the one hand and Blanchet & Schifer (1989) on the other hand. The latter is definitely
more appropriate, because the former (for an elliptical orbit of semiaxes a and b) is P, = 2nab/l,, where the orbital angular
momentum (per unit reduced inertial mass u) /[, and the semiaxes a, b are defined to post-Newtonian accuracy, with the aid of the
polar equation of the full relativistic orbit. Hence, due simply to initial assumptions, this P, is something in between its Newtonian
analogue and the more appropriate one of Blanchet & Schifer (1989). The two periods differ by terms of pN order. In this sense, no
“errors,” at least in the standard meaning of the term, can be located in the definition of P, in Spyrou & Papadopoulos (1985). In
any case, one of us (N. S.) wishes to thank especially G. Schéfer for his private communication and some very useful discussions
aiming to clear up the differences of the two definitions.
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Next we turn to equation (A14). For a spherically symmetric body, axially rotating uniformly and rigidly, with angular velocity w;
we find

l;ﬂ = €y, O J‘ fi&i&idv; = %eﬁuaw}‘ Jj, (A15)
14
where €,4, is the completely antisymmetric pseudotensor of rank three (i.e., the Levi-Civita symbol),
0= sgaw=mm. (A16)
Vi
and so
1 1 R?
— |8 = € o= —L (A17)
mJZ J L) 5 m_,

and moreover the last term of equation (A14) becomes

u a*ut 6 + afut 6% — 2 a*u’ 5% ) x L %+ L )= © (€., A°U* + €,,, APuP)| 4 Ri + wf R . (A18)
3 m2t T m2? 5 Hbe nep U m? 2 m?

In view of equations (A3) and (A18) we now wish to point out that the last (or interaction) terms in the equation (A14), in orders to
magnitude, are

2 1/2 3/2
¢™2DumLv Lu L (Gm/D) <L> 1 (A19)

¢ 2m?D?* Do D (Gm/L)"® " \D

times smaller that the interaction terms hidden (through ) in the first term of equation (A14). Also the last (interaction) terms in
equation (A14), in orders of magnitude, are

¢~ 2 DumLy Lv L (Gm/L)'? (L\'?
mD%’c> "~ Du”~ D Gmpy ~\p) <! (A20)
times smaller than the pN purely orbital (second) terms. So we shall omit them obtaining for circular orbit (u> = Gm/a)
1 u GM
= a b __ _ SaBg2 - _ =
I ;z(a @’ —3 *a ><1 M 2a ) (A21)

practically equation (7) in the text.

We notice that were we going to retain in the time differentiations the interaction terms, we could not use the pointlike equation of
motions, and the problem becomes rather complicated, so that the perfect-fluid magnetohydrodynamical Euler’s equations have to
be used. However, we have to stress that although according to equations (19) and (20) the interaction terms are smaller than the
first term on the right hand side of equation (A14), we have not checked out that this applies also for their time derivatives. We
believe that this simplification will affect our results in a nonsignificant way.

APPENDIX B

THE CENTER OF INERTIAL MASS MOTION

In this Appendix we shall prove that the relative position and velocity three vectors a* and u* are expressed, in the terms of the
inertial masses and the corresponding position and velocity three-vectors of the absolute motions, via the Newtonian-like formula
(A11) which are valid to 1st PNA.

As it is known (Contopoulos & Spyrou 1976), the uniform, to PN accuracy, motion of the center of mass of an otherwise arbitrary
perfect-fluid source is described by an equation of the form

_as
Tt
In equation (B1) P* and S* are the components of the fluid source’s total linear-momentum and dipole-moment three vectors,

respectively. These vectors are defined by equation (1) and (18) of Contopoulos & Spyrou (1976), which, as it is readily verified with
the aid of equations (A5)—(A7), (A10), and the Newtonian form of equation (A11), in the case of a two-body system reduce to

p* (B1)

1 p GM 1 |
$*=m;ai + myas + — — (m, — 2 _ gt — ol -2 )8 B
141 202 202M( 2 m1)<u 2 )a +cz #<m1 my ut , (B2)
1 pu GM 1 Vet vy
P'=mut + myul + — — (m —m)(uz——)u“-t-—u(—l—-—z)u”, (B3
! 22T 02 M ! o A" \m, m, )

where the j-body’s virial-theorem tensor V% is defined by equation (46) of Spyrou (1978).
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Now we observe that the explicitly pN terms on the right of equations (B2) and (B3) can be neglected compared to the remaining
terms, if (1) the inertial masses, are equal and/or (2) the structures of the bodies are similar (apart, of course, from the vanishing of the
virial-theorem tensors under conditions of secularly stationary equilibrium for each body not excluding tidal effects). Under such
conditions equations (B2) and (B3) reduce to their Newtonian analogs. Hence the vanishing of both P* and S° defining the center-of-

inertial-mass frame of the fluid source consistently to pN accuracy, is equivalent to the Newtonian-like equations

myai + mya% =0, myui +myu3 =0, (B4)
direct consequence of which are equation (A11).
APPENDIX C
TIME DERIVATIVES OF THE TOTAL REDUCED INERTIAL MASS u
By direct differentiation of
&,
my= iy + €y
and putting
n—11 = _n;12=n_1, (C2)
we readily verify that
m,—my; - 1 2, m,\? .
n= 2M 1m+c—2 ﬁz)gl‘*‘(ﬁ)gz]’ (©3)
m, —my - m? 4 m[[m\? m;\? 1[/my)\?., my\?
- 3 VLA ALY R W R () N P ™Y, |, c4
="M >mteu|\m) ) 2t a\n) 6t () & (©4)

oMy My 6 z(é"l-}-é"z) gﬂ mo omy 6 m (m m, 1 [(m,\? my\?
="M "M 2() M, tem\mO uS)tau\mbub) a2\ ) &
(Cs)
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