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ABSTRACT

Observational selection bias in samples of field galaxies used with the Tully-Fisher (TF) method of distance
determination can be detected using the internal properties of the sample. The method is to divide the data
into bins by line width and show that the apparent Hubble constant is multivalued for different line widths at
given redshifts. The method is the same as used previously (Sandage 1988a, 1994) in samples composed of a
fixed galaxy type by adding a fainter similar sample. If bias is present, the bias properties will disappear at a
bright level but will reappear with the same properties at the corresponding fainter level. The procedure is
generalized here to develop a method to determine statistically correct distances using the Tully-Fisher
method.

A triple-entry correction to ridge-line TF absolute magnitudes is derived that depends on (1) redshift, (2) the
apparent magnitude limit of the flux-limited sample, and (3) the line width. The Hubble constant will incor-
rectly be derived to increase outward and will also have too high a mean value if the intrinsic dispersion of
the TF relation is either not accounted for at every redshift and every line width, or is underestimated.

The highest weight sample of field galaxies from the distance-limited 500 km s~! catalog of Kraan-
Korteweg & Tammann (1979) is used with the absolute calibration of the Tully-Fisher relation by Richter &
Huchtmeier (1984) based on 64 galaxies in nearby groups, generally calibrated with Cepheids, to give a bias-
free Hubble constant of H, =48 + 5 km s~! Mpc™!. All other TF data for the biased samples of field gal-
axies discussed here show that the short distance scale with Hy, ~ 85 is not supported by the present TF

calibration using the adopted intrinsic dispersion of the TF relation.
Unless the effects of observational bias in flux-limited samples are identified and corrected in each particular
data sample, conclusions concerning both the Hubble constant and the existence of streaming motions about

the cosmological expansion are suspect.

Subject headings: cosmology: observations — distance scale — galaxies: distances and redshifts —

methods: statistical

1. INTRODUCTION

Most individual photometric distances for galaxies that are
calculated using a fixed mean absolute magnitude, M, will be
in error. The true absolute magnitude of any particular galaxy
is not generally M, but is either brighter or fainter, spread in a
distribution that is the luminosity function. Because of this,
those galaxies that are intrinsically brighter than M, will have
too small a calculated photometric distance. Intrinsically
fainter galaxies will have too large a calculated distance.
However, if the sample is truly distance-limited, and if M, is
the proper mean absolute magnitude for such a sample, then
the errors will be symmetrically distributed about the correct
value of log distance. On the other hand, if the sample is from a
flux-limited catalog, the distance errors, based again on M,
will be distributed asymmetrically about a correct log of the
mean distance because a part of the sample needed to obtain
proper statistics will be missing from the catalog. This asym-
metry, and therefore the error, will become larger with larger
true distance, progressively distorting the distance scale.

The resulting bias is never absent in flux-limited samples. If
it is not separately corrected at each redshift, the log Hubble
constant calculated from the data will have too large a mean
value, and will also appear to increase outward (de Vaucou-
leurs & Peters 1986; Giraud 1985, 1986a, b, c; Tully 1988) as
an artifact (Teerikorpi 1984, 1987, 1990; Bottinelli et al. 1986)
of an incorrect analysis.

Details of the problem and the method to correct it are the
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subject of the preceding paper (Sandage 1994, hereafter Paper
I). It was shown there that the way to avoid the biasistousea .
mean absolute magnitude, M(m, v;), that is a function of red-
shift for galaxies in a catalog whose limiting magnitude is m.
The required correction is not the classical M, — M(m) correc-
tion calculated by Malmquist (1920). If only a fixed absolute
magnitude, M(m) (even if “Malmquist-corrected ”), is used at
all redshifts rather than a correction that depends on redshift,
the data will still give a calculated Hubble constant that incor-
rectly increases outward.

The required M(m, v;) absolute magnitudes needed to avoid
bias can be found by considering the properties of the Spaen-
hauer diagram (SD). This diagram (Paper I, Figs. 2, 3, 4, and
11) is made by plotting the true absolute magnitudes (assumed
here to be correctly calculated from redshifts; see § 2.2) against
redshift for each entry in the catalog. It was shown in Paper I
that the mean absolute magnitude, M(m), calculated by Malm-
quist (1920) for a complete flux-limited sample is the average of
the individual M(m, v;) absolute magnitudes over all redshifts,
weighted by the relevant volume elements, the required indi-
vidual M(m, v;) values thereby being lost.

The case discussed in Paper I was for a sample of objects of a
given kind where M|, is well defined, and where the dispersion
a(M) in absolute magnitudes is small. Such a sample might be
galaxies of a given morphological type and luminosity class.

The much more complicated case considered here is that in
which individual distances are needed for galaxies in a sample

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...430...13S

14 SANDAGE

made up of a mixture of types in which M, varies within the
mixture. In the case of the Tully-Fisher method of distance
determination, the parameter introduced to narrow the lumi-
nosity function is the galaxian rotational velocity, often mea-
sured by the 21 cm line width (LW). When the data are divided
into bins of LW, the division can be considered as equivalent
to dividing the sample into separate galaxy “groups,” each
with its own proper M (LW) mean absolute magnitude.

The methods developed in Paper I can be applied within
each LW interval. The bias properties of the complete Tully-
Fisher sample can then be considered as a superposition of the
bias properties of each individual Spaenhauer diagram as
derived by the method in Paper I. The procedure for doing this
is the subject of this paper.

A model for this much more complex bias correction is
developed in the next section. The model is applied in § 3 to the
308 galaxy sample of Aaronson et al. (1982b). The bias correc-
tions valid for it are derived from the internal properties of that
sample.

The effect on the Hubble constant of either applying the
corrections or neglecting them is discussed in § 4. Comparison
of relative distance scales, with and without the corrections, are
set out in § 5. The absolute value of the Hubble constant, based
on two different catalogs, one flux-limited and the other
distance-limited, is discussed in the penultimate section. An
" evaluation of the Tully-Fisher method to determine relative
distances, and therefore the value of H, and the existence of
putative streaming motions, is in the final section.

2. MODEL FOR THE BIAS CORRECTION AT EACH LINE
WIDTH AND REDSHIFT

2.1. Separate Spaenhauer Diagrams for Each Line Width

Figure 1 is the Tully-Fisher (TF) diagram for the 308 galaxy
sample of Aaronson et al. (1982b), shown as Figure 3 of
Sandage (1988b, hereafter S88b). The absolute magnitudes are
on the By photometric system, calculated using individual rela-
tive distances from the redshifts, corrected for Virgo “infall ”
and based on the arbitrary value of Hy = 50 km s~ Mpc™1.
The log line widths, defined at the 20% level of the 21 c¢cm
profile and reduced the edge-on orientation, are plotted as the
abscissa.

The slope of the TF correlation for the subsample of
249 galaxies with log LW between 2.35 and 2.75 is dMy/
dlog LW = —6.77 (S88b). The dispersion in M about the
ridge line is ¢ = 0.64 mag. We now argue, as we did in S88b
and will argue in the following paper (Federspiel, Sandage, &
Tammann 1994, hereafter Paper II1, § 8.4) that the true disper-
sion is at least this large, and that the scatter in Figure 1 is real,
not an artifact of peculiar motions that would cause artificial
scatter in the ordinate as has often been suggested.

2.2. On the Value of s(M) in Figure 1

The high value of the intrinsic dispersion is the central issue
in the current debate on the distance scale. The larger this
dispersion, the more severe are the selection bias errors in the
distance scale.

Critics of the high value of o(M) at a given LW invoke
noncosmological velocities (random and streaming) that
would, if real, cause errors in the ordinate in Figure 1 whose
size is AM =2.17Av/v,, where Av is a putative non-
cosmological addition to v,. It is said that such errors artifi-
cially increase the observed dispersion in M much above the
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F1G. 1.—Correlation of absolute B magnitude (calculated from the redshift
using H, = 50 km s~* Mpc ™) with line width, reduced to edge-on orientation
for the 308 galaxy sample of Aaronson et al. (1982b). The five local calibrators
are shown as circled crosses. They lie below the ridge line of the total sample
due to observational selection bias for the reasons shown in Figs. 2 and 11a.
The diagram is from Fig. 3 of S88b.

value of the intrinsic dispersion. We argue against this point as
follows.

We contend that no streaming velocities on top of the
cosmological flow have been detected except (1) the Virgo
“infall” (see Tammann & Sandage 1985 for a review) and (2)
the cosmic microwave background (CMB) dipole. Concerning
the first, the redshifts of all galaxies in Figure 1 have been
corrected for Virgo infall. Therefore, the absolute magnitudes
in that diagram are on the corrected velocity system where the
effects of the Virgo perturbation have been removed, certainly
to first order, leaving only the errors due to random velocities.
Note that the second effect within the relevant volume of
v < 2500 km s~ ! covered by the galaxies in Figure 1 does not
enter the problem; the CMB dipole motion toward the hot
CMB pole acts simply as an offset, since most of the region is,
to first approximation, moving as a unit toward the hot CMB
pole. No large streaming Av velocities due to the CMB dipole
exist for the Figure 1 galaxies, the “shear” component being
small over this “local ” region. (An extended discussion of this
point is given in Paper I11.) What then is the size of the random
motions in the volume encompassed in Figure 1?

Random motions of galaxies in the very local field (i.e., v, <
500 km s~ ') are inconsequentially small (Sandage 1986, 1987),
giving o(random) < 50 km s~ !. Farther out in the extended
region to v ~ 2500 km s~ ?, the dispersion in the random ve-
locities is smaller than can presently be measured because all
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extant determinations depend on the differences between the
kinematic and the TF distances. Most of these differences must
be interpreted not as real velocity perturbations but rather as
errors in the photometric TF distances caused by the intrinsic
dispersion in M(LW) of the TF relation, leading to systematic
bias errors that increase with redshift—the subject of this and
the following paper.

A limit can be put on the true random velocity component of
the observed scatter by studying the characteristics of that
scatter. If random motions were to dominate the dispersion in
Figure 1, the distribution of the absolute magnitude residuals,
M(kinematic) — M(TF), would be wedge-shaped in the sense of
closing toward high redshifts (see § 8.4 of Paper III), which is
opposite to what is observed (see Figs. 9, 10, 12, 14, and 15
below).

Given this fact, we can put an upper limit to the effect of
random motions on the determination of (M) using kinematic
distances. The error in M caused by a noncosmological veloc-
ity component, Av, is AM = 2.17 Av/v(cosmic). Even for an
excessively high velocity dispersion of 6(v,3ng0m) = 200 km s ™!
(a gross overestimate for the dispersion, not the range, of the
scatter), the ratio of Av(random)/v(cosmic) is only 0.12, using
the mean value of {v(cosmic)y = 1600 km s~ ! for the Aaron-
son et al. (1982b) sample. Hence, the component of (M) due to
this random kinematic noise would be only g(M) = 0.3 mag.
Combining this artificially high o(M) due to random velocity
errors, in the usual way as the square, with the data of Figure 1
shows that the observed dispersion of (M) = 0.64 can at most
be too high by 12%. Furthermore, the more powerful evidence
in Paper III is explicit that the true dispersion in the TF rela-
tion is as high as 0.9 mag for small LW, decreasing only to
~0.4 mag for the highest line widths, which are very rare. An
independent high-weight determination that (M) ~ 0.7 mag
for the TF relation is also obtained from the data in local
groups, calibrated via Cepheids (see § 6 below).

Why, then, do we differ with the conclusion of, say, Pierce &
Tully (1992) that the true dispersion in the TF correlation is as
small as (M) = 0.3 mag? The samples of galaxies in groups
and clusters used by them are incomplete, reaching only a
portion of the luminosity function of each aggregate, i.e., all
galaxies at the fixed distance of each aggregate are not in their
samples. The key point is that one must not confuse the two
concepts of (1) a distance-limited sample and (2) an incomplete
sample of galaxies at the same distance. Such incomplete
samples, despite the common distance of the aggregate
members, also suffer selection bias. The o(M) values derived
from such samples are lower limits to the intrinsic dispersion.

2.3. Consequences of an Intrinsic Dispersion for the TF Relation

Figure 2 shows Figure 1 schematically (the zero points of the
ordinate and abscissa are copied only approximately). Its
purpose is to indicate how we can analyze each interval of LW
as a separate bias problem by the method of Paper I, which
treated only a fixed galaxy type.

Consider two intervals of line width, marked with hatching
and labeled (1) and (2) in Figure 2. If the selection criterion for
the total sample is by apparent magnitude (i.e., being flux-
limited), then the galaxies in each arbitrary LW interval will
also be flux-limited. The bias properties of a subsample within a
given LW interval can, therefore, be found by plotting its own
Spaenhauer diagram, as in Paper I, and as shown by the two
inset diagrams in Figure 2. The apex magnitudes, shown by
arrows, differ, being brighter for strip (2) than for strip (1). This
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F1G. 2—Schematic representation of Fig. 1, with the upper and lower
envelope lines drawn and with two line-width intervals marked. The ordinate
and abscissa zero points are not precisely the same as in Fig. 1. The apex
magnitude (arrow) and the mean absolute magnitude (plus sign) of the entire
sample are indicated in the Spaenhauer diagrams (absolute magnitude vs.
redshift) in each inset.

]

is simply the ridge-line correlation of LW with absolute magni-
tude.

Also shown within the insets are the mean absolute magni-
tudes, M(m, LW), for the separate samples within each LW
interval. These are marked as plus signs in the nonhatched
flux-limited part of the SD configurations. These, of course, are
the separate Malmquist mean magnitudes given by the usual
classical Malmquist calculation for M, — M(m), but now
required separately for each LW.

These mean magnitudes, M(m, LW), are also marked in the
centers of strips (1) and (2) in Figure 2. The apex magnitudes,
M (LW), marked as open circles in each strip, are, of course,
fainter than the mean magnitudes, as shown also in the inset
figures. The difference is the Malmquist M, — M(m, LW) cor-
rection itself.

Figure 2 shows why the positions of the ridge-line corre-
lation of absolute magnitude versus LW (i.e., the TF relation
itself) differ as a function of redshift. At low redshifts, the sample
is distance-limited, outlined by the hatched areas of the inset
diagrams in Figure 2. For these redshifts, the ridge lines pass
through the marked apex positions (Fig. 2, circles). At higher
redshifts nonhatched areas), the appropriate mean absolute
magnitudes, M(m, v;, LW), at any particular LW, move pro-
gressively brighter with redshift, first approaching the position
of the “Malmquist mean” magnitude (plus signs) at the red-
shift of the crosses in the Figure 2 inset and then becoming
even brighter at higher redshifts. (To visualize the effect and the
method of constructing Figure 4 below, imagine binning the
data by redshift and constructing separate TF relations for
each bin.)

The fundamental fact that the appropriate absolute magni-
tudes become brighter at higher redshifts, crucial to under-
standing the bias properties of TF samples, was discovered
observationally by Kraan-Korteweg, Cameron, & Tammann
(1986, 1988). This central clue to the bias properties of all TF
samples that are flux-limited is also seen in the Aaronson et al.
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(1982b) sample later in this paper (§ 3), and was studied earlier
(S88b), where the effect was demonstrated by dividing Figure 1
into two redshift regimes, separated at 500 km s~! (S88b,
Fig. 9).

This progressive brightening of the TF ridge lines as redshift
increases is the needed bias correction, now at all line widths
and at each redshift. The remainder of the paper is concerned
with developing a model by which to make these triple-entry
(magnitude, line width, redshift) corrections.

The procedure is to add individual Spaenhauer diagrams as
defined in Paper I, one at a time, each valid for a particular LW
interval, to form a grand SD with all LWs combined. To
visualize the process, consider a “ granular” start of this con-
struction using the three LW intervals in Figure 3. This is a
Spaenhauer diagram in which individual SD configurations,
with upper and lower curved envelope lines drawn, are placed
for the LW intervals centered on log LW values of 2.2, 2.5, and
2.8. A straight lower limit line at apparent magnitude B = 14 is
common to the three individual SD configurations, cutting
each configuration as shown. The volume-limited part of each
configuration is the hatched area.

Figure 3 is schematic, although it is approximately correct in
the vertical placement of the three apex magnitudes for the
three configurations, i.e., the slope of the inferred Tully-Fisher

~ relation defined by each of the apex positions is 4 mag for a
line-width interval of 0.6 dex in Figure 1. This is dM/
d log LW = 6.67, close to the observed slope in Figure 1
(S88b).

The horizontal position (i.e., the separation in redshift) of the
three apices is arbitrary in Figure 3. In practice, the redshift
separations are determined by the luminosity function of the
galaxies in the sample, giving the ratio of the number of gal-
axies at log LW = 2.8 to those at 2.5 and 2.2. These ratios
determine how much larger a volume (i.e., to what redshift)
must be surveyed to include one galaxy (i.e., at the apex) at the
particular LW for the particular SD to be plotted. But we show
later (Figs. 6 and 7; see explanation in §§ 2.5 and 2.6) that
the determination of the proper mean absolute magnitudes,

56 28 30 82 44 36 38 40 42
LOG REDSHIFT

FiG. 3.—Schematic representation of the absolute magnitude distributions
for three LW intervals as a function of redshift. Envelope lines are calculated
for the three Spaenhauer configurations shown using o(M) = 0.7 and the tem-
plate curves in Paper I (Fig. 3 there). The vertical separation of the three apex
positions is approximately 6.6 mag per dex of LW, which is close to the slope
of the TF relation in Fig. 1. The hatched areas define the distance-limited
subset of the total sample. The mean absolute magnitudes for any redshift are
defined by the curves traced by dots in each of the three configurations.
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M(m, v;, LW), needed to correct for selection bias is nearly
independent of the horizontal placements of the separate
Spaenhauer configurations.

The opening angle of each SD configuration is determined
by the dispersion a(M, LW) of the TF relation at each LW (see
Fig. 3 of Paper I). For the demonstration here we adopt a fixed
dispersion of 0.7 mag for all LWs, similar to the value deter-
mined from the data themselves in the Aaronson et al. (1982b)
sample (S88b) and in Paper III for the large Mathewson, Ford,
& Buchhorn (1992) galaxy sample.

It is seen from Figure 3 that the bias-free subsamples at each
LW (i.e., the hatched areas) occur at different redshifts for differ-
ent line widths, marked and labeled by the log v values at the
vertical lines which terminate each hatched area. This increase
of the redshift of the distance-limited subsample as the LW
increases means that the corrections for selection bias, deter-
mined by the methods of Paper I, are not only a function of
redshift but also a function of LW. Such triple-entry corrections
(i.e., they are also a function of the limiting apparent magni-
tude of the sample) have not generally been applied to any TF
samples in discussions of the Hubble constant to date and in
conclusions about putative streaming motions, claimed in the
literature as deviations from a smooth cosmological expan-
sion. It remains to be seen what effect these more detailed bias
corrections will have on such conclusions in particular cases.
However, we show in Paper III that applying the corrections
to the large sample of Mathewson et al. (1992) eliminates the
“backflow” of the putative Great Attractor by Dressler &
Faber (1990a, b) and also gives a different interpretation to the
500 km s~ ! cosmological offset obtained by Mathewson et al.
(1992).

2.4. The Two-Parameter Family of Corrections

The individual proper M(v;, LW) absolute magnitudes are
shown in Figure 3 as filled circles running with redshift in each
of the three Spaenhauer configurations. The method of calcu-
lation of these loci is the same as that developed in Paper I
(Table 1 and Figs. 4 and 5).

The M(v;, LW) loci within each of the hatched areas are
straight lines placed at the level of the apex magnitudes. All
data in the hatched areas are distance-limited. Larger redshifts
define distances where the sample is progressively more flux-
limited. The deeper cuts into each nonhatched area by the flux
limit line at B = 14 show why the proper M(v;, LW) absolute
magnitudes become brighter as v; increases.

The family of proper absolute magnitudes, M(m, v;, LW), in
Figure 4 is generated by reading each of the three curves in
Figure 3 at different redshifts, and interpolating between the
three discrete line-width configurations, giving a continuous
abscissa as the independent variable. The log redshift values
are marked inside the vertical border to the left of each curve.
The model in Figure 4 is based on the level of B;,,;, assumed in
Figure 3. Hence, these schematic model corrections are good
only for such an ideal catalog that is complete to a given
apparent magnitude (B = 14 here), and whose data conform to
Figure 2, which itself is schematic. From this it is clear why
these corrections themselves are functions of the limiting
catalog magnitude, labeled B, here. We treat a real case
using actual data later in Figures 9-13. The purpose in this
section is only to explore the predictive properties of the sche-
matic model.

Figure 4 is a Tully-Fisher diagram showing the ridge-line
correlations of the data binned by redshift. The ordinate is the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...430...13S

No. 1, 1994

T ! I T I ! l

L0GY, =4'0/
3.8

(m, v, LW) + CONSTANT
:

21
20 -
3.4
1932 1
3.0 =07
Em-1828 -
E ] ] ] | 1 |
2.2 24 2.6 2.8

Fi1G. 4—Predicted Tully-Fisher correlation as a function of redshift based
on the schematic model in Figs. 2 and 3. The mean log redshift values at the
center of each redshift interval into which the data were binned are marked at
the left of each curve. The curves are generated by reading Fig. 3. The straight
line marked “true” is the mean Tully-Fisher correlation (the ridge line) valid
for the volume-limited subsample defined by the hatched areas in Fig. 3. The
magnitudes along this line are the “apex” magnitudes, M(LW). This only
applies to the distance-limited subset of any total sample. The complete family
of curves defines the corrections needed at every line width and every redshift
to avoid errors in photometric distances due to selection bias of non—distance-
limited subsets of a total sample.

proper mean absolute magnitude that is valid for a subsample
that has the mean redshift labeled for each curve, for various
line widths (abscissa). The line labeled “true” is the ridge-line
TF correlation for the distance-limited part of the sample! (i.e.,
within the hatched areas of Fig. 3). The proper mean absolute
magnitudes to be used for all other galaxies in the sample,
M(m, v;, LW), are given by the other curves of the family.

Figure 4 contains the principal result we seek. It shows many
of the important aspects of the bias properties of TF samples.
For example, it explains the central effect, mentioned earlier
and discovered empirically by Kraan-Korteweg et al. (1986,
1988), that the ridge-line absolute magnitudes in the TF corre-
lation of the sample they analyzed moves brighter for increasing
redshift. It also explains the result (S88b, Fig. 9) that the lowest
redshift galaxies lie at the faintest absolute magnitudes at a given
LW in the TF relation.

The calibration of the TF ridge line using local galaxies such
as M31 and M33 (Sandage & Tammann 1976; Freedman
1990) refers only to this lowest redshift subsample (i.e., the cali-
brating sample is distance-limited) of the complete TF sample.
As said before, failure to correct the high-redshift galaxies for
the offset due to bias, now at every redshift and at each LW, will
give too large a mean Hubble constant and a fake signal that
the Hubble constant increases outward.

Figure 4 is plotted in a different representation in Figure 5,
where the abscissa is redshift and the generator of the curves is
log LW. Figure 5 is an easier diagram from which to read, by

! The distance-limited regime of any catalog can always be identified in any
sample by drawing individual Spaenhauer diagrams for each line width and
constructing the envelope lines and the flux limit line to find their intersections
empirically, defining the hatched area. All galaxies within that area define a
bias-free, distance-limited subsample of any particular catalog. The method is
used later in Figs. 9 and 10 (see § 3) and extensively in Paper III.
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F1G. 5—Same as Fig. 4, but in the different representation of the series of
Spaenhauer diagrams for different line widths. The diagram shows the predic-
tions from the schematic model of Figs. 2 and 3. The diagram using real data is
Fig. 13.

interpolation, the needed bias-free absolute magnitudes.
Figure 5 is the double-entry (redshift, LW) equivalent of Table
1 of Paper I for this specific schematic model with By;,;, = 14
and o(M,) = 0.7 mag.

2.5. The Insensitivity of the Corrections to the Placement of the
Spaenhauer Configurations in Figure 3

As mentioned earlier, the horizontal placement of the apex
positions of the individual Spaenhauer configurations in
Figure 3 is determined by the ratios of the number of galaxies
in a volume-limited sample in each of the LW intervals. This is
given by the luminosity function because the line widths are
related, to within the scatter, to absolute magnitudes by the
Tully-Fisher ridge-line correlation itself. We now explore the
sensitivity of the correction curves in Figures 4 and 5 to the
horizontal placement of the apices in Figure 3.

An extreme example of the placement is shown in Figure 6,
where the redshifts of the apices are assumed to be the same at
log v = 2.7 for the three LW intervals. The ridge lines (the
mean TF relation) at every redshift, read from Figure 6, are

o
S
I

®
T

1 | 1
32 34 36 38 40 42
LOG REDSHIFT
FiG. 6.—Same as Fig. 3 in principle, but with a different assumption for the

horizontal placement of the three schematic Spaenhauer configurations for the
three marked line widths.
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FiG. 7—Same as Fig. 4, showing the required absolute magnitudes needed
to avoid errors in photometric distances due to selection bias, but for the
configurations set out in Fig. 6, based on the model in Figs. 2 and 6. Figs. 4 and
7 are nearly the same, for the reason discussed in the text.

shown in Figure 7 in the same way that Figure 4 was derived
from Figure 3.

As in Figure 3, the hatched areas in Figure 6 show the
volume-limited subset of the total sample for each LW interval.
The redshifts at this transition are nearly the same in Figure 3
and in Figure 6 at the same respective LW intervals, shown by
the markings of the transition redshifts in the two diagrams.

Nevertheless, the fraction of the total sample at a given LW
that is volume-limited is larger in Figure 6 than in Figure 3
because of the relation of the positions of the lower envelopes
to the flux limit line at B = 14. Study of the geometries of each
diagram shows why this is so.

The consequence is that the mean absolute magnitudes at
each redshift for each interval of LW, shown by the loci
marked by the black dots, are very nearly the same in both
Figures 3 and 6. Hence, the corrections in Figure 5 are nearly
independent of the horizontal placement of the individual
Spaenhauer configurations in Figures 3 and 6, and therefore
are nearly independent of the luminosity function. Said differ-
ently, the correction curves in Figure 5 also nearly satisfy the
data in Figures 6 and 7, showing why Figures 4 and 7 are
nearly identical.

2.6. The Apparent Hubble Constant as a Function of Redshift
and LW if the Bias Corrections Are Ignored

The curves in Figures 4 and 7 are summarized in Table 1,
which lists the proper absolute magnitude M(v;, LW) that must
be used to avoid bias at every redshift and at every LW. These
absolute magnitudes are determined for this specific schematic
model whose My(LW) absolute magnitude zero points [and
a(M) values] are shown in Figures 3 and 6.

Table 1 is constructed by reading Figure 4, based on Figure
3. It is important to note that the equivalent of Figures 3 and 4
must be generated from each sample of real data, as illustrated
in § 3 for the Aaronson et al. (1982b) sample.

The entries in Table 1A for the lowest three redshift intervals
(log v = 2.8, 2.9, and 3.0) are the apex magnitudes, M (LW), of
each individual Spaehauer diagram at the different LW values.
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TABLE 1A

Bi1AS-FREE M(v;, LW) ABSOLUTE MAGNITUDES FOR THE MODEL
IN FIGURES 3 AND 4

log LW

log v; 22 23 24 2.5 2.6 2.7 2.8

28.... —1800 —1860 —19.30 —20.00 —-20.60 -—21.30 —22.00
30.... —1826 —1880 —19.40 —2000 -—20.60 —22.38 —22.00
32.... —1880 -—19.10 —19.55 -2000 —20.60 —21.30 —22.00
34.... —1960 —1978 —2000 -—2030 —20.80 —21.40 -—22.00
36.... .. —20.65 —20.83 -—-2100 -21.30 -21.70 -—-22.15
38.... ... —21.50 —-21.72 —-2200 -—-2225 -—22.60
40.... —2250 —2268 —2290 —23.20

TABLE 1B

CORRECTIONS NEEDED TO M ,(LW) T0 AvoID
SELECTION Bias

log LW

log v; 22 24 26 2.8
2.8 cinen. 0.00 0.00 0.00 0.00
30 ... 0.26 0.10 0.00 0.00
32, 0.80 0.25 0.00 0.00
34.......... 1.60 0.70 0.20 0.00
36.......... 1.53 0.70 0.15
38 e, .. 2.20 1.40 0.60
40.......... ... e 2.08 1.20

TABLE 1C

APPARENT HUBBLE CONSTANT IF BiAs
CORRECTIONS ARE NOT APPLIED

log LW

log v, 22 24 26 28
28 i 50 50 50 50
30........ 56 52 50 50
320l 72 56 50 50
34, 105 69 55 50
36..ccnnnn . 101 69 54
38.iiiiin. . 138 95 66
40.......... . 132 87

We emphasize again that these data refer only to the volume-
limited subset of the complete sample.

The bias corrections that must be applied to the M (LW)
magnitudes at larger redshifts are obtained from Table 1A by
subtracting all other entries from the values in the top row, as
listed in Table 1B. These are the magnitude differences in
Figure 4 between the TF calibration for the volume-limited
sample, marked “true” in Figure 4, and the ridge-line curves at
each larger redshift and at every LW.

Systematic errors in a distance scale that result by failing to
apply Table 1A will translate to errors in the derived Hubble
ratios as A log H = 0.2 AM. Adopting a local value for H, of
50 km s™! Mpc™! gives the incorrectly derived (apparent)
values of H listed in Table 1C and shown in Figure 8, if the bias
corrections are ignored.

Note that for any redshift greater than log v = 2.8, the
uncorrected Hubble constant will be multivalued, depending
on both line width and redshift. This is the decisive signal that
observational bias is present. Said differently, if bias is present,
the apparent value of the calculated mean value of the Hubble
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[T I ' 1 i 1 ! ] multivalued at each redshift and LW in the absence of bias

o 20k LOGLW 22 24 26 28 | corrections. The vehicle of demonstration is the Spaenhauer

Tr = diagram. Both the B- and H-band photometric data are
0 B ] analyzed in this way.

o 1.8} — Figure 9 shows four typical SDs where absolute magnitudes,

b i i calculated from redshift distances using H, = 50, are plotted

against log redshift. The galaxies in these subsamples are of

1.6 | | . | , | . — course, spirals and cover a large range of Hubble types along

3.0 3.4 3.8 4.2 the spiral sequence. The absolute magnitudes are on the By

LOG REDSHIFT system, and have been corrected for Galactic absorption and

F1G. 8—Apparent value of the log Hubble constant on the arbitrary scale
of Hy =50 km s™! Mpc™"' that would be derived using the indicated line-
width intervals at each redshift if the bias corrections of Figs. 4 and 5 were not
applied. Without bias corrections, the derived Hubble constant is multivalued
at a given redshift, which is a contradiction. This is the signal that observa-
tional selection bias is present. The value log H, = 1.7 corresponds to H, = 50
kms~! Mpc™!, assumed throughout this paper.

constant will differ systematically between subsets of the total
data when analyzed separately in different bins of LW. We use
this method to show the presence of selection bias in the large
sample by Mathewson et al. (1992 in Paper III, Figs. 1 and 2).

3. APPLYING THE MODEL TO THE 308 GALAXY SAMPLE OF
AARONSON ET AL.

3.1. Explicit Method to Determine the Bias Properties
of This Tully-Fisher Field Galaxy Sample

We now analyze the data from the Aaronson et al. (1982b)
catalog shown in Figure 1. The purpose is to illustrate the
procedure and to show that the predictions of the model are (1)
verified in detail, (2) powerful in identifying the bias, and (3) an
exemplum in using the method for detecting the presence of
bias in any sample using any nonkinematic method of distance
determination.

The method for TF samples is to bin the catalog into LW
intervals and redshift and to show that the Hubble constant is

for internal self-absorption by the precepts of the RSA
(Sandage & Tammann 1981, 1987). The needed apparent B
magnitudes have been taken either from the RSA or from the
Kraan-Korteweg (1986a, b) Catalog of 2810 Nearby Galaxies.

The redshifts, v,,,, are the velocities relative to the Local
Group but corrected to the Virgocentric frame by the precepts
of the Kraan-Korteweg (KK) model using an infall velocity of
220 km s~ ! (Tammann & Sandage 1985; Sandage &
Tammann 1990). We assume a noiseless cosmological linear
expansion in the Virgocentric frame, justified in general in
Paper I, and in particular in Paper III (footnote 4) for the
approximation needed here. (Note the relation of this pro-
cedure to the problem of the CMB dipole, discussed in § 2.2
above and in § 8 of Paper III.)

The upper and lower curved envelope lines in Figure 9 have
been drawn by eye by the method of Paper I (Fig. 3). The
vertical lines divided each configuration into the distance-
limited and flux-limited regions in the usual way. The straight-
line loci for the apparent magnitude cutoffs have been
determined by a best fit to the data, again by inspection.

Arrows mark the estimated apex position for each of the
four Spaenhauer configurations. These apex absolute magni-
tudes define bias-free Tully-Fisher ridge lines that are, of
course, valid only for the distance-limited subsample of the
data. They correspond to the lines marked “true” in Figures 4
and 7.
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FiG. 9.—Distribution of calculated kinematic blue absolute magnitudes in the Aaronson et al. sample as a function of redshift and discrete intervals of log line
width, marked at the upper left of each panel. The upper and lower envelope lines are calculated by the model of Paper I (Fig. 3 and Table 1). The lower straight
apparent magnitude limit lines are drawn by eye to enclose the data. The vertical line in each panel separates the distance-limited region from the flux-limited region
that is always present at larger redshifts. The dashed lines define the empirical mean absolute magnitudes needed to calculate bias-free photometric distances.
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TABLE 2

APEX ABSOLUTE MAGNITUDES FOR NINE BiAs
CONFIGURATIONS USED IN FIGURE 11

log LW M;%(Apex)  M;P(Apex)
K —19.3 —-20.6
2425.. ...l —-19.8 —21.0
248.. i —199 —-21.7
253 i —20.2 —-223
258 i —20.8 —232
263 i —-21.0 —234
2.68.. i, —21.4 —23.8
P2 K D —21.8 —24.7
280...ccciiiiennnn. —222 —24.7

The mean absolute magnitudes, M(v;, LW), needed to obtain
bias-free magnitudes at every redshift and every line width are
shown in Figure 9 as thin dashed lines within the borders of the
configurations. In a large enough data sample, these positions
can be determined empirically by the distribution of the data
themselves, i.e., they need not be calculated from the theoreti-
cal model of Paper I (Table 1 and Fig. 4 of that paper).
However, in the present case there are too few points in the
Aaronson et al. catalog within any given LW interval to rely
entirely on the actual mean values at each redshift, as is done
strictly in Paper I1I. Hence, the placement of parts of the curves
in Figure 9, and in Figures 10 and 12 below, was partially
guided by the expectations from Figure 4 of Paper I (Fig. 4).

The individual apex M (LW) magnitudes for each LW are
determined directly from the Spaenhauer diagrams in § 3.2.
These permitted the combining of the correction curves for all
redshifts and all line widths into a double-entry correction
table (Table 3; see § 3.3).

3.2. The Bias-free Slope of the TF Correlation

The estimated apex absolute M(B) magnitudes for the nine
LW intervals, of which four are shown in Figure 9, are listed in
Table 2. Similar data for the H photometric band, determined
in the same way and illustrated by the two examples in Figure
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Mg (M) + 5 LOG (H/50)

My, (m) + 5 LOG (H/50)

20, | "

| L ]
24 26 28

LOG LW

Fi1G. 11.—a) Ridge lines of the mean Tully-Fisher correlation in the B
photometric band from the data in Table 2. The distance scale used for the
oridinate is relative, based on H, = 50. The least-squares line marked M has
the equation M};(H, = 50) = —6.86 log LW — 3.02. The ridge line for the
complete flux-limited sample, marked M(m), has the equation M3 = —6.77
log LW — 3.74, which is eq. (1) of S88b. (b) Same for H-band apex magnitudes.
The least-squares line marked M, has the equation M4(H, = 50) = —10.56
log LW + 4.37. The line marked M(m) is the mean for the entire (flux-limited)
sample. Its equation is My = —10.84 log LW + 4.82, which is eq. (2) of S88b.

10, are also listed in that table. These ridge-line, bias-free abso-
lute magnitudes are plotted in Figures 11a and 11b, and
marked M,, corresponding to the “true” lines in Figures 4
and 7.

T T L T TTT T T T T 1
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M, 1 {am,
-221 1 wH 40
o0} 1 0=0.57 |,

i toe6-270 -2
-24} [ nt 1AMy
I~ 2 + 7 + 7 40

MH I~ ‘_ + + h
ool ]

- H=11.5 _’_ 0=Om.51 ] 2
] ! | TR A N N |

I
26 2.8 3.0 3.2
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F1G. 10.—Same as Fig. 9, but for magnitudes in the H photometric band listed by Aaronson et al. (1982b). The panels at the right show the same data as those at
the left but are plotted as magnitude differences from the apex absolute magnitude. These are the differences, M(kinematic) — M(TF), between absolute magnitudes
computed from the redshifts and alternatively from the TF ridge line, i.e., using the M (LW) apex magnitudes (Fig. 11b). The dashed lines define the adopted mean

absolute magnitude corrections at each redshift.
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FIG. 12.—Mean corrections to M, for B-band magnitudes as a function of redshift for the marked LW intervals using data from the Aaronson et al. sample. These
are the real equivalents of the model expectations of Figs. 4 and 5. The ordinate is the difference between magnitudes calculated from ridge-line TF distances and from

redshift distances.

Also shown and marked as M(m) in both panels of Figure 11
are the mean lines through the entire sample in B and H as
calculated and discussed elsewhere (S88b). The equations of the
lines are given in the legend to Figure 11 and in § 6 below.

The difference between M, and M(m) in each of the panels
would, of course, be the Malmquist (ensemble) correction if the
Aaronson et al. sample had been properly selected to be strictly
flux-limited. However, the sample is not so well defined sta-
tistically because subsamples were added for vatious reasons
during the process of observation, as discussed by the authors
of the catalog. Hence, the Malmquist (ideal) equation is not
expected to apply strictly to the Aaronson et al. sample.

However, for any sample, no matter how selected, we can
always determine the bias corrections by the empirical method
set out in this paper, no appeal being needed to an analytical
formulation which necessarily depends on precepts in the selec-
tion criteria. The present method via Spaenhauer diagrams is,
then, nearly “self-revealing.”

The difference between M, and M(m) in Figure 11 varies
between 0.2 and 0.4 mag. This is approximately the Malmquist
idealized value of M, — M(m) = 1.3866(M)? if 6(M) = 0.5 mag.
But it is our contention that this dispersion, averaged over all
line widths, is too small by about a factor of ~1.5 as deter-
mined earlier from the complete sample (S88b) and justified in
§22.

An explanation of why M, and M(m) in Figures 11a and 11b
are closer together than they would be in a strictly flux-limited
sample in a space uniformly filled with galaxies and with gal-
axies whose true TFF dispersion is ¢(M) = 0.7 mag is, it would
seem, that the Aaronson et al. sample is not ideal in that way.
There clearly are too few galaxies in Figures 9, 10, and 12 at
high redshifts, showing the incompleteness of the sample at
these redshifts. The consequence is that the measured M(m,
LW) mean magnitudes are fainter in Figure 11 than they would

be for an ideal sample. If, in fact, s(true) = 0.7 mag, as derived
for the large sample in Paper I11, then the Malmquist difference
M(m) — M, would be 0.68 mag.

3.3. The Family of Correction Curves at Each Redshift
and Line Width

Figure 12 shows a sample of the individual correction curves
to My(LW) for the four LW intervals shown in Figure 9. The
data in Figure 12 are the same as those plotted in Figure 9 but
are zero-pointed for the distance-limited part of the sample, i.e.,
the curves are flat at small redshifts and are normalized to
M(TF) — M(kinematic) = 0 at these redshifts.

An important property of the curves in Figure 12 is the
progressive decrease in the slopes, d AM/d log v, of the high-
redshift parts of the M(TF) — M(kinematic) curves as the LWs
increase from log LW = 2.37 to log LW = 2.68. This behavior
is predicted by the model from Figures 4, 5, and 7, seen by
noting that at small LW (at left in the diagrams) the separa-
tions in the ordinate between the curves of constant redshift
are larger than the separations read at larger LW.2

The data conform well with this central prediction of the
model, and the result is equivalent to stating that the slope of
the TF relation itself must depend on redshift, as is explicit in
Figures 4 and 7.

2 The concomitant effect is that the slope, dM/d log LW, of the TF relation
itself for the total (flux-limited) sample will differ from the bias-free (correct)
slope, marked “true” in Figs. 4 and 7. This problem of finding the bias-free
slope from any sample has been discussed by Schechter (1980; see also Aaron-
son et al. 1982a), where he set out the method using the “inverse ” TF relation,
done by regressing LW on magnitude rather than magnitude on LW.

The conclusion by Tully (1988) that simply determining the correct (bias-
free) slope removes the bias is not correct. The bias properties within the TF
correlation remain (Figs. 4, 7, and 13) as a function of redshift. These are the
corrections we derive here.
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F1G. 13.—Summary of the empirical corrections to M,(LW) for each LW
interval at each redshift from data in the Aaronson et al. sample, determined
by reading the mean curves in the H band similar to those in Fig. 9. The shapes
of these curves derived from actual data agree with the model expectations in
Fig. 5.

Figure 13 shows the result of combining the separate correc-
tion curves for the actual Aaronson et al. data, and using the
apex M, magnitudes defined by the least-squares solution of
Figure 11a (i.e., the Table 2 values) to set the zero points along
the ordinate. The mean log LW values are marked at the right
of each curve.
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The similarity of the curves in Figure 13 determined from
the data to those in Figure 5 from the schematic model is excel-
lent, and is clearly a test of the model.

The corrections in B, read from Figure 13, are listed in Table
3. Similar correction curves in H, calculated in the same
manner using all the Spaenhauer configurations in H (Fig. 10,
for example) are given in Table 4.

4. EFFECTS OF THE CORRECTIONS ON THE
HUBBLE CONSTANT

Failure to apply the Figure 13 corrections has the conse-
quences for the Hubble constant discussed in Paper I (see Figs.
12 and 13 there). Figure 8 here shows the model expectations
for the value of H, using the TF method. Figure 14 shows the
actual B-band H ratios calculated galaxy by galaxy from the
Aaronson et al. sample for galaxies within the log LW interval
from 2.35 to 2.39. The data are the same as those in the upper
left-hand panel of Figure 9.

The upper panel in Figure 14 shows the apparent increase of
{H) with increasing redshift beyond log v = 3.0. The lower
panel with its guiding limit lines shows the effect of selection
bias. Note that the lower panel in Figure 14 is a different
representation of the Spaenhauer diagram of Figure 9.

The mean line through the data in Figure 14, beginning at
the apex and remaining flat until log v = 3.0, is the mean
absolute magnitude line in Figure 9, multiplied by 0.2 and
arbitrarily zero-pointed to give H, = 50 (log H, = 1.7) at the
apex. The selection bias due to the flux limitation at B = 13.5is
clear for redshifts larger than log v,,, = 3.0.

TABLE 3

BIAS-FREE ABSOLUTE Mz MAGNITUDES TO BE USED WITH THE AARONSON ET AL. SAMPLE TO AVOID SYSTEMATIC ERRORS
IN PHOTOMETRIC DISTANCES

log LW
log v; 2.37 2425 2.48 2.53 2.58 2.63 2.68 2.73 2.80
A. B-Band Absolute Magnitude Differences from M ,(LW)
2.8 i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
29 i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3l 0.31 0.27 0.22 0.18 0.14 0.10 0.06 0.02 0.00
320 0.67 0.59 0.48 0.44 0.40 0.34 0.28 0.20 0.14
33 1.12 1.02 0.89 0.80 0.70 0.62 0.50 0.39 0.29
34, 1.52 1.38 1.27 1.12 1.03 0.89 0.77 0.64 0.48
35, 1.77 1.62 1.47 1.32 1.20 1.00 0.82
B. B-Band Absolute M(v;,, LW) Magnitudes
Apex .......... —19.28 —19.66 —20.03 —20.38 —20.72 —21.06 —21.40 —21.75 —22.23
28 i —19.28 —19.66 —20.03 —20.38 —20.72 —21.06 —21.40 -21.75 —22.23
29 i, —19.28 —19.66 —20.03 —20.38 -20.72 —21.06 —21.40 —21.75 —2223
30 i —19.28 —19.66 —20.03 —20.38 —-20.72 —21.06 —21.40 —21.75 —22.23
3l —19.59 —19.93 -20.25 —20.56 —20.86 —21.16 —21.46 —21.77 —22.25
32 —19.95 -20.25 —20.51 —20.81 —21.12 —21.40 —21.68 —21.95 —22.37
33 —20.40 —20.68 —20.92 —21.18 —-21.42 —21.68 —21.90 —22.14 —22.52
34, —20.80 —21.04 —21.30 —21.50 —-21.75 —-21.95 -22.17 —22.39 —22.71
35 —21.80 —22.00 —22.19 —22.38 —22.60 -22.75 —23.05
C. Apparent Hubble Constant if B-Band Bias Corrections Are Not Applied

2.8 i 50 50 50 50 50 50 50 50 50
29 i, 50 50 50 50 50 50 50 50 50
30 .t 50 50 50 50 50 50 50 50 50
3l 58 57 55 54 53 52 51 51 50
320 68 66 63 61 60 59 57 55 53
33 84 80 76 72 69 67 63 60 57
34, 101 95 90 84 80 76 71 67 63
35 . 113 106 99 92 87 79 73
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¥ TABLE 4
1
:% BIAS-FREE ABSOLUTE M ;; MAGNITUDES TO BE USED WITH THE AARONSON ET AL. SAMPLE TO AVOID SYSTEMATIC ERRORS
RI‘: IN PHOTOMETRIC DISTANCES
1
?c: log LW
log v; 2.37 2.425 2.48 2.53 2.58 2.63 2.68 2.73 2.80
A. H-Band Absolute Magnitude Differences from M ((LW)
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3l 0.12 0.11 0.08 0.07 0.06 0.05 0.02 0.00 e
320 0.36 0.27 0.24 0.22 0.17 0.12 0.11 0.04 0.00
33 0.73 0.64 0.53 0.48 0.41 0.32 0.27 0.21 0.12
340 1.11 1.04 093 0.83 0.70 0.58 0.47 0.38 0.20
35 1.50 1.25 1.13 0.90 0.77 0.55 0.30
B. H-Band Absolute M(v;, LW) Magnitudes
Apex.......... —20.66 —21.24 —21.82 —2235 —22.87 —23.40 —2393 —24.46 —25.20
28 —20.66 —21.24 —21.82 —2235 —22.87 —23.40 —2393 —24.46 —25.20
29, i —20.66 —21.24 —21.82 —2235 —22.87 —23.40 —2393 —24.46 —25.20
30, —20.66 —21.24 —21.82 —2235 —22.87 —23.40 —2393 —24.46 —25.20
KT P —20.78 —21.35 —21.90 —2242 —22.93 —23.45 —23.95 —24.46 —25.20
320 —21.02 —21.51 —22.06 —22.57 —23.04 —23.52 —24.04 —24.50 —25.20
33 —-21.39 —21.88 —22.35 —22.83 —2328 —23.72 —2420 —24.67 —25.32
340 —21.77 —22.28 —22.75 —23.18 —23.57 —23.98 —24.40 —24.84 —25.40
35 —23.32 —32.60 —24.00 —2430 —24.70 —25.01 —25.50

Figure 15 shows the same effect of an apparent increase of
H, outward, again for B magnitudes, but now for the larger
line-width interval between log LW values of 2.66 and 2.70.
The slope of the apparent increase log H with redshift is now
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F1G. 14—Top: Apparent variation of the log Hubble constant with
increasing redshift for galaxies in the Aaronson et al. sample with line widths in
the interval of log LW from 2.35 to 2.39, using only the M, apex absolute
magnitude at all redshifts in the calculation of photometric distances. Bottom:
Same data points as above, but with limit lines calculated in an obvious way
from the upper left-hand panel of Fig. 9. The apparent increase of H outward is
not real but is due to observational selection bias. Data that would be to the
right of the B = 13.5 limit line are not in a flux-limited catalog that has this
apparent magnitude limit. Therefore, the mean value of H,, is biased in this
region.

much smaller than in Figure 14, as predicted from the model
(explained in § 3.3) and shown above in Figure 8. As before, the
reason is the difference of slopes of the curves in Figures 4 and 7
between small and large LW at different redshifts.

The curves from the bottom panels of Figures 14 and 15,
combined with other similar data and averaged, are shown in
the composite summary in Figure 16 of how the calculated H,,
depends on redshift and LW for uncorrected data. The com-
parison with the expectation diagram from the model in Figure
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FiG. 15.—Same as Fig. 14, but for the log LW interval of 2.66-2.70. Note
the smaller slope than that in Fig. 14.
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FiG. 16—Apparent Hubble constant for the three LW intervals whose
central values are marked, using the uncorrected Aaronson et al. sample in the
manner of Figs. 14 and 15. Agreement of this diagram with the predictions of
the model in Fig. 8 is excellent.

8 shows excellent agreement. The multivalued apparent
Hubble constants constitute the contradiction that is the signal
that selection bias exists in the sample. This is the general test
for the presence of bias that can be used in any sample and
with any avowed method of distance determination.

5. COMPARISON OF DISTANCE SCALES

An equivalent way of showing the bias is to compare dis-
tance scales directly in distance-distance diagrams, with and
without the bias corrections of Tables 3 and 4.

Figure 17 shows the photometric distances for galaxies in
the Aaronson et al. sample in the log LW interval of 2.66-2.70.
The abscissa shows distances using absolute blue magnitudes
that have been fully corrected via Table 3. The ordinate gives
similarly corrected H-band distances using the corrections in
Table 4 for the same galaxies. The zero points for the relative
scales are arbitrary, based, as before, on an assumed Hubble
constant of H, = 50 km s~ Mpc™1.

The very small scatter in Figure 17 shows that distances
determined from blue magnitudes are as accurate as those
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F1G. 17—Comparison of B-band and H-band photometric distances for
galaxies in the Aaronson et al. sample in the log LW interval from 2.66 to 2.70.
The fully corrected B-band distances are determined using the correction
curves in Fig. 13. Fully corrected photometric H-band distances are deter-
mined using a similar family of correction curves from Table 4 for H-band
magnitudes.
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determined from H magnitudes, belying the criticism that B-
magnitude distances are unreliable owing to putative severe
internal absorption problems. Indeed, one of the chief advan-
tages of the blue TF relation (Fig. 11a) is its considerably shal-
lower slope than the relations in photometric bandpasses
further to the red. Hence, an error in the inclination correction
is much less important, a point often made by others (cf. Bot-
tinelli, Gouguenheim, & de Vaucouleurs 1983) but also often
refuted (we believe incorrectly) in much of the literature on TF
distances.

Figure 18 (top) shows the fully corrected blue distances
(abscissa) using the Table 3 (Fig. 13) corrections compared with
uncorrected distances calculated by using the fixed absolute
magnitude, M, defined by the ridge-line curve in Figure 11a
(which is, of course, the usual, incorrect, way of applying the
TF method) for the same galaxies as in Figure 17. The biased
scale of the ordinate becomes progressively shorter with
increasing true distance. The deviation starts at about 25 Mpc
(on the scale where H, = 50), i.e., just beyond the Virgo Cluster
at a distance modulus of m — M = 31.7.

The corrected B distance scale is compared in Figure 18 with
the distances determined by Aaronson et al. in column (10) of
their Table 3, relative to the distance of the Virgo Cluster. To
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FiG. 18—Top: Fully corrected B-band distance scale (abscissa) for the
Aaronson et al. sample in the log LW interval of 2.66—2.70 compared with the
distance scale (ordinate) that would have been obtained by using a fixed M,
apex absolute magnitude of —21.2 (from Fig. 11a) for this LW inteval at all
redshifts, i.e., with no bias corrections. The units are log distance in Mpc, based
on H, = 50. Beyond 15 Mpc the distance scale along the ordinate becomes
progressively, and incorrectly, compressed due to selection bias. Bottom: The
abscissa is the same as in the top panel. The ordinate shows the uncorrected
distances listed by Aaronson et al. (their Table 3) based on a Virgo Cluster
distance of 22 Mpc. The systematic compression of their distance scale due to
selection bias leads to an incorrectly large Hubble constant.
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compare their distances with our arbitrary scale, we adopt the
distance to Virgo to be 22 Mpc (Sandage & Tammann 1990),
consistent with our input value of H, = 50. The resulting
“absolute Aaronson” distances are plotted as ordinate. The
compressed Aaronson et al. scale gives too large a value of H,
because the biased distances are too small.

6. THE ABSOLUTE VALUE OF THE HUBBLE CONSTANT

The encomiums abroad that the Tully-Fisher method gives
the strongest evidence for the short distance scale (Jacoby et al.
1992; van den Bergh 1992) are incorrect. Various TF data can
be made to argue either the long or the short distance scale,
depending on the sample and on the precepts. We show in this
section how extant TF data require the long scale with H, ~
50 (egs. [3] and [6]).

Only six directly calibrated galaxies exist with adequate line-
width data and Cepheid distances in the B photometric band,
as set out in Table 5. The data are updated from those used by
Sandage & Tammann (1976) and those listed in S88b (Table 3).
The data here are based on the new Cepheid distance of
m — M = 27.7 for M81 (Freedman & Madore 1988; Freedman
et al. 1994, verifying the value used in Sandage & Tammann
1981 but showing that the speculation by Sandage 1984 is
incorrect), and m — M = 26.66 for NGC 300 (Freedman et al.
1992).

Five calibrating galaxies exist in the H band (Freedman
1990, Table 1). The number is too small to control systematic
errors in a zero-point calibration to +0.2 mag, required to
know H,, to within 10%. The standard deviation of the five (or
six) calibrators about the TF ridge line is small at a(M ) = 0.15
mag in H (Freedman 1990) and 0.22 mag in B (Sandage &
Tammann 1976 and Table 5 here), whereas the true dispersion
of large TF samples is at least 0 = 0.7 magin B (§ 2.2), 6 = 0.6
mag in H, and ¢ = 0.6 mag in I, determined here and in Paper
IIL

6.1. The Absolute Calibration in B

The six calibrators used in S88b are listed in Table 5,
updated as described in the preceding paragraphs.

A calibration that is much stronger in principle was made by
Richter & Huchtmeier (1984, hereafter RH84), based on 64
galaxies in seven nearby groups whose distances are presumed

TABLE SA

CALIBRATION FOR THE TF RELATION IN THE B PHOTOMETRIC BAND

Galaxy (m — M), Lw log LW My,
M3l 24.12 548 2.739 —2141
NGC300 .............. 26.66 221 2.344 —18.35
M33 .. 24.7 236 2.373 —19.01
1Y €3 R 277 498 2.697 —20.69
MIOL....oovviiiiennn 29.2 580 2.763 —-21.31

TABLE 5B
FREEDMAN’S TF CALIBRATION FOR H-BAND MAGNITUDES
Galaxy (m — M), log LW My
M31 oo 24.4 2.737 —23.49
NGC300 .......coeevveneennn.. 26.66 2371 —19.66
M33 24.5 2.403 —20.12
NGC2403 .......evvvenennnn. 27.5 2.486 —21.05
MBI o 27.6 2.724 —2322
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known by classical means. The aggregates are the Local Group
and the groups associated with M81/NGC 2403, M101, the
CVn I group (containing NGC 4395 and IC 4182), the Cen A
group, the Sculptor group, and the CVn II group.

The samples are very nearly complete, based on exhaustive
surveys for the group contents in the well-known classical liter-
ature (e.g., Holmberg 1950; de Vaucouleurs 1975; Kraan-
Korteweg & Tammann 1979, hereafter KKT). The group
distances were based on Table 2 of the first edition of the RSA
(Sandage & Tammann 1981, hereafter RSA1), most of which
are derived from Cepheid distances. RH84 adopted the m — M
distance moduli as 27.76 for the M81/NGC 2403 group, 28.76
for CVn I, for M101, and 27.76 for Sculptor. Their finalm — M
absolute distance moduli, derived by reading their final cali-
brated TF relation back through itself, are 27.6 for M81/NGC
2403, 28.2 for CVn I, 29,1 for M101, and 27.2 for Sculptor. The
agreement of these numbers is excellent with the current
Cepheid distance moduli of m — M = 27.6 for M81/NGC 2403
(Tammann & Sandage 1968; Freedman & Madore 1988), 29.4
for M101 (Cook, Aaronson, & Illingworth 1986), 28.4 for IC
4182 in CVn I (Sandage et al. 1992), and 26.66 for NGC 300 in
the Sculptor group (Freedman et al. 1992, but note also that
NGC 300 is the closest in the Sculptor group as set out in
Table 2 of RSA1).

The conclusion is that the scale adopted by RH84 is within
0.1 mag of the current local Cepheid distance scale. Therefore,
their calibration is very much stronger than that based on
Table 5 alone for B magnitudes or on Table 1 of Freedman
(1990) for H magnitudes.

The second most satisfactory feature of the RH84 cali-
bration is that the intrinsic dispersion of the calibrators about
the mean line is 0.74 mag, close to what we expect from the
external relative data as described earlier.

The absolute calibration in B adopted by RH84 is

M3 =(—71+02)logLW,, — 212 +0.10, (1)

where the LW is read at the 20% level and where the B magni-
tudes are corrected for Galactic and internal absorption by the
precepts of RSA1, column (15).

Comparison of equation (I) with Table 5 shows that the six
calibrators define a zero point that is 0.32 mag fainter than
equation (1), suggesting their unfairness as a sample. With so
few galaxies in the presence of the high intrinsic dispersion of
(M) = 0.74 mag, a deviation of 0.32 mag in the average value,
using only five objects, would only be a 1 o deviation from the
“true” calibration.

6.2. The Absolute Hubble Constant Using V arious Calibrations
6.2.1. H, Using the Distance-limited KK'T 500 km s~ ! Local Sample

Clearly, equation (1) is the best available calibration of the
TF ridge line based on a distance-limited, unbiased sample,
based as it is on so much fundamental data, mostly calibrated
by Cepheids. The best sample with which to use this cali-
bration is the distance-limited 500 km s~! catalog of nearby
galaxies by KKT. No corrections of any kind are needed for
observational selection bias because both the catalog and the
calibration are based on distance-limited samples.

Huchtmeier & Richter (1986, hereafter HR86) have obtained
radio line-width data for most of the KKT sample. The 21 cm
line widths were reduced to edge-on orientation using the incli-
nations listed by HR86. The data are listed in detail elsewhere
(S88b, Table 2), with fully corrected redshifts and My absolute
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magnitudes calculated from the redshift distances for the 26
suitable galaxies in the KKT sample. The distance scale used
to calculate My magnitudes is, again, arbitrarily based on
HO = 50.

The KKT field galaxy data are plotted in Figure 19 together
with the six calibrating galaxies from Table 5. The least-
squares ridge line for the distance-limited 26 field galaxy
sample has the equation

MY = —7.416log LW, — 1.239 + 0.15, ©)

which is equation (7) of S88b. The dispersion about this line of
(M) = 0.74 mag is identical to o(M) for the calibrating gal-
axies, and is close to what we have obtained from Figure 1 and
what will be obtained in Paper III for the Mathewson et al.
(1992) sample.

Applying equation (1) for the absolute calibration to equa-
tion (2), which is based on the arbitrary kinematic distance
scale of H, = 50, gives a correction to this arbitrary scale of
0.09 mag, the calibration (eq. [1]) being brighter. Hence, apply-
ing a 0.09 mag correction to equation (2) in order to put the
M} values on the RH84 calibration gives

Hy=48+5kms™ ! Mpc™*. 3)

The error is calculated as if the zero points in equations (1) and
(2) are uncertain by 0.15 and 0.1 mag, respectively.

Had we used the calibration from Table 5 rather than the 64
galaxy calibration of RH84 (eq. [1]), we would obtain

Hy=56+5kms ! Mpc™!, @

which is higher than equation (3) because the six individual
galaxies average 0.32 mag fainter than the calibration of equa-
tion (1).

n
M
T
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(=]
!
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Mgoi AS IF Hy =50

22 24 26 28
LOG (LW)J; o

FiG. 19.—Tully-Fisher relation using fully corrected redshifts and line
widths for the 26 suitable galaxies in the KKT 500 km s~ ' distance-limited
sample. The 21 c¢m line-width data are from Huchtmeier & Richter (1986). The
ridge line is eq. (2) of the text. The envelope lines are placed at +1.5 ¢ = 1.05
mag from the ridge line. The six local calibrators from Table S are indicated.
The zero point of the ordinate is based on an arbitrary Hubble constant of
H, = 50 and a noiseless linear redshift-distance relation for the 26 sample
galaxies. Any difference between the calibrators and the field galaxies signals
either (1) a difference between H, = 50 and the actual H,, value or (2) a system-
atic error in the mean (M) value of the calibrators due to the small sample.
H, ~ 85is not supported by these data.
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6.2.2. H,fromthe B-Band Aaronson Sample
The equation of the ridge line in Figure 1 is

MYi= —6.77 log LW, — 3.74, )

as given by equation (3) in S88b, again on the zero point based
on redshift distances with H, = 50.

The Hubble constant found by comparing equation (5) with
the RH84 calibration of equation (1) is not straightforward
because the Aaronson et al. sample that gives equation (5) is
fully Malmquist-biased.

Comparing equation (1) with equation (5) over the log LW
range from 2.2 to 2.8 shows an absolute magnitude offset of
0.78 mag, equation (5) being brighter. If (a) the dispersion is
a(M) = 0.74, given by the RH84 calibrating sample and by the
other TF data we discussed earlier and will discuss in Paper
III, and (b) the sample from Figure 1 is ideally complete to a
given flux limit (known not to be precisely true), then applying
the classical Malmquist correction of My, — M(m) = 1.386
o(M)? = 0.76 mag would leave the Figure 1 data, corrected for
bias, too bright by 0.02 mag relative to the arbitrary distance
scale based on H, = 50. The result, corrected in this way for
bias using 6(M) = 0.74 mag, is then

Hy=51kms ! Mpc~!. (6)

On the other hand, if the true dispersion is o(M) = 0.64 mag
as in Figure 1, then the bias correction is reduced to 0.57 mag
(S88b), giving

Hy=55kms ! Mpc™!, )

again using the absolute calibration of RH84 (eq. [1]).

A second method is to use that portion of the total Aaronson
et al. sample in B that is unbiased. This is the subsample that
defines the M, ridge line in Figure 11a using the apex magni-
tudes of the individual Spaenhauer diagrams for the various
line widths. The equation of the ridge line using data in Table 2
is

MY = —6.86 log LW,, — 3.02 . ®)

Applying the RH84 calibration of equation (1) to equation (8)
over the relevant log LW range gives a correction of 0.29 mag,
the RH84 calibration being fainter, giving

Hy,=57+5kms ! Mpc™*. )

Finally, we could use only the six B-band calibrators in
Table 5 with equation (8) for the unbiased part of the Aaronson
et al. sample. Because these calibrators average 0.32 mag
fainter than the RH84 calibration in equation (1), equation (9)
becomes

Hy=66kms ! Mpc™!. (10)

This is the least probable of the calibrations because, as we
have argued, the six calibrators are probably too faint.

Note that all of the blue-band data with the highest weight
give Hubble constants (eqs. [3], [6], [7], and [9]) that support
the long distance scale. This fact was not emphasized in the
summaries of Jacoby et al. (1992) and van den Bergh (1992).
But what they do set out is the contrary conclusion based on
the H-band data, which we now discuss.

6.2.3. H,from the H-Band Aaronson Sample
Freedman (1990) lists the five fundamental calibrators in H.

These can be used in two ways with the Aaronson H-band
data.
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1. The ridge line in Figure 11b for the distance-limited sub-
sample using the apex absolute magnitudes has the equation

MYH = 50) = —10.56 log LW, + 437, 11)

based on redshift distances with the arbitrary value of Hy, = 50.
This equation predicts My magnitudes for the five fundamen-
tal standards that average 0.99 mag brighter than the values
listed by Freedman, requiring a change in the calculated zero
point of the adopted redshift distances by a factor of antidex
(0.99/5) = 1.58, giving a Hubble constant of Hy = 79 km s !
Mpc~! (see also S88b). However, if the mean of this calibrator
is too faint by 0.32 mag as we suspect for the B band, this value
would be reduced to

Hy=68kms ! Mpc™!. (12)

2. The ridge line for the total Aaronson sample (Fig. 11b,
dashed line) has the equation

My, = —10.84 log LW, + 4.82 (13)

from equation (2) of S88b, again on a distance scale with H, =
50. The five calibrators of Freedman average 1.25 mag fainter
than is predicted for them using equation (13). This is reduced
to 0.93 mag if again the calibrators are 0.32 mag too faint.

However, this sample carries the total Malmquist bias
because it is not distance-limited. If (M g) = 0.56 as calculated
in S88b for the Aaronson H-band sample, then the Malmquist
ensemble correction is 0.43 mag. Hence, the distance-scale cor-
rection is 0.93 — 0.43 = 0.50 mag via this route, or

Ho=63kms ! Mpc!. (14

In summary, all B-band distances support the long scale
(Hy < 60). All H-band distances require H, < 80, or, after
zero-point correction of the calibrators, H, < 70. Hence, the
TF relation using field galaxies does not in any of the cases
support the short distance scale (H, > 80), whereas all of the
B-band TF data require the long scale with Hy ~ 50 km s ™!
Mpc~ ! (Fig. 19).

7. DISCUSSION AND CONCLUSIONS

Arguments in criticism of Paper I, of the present paper, and
of Paper III will be of two types:

A. The method of correcting for bias via the Spaenhauer
diagrams will be argued to be circular—the derived corrections
to absolute magnitudes being nothing more than what is
required to maintain an assumed linearity that itself has been
put in the model ab initio.

B. The methods to obtain H, in § 6 will be argued to be
unreliable because they are based on field galaxy samples
rather than “cluster” and “group” samples which show
putative much smaller dispersions for the derived Tully-Fisher
correlation. Because of this, it will also be claimed that the
corrections set out in Tables 3 and 4 are gross overestimates
because large enough peculiar motions exist to cause the red-
shift distances to have large individual errors, spuriously
producing the large dispersions of (M) > 0.6 derived here and
previously (S88b).

7.1. Circularity?

Have we committed circular reasoning by requiring a noise-
less linear redshift-distance relation and then calculating the
photometric bias corrections (Table 1 of Paper I and Tables 3
and 4 of this paper) to make it so? The problem is discussed in
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different terms in § 2 of Paper I and in § 7.2, footnote 4, and § 8
of Paper IIL It is shown in both places that the criticism is
incorrect.

1. From many experiments cited previously it is known that
the global redshift-distance relation is linear to as high an
accuracy as we can measure it. This is better than +2%
(globally) for the exponent n=1 in v ~r" (Sandage,
Tammann, & Hardy 1972; Lauer & Postman 1992; Jerjen &
Tammann 1993). It is, of course, true that a streaming motion
has been discovered via the 600 km s~ ! dipole of the cosmic
microwave background, showing a relatively local (v < 4000
km s~ ') perturbation of an ideal Hubble flow, but only in a
particular direction of the sky, defining the kinematics of the
“local region” related to the direction of the CMB (see Paper
III for the model).

2. The systematic cosmological expansion begins just
beyond the local Group, and has a random velocity com-
ponent that has ¢ < 50 km s ™! Mpc ™! about the Hubble flow
locally (Sandage 1986, Figs, 7,9, and 10; Sandage 1987, Figs. 1,
5, and 6).

3. The large dispersion in absolute magnitude (at a given
line width) obtained when using redshift distances is not an
artifact of incorrect cosmological redshifts that would be
induced by large pecular motions. As discussed in § 2.2, the
signature in a Spaenhauer diagram of any real velocity anom-
alies due to peculiar motions would be a high dispersion in the
derived absolute magnitude at low redshift, becoming smaller
at high redshifts; ie., Av/v, becomes smaller. This is the
opposite of what is observed. The envelope lines that enclose
the data in the Spaenhauer configurations of Figures 9 and 10
in § 3 open outward with increasing redshift.

4. The model accounting for selection bias derived in this
series gives predictions concerning the nature of the absolute
magnitude corrections at each redshift, at each line width, and
at each arbitrary cut in the apparent magnitude limit of a
flux-limited catalog. These predictions are consistent with the
observations in every detail (Figs. 4, 7, 8, 14, 15, and 16, and
Fig. 5 compared with Fig. 13), giving a picture with no contra-
dictions. Furthermore, the same model also explains the sys-
tematics in the TF relations at each line width and redshift of
the very large TF sample of Mathewson et al. (1992) discussed
in Paper IIL It is (a) the consistency of the models, (b) their
predictive power concerning the observations, fully verified, (c)
the detailed systematics of the variation of the biased apparent
Hubble constant changes with redshift and with line width
(e.g., Figs. 2 and 3 of Paper III), and (d) the knowledge from
external sources that the redshift-distance relation is linear that
ensures the noncircularity of the argument here.

7.2. Status of the Tully-Fisher Method for Determining H, and
Deviations from a Noiseless Hubble Flow

The purpose of § 6 is not only to obtain a reliable value of H,
per se but also to demonstrate that values of the Hubble con-
stant via the TF method can be derived that support either the
long or the short distance scale, depending on the adopted
precepts. It is, therefore, incorrect to state that the Tully-Fisher
method provides decisive proof for the short scale with
H, ~ 85(Jacoby et al. 1992; van den Bergh 1992).

It has been emphasized that the bias corrections, derived
from these methods, vary with the limiting magnitude of each
catalog. They must, therefore, be determined anew for each
catalog from its internal properties. Failure to do so will
produce systematically incorrect photometric distances that
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Fr’_: will cause false conclusions concerning the nature of the veloc-

ity field within the range of the catalog. One of the conse-
quences is an apparent, but incorrect, increase of the Hubble
ﬁ: constant outward. Potentially even more serious are the claims
5. for large streaming motions superposed on the cosmological

1 Y . . . .
L expansion field, found by comparing derived photometric dis-
tances with redshift distances and interpreting the differences
asreal.

It is our thesis that the bias properties of each sample must
be investigated by methods that use data inherent in the
Spaenhauer diagrams themselves. Until then, claims of stream-
ing motions will remain unproved until it is shown that the
photometric distances have greater systematic accuracies than

them are real. A further discussion of streaming motions, real
and artificial, is given in Paper III (§ 8).

The first drafts of this paper were written while the author
was a visitor at the Institute of Astronomy of the University of
Basel. I am grateful for the hospitality of G. A. Tammann and
the staff of the Institute during an extended stay. It is also a
pleasure to acknowledge discussions with Tammann on this
and similar problems over the past two decades. He also read a
later draft of the paper while he was in Pasadena, and he made
important suggestions concerning it as a prelude to Paper III
that follows.
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