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ABSTRACT

Observational selection bias in flux-limited catalogs of field galaxies can be detected using a diagram in
which the calculated intrinsic luminosity of each galaxy is plotted against its redshift. Apparent correlations of
absolute magnitude with redshift that are not real, but rather are caused by selection effects can be identified
by adding a fainter sample. If an apparent correlation is due to bias, it will disappear at the original flux level
but will reappear with the same properties near the limit of the fainter catalog. The method is illustrated using
SO + Sa galaxies from two catalogs with different apparent magnitude limits. The demonstration is the same
as that made earlier using Sc I galaxies (Sandage 1988a).

To avoid photometric distance determinations that are systematically incorrect as a function of redshift, it is
necessary to use mean absolute magnitudes, M(m, v;), that are functions of the apparent magnitude limit of the
catalog, m, and of the observed individual redshifts, v;. This double-entry M, — M(m, v;) correction to the
proper volume-limited absolute magnitude M, is calculated and is listed in a table. Failure to apply this bias
correction at every redshift will give an incorrect Hubble constant that apparently increases outward. The clue
that bias corrections are needed is that the apparent Hubble constant calculated using uncorrected data from
two catalogs with different flux limits will be double-valued at a given redshift, one value for each catalog,

which is a clear contradiction.

Subject headings: cosmology: observations — distance scale — galaxies: distances and redshifts —

methods: statistical

1. INTRODUCTION

The current debate over the value of the Hubble constant
will cease only when one or the other of the distance scales is
shown to be incorrect. Said differently, a decisive case must
eventually be made against one scale, in addition to experi-
ments made in support of the other. No matter how strong an
experiment may eventually be mounted for one or the other of
the scales, the incorrect supporting explanations for the faulty
scale will continue to be cited as contrary evidence. There are,
of course, a few cases where a new experiment has been so
overwhelming that it closed a problem without question, but
such guillotines are rare. The prime example is Hubble’s dis-
covery of Cepheids in M31 that disproved van Maanen’s
claims of measured proper motions for the M31 stellar content.
A refutation of the proper-motion data was unnecessary after
the Cepheid fact.

Although panegyrics defending favored methods exist in
abundance, no criticisms are yet strong enough to satisfy either
side for or against the long or the short extragalactic scale.
Judged by their effect, the several summary critiques of the
short scale (Tammann 1986, 1987, 1991, 1993; Tammann &
Sandage 1982; Sandage & Tammann 1976, 1990; Sandage
1993a, b) were adumbrations before their time. Furthermore,
specific discussions of the bias properties of flux-limited Tully-
Fisher (TF) samples, both for the Virgo Cluster (Kraan-Korte-
weg, Cameron, & Tammann 1986, 1988) and for field galaxies
(Sandage 1988b), have also been either insufficiently explicit or

too misunderstood to be noticed. Similar discussions by Bot-
tinelli et al. (1986a, b, 1988) and Teerikorpi (1975a, b, 1984,
1987, 1990) also reach the conclusion that the long distance
scale is correct when a proper accounting is made for the bias
properties of the sample. These papers have not closed the
debate either.

The purpose of this and later papers in this series is to begin
critiques showing why particular methods, applied without
selection bias corrections, give incorrect distance scales. Our
position is that observational selection bias holds part of the
answer as to why certain methods give incorrect results.

We begin by developing procedures to account for selection
bias when using photometric distance indicators. The methods
developed in this and the following several papers appeal to
the intuition in ways that differ from the profound respect and
consequent awe associated with that subset of the methods
among the esoteric mathematical models that have an imprac-
tical felicity.

In this first paper we set out a direct method to identify
selection bias in any sample of objects of the same “ type ” that
have been selected by apparent magnitude. For illustration we
use the complete flux-limited sample of SO + Sa galaxies in the
Revised Shapley-Ames catalog (Sandage & Tammann 1981,
1987, hereafter RSA1, RSA2). The method extends an earlier
discussion using Sc I galaxies (Sandage 1988a) taken from
three catalogs with different apparent magnitude limits.

The method centers around what we call the Spaenhauer
diagram, where absolute magnitudes calculated from redshifts

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...430....1S

5); D C430- 705!

r992

L

2 SANDAGE

are plotted against relative distances.! We show that this pro-
vides powerful and sufficient information to determine the bias
corrections directly, nothing else being needed. The principle is
that adding a fainter sample shows the presence of bias, if it
exists.

The more complicated case is treated in the following paper
(Sandage 1994, hereafter Paper II), where flux-limited samples
of objects of multiple “ types” are used with the TF line-width
method to determine individual “distance.” In this case, each
“type” corresponds to a discrete bin of line width. It is shown
there that the correction for the effects of bias changes the
apparent short distance scale into the long scale when the
corrections are individually applied at each redshift and now at
each line width as well.

For illustration, the method is applied in Paper II to a par-
ticular TF catalog in the literature (Aaronson et al. 1982) to
show that the Hubble constant is multivalued, depending on
the line width and the redshift, unless the triple-entry bias
corrections determined from the data themselves are applied.

Federspiel, Sandage, & Tammann (1994, hereafter Paper III
or FST94) apply the methods to the 1355 TF galaxy sample of
Mathewson, Ford, & Buchhorn (1992), which is so large that it
can be divided into separate catalogs with different apparent
magnitude limits, redshift intervals, line widths, and positions
relative to the direction of the dipole of the microwave back-
ground. All the bias properties predicted from the model are
seen in remarkable detail in this large sample. Again it is shown
that if the triple-entry bias corrections are not applied to these
data, then incorrect conclusions will be made concerning (1)
the reality of the apparent increase in the Hubble constant
outward, (2) the value of H,, and (3) the nature of streaming
motions superposed on a smooth Hubble flow. In particular,
we show in Paper III that the details of the Great Attractor
and the 500 km s~ ! offset relative to the kinematic frame of the
CMB in the restricted direction of the CMB dipole for rela-
tively local galaxies (v < 4000 km s~ !) are modified when the
data are corrected for selection bias.

! The procedure assumes a strictly linear redshift-distance relation, with no
account taken of a velocity scatter in the observed redshifts about the cosmo-
logical value caused by random and/or streaming motions. We argue as
follows that kinematic distances based on redshifts are considerably more
accurate than photometric distances based on most of the “standard candles,”
and therefore most claims of streaming motions are incorrect that are based on
comparing individual redshift and photometric distances.

1t is shown here (see footnote 3 below) and in Paper II of this series (Sandage
1994, § 2.2), and earlier by numerical experiments (Kraan-Korteweg, Sandage,
& Tammann 1984; Sandage 1988b), that the o(M) values calculated with and
without the correction for the Virgo streaming perturbation (the so-called
Virgo infall) are virtually the same. Hence, the Virgo perturbation has a nearly
negligible effect on 6(M) determined using redshift distances.

The streaming motion related to the cosmic microwave background (CMB),
which, of course, is real, is also a second-order effect, producing only a constant
offset to kinematic distances, not a systematic error with distance, because, in
first approximation, the local region (i.e., with v < 4000 km s~ ') is moving in
bulk toward the hot CMB pole (see § 2.2 of Paper II).

Therefore, only random motions need be considered in assessing the relative
accuracy of distances by redshifts and by photometric indicators. These are
discussed in Paper II (§ 2.2) with the conclusion that the spurious a(M) due to
Av,angom Velocities is, at most, 0.3 mag which is small compared with (M) 2
0.7 mag for most photometric indicators. This argument is made by noting
that errors in kinematic distances due to even the grossest assumption that
6(D);angom ~ 200 km s ! are less than the stated 0.3 mag.

It is on this precept that kinematic absolute magnitudes are superior to
photometric distances that we base the method developed in this series to find
the bias properties of any sample. The principle is to compare kinematic and
photometric distances, transformed to absolute magnitudes, to search for
systematic differences with redshift for the latter.
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It is emphasized in these papers that the basic correction
discussed and applied here is not the classical Malmquist
(1920) correction (see Bok 1937, p. 17, and Mihalas & Binney
1981 for derivations), which is only the difference between the
volume-limited mean absolute magnitude, M, and the ensem-
ble mean absolute magnitude, M(m), of the complete flux-
limited sample. Rather, the correction to M, is a double-entry
correction, M(m, v;), needed at every redshift. For the TF
method discussed in Paper II we need a triple-entry correction
at every redshift, at every line width, and for any value of the
apparent magnitude limit of a particular catalog.

We show in the next section that the M(m) mean absolute
magnitude calculated by Malmquist (1920) is the value of the
individual M(m, v;) corrections averaged over all redshifts; the
needeed individual M(m, v;) corrections are thereby lost. The
distinction between M(m) and M(m, v;) is important, and the
purpose of this paper is to develop the difference between these
two concepts.

The problem is introduced in the next section, where it is
shown that the difference of the slope of the Hubble diagram
for field galaxies from its expected value of d mag/d log z = 5 is
due to the progressive selection bias with increasing distance.
A calculation of the individual corrections, M, — M(m, v;), is
set out in § 3 for each distance interval and for any particular
arbitrary apparent magnitude cutoff m. The effect of adding a
fainter sample to identify the presence of bias is illustrated in
the penultimate section.

We show in the final section that neglecting the bias which is
progressive with redshift leads to the incorrect conclusion that
the Hubble constant increases outward (de Vaucouleurs &
Peters 1986; Tully 1988; Giraud 1985, 1986a, b, c).

2. BIAS PROPERTIES OF THE SO + Sa GALAXY SAMPLE
FROM THE RSA

2.1. The Spaenhauer Diagram

An illustration of observational selection bias of flux-limited
samples is shown in Figure 1, taken from an earlier study
(Sandage 1972b). Plotted as ordinate is the absolute radio
power emitted by 59 radio galaxies, 103 radio-loud quasars,
and 25 radio-quiet quasars that appear in three different radio
catalogs. The abscissa values are calculated as distance moduli
from the redshifts using m — M = 5 log z + 48.88, based on
Hy, =50 km s™! Mpc~! and g, = 1. Note that the abscissa
data depend only on the observed redshift, not on assumptions
about bias.

The radio sources are all from strictly flux-limited catalogs.
The 3C catalog has a limit of 9 Jy at 178 MHz, the 4C at 2 Jy,
and the Parkes sources at 7.1 Jy when reduced to the fiducial
frequency of 178 MHz using a spectral index of 0.7. Hence, the
contents of these catalogs are highly biased, containing only
the several hundred apparently brightest radio sources that
exist.

The bias properties here are similar to those of, say, the
Bright Star Catalogue (Hoffleit 1982). No M dwarfs exist in
that catalog because their absolute magnitudes are so faint that
none are close enough to be included in a catalog whose grasp
is only to apparent magnitude V ~ 6.5.

Figure 1 shows this point directly for radio sources by
noting that the average absolute magnitude of the catalog
entries becomes brighter with increasing distance, even
through the true (physically correct) average absolute magni-
tude, M, for a volume-limited sample is constant. Clearly the
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F1G. 1.—"Spaenhauer ” diagram for radio sources identified from the 3C, 4C, and Parkes surveys that are strictly flux-limited. The relative distance moduli along
the abscissa depend only on the observed redshift. The ordinate is absolute radio power in ergs s !, integrated over the radio band from 107 to 10*! Hz, calculated
from the redshifts using H, = 50 km s ~* Mpc ™! and g, = 1. Lines of constant apparent flux are shown. The diagram is from Sandage (1972b).

corrections M, — M(m, d;) at any true distance, d;, increase
with d;. This is the correction we seek.

An interpretation of the apparent correlation of Ly (the
absolute radio power) with redshift in Figure 1 could have
been that the intrinsic power of the radio sources actually does
vary with distance, approximately as Ly ~ z2. However, as
soon as the lines of fixed apparent flux are drawn as shown, it is
clear that only the tip of the intrinsic luminosity function is
sampled, due to the strict flux limitation of each catalog.

Because of the very broad luminosity function that spans a
factor of ~10° in Lg, and also because of the steepness of the
luminosity function at the bright end, the observed points hug
the flux limit lines of each respective catalog. (These limit lines
are slightly curved in Fig. 1 because the K-correction has been
applied, accounting for the effects of redshift; see Sandage
1972b, eqs. [4]-[6], for details.)

Because the variation of L with redshift is so pronounced in
Figure 1, there was never any doubt that its interpretation was
a selection effect; the mean radio power of sources does not in
fact vary as z2, although other interpretations of Figure 1 could
rationally have been made in the absence of other data.

A. It could be argued that the apparent increase of absolute
luminosity with redshift is not real, or in fact due to bias, but is
rather an artifact of a faulty calculation of Ly using an incor-
rect redshift-distance relation (the Hubble linear law here). If
we had, instead, made the calculation using a “correct”
redshift-distance relation, we could have removed? the appar-
ent variation of Ly (calculated) with z.

2 However, the case of Ly ~ z? is degenerate to the possibility of a total
removal of the apparent correlation in Fig. 1 by changing the form of the
redshift-distance relation. To obtain a complete lack of an L(z) dependence
when the apparent dependence is L, ~ z2, as in Fig. 1, requires that redshift
not be correlated with distance at all. However, in the cases where the calcu-
lated correlation of absolute luminosity with redshift is less steep than 22, it is
always possible to devise a redshift-distance relation, nonphysical though it
may be, that would reduce or remove entirely the apparent correlation of
luminosity with redshift.

Segal’s (1982) analysis of the Hubble diagram of field gal-
axies and quasars does just that. He adjusts a nonlinear
redshift-distance law (a square law in his case) to fit the
observed (apparent) slope of the Hubble diagram, but then he
requires a very narrow luminosity function—essentially a delta
function.

However, his explanation is contrived. Independent data
from clusters show beyond doubt that a broad galaxian lumi-
nosity function exists (Kraan-Korteweg et al. 1984; Binggel,
Sandage, & Tammann 1988). There necessarily, then, will be
selection bias for the reasons discussed here and elsewhere
(Sandage, Tammann, & Yahil 1979, hereafter STY79; Sandage
1988a, b, hereafter S88a, S88b) when using flux-limited
samples. And there is, of course, decisive independent evidence
that the redshift-distance relation is linear (except for local
streaming motions superposed on the underlying linear expan-
sion field; see Paper III), proved at a level better than +2%
using precise distance ratios (Sandage 1972a, 1975, Figs. 4 and
5; Sandage & Hardy 1973; Sandage & Tammann 1975, Fig. 6;
Sandage 1992; Lauer & Postman 1992; Sandage & Tammann
1993; Jerjen & Tammann 1993).

We showed elsewhere (STY79; S88a), and show again here,
that the case of true bias, rather than a failure of the linear
redshift-distance relation, can be disproved by adding a fainter
sample. Figure 1 illustrates the point by noting the positions of
the three progressively fainter flux limit lines. The data hug
each fainter line as the fainter data are added. Modern data,
reaching flux levels 1000 times fainter than the 1 Jy line in
Figure 1, confirm that the entire region of Figure 1 is filled
between the 9 Jy limit line of the 3C catalog and such a 1 mJy
limit line (not shown). This is the proof that the observed
apparent correlation in Figure 1 is due to selection bias rather
than being a true correlation.

B. Similar apparent increases of some intrinsic property
with z as in Figure 1 have sometimes been claimed to be due to
a real change of that property (i.e., due to evolution) in the
lookback time corresponding to that redshift. Again, adding a
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F1G. 2—Top: Apparent variation of absolute magnitudes for the complete sample of SO and Sa galaxies in the flux-limited RSA Catalog, calculated from the
redshift using H, = 50 km s™* Mpc™!. Bottom: Same as top, but with upper and lower envelope lines superposed from Fig. 3 and showing the flux-limit line at
By = 13. The apex magnitude, M, is the most probable mean absolute magnitude of the luminosity function. The ensemble mean absolute magnitude, M(m), for the
complete flux-limited sample is shown by the arrow. The difference between M, and M(m) is the gross Malmquist correction for the total sample, integrated over all

redshifts.

fainter sample and seeing the alleged effect move faintward by
1 mag for each 0.2 dex in redshift proves the case for bias rather
than the signature of an intrinsic effect.

Hence, diagrams such as Figure 1 (absolute luminosity
versus some measure of distance) provide powerful diagnoses
by which to identify bias problems in flux-limited samples. We
adopt as the eponymous name for the generic diagram that of
Spaenhauer (1978), who introduced it in his solutions to partic-
ular problems of Galactic structure.

2.2. The Spaenhauer Bias Diagram for RSA SO + Sa Galaxies

Figure 2 (top panel) shows the Spaenhauer diagram for a
complete sample of SO + SO/a, Sa, and SBa galaxies from the
flux-limited RSA2 catalog. The redshift, reduced to the cen-
troid of the Local Group, is taken from column (20) of that
catalog and is plotted as abscissa. The absolute magnitudes for
the ordinate are calculated from the listed B; apparent magni-

tudes using v, redshifts® and a Hubble constant of H, = 50 km
s™!Mpc~1.

The apparent increase of luminosity with redshift in Figure 2
(top) is nearly identical to that found earlier for the E galaxies
(STY79) and, as previously mentioned, for Sc I galaxies (S88a).
The sharp edge of the apparent correlation of redshift and
luminosity, caused by the apparent magnitude limit at By =
13, moves to higher redshifts when a fainter sample is added
(see Fig. 11 below) rather than continuing the correlation to
brighter magnitudes. Therefore, the correlation in the top
panel of Figure 2 is not due to the failure of a linear redshift-
distance law (Segal 1982), or to an outward increase in the

3 The calculations were repeated using the redshifts corrected for “ Virgo
Cluster infall” of 220 km s~ ! (Tammann & Sandage 1985; Kraan-Korteweg
19864, b). These gave only negligible differences from the principal features of
the top panel of Fig. 2.
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Hubble constant (Tully 1988), but is clearly caused by selection
bias due to the flux limitation of the RSA.

This point is made in the bottom panel of Figure 2, where
limiting-envelope lines are drawn from the known properties of
the RSA sample. The curved upper envelope is fitted by eye to
the brightest part of the distribution as the redshift increases,
based on the analytical expectation of this envelope from
Figure 3 (see § 3). The straight line is the locus of the apparent
magnitude limit of the RSA at B = 13, calculated from
m— M = 5log v, + 16.5, which follows from Hy = 50 km s ™!
Mpc~1.

The apex position at absolute magnitude near M, = —19.8,
marked by the arrow, is the most probable value for the
volume-limited mean absolute magnitude. For a luminosity
function that is symmetric in magnitudes (i.e., in log L), this
would be the mean absolute magnitude of the data points
enclosed between the upper and lower envelope lines for red-
shifts smaller than log v, = 2.9. This is the log redshift where
the By = 13.0 apparent magnitude limit line intersects the
lower envelope curve. The intersection defines the redshift limit
beyond which the sample is no longer volume-limited. It is at
this point that the systematic corrections for selection bias
must begin for larger redshifts.

The ensemble mean absolute magnitude, M(m), for the com-
plete sample enclosed within the three envelope lines in Figure
2 (bottom) is shown by the arrow marked M(m). This is the
number calculated by Malmgquist (1920) in his derivation of
M, — M(m) = 1.386 ¢* for a Gaussian luminosity function for
objects distributed uniformly in space.

However, to correct each object for bias, we need the more
complicated progressive corrections, M, — M(m, v;), at each
redshift, v;, for which v; is larger than the redshift that divides
the volume-limited subset of the sample from the flux-limited
subset.

The horizontal position (i.e., the redshift) of the apex in the
bottom panel of Figure 2 is determined by the normalization of
the luminosity function, determined by the volume that must
be surveyed before that volume is large enough to contain one
galaxy. This fact is used in Paper II.

3. THE GENERALIZED BIAS CORRECTION,M, — M(m, v;),
FOR EACH DISTANCE INTERVAL

3.1. Envelope Lines in the Spaenhauer Diagram for a
Gaussian Luminosity Function

The upper and lower envelope lines in Figure 2 (bottom)
define the loci along which one galaxy is expected at a given
redshift. The volume surveyed at redshift v in dv is proportion-
al to v? dv. This is the normalization factor by which the lumi-
nosity function must be multiplied to find the number of
galaxies at that redshift. Larger volumes are surveyed at larger
redshifts. Hence, the luminosity function must be read further
into its bright and faint wings to satisfy the condition that one
galaxy be found at that redshift. It is from this condition that
the upper and lower envelope lines in Figure 2 (bottom) can be
calculated when any particular analytical form of the lumi-
nosity function is adopted.

If the luminosity function is symmetrical in magnitudes, then
these envelope lines will also be symmetrical relative to the
apex magnitude in the bottom panel of Figure 2.

Figure 3 shows the result of a calculation using Gaussian
luminosity functions with dispersions between 0.1 and 0.9 mag.
That a Gaussian error function with such dispersions is realis-
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Fi6. 3—Template curves for the upper and lower envelope lines, calculated
for a Gaussian luminosity function with the family of dispersions shown. The
curves are universal in AM and Alog v, such that they can be shifted vertically
and horizontally over any observed distribution, such as that in Fig. 2. The
arbitrary zero points of ordinate and abscissa, marked along the inner borders,
permit the apparent magnitude limit lines of m = 12.5, 14.5, and 16.5 to be
drawn using equation (4) of the text, which assumes H, = 50kms~* Mpc™*.

tic for SO galaxies and for spirals is shown elsewhere (Sandage,
Binggeli, & Tammann 1985, Figs. 16—19; Binggeli et al. 1988).

Lines of constant apparent magnitude can be put in Figure 3
using m — M =5 log v + 16.5 for Hy =50 km s~ ! Mpc™!
once absolute values of the ordinate and abscissa are adopted.
With the assignment of these values, marked on the inside
borders of Figure 3, the lines of constant apparent magnitude
for three assumed apparent magnitude catalog limits are as
shown.

Figure 3 can be used as a template (referring to the outer
abscissa and ordinate scales) to slide both vertically and hori-
zontally over any distribution of points, such as in Figure 2
(bottom), to determine the placement of the apex and the
envelope curves in any Spaenhauer diagram.

3.2. Two Ways to the Malmquist Ensemble Correction

The difference between M, and the ensemble average, M(m),
that was calculated by Malmquist is shown in the bottom
panel of Figure 2 by the two arrows. Two intuitive approaches
in formulating methods to calculate M, — M(m) are useful.

3.2.1. The Method Not Used by Malmquist

The details of Figure 3 are reproduced in Figure 4, showing
vertical lines that separate the Spaenhauer diagram into red-
shift intervals of 0.1 dex and limit lines placed at apparent
magnitudes 12.5, 14.5, and 16.5. The hatched area shows the
subset of the sample that is volume-limited in the m = 12.5 case.
Note that the unbiased subsample of the complete catalog
moves outward in redshift for fainter apparent flux limits,
showing why adding a fainter sample is the decisive diagnostic
tool.

A principal feature of Figure 4 is that the sample becomes
progressively more incomplete at larger redshifts. Therefore,
the difference between M, and the proper absolute magnitude,
M(m, v), at redshift v;, becomes progressively larger as v;
increases.

Adding a fainter sample provides a test for bias because if we
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F16. 4—Same as Fig. 3, but with vertical lines separating the parameter
space into discrete redshift intervals. The unbiased, distance-limited subset of
the total sample is contained within the hatched area for m,,,;, = 12.5. The
mean absolute magnitude of the individual samples within each indicated
redshift bin is shown by the curved lines, marked by circles and squares at the
beginning of each bin. Note that these curves are isomorphic, shifted in redshift
by 0.4 dex for the 2 mag difference in the value of the apparent magnitude
limits adopted here for display purposes.

change the apparent magnitude limit faintward, the incom-
pleteness levels become the same as they were at brighter mag-
nitudes but at 1 mag fainter for every 0.2 increase in log v;. This
is the prediction that can be tested in any sample if the effect is
due to selection bias.

The distribution of the absolute magnitudes within any par-
ticular vertical redshift bin in Figure 4 has, of course, the shape
of the luminosity function. However, the normalization factor
is different in each bin, increasing with redshift by 0.6 dex per
change of 0.2 dex in redshift interval. This is simply the increase
in the volume factor with increasing redshift for uniform space
density.

Integration of the absolute magnitude downward, weighted
by the luminosity function in each bin, gives the mean absolute
magnitude of the sample in that redshift interval. The integra-
tion is, of course, stopped at the apparent magnitude limit line.
The resulting mean value of the absolute magnitude of the
truncated distribution is the mean absolute magnitude, M(m,
v;), at that redshift and is the correction we seek.

The ensemble mean, M(m), for the complete sample is what
Malmquist calculated. It is simply the average of all individual
M(m, v;) values over all redshifts, weighted by the individual
volume factors. Hence, a way to obtain M(m) is to sum the
separate weighted integrations for M(m, v;) horizontally in
Figure 4, ie., over all redshifts. The calculation is, then, the
double integral within the permitted limit lines, stopped pro-
gressively at brighter absolute magnitudes at higher redshifts
by the appropriate sloping apparent magnitude catalog limit
line.

The M(m, v;) values in each redshift bin are shown as circles
and squares in Figure 4 for the limit lines at m = 12.5 and 14.5,
respectively. The luminosity function was assumed to be
Gaussian with M, = —21 and ¢ = 0.7 mag. The space density
was assumed to be constant for the particular calculation of
the mean lines in Figure 4.

Note again that these curves of mean absolute magnitude,
M(m, v;), are shifted isomorphically to larger redshifts by 0.2

details of this shift are shown in Figure 5, where the results of
the bin-by-bin (vertical) integrations are displayed.

Later in this section we give an analytical calculation that
generates the curves in Figure 5 for any assumed dispersion
and redshift interval (Fig. 8 and Table 1 below). The special
case of ¢ = 0.7 mag is shown in Figure 5.

We finish this subsection by showing the result of summing
the individual numerical bin integrations horizontally in
Figure 4 to obtain the Malmquist ensemble average, M(m), of
the sample. Figure 6 shows the details of this “granular”
numerical calculation just described, using the gross redshift
interval of 0.2 dex for the vertical bins of Figure 4. A limit line
at apparent magnitude m = 14.5 has been assumed, again with
a Gaussian luminosity function with an apex magnitude of
M, = —21and ¢ = 0.7 mag.

The separate absolute magnitude distributions within each
of the six discrete redshift log v intervals 3.2-3.4, 3.4-3.6, 3.6—

| | | I 1 I
8001 o7 7

TOTAL [ OVER

ALL v,
200 —
1001 -
o | l | N i l B
16 08 0 -08 -16 -24 -32

FAINT AMAG BRIGHT

FiG. 6—Distribution of absolute magnitudes in discrete redshift bins in the
model shown in Fig. 4. The six redshift intervals for the distributions shown as
thin lines are, from left to right, for log v values between 3.2 and 3.4, 3.4 and 3.6,
3.6 and 3.8, 3.8 and 4.0, 4.0 and 4.2, and 4.2 and 4.4. The mean absolute
magnitude differences from M, for each bin are shown by arrows. These
differences range from 0 mag for the distance-limited part of the sample in the
range log v = 3.2-3.4, to 2.33 mag for the redshift bin in the range log v = 4.2
4.4. The distribution of absolute magnitude for the entire flux-limited sample is
the heavy overriding curve. It has a maximum that is 0.68 mag brighter than
the M, value for the true (distance-limited) luminosity function, which is the
zero point of the abscissa.
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FiG. 7—Comparison of the true (distance-limited) assumed luminosity
function used for the calculation in Fig. 6 with the flux-limited distribution
copied from the overriding curve in Fig. 6. The difference between M, and
M(m) of 0.68 mag is indicated for this special case of 6(M) = 0.7 mag.

3.8, 3.8-4.0, 4.0-4.2, and 4.2-4.4 are shown in Figure 6, drawn
with thin lines under the total distribution that is given by the
overriding heavy line. Shown by a series of arrows are the
calculated mean absolute magnitude corrections, M, — M(m,
v;), for the same six redshift intervals. For example, the mean
correction to M, is 1.52 mag for the log redshift interval of
4.0-4.2, shown under the truncated Gaussian distribution
valid for that redshift interval.*

The thin curves in Figure 6 are properly normalized in
absolute frequencies by the volume factors for the various red-
shift intervals for a homogeneous space distribution.

The sum of the individual distributions over the available
parameter range is the heavy, overriding curve in Figure 6.
This is the distribution of absolute magnitudes of the complete
flux-limited sample, i.e., the distribution of absolute magni-
tudes only for those galaxies that appear in a complete flux-
limited catalog. Note again that Figure 6 is for the special case
of m(limit) = 14.5, M, = —21.0,and o(M) = 0.7.

The comparison between the true distribution of absolute
magnitudes (i.e., in a volume-limited sample) and the distribu-
tion in the flux-limited catalog is shown in Figure 7. The curve
on the right is the top curve from Figure 6. The curve marked
“volume limited ” is the true Gaussian luminosity distribution.
The numbers on the outside of the ordinate border are for the
volume-limited sample. Those on the inside are for the flux-
limited distribution.

The shift in the mean absolute magnitude defined by the two
distributions is 0.68 mag, as found from these numerical inte-
grations. Note that this is the same value (as of course it must
be if our procedure is correct) as obtained from the analytical
derivation of M, — M(m) = 1.386 o2 from this Malmquist
(1920) equation if ¢ = 0.7 mag.

# The left-hand parts of each separate distribution of the truncated Gauss-
ians for each redshift interval are not exactly vertical in Figure 6 for the
high-redshift intervals. Here the sample is flux-limited. Had we passed to the
limit of an infinitesimal redshift interval at these at these high redshifts, the left
edges of the distribution shown in Fig. 6 would have been strictly vertical, i.e.,
with a sharp cutoff. However, for the lowest redshift intervals, the apparent
distributions remain nearly Gaussian because the data there are more nearly
distance-limited (galaxies in both the bright and faint wings of the Gaussian
exist in the catalog).

BIAS IN EXTRAGALACTIC DISTANCE INDICATORS. 1L 7

We have made the calculation with considerable pedantry to
this point (numerically in finite redshift bins), to help the intu-
ition for the passing to the limit of infinitesimal redshift inter-
vals, as follows.

Generalizing the previous method gives a way to calculate a
“universal ” set of the fundamental M(m, v;) bias-free absolute
magnitudes, which we seek at every redshift v; in dv; for any
value of 6(M), and for any catalog flux limit m. Refer again to
Figure 4 (also the inset in Fig. 8 below). Collapse the redshift
bin to a vertical line at some redshift v;. Along this line the
galaxies are distributed with any adopted luminosity distribu-
tion. For the demonstration here we again consider the func-
tion to be Gaussian. We seek the mean absolute magnitude of
the distribution along a particular vertical line, i.c., at a particu-
lar redshift v;, where the distribution is progressively terminat-
ed at the place where the vertical line meets a particular
apparent magnitude limit line such as m = 12.5 or 14.5 in
Figure 4.

Consider this progressive termination of the integration at
faint absolute magnitudes as we move the vertical line to
smaller redshifts. The mean absolute magnitude, M(m, v;), of
the distribution at v; moves closer to M, as the vertical line
approaches that redshift which separates the distance-limited
region from the flux-limited region in Figure 4. For all redshifts
smaller than this, the mean absolute magnitudes of the sub-
samples are, of course, M, because the sample is complete
within a given volume.

The value of M(m, v;) along any given vertical line at redshift
v; can be calculated by truncating the Gaussian at various
values of the t = (M, — M)/c parameter and appropriately
integrating under the remaining partial Gaussian. The Gauss-
ian luminosity function is assumed to be

erf (t) = A,(2m) "% exp (—0.5t%) , 8))]

where A; is the volume normalization factor at redshift v;, and
where

Hv) = [Mo — M(m, v)}/o . @

The mean value of t when the Gaussian is truncated by the
straight catalog limit line is given by

+
J t erf (t)de
t(limit) . (3)

+
J erf (t)dt

Here the upper limit in the numerator is from infinitely bright
luminosities, and the lower limit is the t-value at the lower
termination. The denominator is simply the total number in
the sample at redshift v; in the interval dv;.

The absolute magnitude at the intersection of the vertical
line at redshift v; with the fixed catalog limit, m,;,;,, is

M(©; yimi) = Myimi — 5 log v; — 16.50 . “

From this, the value of ¢ at this intersection is t = [M, — M(m,
v; imi))/0 (see the inset in Fig. 8 below).

Table 1 shows the result of an integration similar, but not
identical, to that of equation (3). For the table we have inte-
grated the Gaussian numerically, not from ¢t = + oo, but start-
ing only at t = 3.4. Yet this is far enough into the Gaussian
wings so that the integration is numerically complete to within
~1%. To this extent, Table 1 is “ universal” (see footnote 6 at
the end of this section).

) =
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TABLE 1
UNIVERSAL Bias CORRECTION FOR A GAUSSIAN LUMINOSITY FUNCTION

BRIGHT SEGMENT FAINT SEGMENT

(Mo — M(m))/o

[M, — M(m)]/o

Bias Bias
Correction Correction
t=Mo—M, o (mag) t=(M,—M,,)o (mag)

§) @ ) @
34 3.40 0.0 0.74
32 3.27 -0.2 0.62
3.0 312 —-04 0.51
2.8 2.96 —-0.6 041
2.6 2.80 -0.8 0.33
24 2.62 —-1.0 0.25
22 245 —12 0.19
2.0 2.28 —14 0.14
1.8 2.11 —-1.6 0.10
1.6 1.94 —1.8 0.07
14 1.77 -20 0.04
1.2 1.61 —-22 0.03
1.0 1.45 —-24 0.02
0.8 1.29 -26 0.01
0.6 1.14 —-2.8 0.005
0.4 1.00 -3.0 0.002
0.2 0.86 -32 0.0008
0.0 0.74 —34 0

Table 1 shows <¢) for any given (t; j;;) When the Gaussian is
defined only for t < 3.4, as in the last paragraph. Columns (1)
and (3) are the t; values, above which galaxies exist in the
sample (i.e., above the lower apparent magnitude limit line in
Fig. 4 at a particular redshift v;). Columns (2) and (4) show the
mean [M, — M(m, v;)]/o value, which is the correction we seek.
The left and right sections of the table separate the parts of the
distribution for which the M(v; ;) values are respectively
brighter and fainter than M,,.

An example illustrates how Table 1 is used to find the bias
correction to M,. For this example let My, = —21.0 and
o = 0.7 mag as in Figure 5, and let the catalog limit of a
particular sample be at m = 12.5.

If we seek the value of the proper mean absolute magnitude
required for galaxies at the redshift log v; = 3.8, then equation
(4) with log v; = 3.8 gives M, jmiy = —23.0 for m = 12.5. This
absolute magnitude, defined as the M-value at the intersection
of the m = 12.5 limit line with the vertical redshift line at v; =
3.8 in Figure 4, is 2.0 mag brighter than M, = —21.0. Using
the definition that t = [M, — M(m, v;)]/o with ¢ = 0.7 mag,
the (¢; ;i) value is 2.0/0.7 = 2.86. This is the (¢; ;;mi) value at
the lower termination point to be used in Table 1, giving [M,

— M(m, v)]/e = 2.99 at this t,;,,;, value on the faint side of the

Gaussian. The bias correction from this table is then M,
— M(m, v) = 299 x 0.7 = 2.09 mag at log v = 3.8. This is the
same value shown in Figure 5 that was obtained from the
direct numerical integration at that redshift, verifying the pro-
cedure.

The results in Table 1 are presented graphically in Figure 8,
showing again the definition of M, j;.;, for any arbitrary red-
shift v;.

3.2.2. The Method Used by Malmquist to Obtain M, — M(m)

The second, conceptually easier, way to calculate the Malm-
quist ensemble correction, M, — M(m), is shown in Figure 9.
As in Figure 4, the three variables are still redshift, absolute
magnitude, and apparent magnitude, but the generator of the
family of curves is now M rather than m. Said differently, lines
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F1G. 8—“Universal ” correction to M, from Table 1 for a Gaussian lumi-
nosity function with arbitrary dispersion, for any redshift and any adopted
apparent magnitude limit to a given catalog. The curves in Fig. 5 are special
cases of this function calculated for the M, g, log v, and m,,,, values given
there. See the caveat in footnote 6.

of constant m are the curves internal to the axes in Figure 4,
whereas lines of constant M generate the family in Figure 9.
The relations between the variables are again given by equa-
tion (4).

Figure 9 sets out a method that is equivalent to that devel-
oped by Kapteyn to solve the fundamental equation of stellar
statistics by numerical methods. Note that Figure 9 is in fact a
classic (M, log n) table (Bok 1937, p. 28).

The calculation begins by dividing the volume into a
number of spherical shells and determining the number of
objects in each shell at distance r in interval dr with absolute
magnitude M in interval dM that contribute to the objects
observed at apparent magnitude m in dm. Figure 9 is a spread-
sheet that solves the famous equation connecting these vari-
ables by making the volume shells discrete, separated by
intervals of 0.2 in the log of the distance. As in Figure 4, this
gives apparent magnitude intervals separated by 1 mag in m,
shown along the abscissa of Figure 9. Lines of constant abso-
lute magnitude, calculated from equation (4), thread the
diagram as shown. The volume between successive 0.2 dex
intervals of the ordinate increases as 0.6 dex, or factors of 3.96,
as in Figure 4. This is the normalization factor by which each
entry from the luminosity function in each box (such as 4 and
B) must be multiplied to obtain the number density in that box.

The two volume intervals (hatched areas in Fig. 9) are
between log redshifts of 3.2 and 3.4, and 3.6 and 3.8 (read along
the right-hand ordinate). The ratio of volumes for these two
particular redshift intervals is 15.8. The ratio of the two
numbers in the A and B boxes is then 15.8 multiplied by the
ratio of the luminosity function at absolute magnitudes —20
and —22.

Summing the entries in each box, calculated in this way,
vertically (i.e., over all distances to infinity), say in the column
containing boxes A and B, gives A(13), which is the total
number of objects that will be observed between apparent
magnitudes m = 12.5 and 13.5 (read along the top abscissa) per
unit area on the sky.

The Malmquist calculation of M(m) is found as the mean
absolute magnitude of the subset of objects summed and aver-
aged over the vertical columns of Figure 9, stopped at the right
at a given catalog cutoff magnitude.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...430....1S

JD I 243000025

CT9R2A]

No. 1, 1994 BIAS IN EXTRAGALACTIC DISTANCE INDICATORS. 1. 9
m
115 125 135 145 155 165 175 185
| 1 | | | | 1
o} 17 430
0.2} 18 1 3.2
S A o
(D 0.4 — _19 - 3.4 >
(O]
S a6 O
0.6} da
< \ -
0.8} \ 3.8
1.0} 4.0
| | | | | | |
0 1 2 3 4 5 6 7
A APPARENT MAGNITUDE

F1G. 9—Spreadsheet illustrating the method of calculating the classical Malmquist equation for the mean absolute magnitude, M(m), of a sample that is complete
to a given apparent magnitude. The diagram sets up the (M, log n) method for solving the fundamental equation of stellar statistics numerically. The M(m,v,) values
are obtained by summing the rows (not shown by horizontal lines) at a given redshift interval between v; and v;, where that interval is 0.2 dex in the diagram. The
Malmquist ensemble mean, M(m), is found by averaging the boxes over the relevant parameter space of the diagram.

If the volumes did not increase downward in each vertical
column, this mean value would be simply M,. However,
because the volume elements do increase downward at the rate
of 3.98 per 0.2 interval in log v, the brighter absolute magni-
tudes (toward the bottom of each column) are weighted more
heavily than the fainter. This means that the ensemble average
over all absolute magnitudes in a complete sample (to appar-
ent magnitude m) gives a mean absolute magnitude that is
brighter than M,. Malmquist’s (1920) integration to obtain
M, — M(m) is equivalent to finding the mean of all the
numbers in all the boxes brighter than m(limit).

By a different elegant analytical procedure, he obtained

M,y — M(m) = 2.31 62d log A(m)/dm , ©)

if the luminosity function is Gaussian with dispersion ¢. For a
homogeneous distribution of objects in space, d log A(m)/dm
= 0.6. The famous Malmquist mean correction is then

My — M(m) = 1.386 ¢ . 6)

for this case of uniform space density.

Study of Figure 9 shows that equations (5) and (6) are valid
for each finite apparent magnitude interval. They are therefore
valid for the complete apparent magnitude interval from the
brightest in the catalog to m(limit). This can be understood by
noting that the entries in each box in each vertical column are
taken from the same luminosity function, but simply displaced
up or down relative to adjacent columns, and further that the
weighting functions (i.e., the volume elements) are isomorphic
relative to the luminosity function. Therefore, a summing of the
vertical columns to infinity, i.e., over all vertical boxes, gives
the same answer for M(m), i.e., the mean absolute magnitude in
each column. The method via Figure 9 also makes clear why the
Malmquist ensemble mean, M(m), is the result of integrating
over all distances® (i.e., from 0 to o).

5 Of course, the luminosity function goes to zero over much of the very near
and the very distant parameter space in Fig. 9. This was expressed in Fig. 4 by
keeping within the upper and lower curved limit lines. No such limit lines are

However, as emphasized throughout this paper, the bias cor-
rection we need is not M(m) but the M, — M(m, v,) value at
each redshift. This is obtained by summing the boxes in Figure 9
horizontally up to m(limit) in a given redshift interval. Note
that the numerical integration done in this way in Figure 9 is
equivalent to what we did via Figure 4, and is, of course,
replaced by the continuum calculation set out in Table 1
(Fig. 8).

We finally inquire how restrictive the results of Table 1 are
to the assumption of a Gaussian luminosity function. Clearly,
the methods we use in this paper can be applied for any arbi-
trary luminosity function. Spaenhauer has made a Monte
Carlo simulation of the equivalent of Figures 3 and 4 using a
Schechter function as well as a Gaussian. The results, given
graphically elsewhere (Tammann & Sandage 1982, Fig. 2),
show that the difference is minor, and therefore that the results
in Table 1 are robust.®

4. ADDING A FAINTER SO + Sa SAMPLE

In the previous sections we have emphasized that observa-
tional selection bias can always be detected by adding a fainter
sample of objects of the same type to a Spaenhauer diagram. If
selection bias is present, the apparent correlation of M with
redshift in a diagram such as that in the top panel of Figure 2

drawn in Fig. 9, although they exist. Integrating over all distances by extending
the column length to infinity in Fig. 9 is equivalent to integrating over all
redshifts in the parameter space in Fig. 4 that are to the left of the flux limit
lines, i.e., by neglecting the upper and lower limit lines in Fig. 4. But again, of
course, the luminosity function does go to zero over much of this complete
parameter space, both in Fig. 4 and in Fig. 9.

6 A final caveat is necessary. As mentioned previously, Table 1 is calculated
for a Gaussian luminosity function stopped at the bright and faint end at
t = +3.4. The rigorously correct calculation of {t) for any Spaenhauer con-
figuration at any redshift should start the integration at the t-value that applies
only to the upper envelope curve, and then to stop at the magnitude limit line of
a particular catalog at the faint end. The difference between this and what has
been done for Table 1, where the fixed limits of t = + 3.4 are used, is only a few
hundredths of a magnitude. This is negligible; the calculations in Federspiel et
al. (1994) (Paper I1I) are, however, exact on this point.
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will move to larger redshifts by an amount of 0.2 in log v for a 1
mag increment in the faint flux limit.

We make this experiment in a way similar to that using Sc I
galaxies (S88a), but using here SO + Sa galaxies, again as in
Figure 2 (top panel), but now with a fainter sample. The added
sample is from the redshift catalog of Huchra et al. (1983,
hereafter HDLT), which contains 2401 galaxies of all types,
most of which are fainter than those in the RSA. The listed
apparent magnitude limit of the HDLT catalog is B(0) = 14.5,
where B(0) is the apparent magnitude on a system of isophotal
magnitudes used in the Zwicky et al. catalogs. The zero point
of this system is fainter by 0.3-0.4 mag than that of the By
system used in Figure 2b (Huchra 1976; RSA1, RSA2, p. 131).
Adopting a correction for the B; — B(0) difference to be 0.3
mag gives a statistical magnitude limit of B; = 14.2 for the
HDLT catalog. This is 1.2 mag fainter than the magnitude
limit of the RSA.

Galaxies with listed morphological types between T = —2
and T = +1 (corresponding to Hubble types between SO and
Sa) in the fainter catalog were selected between right ascen-
sions 0"-10" and 14"-24" avoiding the Local Supercluster.

Figure 10 shows that the redshift distribution of the sub-
sample of 263 such galaxies reaches larger redshifts than does
the RSA, verifying that the condition for larger distances is met
for the test we propose here of adding a fainter sample.

Figure 11 shows that the distribution of added points in a
Spaenhauer diagram does indeed move toward larger redshifts,
rather than continuing the trend toward brighter M as in
Figure 2 (top). By the argument we have been making, this

T T T | I I I
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F1G. 11.—Result of adding the fainter Huchra et al. sample for SO + Sa galaxies to Fig. 2 (bottom panel). The positions of the M, and M(m) arrows are the same as

in Fig. 2.
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distance-limited part.

proves the presence of selection bias rather than a real effect of
H, increasing outward.”

5. THE HUBBLE CONSTANT DOES NOT INCREASE OUTWARD

The point of this paper is that if a fixed value of the mean
absolute magnitude (say M) is used to determine photometric
distances to galaxies such as those in the samples in Figures 2
(bottom panel) and 11, then systematic errors will be made in the
distances that depend on true distance, and therefore that a false
appearance of the Hubble constant increasing outward will be
perceived. To avoid this progressive distance-scale error it is
necessary to use the double-entry M(m, v;) correction in Table
1 at every redshift.

The consequence of neglect of this correction is as follows. If
a fixed mean absolute magnitude, M, is used for each object,
then the distribution of apparent Hubble parameters, one for
each object, will fill the area between the boundaries of Figure
12. (Two apparent magnitude limits are shown in Figs. 12 and
13.) The correct average value of log H, will only be obtained
from the distribution within the hatched areas that define the
distance-limited subset of the data. That part of the sample
which is at higher redshifts imitates a mean Hubble constant
that (incorrectly) increases outward in the nonhatched areas of
both Figures 12 and 13.

Figure 13 (bottom panel) shows the mean value of H, that
would be obtained at every redshift when using a sample
whose data would fill the area outlined in the top two panels in
Figure 13. These mean loci are similar to the mean curves that
thread the Spaenhauer diagram as, for example, in Figure 4.

7 The difference between the position of the M(m) arrow in the bright and
the faint sample in Fig. 11 and the position in Fig. 2 is, we believe, due to the
inhomogeneous distribution of redshifts in this redshift range (Giovanelli &
Haynes 1991, Figs. 1a, 1b, 1) rather than to a failure of the model. M(m) should
be independent of the apparent magnitude limit, m. This is shown by the ideal
model set out in this paper, made implicit in Fig. 9, and by the discussion of it
earlier.

The inhomogeneity of the space distribution of the galaxies in the new
sample in Fig. 11 is seen from the abnormal shape of the redshift distribution in
Fig. 10 (bottom), showing the effect of the large Perseus-Pisces density enhance-
ment at 5000 km s~ !. The effect of such an enhancement on mean absolute
values, similar to the bunching of points in Fig. 11 near log v = 3.7, is seen in
the original simulations by Spaenhauer (Tammann & Sandage 1982, Fig. 2),
mentioned earlier.

Figure 13 (bottom panel) shows why adding a fainter sample
increases the redshift limit within which a correct (bias-free)
value of H, could be determined. For redshifts beyond the
hatched boundary, the derived values of H,(apparent), using a
fixed M, value, will be too large, and will be multivalued
depending on the catalog limit. This is clearly a contradiction.
However, using the double-entry bias-free M(m, v;) absolute
magnitudes determined from Table 1 removes both the appar-
ent increase of H, outward (de Vaucouleurs & Peters 1986)
and the multivalued dependence of H, on the catalog limiting
magnitude.

That the Hubble constant does not increase outward is seen
from the comparison of Figures 2 (top) and 11 using SO and Sa
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F1G. 13.—Same as Fig. 12, but showing the effect for each limiting catalog
magnitude separately. The bottom panel shows that the derived mean Hubble

constant will appear to be multivalued when two catalogs with different flux
limits are compared that have not been corrected by Table 1.
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galaxies. Earlier data, both for Sc I galaxies (S88a) and of a
different kind (Sandage, Tammann, & Hardy 1972; Sandage &
Tammann 1975, Fig. 6; Sandage 1975, Figs. 4 and 5; Sandage
1992) have led to the same conclusion.

The more complicated case of selection bias in data samples
that have been analyzed by the Tully-Fisher distance method is
developed in Paper II immediately following, using a method
that generalizes the present paper. It is shown there that the
apparent increase of H, outward (Giraud 1985, 1986q, b, c;
Tully 1988), when these more complicated data are improperly
corrected for selection bias of the type discussed here, is also
false.

The purpose of the present paper has been to provide a
necessary preparation for the much more complicated, but also

much more important, case that uses the Tully-Fisher method
of distance determination, as set out in Papers II and III that
follow.

The first several drafts of this paper were written at the
Astronomical Institute of the University of Basel. I am grateful
to G. A. Tammann for the hospitality of the Institute and for
many conversations about the general problems of observa-
tional selection bias over the past two decades. I am also grate-
ful to him for his reading of a late draft when this paper was
moderately close to its present form, and for his central scienti-
fic suggestions concerning it. It is also a pleasure to thank
Elizabeth Doubleday for her superior editing of the later drafts
using her expertise in English grammar and conventions.
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