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ABSTRACT

We formulate the dynamical problem of a cool wind centrifugally driven from the magnetic interface of a
young star and an adjoining Keplerian disk. We examine the situation for mildly accreting T Tauri stars that
rotate slowly as well as rapidly accreting protostars that rotate near break-up. In both cases a wind can be
driven from a small X-region just outside the stellar magnetopause, where the field lines assume an open
geometry and are rooted to material that rotates at an angular speed equal both to the local Keplerian value
and to the stellar angular speed. Assuming axial symmetry for the ideal magnetohydrodynamic flow, which
requires us to postpone asking how the (lightly ionized) gas is loaded onto field lines, we can formally inte-
grate all the governing equations analytically except for a partial differential equation that describes how
streamlines spread in the meridional plane. Apart from the difficulty of dealing with PDEs of mixed type,
finding the functional forms of the conserved quantities along streamlines—the ratio f of magnetic field to
mass flux, the specific energy H of the fluid in the rotating frame, and the total specific angular momentum J
carried in the matter and the field—constitutes a standard difficulty in this kind of (Grad-Shafranov) formal-
ism. Fortunately, because the ratio of the thermal speed of the mass-loss regions to the Keplerian speed of
rotation of the interface constitutes a small parameter €, we can attack the overall problem by the method of
matched asymptotic expansions. This procedure leads to a natural and systematic technique for obtaining the
relevant functional dependences of f, H, and J. Moreover, we are able to solve analytically for the properties
of the flow emergent from the small transsonic region driven by gas pressure without having to specify the
detailed form of any of the conserved functions, f, H, and J. This analytical solution provides inner boundary
conditions for the numerical computation in a companion paper by Najita & Shu of the larger region where

the main acceleration to terminal speeds occurs.

Subject headings: accretion, accretion disks — MHD — stars: formation — stars: magnetic fields —
stars: mass-loss — stars: pre-main sequence — stars: rotation

1. INTRODUCTION

1.1. Summary of Paper I

A magnetocentrifugal mechanism for driving winds from
strongly magnetized, rapidly rotating, astrophysical sources
constitutes perhaps the leading contender for explaining colli-
mated outflows from a wide range of objects, ranging from
radio jets in active galactic nuclei (AGNSs) to optical jets and
bipolar flows in young stellar objects (YSOs) (see, e.g., Bland-
ford & Payne 1982; Pudritz & Norman 1983, 1986; Ko6nigl
1989; Wardle & Konigl 1993). In the first of this series (Shu et
al. 1994, hereafter Paper I), we demonstrated that the specific
mechanism proposed by Shu et al. (1988, hereafter SLRN)—an
X-celerator wind driven magnetocentrifugally along open field
lines from the equator of a protostar spun up to breakup speed
by rapid accretion from an adjoining Keplerian disk—could be
generalized to accommodate the case of slow rotators such as
classical T Tauri stars (CTTSs) which also possess disks but
rotate typically at only a tenth of breakup (see, e.g., Edwards et
al. 1993). This development is fortunate because in the interim
we have developed a mathematical formalism for calculating
the detailed properties of the flow in the former case under the

simplifying assumptions of time independence and axial sym-
metry. To make the generalization to the slow rotator case, we
only need to suitably scale the nondimensional results that we
have already obtained for the rapid rotator case.

1.2. Aims of Present Paper

Addressing the problem of massive winds from protostars,
SLRN outlined the form of the so-called Grad-Shafranov
equation (hereafter GSE, Grad & Rubin 1958; Shafranov
1966)' that one could use, in parallel with the Bernoulli equa-
tion (BE), to analyze the steady axisymmetric X-celerator flow
under the approximation of ideal magnetohydrodynamics
(MHD). (See also Lovelace, Berk, & Contopoulos 1991.) The
key to simplifying the calculations lies in taking advantage of
the existence of a small parameter in the problem. This param-
eter, the ratio € of the isothermal sound speed a, to the orbital

! We follow the convention of the plasma physics community in this
nomenclature (GSE), but we note that the use of scalar magnetic potentials to
describe two-dimensional magnetostatic configurations in solar physics was
pioneered by Dungey (1953), while the use of scalar streamfunctions to
describe steady two-dimensional fluid flows have been extant since their intro-
duction by Stokes (1842).
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speed R, Q, at the X-point of the effective potential,

ax
RQ.’ (L.1)
was introduced in Paper I to obtain the important scalings
from a physical point of view. In the present paper, we use the
method of matched asymptotic expansions to formalize the
procedure and to obtain more detailed results.

In particular, a solution of the GSE by our techniques (see
below and Najita & Shu 1994, hereafter Paper III) yields an a
priori calculation of the divergence of the streamlines and field
lines in the meridional plane (see, e.g., Heinemann & Olbert
1978 ; Sakurai 1985) that is usually avoided in other treatments
of the problem. The present paper presents a full derivation of
the SLRN formalism; we also indicate a practical method for
the numerical solution of the resulting equations in the crucial
part of the flow between the sonic and Alfvénic transitions,
where the main acceleration takes place.?

€=

2. BASIC EQUATIONS

2.1. Natural Scalings and Numerical Examples
To begin, we introduce the following fiducial units of length,
velocity, density, and magnetic field (cf. egs. [2.5b] and [2.5¢]
of Paper I, hereafter eqgs. [1.2.5b] and [1.2.5¢]):
R., Q.R,, M/4RIQ,, @M,/R)?. (2la)

In the above, Q, equals the Keplerian angular velocity at a
distance R, from a star of mass M :

(2.1b)

and M,, is the mass-loss rate in the X-wind, which we may
obtain either observationally from direct empirical measure-
ments, or theoretically by using equations (I.1.1.) and (I.4.7a) if
we know the disk accretion rate M. Implicit in our model is
the assumption that the stellar magnetic fields (and any that
they induce in the disk) rotate at an angular velocity Q, = Q..

2.2. Nondimensional Equations for Isothermal Ideal MHD
Flow

If we confine our attention to the region of the sonic tran-
sition (which determines the inner boundary conditions for the
rest of the flow), the assumption of isothermality represents a
good approximate replacement for a full heating and cooling
calculation (cf. Ruden, Glassgold, & Shu 1990, hereafter RGS).
Elsewhere in the flow, we may ignore the role of thermal pres-
sure altogether, i.e., we may take the limit of a cold flow, € — 0.

The calculations of RGS and Paper I also indicate that slip
speeds in the X-wind due to ambipolar diffusion amount to a
fraction of a km s™!; as a consequence, we may adopt to good
approximation the assumptions of ideal MHD. With the non-
dimensionalization (2.1a), we can write the steady equations in
a frame of reference that rotates at the angular velocity Q_ as

V:(pu)=0, (2.2a)

2 Apart from the issue of an Alfvénic transition, we can use the same formu-
lation to solve the problem of magnetic accretion from a disk onto the central
star by funnel flow (see Paper I). We leave this task for a future endeavor.
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1
=—%Vp—VVe,f+,—)(VxB)xB, (2.2b)

Bxu=0, (2.2¢)
V:B=0, (2.2d)

where Vg is the effective potential associated with a rotating
frame of reference and the gravitational field of a centrally
concentrated star:

1 1 3
Veer = _;‘5w2+§~
In equation (2.2b) the term 2e, x u represents the Coriolis
acceleration associated with being in a dimensionless reference
frame that rotates at unit angular speed about the z-axis. In
equation (2.3) r = (w® + z%)'/2 and w are, respectively, the radii
in spherical (r, 6, ¢) and cylindrical (w, @, z) coordinate systems
with origin at the center of the star. We have also defined the
arbitrary constant in V.4 so as to make its numerical value
conveniently equal to zero at the X-point, r = @ = 1, where
VWere = 0.

Equation (2.2c) does not yield the most general solution of
the field-freezing equation. For steady axisymmetric flow,
however, it is possible to show that # must generally be pro-
portional to p~'B, except for an additive term that corre-
sponds to fluid rotation about the z-axis at an arbitrary
uniform angular speed (Mestel 1968). If we choose to work in
the frame that rotates with the star and the X-region, this
arbitrary term vanishes because we impose the boundary con-
dition that w and p~ ! B must both approach zero as we go deep
into the star (for the protostellar case) or the X-region of the
disk (for the T Tauri star case). We may then write the condi-
tionu oc p~*Bas

(2.3)

B = Bpu , 2.4)

where equations (2.2a) and (2.2d) require that u - VB =0, i.c.,
that f is constant on a streamline.

The quantity § governs how matter is loaded onto field lines
and has a peculiar property near the midplane z = 0 that we
should elucidate at the outset. For definiteness, focus on the T
Tauri star case depicted in Figure 2b of Paper I. An outflow
occurs from above and below the disk, so the magnetic field B
threading through the disk is, say, parallel to # in the wind
above the disk, and antiparallel below. In other words, § must
have opposite signs above and below z = 0. On the other hand,
B has a nonzero value as z — 0 from either above or below, if a
field strong enough to launch a magnetocentrifugally driven
wind exists in the first place. The dual requirement seemingly
involves a contradiction: if § suffers a finite jump, from a posi-
tive value to its opposite negative value, as we cross the mid-
plane, we can have V - B = 0 everywhere including z = 0, but
then V - (pu)oc d(z) if B= Bpu. The problem lies in our
assumption of field freezing. If strict freezing held even inside
the disk, there would be no way to load matter onto field lines
for a wind other than to suppose a source of mass on the
midplane, i.e., to accept a & function &(z). In actuality, field
freezing must break down inside the disk, e.g., because of ambi-
polar diffusion (see Paper I). Then we can have both V - B =0
and V - (pu) = 0 everywhere and still load matter onto field
lines; i.e., the relation (2.4) must not hold in the deep interior of
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the disk. The formulation given in this paper can represent, at
best, only the outer limit of some inner solution (in the sense of
matched asymptotic expansions), where field freezing is an
invalid approximation near the midplane z =0 of the X-
region, but becomes increasingly valid as we leave it on an €
scale. Without examining the inner problem, where we need
explicitly to account for finite magnetic diffusivity, we cannot
hope to have a priori knowledge of how matter is physically
loaded onto field lines. In this paper and the next (III), we
absorb this information in the adoption of the arbitrary free
function f, which we henceforth assume to be positive above
the midplane, where we perform all our calculations.

2.3. Stream Function and Conserved Quantities

For axisymmetric flow with rotation, it is further possible to
introduce a stream function y for the poloidal part of the flow
via

i S 8. 4 @9)
w Oz

u, = ,
Pla w 0w

so that the equation of continuity is satisfied identically:
10

0
2 70 (@PUa) + - (pu) = 0. (2.6)

Equation (2.5) implies that u - Vi) = 0; ie., that the lines of
constant i define streamlines in the meridional plane (the pol-
oidal part of the flow). Since # and B are parallel to one
another, we see that lines of constant ¥ also define magnetic
field lines in the meridional plane (the poloidal components of
the field). In any case, the condition # + VB = 0 can now be
expressed as the requirement,

B =B . 2.7)

We require that the integral of the mass flux gives the
assumed mass-loss rate, i.e., that for all w,

z1 zy alp
1= j wpu,dz = J —dz = Y(w, z,), (2.8)
0 o aZ
since reflection symmetry allows ¥ to be an odd function of z
so that Y(w, z) = 0 for z = 0. Thus, the value of  from 0 to 1
labels the fraction of the total mass flux carried by all stream-
lines from the midplane to that value of ¥, with ¥ =1 on
z = z,(m).

If we dot equation (2.2b) with #, we obtain Bernoulli’s
theorem:

1
u-V(§|u|2+ezlnp+V,ﬂ>=0, (2.9a)

which implies
Flul> +elnp + Vg = HY) . (2.9v)

Except for the “heat function” term €?In p in equation (2.9b),
H represents Jacobi’s constant, E, — J,, with E, and J, being,
per unit mass, the nondimensional energy and z-component of
the angular momentum of the gas in an inertial frame. The
conservation of H(}) along a streamline, independent of the
magnetic field B, arises because u is parallel to B, so the
Lorentz force oc(V x B) x Bcan do no work on the fluid in the
rotating frame of reference. The specific energy of the gas E, in
an inertial frame ~H + J, can change, however, because the
Lorentz force does exert torque, and this can change the spe-
cific angular momentum J, of the gas along a streamline.
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Equation (2.9a) can be combined with equation (2.2a) to give
(cf. Lubow & Shu 1975)

u
|u]

Independent of the assumption of axial symmetry that we
adopt elsewhere for the sake of mathematical tractability,
equation (2.10) implies that the sonic transition must be made
within an € neighborhood of the X-point, a conclusion already
reached by physical argument in Paper I. To derive the same
conclusion here, note that the fluid reaches acoustic speed
when |u| = €. If this occurs by smooth acceleration from sub-
sonic to supersonic values, V - u remains finite, and the left-
hand side of equation (2.10) vanishes. The two terms on the
right-hand side must therefore cancel on the sonic surface. The
first term |« |°V - (u/|u|) ~ €*/1if the unit vector u/|u| changes
direction on the scale of / in the X-region. On the other hand,
the gradient of the effective potential vanishes by definition at
the X-point, and VV, ~ | for small distances !/ from the X-
point. Thus, the term u * VV, ~ €l in the X-region. For the
two terms on the right-hand side of equation (2.10) to balance,
3/l ~ el ie., l ~ €. (QED.)?

Although the constraint for passing through a sonic point
imposed by equation (2.10) seems only to involve thermal pres-
sure (via the parameter €), magnetic forces do enter in a subtle
fashion. Bernoulli’s theorem (2.9b) states that increases in the
specific kinetic energy |#|?/2 come only via decreases in the
heat function €21n p (as p decreases in the expansion to super-
sonic speeds) or in the effective gravitational potential Vg (if
the gas flows toward the “downhill side” of the saddle at the
X-point). For launching a wind, however, increases in | #|?/2 do
no good if they represent only a lag behind the frame rotation
speed that occurs because each outwardly moving fluid
element tends to preserve its original specific angular momen-
tum in the absence of magnetic torques. To put the increase
mostly into the poloidal part (uZ + u2)/2 rather than the
(lagging) toroidal part u2/2, the gas needs to be kept nearly
corotating throughout the X-region. As we shall see in § 3, the
X-celerator mechanism accomplishes precisely this result:
while a gradient in the gas pressure accelerates u,, and u, to
speeds of order € in the X-region, strong magnetic fields main-
tain u, within order €2 of frame corotation (see also Paper I).

Other workers (e.g., Weber & Davis 1967; Goldreich &
Julian 1970; Belcher & MacGregor 1976; Hartmann & Mac-
Gregor 1982, hereafter HM) obtain as the critical speed the
propagation of slow MHD waves rather than acoustic waves
because they consider a particular projection of the velocity
(the radial component) that makes an angle with respect to the
magnetic field (which has an azimuthal or toroidal component
in the equatorial plane). When one considers the total velocity
in the corotating frame, as we do here, the relevant signal speed
is that for sound waves (and Alfvén waves, as we shall see
below).

(lu|> — XV *u) = |u’V ( )—u'VV,f,. (2.10)

3 Without coming to a fluid boundary (e.g., the interface with a dead zone),
the sonic surface cannot just end, but must extend to distances larger than
order € from the X-point. For V¥, of order unity, eq. (2.10) permits the sonic
transition to happen only if the direction of w, when its magnitude is e, lies
within an angle of order €2 parallel to the locus of the critical surface Vg = 0.
However, streamlines that make sonic crossings in this manner at an order
unity distance from the X-point probably carry very little matter on them (cf.
Fig. 3in Paper I).
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Since the fluid speed and density are of order € and €2,
respectively, in the X-region, and since Vg is itself of order €2
in the same neighborhood, we see from equation (2.9b) that
H(y) is of order €?Ine€~? on all matter-carrying streamlines in
the wind flow. Thus, we may write for later convenience,

H= —€In(e?h), (2.11)

where h(y) is an order unity function.
To reduce the equations of motion further, we use equation
(2.9b) to rewrite equation (2.2b) as

HVYy +[(2e,+Vxu—pV x Ppu)y xul=0. (2.12)

In equation (2.12) we have denoted dH/dy by H’' and substi-
tuted equation (2.4). In cylindrical coordinates (w, ¢, z), define
the quantities

J=o’ +o(l — B*pu,, (2.13a)

0 0
0= [(1 = ] — o= [(L - fp)u] . (213b)

We note that f?p represents the inverse square of the Alfvén
Mach number, (|u|/vy)~% (cf. Paper I); thus, the quantity
(1 — B?p) is an Alfvén discriminant. When it is negative, the
flow is sub-Alfvénic; when it is positive, the flow is super-
Alfvénic. Equation (2.13a) implies that an Alfvén crossing is
made at the axial distance.

@, =JY?, (2.13¢)

The quantity J in equation (2.13a) is the sum of the z-
component of the specific angular momentum carried in an
inertial frame by the gas, J, = w(w + u,), and that by the field
(in a torsional Alfvén wave) in the flow direction A, J; =
—wB, B * ii/pu * i = —wp’pu,. Although the sum J, + J; =
J is conserved along a streamline (see eq. [2.15b] below), the
amount contained in the gas J, can increase at the expense of
that carried by the field J in the form of a Maxwell torque per
unit mass flux, —wB, B - ii/pu - A, that reacts back to spin
down the footpoint of the field in the X-region.

The quantity w is the sum of the ¢-component of the vor-
ticity in the gas and an analogous contribution from the field.
The fluid part of the g-vorticity w gives a measure of how
strongly an initially equatorial flow is deflected toward the
rotational poles. In terms of J and w, the term inside the
brackets of equation (2.12) has the toroidal part,

<uu, aJ u,@J)
e\ = —+—=—"=]),

wiw w0z (2.142)

and the poloidal part,

J
em<wuz - %‘72 g_w + wﬂﬂlp2 Iu I2u2>

- e,(wu,, + %% g u|2u,,) . (2.14b)
w 0z

In expression (2.14b), we have made use of equation (2.5) to
eliminate dy/0z and 0y/dw. Since Vi has no toroidal part, the
¢ component of equation (2.12) requires expression (2.14a) to
be zero, i.e.,

u-VJ=0, (2.152)
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or
J=JW). (2.15b)

With J = J(y) and with equation (2.5) used to eliminate the
first derivatives of y, the poloidal part of equation (2.12) reads

(v e — uge)w + J'pu, + wppp*|lul* — Hwop)=0. (2.16)
For nontrivial solutions of equation (2.16) to exist, we require

2 oyt gpplut—H =0. @.17)
wp w

With the definitions (2.5) and (2.13b), we can reexpress equa-
tion (2.17) as a partial differential equation (PDE) for y:

ii(uw%%i(d%):g, 2.18)

w 0w ow 0z 0z
where
Bp—1
A= (2.192)
2= pI:J' %f + BBplul? — H'] . (2.19b)

Notice that &/ is proportional to the negative of the Alfvén
discriminant and that 2 = 0 for y = 0 because 2, J, and H are
all even functions of by reflection symmetry. (We remind the
reader, however, that the physical equations break down near
the equatorial plane, where we should not ignore the effects of
magnetic diffusivity.)

24. Character of Governing Partial Differential Equation

We find it computationally convenient to use equations
(2.19a) and (2.13a) to eliminate p and u, via

1
p = m ’ (2203)
u, = —w ' LB — vd), (2.20b)
where
1(J
¢== (? - 1) . (2.20¢)

Making the substitutions (2.11a), (2.20a), and (2.20b), we may
rewrite equations (2.18) and (2.9b) as

V@V =2,
(B* — o A)’[I VY| + £7]

2
+ 20°[V + €21n (ﬁz_jﬁﬂ =0, (221b)

(2.21a)

where

J ) » BB €2h'/h
2 $w2+(|V¢[ +$)w2+ﬂ2—w2.d' (2.22)
The substitution of o/ for p proves a computationally sound
strategy because .o/ remains of order unity in the important
part of the flow, whereas p can range over several orders of
magnitude.
Notice that the direction of the magnetic field does not mat-
ter for the macroscopic dynamics; i.e., equations (2.20a)—(2.22)
do not depend on the sign of B. Although we shall formally
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assume that f is positive in the upper hemisphere and negative
in the lower; in the real problem, as in the case of the solar
wind, any given hemisphere may have several “magnetic
sectors” across whose boundaries the magnetic field reverses
direction. Introduction of such sectors would completely
change the global distribution of electric currents implied by
the axisymmetric models without modifying to any significant
extent the large-scale flow dynamics.

Notice finally that the meridional spreading of streamlines
governed by equation (2.21a) resembles steady state “ heat con-
duction,” with 2 being a net “source” term and </ being a
“conductivity coefficient ” that is positive for sub-Alfvénic flow
and negative for super-Alfvénic flow. The “conductivity”
going negative in the current problem does not carry the impli-
cation of “negative diffusivity ” (i.e., an automatic bunching of
the streamlines) because the character of the governing PDE
(elliptic or hyperbolic) is determined by the second-order deriv-
atives of i in equation (2.21a) only after we substitute in the
implicit dependence of o/ on the first derivatives of ¥ implied
by the Bernoulli equation (2.21b). In the general case when €
has an arbitrary value (see, e.g., Heinemann & Olbert 1978;
Sakurai 1985), there are three “critical surfaces”
(corresponding to slow MHD, Alfvén, and fast MHD
crossings) about which one needs to worry, where the govern-
ing second-order PDE might or might not change character. A
great simplification occurs if € < 1. The overall problem then
divides by the method of matched asymptotic expansions into
two parts: an inner problem near the X-point of the effective
equipotential with size of order € where the flow in the rotating
frame of reference accelerates from rest on the star to super-
sonic speeds, and an outer problem beyond the X-point with
size of order unity where we may take the formal limit € — 0 so
that the issues of Alfvén and fast MHD crossings telescope
down to a single surface at .7 = 0. In the same limit, the func-
tion H(y) in equation (2.11) may be taken to equal zero inde-
pendent of the functional form of h(}), and the sonic transition
appears to occur at a single point in the meridional plane—the
X-point of the effective potential of the protostar. For the outer
problem, the resultant PDE is elliptic in the sub-Alfvénic
region (& > 0) and hyperbolic in the super-Alfvénic region
(o < 0).

To summarize, if we are given the conserved functions S(y),
H(Y), and J() that represent the distribution of magnetic flux
to mass flux, specific energy in a rotating frame of reference,
and total specific angular momentum, we can reduce the
steady MHD flow problem to solving the second-order PDE
(2.21a) and the transcendental equation (2.21b) for the stream
function y and Alfvén discriminant o/ (with % and 2 being
given by egs. [2.20c] and [2.22]). The density, azimuthal veloc-
ity, poloidal velocity, and vector magnetic field, can then be
obtained from equations (2.20a), (2.20b), (2.5), and (2.4). Our
formulation differs from the standard Grad-Shafranov equa-
tions (e.g., Hameiri 1983 or Lovelace et al. 1986) in that we
choose to replace the magnetic flux function by the fluid stream
function for the sake of convenience in a problem where the
mass-loss rate is known but the magnetic field is not. Further-
more, by adopting the technique of matched asymptotic
expansions, we can concentrate on crossing the Alfvén surface
in the outer problem (where the governing PDE [2.21a]
changes character from elliptic to hyperbolic) after we have
successfully crossed the sonic surface in the inner problem.
Finally, our method (see below) allows a tractable scheme for
dealing with the practical difficulty that the unknown functions
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B(), H(Y), and J(Y) are not given to us a priori, but are to be
found as part of the overall solution.

2.5. Boundary Conditions for the Sub-Alfvénic Region
of the Outer Problem

We begin by examining the constraints set on the sub-
Alfvénic flow by the boundary conditions. In the limit € —» 0,
when we can approximate the adjoining disk as being infinites-
imally thin, the boundary conditions to be imposed on the
PDE (2.21a) are that the first streamline above the disk just
skims the surface of the disk:

y=0 for z=0; (2.23a)

the passage through the Alfvén surface is smooth (which
defines the normal derivative of ¥):

Vod V=2 on o =0; (2.23b)

and the limiting streamline corresponds to a free boundary
across which the flow is in pressure balance with an O-wind or
a dead zone (cf. Figs. 1, 2b, 2¢c and 4 of Paper I):

3(Bplul)® = pex + 5|Bo > on Y =1. (223c)

The term on the left-hand side of equation (2.23c) represents
the magnetic pressure of the X-wind. We have ignored the
thermal pressure (on the left-hand but not the right-hand side)
on the grounds that it is negligible for the X-wind in the outer
region of the flow. The ram pressures of the X- and O-winds do
not enter on either side of equation (2.23c) because by defini-
tion all velocities are directed parallel to the interface between
the two flows.

The boundary conditions (2.23a)—(2.23c), if extended to
include the X-point, form a closed curve in the meridional
plane that serves to fix the solution in the sub-Alfvénic region,
o/ > 0, where the governing PDE is elliptic. In practice, in the
limit € - 0, Y takes on all values from 0 to 1 at the X-point,
which constitutes a singularity for the formal outer problem
(because all the streamlines seemingly emanate from a single
point). For numerical work, therefore, we need to remove from
the outer problem the small X-region and “patch” onto it the
values that apply to the solution of the inner problem. In the
current paper, we supply the mathematical justification for the
patching procedure by demonstrating analytically that there
exists a region of overlap where the solutions asymptotically
match (see §§ 3 and 4). The analytical outer limit of our inner
solution then provides inner boundary conditions for an outer
problem that we solve numerically (see Paper III).

Once the sub-Alfvénic part of the outer problem has been
solved (say, by a relaxation technique), both s and its normal
derivative are fixed on the surface &/ = 0; thus no outer surface
boundary condition (say, at infinity) can be applied to the
super-Alfvénic part of the problem. Instead, because the gov-
erning PDE is now hyperolic, it should be possible, in prin-
ciple, to march outward from the Alfvén surface (with the help
of the method of characteristics and the two boundary condi-
tions, eqs. [2.23a] and [2.23c]) to complete the solution in the
super-Alfvénic region. This relatively straightforward march-
ing problem we leave for future work.

One obstacle to carrying out this overall plan is that the
spatial location of the Alfvén surface o/ = 0 in equation (2.23b)
is not specified in advance. This apparent complication turns
out, however, actually to be a boon, because it implies that one
of the arbitrary functions—say, f(y) for the sake of
definiteness—is free for us to specify. Alternatively, we may fix
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the spatial location of the Alfvén surface in advance, and
compute the ratio of magnetic field to mass flux f(y) needed to
accomplish this feat. If the calculated (1)) does not satisfy a
future calculation of how matter is actually loaded onto field
lines (e.g., by ambipolar diffusion of gas relative to field deep
inside the X-region), we will need to modify the location of the
Alfvén surface (which will change the distribution of terminal
velocities reached in the X-wind).

Having the freedom to choose the location of the Alfvén
surface produces another immediate benefit, because equation
(2.13c) fixes the unknown function J as a function of position
on the Alfvén surface, which determines J(i) if we know the
distribution of ¥ on this surface,

JW)=w® on w=w,(), (2.24a)

where @ = w,(z) describes the locus of the curve o = 0. Equa-
tions (2.20c) and (2.24a) imply that % on the Alfvén surface
must be calculated by 'Hopital’s rule:

AL 2
$=Hml<#_l>=w

Ave On T = ,(2),

(2.24b)

where 7 is now a unit normal to the Alfvén surface o7 = 0.

Imagine that we have the spatial dependence of y every-
where inside the Alfvén surface, via a tentative solution of the
PDE (2.21a) if we know all other relevant information. An
iterative method then immediately suggests itself if we can use
all of the equations independent of equation (2.21a) to discover
this other relevant information. In particular, the distribution
of Y on the Alfvén surface can itself be fixed by the constraint
that Bernoulli’s equation (2.21b) must yield a solution for < on
the Alfvén surface that satisfies

o =0 on w=w,(2). (2.25)

Equation (2.25) is equivalent to the requirement that % com-
puted by I'Hopital’s rule must equal the ratio of (J/w? — 1) to
&/ extrapolated to the Alfvén surface (cf. eq. [2.24b]).

On the other hand, if J(y), H(}) (taken to be zero in the
outer problem), and Y(w, z) are all known (so that &/ can
everywhere be found from Bernoulli’s eq. [2.21b]), equation
(2.23b), with 2 given by equation (2.22) in the limit € — 0, can
be regarded as an ordinary differential equation (ODE) for B:

pp = TVL VY + 2T
T WPt 2t

Equation (2.26) allows us to integrate for f(if) from ¥ = 0 to
¥ =1 along the Alfvén surface when ¥ (and therefore its
tangential derivative) and the normal derivative of
(proportional to V. « V) are given along it. The starting
value of f at y = 0 (z = 0) in the integration of this ODE is to
be determined, in principle, so that the boundary condition
(2.23c) is satisfied at y = 1.

Unfortunately, equation (2.23c) does not form a practical
boundary condition since no one possesses either a solution for
the dead zone or a well-developed theory for the O-wind (and
therefore definitive values for p,, + |B.,|?/2). Hence, we
choose in practice to replace equation (2.23c) by the simpler
expedient of a fixed upper boundary:

Y=1 on z=z,(m), 2.27)

where z,(w) has a freely specifiable functional form. (See the
Appendix for the introduction of a curvilinear set of coordi-

on o =0. (226
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nates that takes advantage of this freedom.) Again, if the left-
hand side of equation (2.23c) computes after the fact to some
value that does not conform with pressure balance in some
future development for the dead zone or the O-wind, we will
need to choose some other function for z,(w) in equation (2.27).
The adoption of the conditions (2.23a) and (2.27) implies that
we treat the physical interfaces between the X-wind and the
disk or the X-wind and the O-wind as laminar slip surfaces. In
practice, such interfaces are likely to become turbulent bound-
ary layers. The astronomical difference may be considerable
because observational selection effects (e.g, radiation by
shocks in highly collimated optical jets [see, e.g., Mundt, Ray,
& Raga 1991] or by masing action in wind-disk interactions
[see, e.g., Plambeck, Wright, & Carlstrom 1988]) may espe-
cially highlight the regions of turbulent mixing. Nevertheless,
because astronomers’ knowledge of the properties of super-
sonic entrainment and hydromagnetic mixing is so poorly
developed, we remain content at this stage to construct a
zeroth-order theory based on the assumption of laminar slip
surfaces. This theory may then serve as a starting point for
more sophisticated calculations of the mixing to be expected
for turbulent boundary layers (see, e.g., Cant6 & Raga 1991).

2.6. Scaling for Inner Problem

Since J has to be larger than 1 by an order unity amount for
the centrifugal mechanism to work at all, % and § must be of
order unity if equations (2.20c) and (2.26) are to be obeyed. On
the other hand, in the X-region where the sonic transition is
made, V,y is of order €2, and w?.«/ must equal 2 to this order if
equation (2.21b) is to be satisfied. Equation (2.20a) then implies
(as we have already argued physically in Paper I) that p is of
order €2 (to carry unit mass loss in accordance with eq. [2.8]
when the poloidal flow speed is ~¢ in an equatorial belt of
height ~e¢), and the departure from corotation speeds u, is of
order € (to not carry more than order unity J in eq. [2.13a]).
Equation (2.4) now shows that the dimensionless toroidal mag-
netic field is of order unity at the sonic point while the dimen-
sionless poloidal magnetic field is of order € ! times larger (in
units of the fiducial value given by the last expression in eq.
[2.1a]). In other words, the magnetic field in the X-region is
almost all poloidal, which makes good physical sense.

Since Y from equation (2.8) is by definition an order unity
function, the derivatives of § and J with respect to ¥ (i.e., p’ and
J') are order unity functions (or zero). The largest term in
equation (2.21c) for 2 is then of order € 2 (because
|Vy/| ~€™") and reads 2 ~ | Vy |*BB'/w>. With this approx-
imation and &/ ~ /w?, equation (2.18) in the X-region (where
@ ~ 1) takes the simplified form:

0 oy 0 W\

(')x(ﬂ ('}x>+6z<ﬂ Bz>~0‘
In equation (2.28a), we have defined the pseudo-rectilinear
coordinate x = w — 1, and it is important to remember that x
and z are to be regarded as order € variables (all this will be
formalized better in § 3).

Equation (2.28a) has a subtle physical interpretation. The
left-hand side is equal to the ¢ component of V x B in the
X-region. Thus, equation (2.24a) expresses the approximate
current-free condition (in the important direction),

(2.28a)

(VxB),~0, (2.28b)
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that must hold for very strong fields anchored deep inside the
X-region when they emerge into the surface layers. Current-
free fields are, of course, a special example of force-free fields.
The difference between the fluid involved dynamically in the
wind and the dead zone becomes blurred in the X-region (see
Fig. 3 in Paper I). Closed field lines are strong and nearly
force-free as they protrude into the surface layers of the X-
region. But when gas emerges dynamically onto open field
lines in the wind (or onto closed ones in the funnel flow), the
expansion and acceleration will reduce the importance of mag-
netic forces to fluid inertia, with the Alfvén speed remaining
roughly constant, but with the fluid speed increasing. The
force-free approximation will then break down. This change in
the dynamical role of the field ultimately causes the field to
whip the gas magnetocentrifugally through an Alfvén point.*
The modification in physical behavior (from near-corotation
to significant lags and outward magnetocentrifugal
acceleration) occurs mathematically when equation (2.28a) has
a region of common validity with equation (4.1) below. The
rapid nature of the transition in the limit € - 0 makes the
problem an ideal one for attack by singular perturbation
theory.

3. THE OUTER LIMIT OF THE INNER PROBLEM

3.1. Basic Equations

Motivated by the comments of the previous section, let us
introduce, for the flow problem in the X-region, the scaled
coordinate variables:

w—1=€, z=¢, (3.1a)
and the scaled dependent variables:
p=¢€2p, H= —€*In(eh). (3.1b)
To lowest nonvanishing order for small €, equation (2.13a)
yields
u, = EZ[II}T‘ZW] , 32

which can be calculated after the solution for y has been
obtained from (cf. eq. [2.28]):

0 oy 0 oy _
&(Ba_f>+5_é'(ﬂa_§>_0 (3.3)

A Taylor expansion of V¢ about ¢ = 0 = {, where 0V,;/0¢ =
0V5t/0L = 0 = Vg, yields to lowest nonvanishing order,

€ W= — 382+ 302 (3.4a)

Once the function h(i}) has been specified, the fluid pressure
(and scaled density) p is given as a function of dy//0¢ and /o,
from the transcendental equation represented by the dominant
terms in Bernoulli’s equation:

1 [fop\* [ow\*] 3 1 _
z_pz[(a_i> +<6_C):|—§fz+552+1n(hp)—0. (3.4b)

Notice that once f(i) has also been specified (i.e., a specifi-
cation of how matter is loaded onto field lines), equation (3.3)

* The funnel flow, which remains sub-Alfvénic along its entire length, differs
from the wind flow on this fundamental point. Thus the GSE is elliptic in the
funnel domain, requiring the application of appropriate boundary conditions
at the stellar surface (e.g., the requirement that the poloidal fields become
dipole in character).
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for the stream function ¥ is completely decoupled from the
equation (3.4b) for the pressure (and density) p. Thus, if we take
care to state the boundary conditions in terms of y and its
derivatives alone, we can solve for  from equation (3.3) inde-
pendently of any assumption for h() or the resulting density
field. For the same , different solutions for p (and therefore u)
can be obtained, after the fact, as the root of the transcendental
equation (3.4b) for different h(y)).

As we have noted earlier and in Paper I, however, the
problem of how matter is loaded (subsonically) onto field lines
cannot be addressed properly within the context of the field-
freezing approximation. Hence, we can use equations (3.4a)—
(3.4b) only in the limit (£ + {?)!/2 - co within the rightmost
sector of Figure 3 in Paper 1, i.e,, the “downhill” sector into
which the X-wind blows in an outward direction. Because
has a limited range of values (from O to 1), its derivative with
respect to distance s = €0 (on an e scale) from the X-point must
go to zero as we take the limit ¢ —» c0. (Do not confuse the
stretched coordinate o here with the surface density of the disk
o introduced in Paper I.) This property of the physical solution
motivates the development of the next subsection.

3.2. Pseudopolar Coordinates

Introduce the scaled pseudopolar coordinates (o, ¢, 9),
where

E=0cos 9, (=o0osing. 3.5)
Equations (3.3) and (3.4b) now become

10 ) 1 0 0
s ) Fm(pg)=0. o

1 o\ 1 (oy)? 1
272[(%) +?(£> ]—(2 cos? 9_§>62 +1In(hp) =0,

(3.7

In the limit ¢ —» oo, the lowermost streamline (in the upper
hemisphere) skims over a thin disk:

Yy=0 for §=0, (3.8a)

whereas the uppermost streamline leaves the X-region at an
asymptotic latitudinal angle 9,(0) < 60°:
y=1 for 8=29,0). (3.8b)

In the same limit, physically meaningful solutions of i must
depend asymptotically only on 3 and not on 6. Equation (3.6)
then becomes

9 (/’ﬂ
29 \ 9

With the boundary conditions (3.8a) and (3.8b), equation (3.9)
may be integrated to yield

>—>0 for 0<3<9,0) as o—>00. (39)

1 (v i
EL BWo)dyo —

5% for 0<3<8,0) as o-> 0,

(3.10a)

where Y, is a dummy variable. In equation (3.10a) we have
defined the constant  as the streamline-averaged value of y:

1
p= L BWo)dy, - (3.10b)
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In the same limit equation (3.7) becomes

1 [oy)\? 5 1\ ,
e <89> —+(2cos .9—2)0

for 0<9<9,0) as (3.10¢)

Independent of h(y), therefore, equation (3.10c) yields the
asymptotic solution for the pressure p = €2p as

B ] - 1
p— I:Sx(o)ﬂ:la %(4 cos? 9 — 1)~ 112
for 0<3<9,0) as

g — 0 .

(3.10d)

The corresponding solution for the dominant component of
the (scaled) velocity field reads

g— O .

_ 1 [oy
1, _ 2.9 _ 1)1/2
€ u, e <69> — 04 cos* 3—-1)

for 0<39<3,00 as 6> 0.

(3.10¢)

Equations (3.10a)—(3.10e) have interesting physical interpre-
tations. Equation (3.10a) (or, equivalently, eq. [3.9]) implies
that the g-component of the magnetic field, proportional to
B(Y)0y /09, has the same asymptotic strength on every stream-
line that leaves the X-region. On the other hand, equation
(3.10¢) implies that the fluid velocity asymptotically emerges
along the o-direction, increasing linearly with ¢ for every direc-
tion 0 < 9 < 9,(0) < 60°, where the last angle (the complement
of 30°) gives the locus of the upper-right branch of the critical
equipotential in the X-region. Since B oc u, this implies that the
g-component of B represents essentially the entire poloidal
field (dominant over the toroidal field in the X-region). These
conclusions hold independently of any specific choices for f(i))
or h() and constitutes one of the principal findings of this
section: magnetic fields strong enough to provide the requisite
magnetocentrifugal acceleration in the outer region exert so
much stress in the inner region that a uniform distribution of
field strengths emerges for the mass-carrying streamlines. In
turn, such a field configuration leads to the unique asymptotic
distribution of pressure and gas density given by equation
(3.104).

Finally, we notice that if 3, should equal 60° rather than be
less than it (ie., if the uppermost streamline asymptotically
approaches the critical equipotential), then equation (3.10d)
implies that the gas pressure goes to infinity on this streamline
unless, for Yy —1, p(y)—> co. Only for infinite foc
(4 cos? 3 — 1)" /2 as 9 — 60° can the density p = €~ 2p and the
magnetic field B = Bpu remain finite (to balance the pressure of
the dead zone, say) when the fluid velocity # vanishes (see egs.
[3.10d]-[3.10e]). We regard this property of the outer limit of
the inner solution the strongest hint that the outer branch of
the critical equipotential might correspond asymptotically to
the separatrix between gas that can flow dynamically in the
wind and (exponentially small amounts of) matter that
remains static in the dead zone. Unlike the case for the wind
proper beyond the X-region, the magnetic field in the dead
zone will generally have little or no toroidal component B,;
consequently, we anticipate a fairly rapid change in the direc-
tion of the field (if not in its strength) as we cross the separatrix,
so the separatrix should also correspond to a current sheath
that mediates the transition between open and closed field lines
(see § 2 of Paper I).
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Nevertheless, we cannot prove that the locus of the upper
streamline 8 = 3,(s) must follow the locus of the critical equi-
potential, V (s, 9) = 0. For example, the ram pressure of an
O-wind (before it is turned into gas pressure by a shock) would
undoubtedly push the Y = 1 streamline somewhat away from
the zero-velocity surface represented by the critical potential.
Even with a dead zone, without a complete solution that
includes the structure of the (near-vacuum) field, we cannot
rule out the possibility that the = 1 surface lies a finite dis-
tance within the “downhill ” sector of the equipotential, rather
than right on it.

In what follows, we allow for the more general possibility
concerning the location of the surface 9 = 9,(s). The Alfvén
surface may then occur at a finite distance s from the X-point
on the last streamline (which has a finite value of B associated
with it), a considerable convenience for a numerical approach
to the solution of the governing equations (see Paper III).
Paper III also considers Alfvén surfaces that are concave
toward the central star, rather than concave away from it (like
the loci for the equipotentials within the outer downhill sector).
The former geometry has smaller values of § than the latter
geometry for i close to 1. The models of Paper III therefore
represent conservative estimates for the amount of collimation
toward the z-axis that we might realistically expect for the last
streamline of the X-wind.

These comments conclude our discussion of the outer limit
of the inner solution. We now proceed to consider the outer
problem, in particular, the problem of asymptotic matching
with the inner region.

4. THE OUTER PROBLEM

4.1. Governing Equations

To lowest order in €, the governing equations in the outer
region read

V- (dVY) =2, 4.1)
2 2 2 2 1 J 2 2
(B* — o’ A)?| | VY| + 1) [+ 20 =0,
4.2)
with 2 given by
AL NL W
2= ——M<U72 1> w2 (ﬁZ_mzd)z ﬂﬂ . (43)

The boundary conditions to be imposed on the PDE (4.1) are
as stated in § 2.3.

In what follows (see § 3.2 and the Appendix, as well as Paper
III), we find it convenient to introduce pseudopolar coordi-
nates (s, 9) with the origin of s lying—not at the center of the
star—but at the X-point, and with the angle 3 measured in the
meridional plane starting from zero at the equator:

x=w—1=scos 9, (4.4a)

(4.4b)

The variables x, z, and s are identical to their counterparts &, ¢,

and ¢ introduced in equations (3.1a) and (3.6) except that they

naturally represent spatial scales on the order of unity rather

than of €. In terms of the (right-handed) coordinate system

(s, @, 9), the metric coefficients are h, = 1, h,=1+s cos §,
g = S.

z=ssind.
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4.2. The Inner Limit of the Outer Solution

We now wish to find the form taken by the outer solution in
the inner limit s — O to see if it matches the form taken by the
inner solution in the outer limit ¢ — co0. For small s, V¢ can be
expanded in a Taylor series as (cf. eq. [3.4a]):

Vg = —3x*+ 322+ = —s?2cos? $—§) +---. (4.5a)
We also try the series expansions,

¥ =o® + sYi(9) + 59 + -, (4.5b)

o = B2(Yo) + s (%) + 2P + -+, (4.5¢)

where the terms in s® and s! for &/ are determined so that
B? — w2 is zero to these orders, i.c.,

o =288V, —2B*cos 9. (4.5d)
In equation (4.5d), and for the rest of this section, we mean
B(¥o) and B'(Y,) when we write f and . With the choices (4.5¢)
and (4.5d), the expansion for the specific volume becomes
l=p oA =50, + 5+, (4.5¢)
where

vy =28, — o2 + (B + BAWI
+ 3B% cos? 3 — 4By, cos 9. (4.5f)

The behaviors that pocs™2 and u,ocs as s— 0 make an

asymptotic match possible (cf. eqs. [3.10d] and [3.10e]). The
substitution of equations (4.5a), (4.5b), (4.5c), and (4.5¢) into
equation (4.2) yields the identification

vz< "’°) (4 cos? § — 1)112 (4.5g)

Equation (4.5g), coupled with equation (4.5f), gives o7, if ¥,
¥, and , are known functions of 3.

To determine ¥, as a function of 3, consider the lowest order
(s~2) requirement of equation (4.1). The right-hand side (cf. eq.
[4.3]) has the expansion

Q=S_2o@_2+s‘1,@_1+"', (463)

2_,=pp (d‘”") , (4.6b)

¢ -84 (5) ]

L@+ ﬂﬁ")(d‘”") V. (460)

where

To lowest order in small s, equation (4.1) requires

([f %> s (4.6d)
which has the solution
v
J:) BWo)dy, = K3, (4.6¢)
where
_ B
K= 5.0)° (4.6f)
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with (cf. eq. [3.10b])

B = L BWoldy, - (4.6g)

In equation (4.6f) we have assumed that the shape of the upper
boundary, z = z,(w) where Y = 1, can be specified by an equa-
tion 3 = 9,(s). In equation (4.6d), we have required ¥ = 0 for
3=0and ¢y =1 for § = 3,(0) in the limit as s — 0, with 3,(0)
being the initial opening angle (see § 3.2). Equation (4.5g) now
yields the following formula for fixing the coefficient v, :

v, = 9,(0) % (4 cos? 9 — 1112, (4.6h)
where we must take the positive square root to make p positive
as given by equation (4.5¢). The equations (4.6e)—(4.6h), etc.,
demonstrate that the inner limit of the outer solution does
indeed provide an asymptotic match to the outer limit of the
inner solution (3.10a)-(3.10e). Thus, the X-celerator mecha-
nism can effect a smooth crossover from the region of trans-
sonic flow to the region of trans-Alfvénic flow.

For higher accuracy in the numerical work (which involves
“patching”), we obtain also the next order (s~') term in the
expansion for . A little algebra demonstrates that equation
(4.1) yields a second-order ODE in 3 for , :

d2
g (BU) + pYy = —Ksin 9, (473)

where we have used equation (4.6¢e) to write iy, = K. The
solution of the homogeneous counterpart of equation (4.7a)
reads iy, = A sin 3 + B cos 3, where 4 and B are integration
constants. On the other hand, a particular solution of the
actual equation (4.7a) is By, = (K/2)9 cos &; thus the most
general solution reads

By, = l:O) ( 3cos 9+ asin 3+ b cos 9) (4.7v)
The lower boundary condition,

Y, =0 at9=0, 4.7¢)

implies b = 0. A Taylor series expansion about s = 0 of the
upper boundary condition, Y =1 at 3 = 3.(s), yields for the
coefficient proportional to s:

Ay, d9, _ _
29 ds +yY; =0 at 3=38,0). 4.74d)
With B di,/d9 = B/9.(0), equation (4.7d) implies that a satisfies
. a9, 1
asin 3,(0) = — s 0) — 3 3.(0) cos 3,(0) . (4.7¢)

This identification completes our solution for ,($) in equation
(4.7b).

5. SUMMARY AND CONCLUSIONS

In this paper we have formulated the governing equations
for a steady, axisymmetric, X-celerator wind in terms of the
mathematics of matched asymptotic expansions. By a judi-
cious choice of reference frame, variables, and expression of
boundary conditions, we can avoid many of the standard diffi-
culties associated with a Grad-Shafranov formulation: the
indeterminacy of unknown functions, the existence of a PDE of
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multiple mixed type, etc. A particularly useful feature of our
approach is the analytical derivation of the properties of the
emergent flow from the narrow interface (X-region), resulting
from the interaction of a strongly magnetized star and an elec-
trically conducting accretion disk, where the gas accelerates
from rest to supersonic speeds.

The transsonic acceleration occurs by means of a com-
bination of gas pressure and magnetic forces. Basically, gas
under high pressure at deeper layers of the X-region—
surrounding the X-point of the critical equipotential, where the
effective gravity vanishes—finds itself facing regions above and
below the disk of relatively low gas pressure. The high-pressure
gas, finding little resistance from the effective gravity, flows
outward in a X-wind frozen to strong poloidal fields that
asymptotically fan radially away from the X-region and that

Vol. 429

line. The continuation of this outflow into the main acceler-
ation zone of the X-celerator model constitutes the subject of
study of Paper III.
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ideas presented in this paper and their final fruition (1993), we
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colleagues—too. many to thank individually, although Al
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This work was funded in part by NSF grant AST 90-24260 and
in part under the auspices of a special NASA Astrophysics
Theory Program that supports a joint Center for Star Forma-
tion Studies at NASA/Ames Research Center, the University of
California at Berkeley, and the University of California at

have almost the same strength on every mass-carrying stream- Santa Cruz.

APPENDIX
SPECIAL CURVILINEAR COORDINATE SYSTEM

The pseudopolar coordinate system (s, 9) introduced in § 4 (see also § 3 for its scaled counterpart) yields a convenient grid for
meridional plane calculations (1) in the X-region or (2) throughout the flow if the uppermost streamline is constrained to remain
straight, i.e., if 9,(s) retains a constant value 9,(0) for all 5. If, however, 9,(s) varies with s—e.g., if the uppermost streamline follows a
curve that resembles the upturning locus of the critical equipotential—then we find it computationally more convenient to
introduce a curvilinear coordinate system (g, t) such that the upper streamline is defined by a constant value of ¢, chosen for
definiteness to be t = 1 (see Fig. 1 of Paper III). To discover the transformation properties from (s, 9) to (g, t), we begin by imposing
the orthogonality condition Vg - Vt = 0, i.e.,

0qgdt 1 dq ot
3505 53908 0 (A1)

Considerable freedom still exists in the exact specifications for (g, ) even if equation (A1) is satisfied. To make the choice more
definite, let us define

3

t(s, 9 = s A2
69=55 (A2)
which fixes t = 1 on the upper streamline. The orthogonality condition (A1) now reads
39.(s) dq 1 dq
- = —=0, A3
92(s) 0s  s29,(s) 09 (A3
which we may regard as a linear PDE of first order to solve for . The method of characteristics yields the solution,
9,(5)
q = constant on — 2909) ds =9d$ . (Ad)
Equation (A4) may be integrated to give
I(s) + 492 = constant , (AS)
where I(s) is the integral function
* 3. (o)do
Is) = j 4T (A6)
s 029(0)
with s, being an arbitrary positive constant. The solution for g therefore takes the form
q = F[I(s) + 3971, (A7)

where F is an arbitrary function, whose form is at our disposal to choose as we like.
For convenience, we choose F so that ¢ = s along 9 = 0. With g(3 = 0) = F[I(s)], we see that we want F = [ !, and

qs, 9) = I"'[I(s) + 3977, (A8)

with I~* being the inverse of the integral function defined by equation (A6). The integral I and its inverse I ~! can be tabulated
numerically at discrete points and evaluated accurately for any value of their arguments with the help of interpolation by splines.
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The metric coefficients h, and h, associated with the coordinates g and ¢ can then be found from the formulae:

_ dq

ot\?
_2 — il
B ‘(as>

We can simplify the indicated operations by noting that equation (A8) allows us to write

I(g) = I(s) + 39°,
so that I'(q)(0gq/0s) = I'(s), etc. Some manipulation finally obtains

*T U+ sty

1 2
3 <%) , (A9a)

1 [ot)?
- (5§) _ (A9b)
(A10)
I'(g)s*9(s)/34(s) (Alla)
$9,(s) (Al11b)

T s
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