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ABSTRACT

Frequency histograms and the “power spectrum analysis” (PSA) method, the latter developed by Yu &
Peebles (1969), have been widely employed as techniques for establishing the existence of periodicities. We
provide a formal analysis of these two classes of methods, including controlled numerical experiments, to
better understand their proper use and application. In particular, we note that typical published applications
of frequency histograms commonly employ far greater numbers of class intervals or bins than is advisable by
statistical theory sometimes giving rise to the appearance of spurious patterns. The PSA method generates a
sequence of random numbers from observational data which, it was claimed, is exponentially distributed with
unit mean and variance, essentially independent of the distribution of the original data. We show that the
derived random processes is nonstationary and produces a small but systematic bias in the usual estimate of
the mean and variance. Although the derived variable may be reasonably described by an exponential dis-
tribution, the tail of the distribution is far removed from that of an exponential, thereby rendering statistical
inference and confidence testing based on the tail of the distribution completely unreliable. Finally, we
examine a number of astronomical examples wherein these methods have been used giving rise to widespread

acceptance of statistically unconfirmed conclusions.

Subject headings: galaxies: distances and redshifts — methods: statistical

1. INTRODUCTION

The analysis of data and the identification of possible pat-
terns remains one of the fundamental objectives of observa-
tional science. Many phenomena in the physical sciences lend
themselves to the conjecture that there exists some underlying
structure or periodicity in different kinds of data. The develop-
ment of unbiased tests becomes critical to the task of identify-
ing such patterns. Astronomy, especially, has had a long
history of claim of pattern and form which ultimately proved
to be false. Sheehan (1988), a psychiatrist and psychologist, has
chronicled the evolution of planetary astronomy and how
observational information of a largely qualitative sort became
prone to misinterpretation, a consequence of the way the eye
and brain function together. The observational claims by
Schiaparelli and Lowell of “canals” on Mars is a classic
example of this phenomenon. Only recently have psychologists
developed an appreciation for how the eye seemingly finds
pattern where none exists. The pioneering work of researchers
such as Julesz (1981) have succeeded in quantifying how
images, consisting of high densities of points (cf. astronomical
photographic plates), could suggest to viewers the presence of
pattern that high-order correlation statistical methods then
showed to be nonexistent. Barrow & Bhavsar (1987) explored
the role that filamentary structures and our perception of them
could contribute to their misinterpretation. The development
of other quantitative measures of pattern and, ultimately, of
hypothesis testing (Fukunaga 1990) has become a fundamental
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objective of the observational sciences. Despite the advent of
qualitative improvements in astronomical data, the outcome of
any experiment is only as reliable as the statistical methods
employed—hence, a qualitative refinement of the statistical
tools employed is also necessary.

Data samples are particularly prone to misidentification of
pattern or of clustering. Recently, we (Newman, Haynes, &
Terzian 1989) showed that the inappropriate application of
statistical methods to Gaussian random noise could provide an
illusion of pattern, a phenomenon we identified with the sta-
tistics of small numbers. (This effect is particularly prominent in
descriptive statistics, such as frequency histograms, which are
particularly prone to the inappropriate selection of class inter-
val size or “ binning.”)

A landmark development in astronomical investigations of
clustering is the celebrated “ power spectrum analysis” (PSA)
method of Yu & Peebles (1969) which generates a sequence of
random numbers from observational data that, it was claimed,
is exponentially distributed with unit mean and variance,
essentially independent of the distribution of the original data.
Unlike other methods in widespread use at that time, the PSA
method was designed to be independent of any form of
binning, and hence would produce conclusions that are inde-
pendent of the chosen class interval or bin size. The name of
the method, however, is somewhat misleading as its intent is to
identify clustering phenomena in a set of discrete measure-
ments. (We will see later how this name naturally emerged.)
The purpose of the PSA technique is to determine whether
observational data are “smoothly ” distributed in some sense,
or possesses a regular, possibly periodic clustering of samples.

The power spectrum analysis method has been widely
employed in the investigation of astronomical data for over
two decades. In their original paper, Yu and Peebles analyzed
the distribution in the sky of the “rich,” “ compact ” clusters of
galaxies in an attempt to find an independent test for the exis-
tence of superclusters in these data. Yu and Peebles employed
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cataloged sequences of angular positions on the sky to assess
the reality of superclustering, and concluded that there was a
possibly significant component of nonrandomness in the data.
Not long thereafter, Burbidge & O’Dell (1972) employed the
method to explore some controversial questions pertaining to
the distribution of redshifts of quasi-stellar objects and related
emission-line objects. Tifft (1973) in an unusual paper em-
ployed the PSA method, in addition to some unquantifiable ad
hoc pattern recognition schemes, claiming that it validated his
hypothesis that the Coma Cluster of galaxies displays evidence
of some form of “quantization ” with respect to redshift. Sharp
(1984, 1990) explored the effect of “ binning” in Coma Cluster
investigations, establishing that the evidence for anomalous
behavior was not conclusive. (Newman, Haynes, & Terzian
1992 have explored the statistics of a refined set of Coma
Cluster redshift data without finding any evidence for quanti-
zation, although other data could imply the presence of
subclustering—see Beers’s comments following Newman et al.
1992.) More recently, Guthrie & Napier (1990) examined data
from the Virgo Cluster seeking evidence without success for
redshift quantization. Broadhurst et al. (1990) used the method
of power spectrum analysis and claimed to find clustering of
galaxies near the Galactic poles on extraordinarily large dis-
tance scales. It is possible, however, that the apparent clus-
tering noted by Broadhurst et al. was an artifact of the
pencil-beam survey method that they employed. Bahcall (1991)
has shown that these results could be the outcome of a network
structure of large supercluster surfaces surrounding low-
density regions, and that the apparent periodicity would
diminish when averaged over different directions. Kaiser &
Peacock (1991) have also cautioned against the conclusion of a
significant signature of very large-scale structure in the Broad-
hurst et al. (1990) data because of possible aliasing of the high
spatial frequencies (typical of small scale clustering). Scott
(1991) has explored the question of periodicity in quasar red-
shifts, concluding that there is no evidence for such a periodic
structure. The claimed appearance of clustering in some of the
above situations seemingly contradicts long-accepted results in
relativistic astrophysics and cosmology.

If these claims of quantization are correct, then a profound
change will become necessary in our picture of the large-scale
structure of the universe. Before we abandon our contempo-
rary view of physics, it is essential that we ascertain that we
have not been led astray by some subtle mathematical artifice
associated with, for example, the method of power spectrum
analysis. In this paper, we will carefully examine the derivation
of this widely used method of astronomical data analysis. In so
doing, we will show that the derived random process preserves
a subtle imprint of the original distribution, rendering the
derived process nonstationary and producing a small but sys-
tematic bias in the usual estimate of the mean and variance.
Further, as the method’s derivation employs assumptions
derived from the central limit theorem (Dudley 1989; Feller
1968, chap. 8), the asymptotic rate of convergence of the random
variables to an exponential distribution becomes critically
important. Although the derived variable may be reasonably
described by an exponential distribution over much of its
range, the tail of the distribution is far removed from the
behavior expected of a unit mean, unit variance exponential.
Consequently, statistical inference and confidence testing based
on the tail of the distribution, which was performed in some of
the more speculative articles cited above, is completely unreli-
able.
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We believe that the power spectrum analysis method incor-
porates some interesting ideas in producing a statistical test for
clustering, but subtle mathematical details render the method
inapplicable to situations presented by most available sample
sizes. We will conclude by considering some analytic and simu-
lation examples which illustrate these issues and provide a
better measure of the utility and limitations of this useful
method of statistical analysis.

2. SOME STATISTICAL APPROACHES IN ASTRONOMICAL USE

Observational astronomers employ a battery of statistical
methods to develop an understanding of their data. Beginning
with descriptive statistics in the form of histograms or sample
frequency distributions, they uitimately turn to methods that
permit the testing of hypotheses and the assignment of con-
fidence limits. We will begin our discussion by reviewing the
history of frequency histogram analysis and provide some
illustrations of its use (and abuse) using artificially generated
data whose statistical properties (including correlation and
periodicity) is a priori known. Then, we will turn our attention
to the method of Yu & Peebles (1969) and, by providing a
mathematically rigorous analysis, show that the random vari-
able it employs is nonnstationary, is a biased estimator for the
exponential distribution, and finally exhibits weak con-
vergence to an exponential distribution. These technical sub-
tleties are critical since it is widely believed that the method is
in some sense exact—we will show that the approximations it
implicitly contains render it unreliable, particularly in the
context of looking for anomalies in redshift data, and any infer-
ence made for quantization or clustering is unsubstantiated. (It
is important to stress that this does not mean that the hypothe-
sis is necessarily falsified; it simply means that the deficits
present in the statistic renders these tests inconclusive.) We will
again provide numerical illustrations of how these subtle defi-
cits in the method will manifest.

2.1. Frequency Histogram Analysis

Descriptive statistics do not permit the assignment of prob-
abilities or hypothesis testing, but useful insight can be
obtained if the methods are properly applied. However,
descriptive statistics are more prone to misuse that virtually
any other statistical technique. Books, such as those by Huff
(1954), Kimble (1978), Runyon (1981), and Tufte (1983, chaps.
2-3) describe the many pitfalls that come from using descrip-
tive statistics and, especially, histograms. This point is often
overlooked in contemporary textbooks, although some older
textbooks such as Hald’s (1952, p. 49) exposes the dangers of
histogram binning, i.e., its sensitivity to the length of the class
interval, and make the case for employing cumulative fre-
quency polygons instead. Regrettably, few current textbooks
make this point. More recently, the statistical literature that is
oriented toward statistics education have begun to re-
emphasize this point. For example the paper by Gentlemen
(1977) uses interactive graphics in a classroom setting to show
among other things how the appearance of histograms is sensi-
tive to the “ arbitrariness of (class) interval boundaries.”

The application of computers to the statistical analysis of
data has resulted in the appearance of a variety of authoritative
books devoted to descriptive statistics as a method of inden-
tifying trends in a manner preliminary to a proper statistical
treatment. Tukey (1977, p. 125), although oriented toward the
needs of social and other nonquantitative scientists, presents in
this classic reference a methodology to help avoid the many
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pitfalls common to descriptive statistics. Although Tukey does
not mention histograms or frequency by name, he deals exten-
sively with frequency plotting and the need to smooth data via
a Hanning filter to minimize misleading fluctuations. Schmid
(1983, p. 68) has an extensive discussion on how histograms
with too many class intervals gives misinformation, showing
extensive comparisons, similar in character to those of
Newman et al. (1989). Schmid discussed problems of frequency
polygons and of smoothing distributions. The widely cited
volumes by Chambers (1977, pp. 222-226) and Chambers et al.
(1983, chap. 2) consider in some detail the question of non-
smoothness in histograms, the use of cumulative distributions
and of quantiles, “smearing” of distributions by the applica-
tion of box-car functions, as well as Sturges’s (1926) and
Pearson’s (1936) rules for estimation of frequency class interval.

Although the statistics community does not speak with a
single voice on how to deal with histograms, it does offer three
routes. The first is to simply avoid histograms and employ,
instead, cumulative distribution functions and/or quantiles,
measures of skew and kurtosis, g- and h-distributions, etc.
Recent references to this approach can be found in Hoaglin,
Mosteller, & Tukey (1985, p. 345), particularly in the individual
articles by Hoaglin and Tukey (“ Checking the Shape of Dis-
crete Distributions”), and by Hoaglin (“ Using Quantiles to
Study Shape” and “Summarizing Shape Numerically ). Wilk
& Gnanadesikan (1968) discuss the relative fragility of histo-
grams or frequency distributions and advocate instead the use
of empirical cumulative distribution functions, including the
quantile, percent and hybrid plots for comparing two popu-
lations (the same formal basis as that employed in non para-
metric tests such as the Kolmogorov-Smirnov test). The
second approach is to use histograms, but to smooth them by
employing box-car or Hanning filters, as discussed in Cham-
bers et al. (1983), Schmid (1983), and Tukey (1977). When prop-
erly applied, this approach can be highly informative and, in
the limit of infinite data, converges uniformly to the true dis-
tribution if sufficient care is exercised. The third of these
approaches, which is somewhat related to the smoothing
process, is to use a combination of Sturges’s (1926) rule and
Pearson’s (1936) rule (discussed below). More recently, Doane
(1976) has developed a scheme for combining the two latter
methods of assigning frequency class intervals, i.e., of determin-
ing the width of the histogram bins. Other ad hoc schemes
have been proposed, e.g., Dixon & Kronmal (1965), but they
are neither widely used nor accepted.

During the past decade, Scott (1979) and Freedman & Dia-
conis (1981a, b) have used other probabilistic considerations in
developing yet another class of rules for class interval selection.
Despite the apparent plethora of rules for producing histo-
grams, they are all in qualitative agreement in terms of bin size
selection for the sizes of data sets frequently encountered in
astronomy—and in marked departure from those often selec-
ted by astronomers.

Sturges (1926) developed an ad hoc formula for the class
interval in applications to frequency distributions, especially
those that are near Normality:

It is based on the principle that the proper distribution
into classes is given, for all numbers which are powers of 2,
by a series of binomial coefficienis. For example, 16 items
would be divided normally into 5 classes, with class
frequencies 1, 4, 6, 4, 1. Thus if a statistical series had 64
items ..., it should be divided into 6 plus 1 or 7 classes.
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...If the formula gives 9, 10 may be chosen, but if the
formula indicates 7 or 8, the one actually used should
generally be the next lower convenient class interval, 5.

Accordingly, given N items, Sturges’s rule would allocate
1 + log, N class intervals, generally reduced to a multiple of 5.
By employing Sturges’s rule, we avoid the problem of intro-
ducing artificial fluctuations associated with excessive numbers
of class intervals. In situations with significant skew or kur-
tosis, it was observed in the decade following Sturges’s work
that his scheme had to be modified to accommodate depar-
tures from symmetry and from a Normal distribution. This is
accomplished in Pearson’s (1936) well-known (b,)!/? criterion,
which is a dimensionless rendering of the skew relative to the
variance of the population. These considerations are particu-
larly relevant to astronomical situations, such as redshift dis-
tributions, which often seem to manifest a Gaussian character.

Some refinement of these criteria has taken place over the
last five decades, but the state of the art is summed up in
Doane’s (1976) paper which introduces some ideas from infor-
mation theory and the theory of cooding into the problem.
Doane asked questions such as

How do you teach a computer to look at a set of sample
observations on one variable and make a frequency classi-
fication with the “right” number of classes, “nice” class
limits, and “round ” interval widths. ...

He repeats Sturges’s rule for classifying a series of N items,

The optimal number of classes, in general, is K =
1 + log, (N).

Doane goes on to show how Sturges’s rule should be modified
in the light of Pearson’s criterion. In the case of a symmetric
distribution, Doane shows that no modification is necessary.
Moreover, as the sample size becomes larger, the number of
class intervals increases but at a decreasing rate. Work cited
earlier, e.g., Chambers (1977), give essentially equivalent for-
mulae for the number of class intervals to be employed. In all
cases, the appearance of any asymmetry has only a modest
effect.

Scott (1979) as well as Freedman & Diaconis (1981a, b),
employing other probabilistic considerations, have produced
another class of rules for class interval selection. In essence, the
arguments presented by the above authors call for selection of
the number of intervals in proportion to N'/3> where N is the
cumulative number of samples. (It is important to note that
Freedman and Diaconis developed asymptotic scaling proper-
ties according to minimizing fluctuations in the histogram, i.e.,
the N'/3 scaling rule, but avoided the question of the selection
of the multiplication coefficient. Although they offer a sugges-
tion based on the interquartile range, it has no rigorous basis
and was chosen on essentially esthetic grounds to give the right
order of magnitude.) For sample sizes ranging from ~ 10-100
points, the estimated number of class intervals to be employed
by this latter scheme is quite comparable with that provided by
Sturges’s rule.

The application of “smoothing” methods involving a
box-car or Hanning filter as described above also requires a
selection criterion for the filter width in order to obtain an
appropriate measure of the class interval. Sturges’s rule and
Pearson’s criterion can readily be adopted to this purpose, but
the basic considerations are the same as those just discussed.
The first class of methods of characterizing shape are still more
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conservative and would claim much less detail about any data
set than the schemes just described. Thus, as the procedure
employed by many astronomers’ is closest conceptually to the
third class of methods, we now evaluate the degree to which
their analysis conforms with this standard.

In order to explore the possibly anomalous behavior that
will appear in frequency histograms, we generated Gaussian
random data with zero mean and unit variance using the well-
known routine “gasdev” in conjunction with the routine
“ran2” (Press et al. 1992). (These routines are’assured by its
authors to have no built-in correlations for 2.3 x 10!®
numbers—they are so certain of the integrity of the method
that they have offered to pay $1000 to the first reader who
convinces them otherwise.) In order to preserve the character
of the astronomical problem, 300 “ velocities ” were generated
(scaled to unit variance and zero mean). Using Sturges’s or the
other class interval selection rules described earlier, we would
expect to use ~8-10 bins—we employed 10 class intervals in
Figure 1, possibly erring on the side of including too many
class intervals. The histogram clearly looks Gaussian with fluc-
tuations that are, as we might expect, the order of the square
root of the number of counts in a particular column. In order
to provide a sense of what occurs when an inordinate number
of class intervals are employed, Figure 2 uses 72, which is
comparable to the number employed by a number of authors.
The fluctuations persist to be of the order of the square root of
the number of counts in a particular column. However, the
markedly reduced height of each column has made this effect
strong—and the illusion of substantial pattern is striking. By
simply using different (but overly large) numbers of bins and
their origin chosen at a computer terminal (Gentlemen 1977),
we can readily develop a surreal collection of histograms from
the same data! (See Newman, Haynes, & Terzian 1989, 19924
for further illustrations and discussion.)

Ten years after the discovery of pulsars, about 150 of them
had been detected. Manchester & Taylor (1977, p. 9) discussed
the histogram of their period distributions (with approximately
20 class intervals) which suggested that pulsars are of two
classes, those with short and those with long periods. However,
at present more than 500 pulsars have been detected and the
binary nature of their period distribution has disappeared!

An example of overbinning can be seen in the histograms of
the nearly same data set presented as Figure 2 of Schneider &
Salpeter (1992) and then as Figure 1 of Cocke (1992). The latter
“histogram ” clearly violates the rules presented here, employ-
ing more than 50 “bins” for 134 data points. On the basis of
the above rules for class interval selection and given the size of
astronomical data sets (with generally fewer than 1000 data
points), the use of more than 10 class intervals is thoroughly
unjustified.

It also should be apparent from these computational exam-
ples that, had there been genuine quantization present, a fre-

4 In the 1992 paper by Newman, Haynes, and Terzian, an editorial over-
sight resulted in the publication of an earlier draft of the paper which con-
tained some typographical errors. In that paper, we considered a more up-to-
date and accurate set of Coma Cluster redshift data and, among other things,
employed a Kolmogorov-Smirnov (K-S) test for Normality, acknowledging
that this test too could be suspect. When the K-S statistic Q for normality was
computed for the updated Coma Cluster data, it was found to be ~0.128,
which suggests that there is a significant possibility of departure from Gaussian
behavior. There are limitations to the K-S statistic; nevertheless, we can be
reasonably confident that the Coma Cluster data, if not normally distributed,
is smoothly distributed.
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F1G. 1.—Plot of frequency histograms for Gaussian random deviates. 300
data points shown with 10 class intervals (following Sturges’s rule).

quency histogram plotted according to these accepted rules
would fail to exhibit such properties. Thus, frequency histo-
grams are useful only inasmuch as they could demonstrate
some gross anomally, e.g., highly skewed symmetry, but not for
showing any detail within the underlying distribution given the
quantity of data typically available in astronomical practice.
Hence, we turn our attention now to a novel methodology that
overcomes the deficiencies of class interval selection or
binning.

2.2. Power Spectrum Analysis

The recent acquisition of large-redshift survey data has re-
introduced the issue of the significance of characteristic scales
in the galaxy distribution as addressed by Yu & Peebles (1969).
The PSA and its variants have been applied to such data in a
wide variety of contexts ranging from scale determination to
redshift quantization. Feldman, Kaiser, & Peacock (1993) sum-
marizes some of the recent applications of PSA to three-
dimensional redshift surveys in the search for periodicity or
non-Gaussian behavior. Here, we explore the methodology as
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FiG. 2—Plot of frequency histograms for Gaussian random deviates. 300
data points shown with 72 class intervals (following prevalent astronomical
practice).
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originally introduced by Yu & Peebles (1969) and point out its
limitations.

2.2.1. Original Definition of Method

Following Yu & Peebles (1969) (and temporarily employing
their equation numbers in square brackets), consider N points
x;distributed in the interval 0 to 2=, and let

N
z, = N—1/2 Z e"lXj , [1]
i=1

where n is an integer. We may regard the z, as an ancillary
series that has the appearance of a Fourier transform. We note
that if the measured data x; were clustered, particularly around
uniformly spaced points separated by Ax < 2x, then z, would
be large when n & (Ax) ™ !. The variable n now has the role of a
“frequency” and, in that sense, the power spectrum for the
distribution of pointsis |z,|>,n = 1,2, ....
Yu and Peebles go on to say that,

... if the points x; are distributed at random in the inter-
val, the ensemble average of z, (When n # 0) is

2n dx;
<zn> — N—1/22<emxj> = N_I/ZZJ _27: i =(). [2]
(J

Similarly, the ensemble average value of the square of the
absolute value of z, is, for a random distribution,

1 1
z 2N emx,- 2 — em(xk—xj) = 1 . 3
A2 =g AP+ 3 Ceme ) = 1. [3]
When N is large, and the points are distributed at random,
the real and imaginary parts of z, will have approximately
normal distributions. Furthermore, the real and imagin-
ary parts of z, will be statistically independent. ... Since
|z,|* is the sum of the squares of two independent vari-
ables, each normally distributed, | z, |* must have an expo-
nential distribution with the width fixed by equation [3].
Thus we conclude that, when N is large, and the points x;
are distributed at random in the interval 0 < x < 2z, the a
priori probability for finding a value of | z,|? greater than
xis
P(z,|>>2z)=e * (random). [5]

It is readily seen ... that the coefficients z, are statistically
independent in the sense that the ensemble average
{z,2,) vanishes when n # m.

Yu and Peebles then go on to explore what might happen if the
data manifested clustering and observed, for the case of
“exact” clustering, that is, each point is in a cluster and there
are N, points in a cluster:

Azl*> =N, . (6]

We will return later to the question of the precision of their
equations [2], [3], and [5], since as we shall show, the
outcome of this question has a critical effect on the reliability of
hypothesis testing.

It should be noted in passing that, unknown to Yu and
Peebles, Bartlett (1963) derived the same approximate formula
for the “spectrum ” of a point process as a method for identify-
ing clustering. However, Bartlett (1978, § 9.23) observed that
this approximation could not be used reliably to estimate the
spectrum without an approximate smoothing technique. Put
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another way, the large excursions in the power spatial ampli-
tude that emerge in this method was known in the statistics
community to be artificial and that special measures were
necessary to make these effects more tolerable. A variety of
methods have emerged in the statistical literature to explore
the question of clustering—although none can be identified by
the present authors as being particularly relevant to astro-
nomical questions.

Before undertaking a critical analysis of the various approx-
imations that enter into the power spectral analysis method, let
us illustrate its performance by using artificially generated
data. As before, we employ “gasdev™ and “ran2” (Press et al.
1992) and generate 300 samples for two cases. In the first, the
data are uniformly distributed from 0 to 2z, while in the
second, the data are normally distributed with unit variance
and mean of n. In Figure 3, we plot the power spectral ampli-
tude for each. (Note that we use the inverted right-hand scale
for the Gaussian distribution-associated data, and employ the
usual left-hand scale for the uniform distribution-associated
data.) We observe that values of | z,|? of 4-6 are not uncom-
mon. (Other simulations we have performed produced excur-
sions in the amplitude of eight or more units.)

Finally, we plot the (natural logarithm of the) corresponding
cumulative distribution functions, ie., P(z,|*> > x). From
equation [6] of Yu and Peebles, we expect that the logarithm
should vary as —x, which we identify as the “ideal situation.”
Further, we plot the cumulative distribution functions for the
uniform data (solid line) and the Normal data (dashed line)—
the figure demonstrates that, as x increases, the error in the
corresponding distribution functions systematically increases.
It appears that the tail of the distribution functions is in
marked disagreement with Yu and Peebles’ approximation
[6]. We will return shortly to the question of why this occurs.

2.2.2. Extreme Value Statistics

In light of equation [5] of Yu and Peebles, it seems at face
value highly unlikely (probability ~0.002) that excursions of
6 or more in the power spectral amplitude could occur.
However, it is essential to note that we are looking at the

10 T T T T T 0
! M,WWWM,I HHPHY
g |1 “V 1 AL
= ]
EE“ ‘ ¢ 2%
B Eg
SE 2=
5-84 6 Eg
2 0y, ¢
| WMWI i

0 ' X ‘ ! 10

0 50 100 150 200 250 300

“Wavenumber”

FiG. 3.—Power spectrum analysis plots for uniformly distributed data over
the interval [0, 2r] and for Normally distributed data with unit variance and a
mean of n; 300 points are generated for each distribution. Note that the second
PSA plot, i.e, derived from the Normally distributed data, is inverted and
corresponds to the right-hand scale. Also, observe that the first point on this
plot is off scale with an amplitude of 106.41.
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outcome of a set of experiments when we look at such plots, as
we are identifying the extremum of a distribution of individual
spectral estimates. What is required in looking at the
maximum value of the power spectral amplitude or, more con-
ventionally, the maximum value m is that we employ the
“statistical theory of extremes” (Galambos 1978). The
maximum value that m can obtain from a set of “experiments,”
ie., the variation with respect to the reciprocal period n in
equation [1] of Yu and Peebles, has a probability distribution
that is very different from the statistic P of equation [5]. In
particular, if P(x) is the probability that in a given experiment
the observed value >x, then 1 — P(x) is the probability that in
a given experiment the observed value <x. Rather than
indulge in the subtleties of the theory of the maximum of sto-
chastic processes, we will simply consider that, for a set of N
independent experiments, the probability that none of the
observed results exceeds x is [1 — P(x)]". Finally, the probabil-
ity Pp(x) that at least one of the observed N-independent
results exceeds x is given by

Py(x)=1—[1— PM)]". 1)

(For clarity, we will refer to Yu and Peebles equations in
square brackets and refer to our equations in parentheses.)
This result is rigorous and general for independent deviates;
the definition of P(x) need not be that of equation [5] as
derived by Yu and Peebles. For P(x) sufficiently small, it
follows that Py(x) & N x P(x). It is noteworthy that any error
in the estimation of P(x) will be amplified by orders of magni-
tude. See Scott (1991) for a discussion of this equation and its
history in an astronomical context.

As a simple illustration of how different extreme value sta-
tistics can be from Normal statistics, consider a Gaussian
random with zero mean and unit variance. We are well familiar
with the fact that 95% of the values realized in this process
should lie between — 1.96 and 1.96 units, and that 99% of the
values should lie between —2.58 and 2.58 units. Similarly, for a
single realization of this process, 95% of all values should lie
below 1.65 units and 99% of all values should lie below 2.33
units. (The numbers in this latter situation are of course differ-
ent, since half of all realized values are negative and we are
considering only an upper cut off or maximum value.) Suppose
now that we looked at the maximum value of N experiments
and that these experiments are statistically independent. For a
set of 100 experiments, we would expect a largest value of 3.28
with 5% likelihood, and 3.72 with 1% likelihood (Pearson &
Hartley 1962, Table 24). Meanwhile, for a set of 1000 experi-
ments, we would expect a largest value of 3.88 with 5% likeli-
hood, and 4.26 with 1% likelihood. The purpose of this
demonstration is to show just how different extreme value
behavior is from Normal behavior.

It is difficult to assess the number of statistically independent
realizations that are present in Figure 4—see Scott (1991)—but
in principle we might expect that there are at most 300 (the
number of data in the original set). Employing Yu and Peebles’
equation [5] as though it were exact, we directly obtain the
result that there is a 53% likelihood of seeing at least one
excursion in excess of 6 in Figure 4. Therefore, it should come
as no surprise that the PSA plot provides excursions as large as
those we have provided.

There are, however, examples in the literature of PSA plots
where the excursions are very large indeed. As an illustration,
Guthrie & Napier (1990) have power spectral amplitudes as
great as 20. Could this be the result of a subtle imprint of the
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FiG. 4—Cumulative distribution functions for the probability that an
observed value of the Yu & Peebles (1969) statistic | z|? is greater than x. The
ideal case should vary as exp (— x)—and is depicted by a dotted line. Solid and
dashed lines are used to show uniformly and Normally distributed cases gener-
ated from the previous figure. Observe the systematic increase in the departure
from the ideal case—a measure of the bias and the slow asymptotic con-
vergence rate for the Yu and Peebles estimator.

approximations employed by Yu and Peebles in deriving the
exponential distribution [5]?

2.2.3. PSA Approximation Revisited

In Yu and Peebles equation [2], reprinted earlier, we note
that they had implicitly employed a distribution function for x;
that is uniformly distributed over the interval [0, 27] and, as a
consequence, their claim of a vanishing mean in z, for n # 0 is
a consequence of this assumption. (We suspect that they
believed their result to be generally correct as a consequence of
a “random phase” approximation.) Suppose that x; is distrib-
uted according to some distribution function 2(x) (not neces-
sarily uniform) on a doubly infinite domain. Then, it follows
that

(2, = N™12 3 ey
= N2 'f " e dp(x) @)

=N'"2Z@), ©)
where & (n) is the characteristic function of 2(x) defined by

F(n) =™y = 'ro e dP(x) . 4)

Expressed another way, the characteristic function is the
Fourier transform of the probability distribution for x, hence
the name “power spectra analysis” method. (In order to
extend the range of integration from that in [2], it is useful to
think of the Yu and Peebles distribution function as having
compact support, ie., it vanishes identically outside of the
interval from 0 to 2zn.) As a relevant example owing to the
observed apparent Normality of data from many different clus-
ters, suppose 2(x) is a Gaussian distribution A4"(u, ¢2) with
mean y and variance o2, i.e.,
’ 2
u] dx’ . )

* 1
- J—w 2no? exp l:— 207

P(x)
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Then, the characteristic function & (n) becomes
F(n) = eMre "2 ©6)
and, therefore,
(z,y = NY2gmg=n22I2 £ (7)

for our Normally distributed example. (This result also ex-
plains the off-scale power spectral amplitude generated for
the Gaussian case in Figure 3, ie, 300 xe !=
110.363832351 ~ 106.41.)

In a similar way, it follows that equation [3] of Yu and
Peebles for the variance of z, should generally be

1 1
AR N 2le™i?y + N ;k emimxD ®

=1+(N-1DFMF*n =1
and, for our Normally distributed example,
Az =1+ (N —1e ™. )

Our equations (3) and (8) show that equations [2] and [3] of
Yu and Peebles are valid only for a set of measure zero, the
uniform distribution function (which is rarely a good approx-
imation for astronomical data). Furthermore, our equations (7)
and (9) show that the random variables z, are not stationary
with respect to n. Moreover, we observe that, for n # m,

N
<et(nxj—mxk)>
Jk=1

Z <el(n —m)xj>

$Zazm) =

z|- Z[~

. (10
+ N Z <el(HXj—MXk)>

i*k
=%(n—m)+ (N — D)Fn)F*m)
#0.

This result reduces to equation (8) in the case n = m. By inspec-
tion we note that the correlation matrix is Toeplitz, and only
for a set of measure zero does it reduce to a diagonal one. Thus,
we see that the ancillary variables z, are not individual inde-
pendent deviates but are correlated and hence are not station-
ary. This underscores the difficulty in estimating the number of
independent random variables N in a power spectrum analysis
plot. It is in principle possible to employ this bias to obtain
evidence of clustering, a feature anticipated by Yu and Peebles
(their eq. [6]). Now we must explore the role of the Central
Limit Theorem in this discussion.

2.2.4. Central Limit Theorem and Distribution Functions

In particular, the Central Limit Theorem (Dudley 1989;
Feller 1968) states that if s,e R, i=1,..., N are individual
independent deviates drawn from the same population and if
their mean p and variance o2 exist, i.e., | 1|, 0 < co, then the

variable
N g — N:|
L 11
igl Ij\/ﬁ g ( )

describes, in the limit N — oo, a Gaussian zero mean, unit
variance process A7(0, 1). Counterexamples to the Central

S

I
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Limit Theorem (Romano & Siegel 1986) do occur, but gener-
ally involve some violation of the assumed conditions.

Special attention must be paid to the fact that z,, as defined
in equation (1), is complex valued, and that the properties of
both the real and the imaginary parts of z, must be considered
separately. It is easy to show that

b=<zy
= {R(z,)> + KI(z,)) (12)
= pg + Wy
where u is defined as the population mean of z, and where pg
and y; denote the real and imaginary parts of u, respectively.
Additionally, we obtain
o? =z, — ul*
ARz — WP + | Iz — ) 1?D (13)

= o} + o}

where 62 is defined as the variance of z, defined by (| z, — u|*>
and where ¢ and o7 are the variances of the real and imagin-
ary parts of z,, respectively. However, it is now easy to show
that the Central Limit Theorem can be employed to each of the
components of z,. The preceding results (7) and (8) show that
conditions necessary for the Central Limit Theorem to hold
with respect to equation [1] of Yu and Peebles are not satisfied
until n is (asymptotically) large, and equation [1] results in a
poor approximation to a Gaussian zero-mean, unit variance
process. The one outstanding issue that remains is to deter-
mine the distribution function for the real, semi-positive defi-
nite variable | z, |2, as well as to consider issues of accuracy.

Consider now, for any n, the decomposition of z, into its real
and imaginary parts & and %, respectively. Let us now define a
variable #” according to

W =X+ Y2 (14)

It should be clear that %~ has the role of |z,|?. From the
preceding discussion of the Central Limit Theorem, we know
that the distribution functions for & and % are approximately
Gaussian but, for the present time, will assume that they are
completely arbitrary, say 2(%) and 2 (%), respectively. It
follows that the characteristic function for 2 (#"') must satisfy

Jelkw’ dgw(,”/'/) — J.etk(ﬂl‘l +®%2) dgx(%')gy(@) . (15)

We multiply both sides of the latter equation by (1/2x)e ~**”,
and integrate over k from — oo to co. We then integrate over
W from #  to oo to obtain

1— 2 W)= J O + y> — W)P(X)P (V) . (16)

This equation has a direct intuitive interpretation. The left-
hand side represents the probability that | z,|? is greater than
W, namely P(| z,|> > #’) as in equation [5] of Yu and Peebles,
while the right-hand side represents the contribution to the
probability from all points & + 1% such that 2 + ¥2 > W
(This is the basis of the “Box-Muller” scheme employed by
Press et al. (1992) in their Gaussian random number generator
“gasdev.”) As an illustrative example, suppose that both 4 and
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% are 4°(0, 1/2). The right-hand side then becomes

a0 ao 1
f 'f ~O@2+H:— W)e T qqr day
rod-wo @

® 2n
= j f 1 e "rdrdd (17)
=y# Jo=0 T

after making the usual transformation to polar coordinates
and then becomes

f dr¥)e " =e"; (18)
e
combining the left and right sides, we have verified equation
[5] of Yu and Peebles. However, our general result (16) will
become important later in the discussion. (P. K. Sen discussed

the nature of the true distribution for | z,|? in Newman et al.
1992)

2.2.5. Consequences of Slow Convergence Rates

Suppose that n is sufficiently great that these concerns
regarding the biased estimate of the mean and variance in
equations (7) and (8) are not realized. Then, the real and imag-
inary parts of lim,_, z, must become Gaussian zero-mean
one-half unit-variance random variables. Then, the mean and
variance of the complex variable z,, as defined in equations (12)
and (13), become zero and unity, respectively. The operative
question then becomes how rapidly does z, converge to a
Gaussian random variable as a function of large N? The
formal answer, in the sense of probability (see Dudley 1989, for
example), is that the convergence rate goes as N ~ /2, The prac-
tical answer is that convergence is reasonably rapid near the
center of the distribution, but is manifestly slower in the tail,
depending on the underlying distribution for s; in equation
(11).

As a concrete example of this phenomenon, consider the
“Sum of Uniform Deviates ” method described in Abramowitz
& Stegun (1965) for generating Gaussian random numbers.
Extracting from Abramowitz and Stegun, let U,, U,, ..., U,
be a sequence of n uniform deviates. Then

- (Eo-)E)

will be distributed asymptotically as a normal random deviate.
When n = 12, the maximum errors made in the normal deviate
are 0.009 for | X| <2, 09 for 2 <|X| < 3. In other words,
random numbers generated in this way that are between two
and three standard deviations from the mean can have errors
nearly as large as one standard deviation! The error in the
normal deviate will be greater still if it is further than three
standard deviations from the mean. There is a possibly
apocryphal story that IBM used exactly this scheme for gen-
erating Gaussian random numbers on their mainframe com-
puters many years ago, but later abandoned it owing to the
anomalous behavior in the tail of the generated distribution.
Therein lies the crux of the problem. Hypothesis testing
using the method of power spectrum analysis is of particular
interest only as | z, |? becomes large, i.c., when we are in the tail
of the distribution. Owing to the form of equation (16), it
follows that the calculation of P(| z,|?> > #") depends critically
and in a nonlinear way upon the tail of the distribution func-
tions 2 (%) and 2 (%), respectively. Empirically, we observe
that the errors in the associated probability density functions
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for  and % can be as much as an order of magnitude. This
error is further amplified by equation (16) in the calculation of
P(z,|> > #), and the relative error between the true distribu-
tion and the assumed exponential one can readily exceed an
order of magnitude. For example, the data displayed in Figure
4 are manifestly not exponentially distributed, and it is in fact
easy to produce a random set of data with “spectral peaks”
that are very large. Finally, when we apply the extreme value
statistic 1 — [1 — P(x)]" in equation (1) to estimate the likeli-
hood that a peak exceeds some threshold, the typically large
value of N then dramatically amplifies this error.

In addition to the applications of the PSA method by
Guthrie & Napier (1990) and by Broadhurst et al. (1990), Scott
(1991) investigated the possible periodicity in quasar redshifts.
The claimed periodicity is with respect to In(1 + z) ~ 0.205,
where z is the quasar redshift, and application of the PSA
method by Scott revealed no such periodicity from the avail-
able data. Previous statistical studies employing various
binning methods had indicated a variety of possible period-
icities, and Burbidge (1967) in particular had pointed out a
peak at z =~ 1.96 in the quasar redshift distribution and inter-
preted this as evidence that z, and hence the quasars, were not
at cosmological distances. Scott also suggests that the one-
dimensional power spectrum analysis method, when applied to
real data, possess some degree of subjectivity in assessing the
significance level of any effect.

3. CONCLUSION

We have reviewed two classes of statistical methods in
common use today by astronomers seeking to identify period-
icities or anomalies in their data. The first methodology, a
strictly descriptive one, employs frequency histograms to
obtain a sense of the distribution of the variable at hand,
usually the redshift velocity. The essential problem here is the
selection of the frequency class interval or “bin size.” Mathe-
maticians have developed ad hoc rules for this purpose based
upon the need to minimize unrealistic fluctuations in the esti-
mate of the distribution function, a goal which is shared by
astronomers who need to discern genuine patterns from sta-
tistical noise. Generally speaking the methodology developed
here introduces class interval sizes that are nearly an order of
magnitude larger than those employed by many astronomers
in the recent past—this leads us to conclude that any pattern
evinced in many contemporary astronomical frequency histo-
grams is likely to be an artifact of the small numbers of data
present in a class interval and is, therefore, illusory—see
Newman et al. (1989). Moreover, the restriction posed by these
class interval selection rules basically exclude the possibility of
seeing any pattern within a frequency histogram. Thus, it
becomes necessary to develop a class of methods that is not
susceptible to bin size selection effects.

The second methodology, due to Yu & Pebbles (1969),
makes significant progress in this direction. Although its basis
is analytic, it contains the influence of a number of approx-
imations. Certain of these deleterious effects can be effectively
excluded, e.g., the extreme value statistic correctly estimates
probabilities for the set of values while the effect of nonsta-
tionarity and bias in the estimators is avoided by excluding the
first few points of the spectral amplitude, following our equa-
tions (3) and (10)—although this could potentially introduce
some selection effects. However, the method is based on an
asymptotic convergence property which is very slow indeed,

" varying only as N~ /2, where N is the length of the observa-

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...431..147N

No. 1, 1994

tional data set. Thus, even hundreds of data points do not
necessarily alleviate this effect. In particular, the tail of the
distribution generally will be different (by, possibly, an order of
magnitude) from the ideal exponential distribution, and this
error is amplified dramatically by the computation of the
extreme value statistic. Hence, the ability to do hypothesis
testing using this asymptotic result is severely compromised. It
must be stressed, however, that while the test may be inconclu-
sive, the original hypothesis need not be false.

Statistical methods are predicated upon the ability to exclude
hypotheses—they can prove nothing, but disprove anything.
And that is the essence of the dilemma we face. It is easy to
show that data are not, for example, Normally distributed.
However, it is difficult to show that data are not “smooth”—
because that notion cannot be formulated in a simultaneously
mathematically and physically realistic way—which is what we
need, for example, to establish clustering. Similarly it is not
simple to show that data contain periodicities, unless they too
can be defined in an appropriate way, and then we encounter
again a very difficult task. The method of Yu and Peebles was
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an important step in that direction. Unfortunately, the accu-
mulated effect of the approximations built into it renders it
incapable of testing the outliers in the random variable that they
have constructed. This problem will be remedied in small part
by the acquisition of more accurate and more abundant data.
Nevertheless, the interpretation of any experiment is only as
reliable as the statistical methods employed—hence, a qualit-
ative refinement of the statistical tools employed is also neces-
sary.
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