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ABSTRACT

We present an investigation of the statistical properties of fluctuating gas motions in five nearby molecular
clouds using the two-point autocorrelation and structure functions and the power spectra of their radial veloc-
ity structure as traced by emission-line centroid velocities. Our analysis includes observations made with the
AT&T Bell Laboratories 7 m Crawford Hill antenna (1.7 beamwidth) of }3CO J = 1 — 0 emission in Orion B,
Mon R2, L1228, and L1551 and also **CO J =2 — 1 observations of the molecular gas surrounding the
Herbig-Haro object HH 83 lying just west of L1641 in the Orion A cloud that were obtained with a higher
spatial resolution (0:22) using the IRAM-30 m telescope on Pico Veleta, Spain. The effects of beam smoothing
and the interpolation of a set of observations onto a regular spatial grid are studied using model spectral line
data cubes, and we find that the behavior of the statistical functions presented here and those presented else-
where by other authors are heavily influenced by these effects at scales comparable to and somewhat larger
than the beamwidth. At larger lags real correlations are detected, and we use the e-folding length of the auto-
correlation function (i.e., the correlation length) to investigate the characteristic scales of the underlying turbu-
lent flow. We find that this measure is dependent on the range of scales sampled by the observations
themselves both for our data and for previously existing observations presented by other authors, and we
interpret this result and the observed similarity between the functional forms of the statistical functions
derived for different data sets as evidence for a self-similar turbulent hierarchy of gas motions extending over a
wide range of scales in the interstellar medium. Power-law fits to the observed structure functions yield a
mean index describing the hierarchy of 0.86 + 0.3, which translates into a velocity dispersion-region size
relationship of the type first introduced by Larson (1981), AV oc I’, with y = 0.43 + 0.15. This result is consis-
tent with that found by Larson in his original analysis, y &~ 0.38, and with the range found in more recent
studies, 0.35 <y < 0.7. We also discuss the observed scaling laws in relation to the predictions of phenomeno-
logical theories of forced, isotropic turbulence. The mean turbulent stress and maximum energy transport rate
as a function of scale are obtained from the velocity power spectra following the procedure of Kleiner &
Dickman, and the results are discussed in the context of scale-dependent star formation and the generation of

turbulence in molecular clouds.

Subject headings: ISM: clouds — ISM: molecules — turbulence

1. INTRODUCTION

Gas motions in the interstellar medium in general and
molecular clouds in particular are typically characterized by
very large Reynolds numbers, a high degree of nonlinearity in
the governing equations, and complicated coupling and feed-
back mechanisms linking a variety of physical processes
occurring over a wide range of scales (Scalo 1987). For these
reasons, it is expected on theoretical grounds that the kine-
matics of molecular clouds should be sufficiently complex to
warrant a description in terms of turbulent flow. Observa-
tionally, it has been suggested that the supersonic emission-line
widths exhibited by most molecular clouds, the emission-line
centroid velocity fluctuations found both in the Galaxy and in
the LMC (§ 2), the complicated, filamentary, and possibly
fractal nature of molecular cloud column density structure
(Chappell & Scalo 1993; Falgarone, Phillips, & Walker 1991;
Henriksen 1991), and the now well-established scaling rela-
tions between average velocity dispersion and cloud size (see
Myers 1987 and references therein) can all be attributed to
turbulence in some form. Although there are other interpreta-
tions, it is at least likely that gas motions in molecular clouds
possess some turbulent component, which could have a pro-
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found influence on the details of the star formation process on
all scales, from the localized gravitational collapse and frag-
mentation of a protostellar cloud (e.g., Léorat, Passot, &
Pouquet 1990) to the global phenomena giving rise to galaxy-
wide starbursts. It is therefore important to characterize the
nature of the velocity and density structure typical of molecu-
lar clouds through observation in order to provide the initial
conditions and physical insight necessary for relevant hydro-
dynamical simulations and realistic star formation theories.
Turbulence, virtually by definition, is inherently stochastic
(or at least inhabits a high-dimensional deterministic
attractor).> Flow variables such as velocity and density will
fluctuate in an unpredictable manner about their mean values,
and any attempt to follow quantitatively their time evolution
and spatial structure must therefore be statistical. However,
any real flow is not entirely random, and is instead character-
ized by a number of length scales and scaling laws (e.g., Ten-
nekes & Lumley 1972), and a useful way to investigate the
multiscale properties of the flow, and in turn the energetics and
dynamics of the turbulence, is through two-point statistical
functions such as the autocorrelation function (ACF), the
structure function (SF), and the frequency-space analog of the

3 We thank J. M. Scalo for pointing this qualification out.
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ACF, the power spectrum (PS) (§ 2.1). These diagnostics are
less ambiguous than the size-line width scaling relations men-
tioned above and can, in principle, provide more information
on the nature of the turbulence (Dickman 1985; Scalo 1984).

We present an analysis based on the PS and two-point ACF
and SF of velocity fluctuations in a selection of nearby molecu-
lar clouds as traced by the velocity centroids of '3CO
J =1 - 0 emission lines (with the exception of HH 83, which
were data taken in the '3CO J = 2 — 1 transition; see § 3.1).
Our survey covers Orion B, Mon R2, L1228, L1551, and a
smaller field to the west of L1641 in the Orion A cloud (the HH
83 molecular cloud; see Bally, Castets, & Duvert 1994), and it
represents the most extensive application to date (in terms of
the size of the data set) of the correlation function approach to
the analysis of interstellar turbulence. We find that the turbu-
lent length scales derived from the statistical functions for a
particular set of observations are dependent on the range in
scales sampled by the observations themselves, and interpret
these and other existing correlation results for gas motions in
the ISM as evidence for the existence of a turbulent hierarchy
extending to larger and smaller scales. We discuss the observed
scaling laws of the hierarchy in terms of existing phenomeno-
logical predictions for isotropic turbulence and in relation to
the region size-velocity dispersion relations first noticed by
Larson (1981) and more recently reviewed by Myers (1987).
The variation of turbulent pressure and latent energy dissi-
pation with region size is also presented and interpreted in the
context of scale dependent star formation. Finally, energy
injection mechanisms are reviewed and discussed in terms of
the generation of turbulence in molecular clouds. The sta-
tistical approach will be presented in § 2, followed by a descrip-
tion of the observations themselves in § 3 and the application
of the statistical analysis to the *3CO maps in § 4. In the final
sections (§ 5 and 6), we will provide an interpretation of our
results and some concluding remarks.

2. STATISTICAL ANALYSIS

Although the lowest-order statistical functions do not
provide a very complete description of a turbulent flow, they
can be useful diagnostics, and as such, two point correlation
functions, structure functions, and power spectra have been
used frequently in the astronomical literature as a tool for
understanding fluctuating gas motions in molecular clouds
(Kleiner & Dickman 1984, 1985, and 1987; Dickman &
Kleiner 1985; Scalo 1984; Hobson 1992; Kitamura et al. 1993;
Pérault, Falgarone, & Puget 1986), H 11 regions (Roy & Joncas
1985; Roy, Arsenault, & Joncas 1986; O’Dell 1986; O’Dell &
Castafiada 1987; Castafieda 1988), and neutral hydrogen in the
Large Magellanic Cloud (Spicker & Feitzinger 1988a, b).
Similar approaches have also been applied to scintillation mea-
surements toward pulsars and other radio sources (Rickett
1988; Narayan 1988), which are thought to sample turbulence
in the ionized phases of the ISM (Higdon 1984). The present
work will follow closely the statistical analysis of emission-line
centroid velocity fluctuations in molecular clouds developed
by Dickman & Kleiner (1985, hereafter DK 1985), Kleiner &
Dickman (1987, hereafter KD 1987), and Spicker & Feitzinger
(1988b, hereafter SF 1988b). We will only review their methods
here, and the reader is referred to those papers for a more
detailed discussion.

2.1. Two-Point Statistics

The application of statistical methods to investigate the
velocity structure of molecular clouds is in practice limited to a
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time-independent, spatially two-dimensional analysis of radial
velocity fluctuations on the plane of the sky (e.g., Dickman
1985). The mean radial velocity of emitting gas averaged over
the depth of the cloud is given by the velocity centroid of an
emission line if the cloud is homogeneous and the emission is
optically thin. For an inhomogeneous cloud the measured cen-
troid velocity will change with excitation temperature and
opacity variations along the line of sight, but Dickman &
Kleiner (1985) show that these effects vanish to first order, and
therefore the centroid of an optically thin emission line will
closely approximate the mean radial velocity of the gas aver-
aged over the emitting region. Although molecular cloud cores
are not thought to be transparent to 13CO J = 1 — 0 emission
(Castets et al. 1990), the cloud envelopes are, and since most of
the gas traced in our observations belongs to the envelopes, the
optically thin assumption is not too much in error. Further-
more, even when the optical depth exceeds unity, the observed
centroid fluctuations will probe velocity structure deep within
the cloud if the emission comes from the surfaces of discrete
clumps with different radial velocities (Hobson 1992), or if the
line wings, which contribute more than the line cores to the
centroid velocity calculation, are optically thin (Kitamura et al.
1993).

We define the discrete, two-dimensional spatial autocorrela-
tion function and structure function as follows;

_ 2 o) — pllv(r + 1) — 4]
o= NG) o
and
_ Z [Uc(r) — vc(r + T)]z
S(t) = TNG) , @
with the mean centroid velocity denoted as
p= 220 ®

and the variance of centroid velocity fluctuations as

SR NCGENS @

The lag, t, and the position, r, are two-dimensional vectors on
the plane of the sky, and the summations in equations (1) and
(2) are over the number of data pairs present at each lag, N(t).
The two-dimensional summations in equations (3) and (4) are
over the face of the map, and N = N(r = 0) is the total number
of array elements. The centroid velocity for a discretely
sampled spectral line at position r is given by

— Z Ti(r)y
YT’

with T(r) and u; denoting the antenna temperature and the
Doppler velocity corresponding to the ith spectrometer
channel. The summation extends over the line profile.

It has been assumed in defining the ACF and SF estimators
above that the data set possesses two-point homogeneity, which
implies that the two-point probability density (and as a result,
the mean and variance) is independent of position on the sky. If
this were not the case, then the derived autocorrelation and
structure functions would change with position in the cloud,
and any conclusions drawn about the physical nature of the
underlying process itself would be misleading. This homo-
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geneity requirement implies that any significant large-scale
gradients or trends must be filtered out of the data set prior to
the statistical analysis. The filtering process we have employed
is described in some detail in Appendix A.

In order for equations (1) and (2) to give meaningful
results, it is also necessary to assume that the physical process
giving rise to the observed centroid fluctuations is itself ergodic,
so that ensemble averages can be approximated by spatial
averages (see, e.g., Tennekes & Lumley 1972; Priestly 1981).
Because ergodicity in the strictest sense requires the spatial
statistics describing a process to be invariant not only across a
single realization of it (i.e., a single cloud) but also across multi-
ple independent realizations (i.e., for all the clouds in the
survey), and because star formation is inherently time depen-
dent in the sense that different regions will in all probability be
at different stages in the collapse-fragmentation—star
formation—cloud dispersal process, it is unlikely that the
mechanism that generates the turbulence observed in molecu-
lar clouds is indeed ergodic. However, autocorrelation func-
tions and structure functions can provide useful quantitative
means for describing the flow, even if their interpretation in
terms of truly ergodic, stochastic processes is somewhat uncer-
tain.

Equations (1) and (2) represent the unbiased estimates for the
ACF and SF, and although they do reproduce the true func-
tions accurately near T = 0, they are statistically unreliable at
larger lags, where the number of data pairs is small. A more
robust estimate is obtained by replacing N(t) in equations (1)
and (2) with the number of data pairs at zero lag, N(0). This
biased estimate will always underestimate the true ACF and
SF, but it is more reliable than the unbiased estimate and is
therefore more useful at large lags (SF 1988b; Kleiner &
Dickman 1984).

An account of the fundamental properties of the autocorre-
lation and structure functions can be found in SF 1988a or
Townsend (1976). We will simply point out here that, with the
normalization chosen, C(t) and S(t) are unity and zero, respec-
tively, at T =0 and at the largest lags, where velocities are
completely uncorrelated, the autocorrelation function decays
to zero while the structure function tends to the constant value
2 (if the map is truly homogeneous). It follows from equations
(1) and (2) that (again, for a two-point homogeneous process)
S(r) = 2[1 — C(z)]. If both the ACF and the SF are calculated,
this relation provides a measure of how homogeneous the map
actually is. However, it should be noted that there is no conclu-
sive means for proving mathematically that a data set is indeed
homogeneous, and as a result, this assumption may be a
serious threat to the validity of the statistical methods present-
ed here (Scalo 1984; SF 1988Db).

All of the autocorrelation functions presented here have
been calculated by first Fourier transforming the velocity cen-
troid maps using a standard FFT routine, implemented in the
Interactive Data Language (IDL), and then taking the
modulus squared of that result to obtain the power spectrum.
The inverse transformation of the power spectrum then yields
the ACF by virtue of the autocorrelation theorem (e.g., Brace-
well 1965). Note that the velocity map must be padded with
zeros as discussed by Press et al. (1988) before the application
of the FFT to avoid wraparound effects. The structure func-
tions have been computed directly using equation (2).

2.2. Error Estimation

Before we proceed to the correlation analysis, it is important
to consider how closely the biased and unbiased estimators
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introduced above reproduce the true autocorrelation and
structure functions that characterize the underlying physical
processes responsible for the observed centroid velocity fluc-
tuations. This section is thus intended as an overview of the
sources of error and the ambiguities inherent in our approach.

As mentioned above, the power spectrum is calculated as an
intermediate step en route to the ACF, and for each data set, is
simply given by the modulus squared of the map after applying
a Fourier transformation. In actuality, this too is only an esti-
mator and suffers from significant leakage effects when applied
to a discrete data set (Press et al. 1988). However, in the present
work, apart from its role in computing the ACF, we only use
the power spectrum as a means for deriving certain scale
properties of the turbulence in § 4.4, and since that analysis is
based only on the integral of the spectrum, leakage should not
be a problem. It should also be noted here that we have found
aliasing effects (Press et al. 1988) to be negligible for all the
power spectra we have computed.

Spicker & Feitzinger (1988b) have advised against the use of
spectral methods in calculating the autocorrelation function,
arguing that the procedure itself may introduce spurious corre-
lations. However, we have computed the ACF directly for
several of our data sets, and in all cases we find excellent agree-
ment with the results obtained using Fourier transformations.
In L1551, for example, the two methods agree to within one
part in 3 x 10°. We therefore conclude that any spurious
effects arising from the use of spectral methods to obtain the
ACEF are insignificant for the data presented here.

2.2.1. Statistical Errors and Bias

In order to calculate the bias and statistical uncertainty of
the ACF estimators precisely, it is necessary to employ an
approximate model for the true ACF (Spicker & Feitzinger
1988b; Priestly 1981), which we have not attempted for the
present work. This is justified because, in general, these effects
are of order 1/(N)/2, and the large number of spectra used for
each analysis (see Table 1) implies that they should be negligi-
ble relative to the other errors mentioned below for all the data
sets presented here, with the possible exception of regions la
and 1b in Orion B. For a detailed account of statistical errors
and bias, see Priestly (1981) and Spicker & Feitzinger (1988b).

2.2.2. Projection Effects and Instrumental Noise

Centroid velocity maps in an optically thin spectral line only
measure radial velocities averaged along the line of sight, and
any characterization of the nature of gas motions in molecular
clouds is therefore inhibited by the projection smearing of the
full three-dimensional velocity structure onto the plane of the
sky. If the cloud depth is much larger than some characteristic
length scale describing the turbulence (such as the correlation
length, see below), then the observed dispersion in centroid
velocities will be smaller than the true turbulent dispersion
because of the statistical averaging of a large number of inde-
pendent realizations of the underlying process along the line of
sight (Dickman 1985; Scalo 1984). Although this underesti-
mation is significant, Scalo (1984) finds that the observed cen-
troid dispersion is within an order of magnitude of the true
dispersion even when the cloud is much deeper than the largest
turbulent length scales. The implications of this work for our
results on turbulence in molecular clouds will be addressed in
§5.2.

The effect of projection smearing on the autocorrelation
function itself has been studied by Kleiner & Dickman (1985),
who find that it will lead to an overestimation of the actual
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correlations present in the three-dimensional flow, and that the
degree of the overestimation increases with the ratio of the
depth of the cloud to the correlation length, 4., defined as the
e-folding scale of the ACF (note that the correlation length
discussed in this section should be viewed as an effective value
describing the shape of the ACF, and not an absolute turbulent
length scale if the velocity structure is part of a hierarchy; see
§ 5.2). However, the overestimation was never very severe.
Even for the largest clouds they considered, with depths
exceeding 1031, the apparent correlation length never
exceeded the true correlation length by more than a factor of 2.
Their results show further that the “observed” two-
dimensional ACF preserves the essential form of the three-
dimensional model functions they considered, and can
therefore provide a useful measure of the true three-
dimensional ACF if it is indeed isotropic (see also DK). But it
should also be noted that, in a study of projection effects on the
structure function, O’Dell & Castafieda (1987) find that the
slope derived from the observed two-dimensional SF at lags
much smaller than the depth of the cloud, is much steeper than
that characterizing the true three-dimensional velocity struc-
ture (see also Kaplan & Klimshin 1964; Kaplan 1966). We will
return to this matter in § 5.3.

The effect of random brightness temperature fluctuations
arising from radiometer noise has been discussed in detail by
Dickman & Kleiner (1985), who find that actual correlations
are underestimated in the presence of instrumental noise and,
in order to obtain the true, noise-free autocorrelation function,
it is necessary to apply a constant multiplicative correction
factor to the observed ACF at nonzero lags. We have included
a brief summary of their work and of the application of their
results to our observations in Appendix B. The correction
factors for each data set are listed in Table 2.

2.2.3. Beam and Sampling Effects

The statistical approach described above can only be accom-
plished using a regular, evenly spaced grid of observations, and
this is not always the case with an astronomical data set. For
example, if triangular sampling is used or if one part of the
region was mapped differently than another, then in order to
apply the present analysis, it becomes necessary to interpolate
the data onto a regular grid, which will to some extent influ-
ence the derived results (or, an alternative approach, which we
have not considered here, is to employ the discrete correlation
function described by Edelson & Krolik 1988, which was spe-
cifically designed to handle unevenly sampled data sets).* Fur-
thermore, if the sampling was done at intervals less than or
comparable to the beamsize, then the smoothing due to the
power pattern of the antenna will introduce spurious corre-
lations into the intensity and velocity maps. To investigate the
importance of these effects for the present work, we have
created several model data cubes, each composed of over 900
false spectra arranged onto a two-dimensional spatial grid. In
what follows, we will describe the details of how the model
velocity maps were constructed but a discussion of the primary
results will be deferred to § 4.

We wish to consider first the role of beam smoothing on an
otherwise random velocity field. In other words, our goal is to
simulate the emission from some gaseous astronomical object
for which any two adjacent measurements of an emission-line

4 The authors would like to thank J. M. Shull for bringing this work to their
attention.
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centroid velocity will be completely uncorrelated, regardless of
their separation on the sky, and to construct a series of spectra
by convolving that emission with the beam pattern of a radio
telescope. Note that since we are dealing with spectra, the
convolution must be carried out over a span of radial veloc-
ities, that is, for each spectrometer channel.

In practice, the convolution must be approximated by
averaging the emission in a discrete number of pixels, or bins,
weighed by the beam pattern according to their angular dis-
tance from the location on the sky where the beam is centered.
With this in mind, the first step in constructing the model data
cube considered in § 4 was to generate a two-dimensional
array of Gaussian emission lines with a fixed strength and line
width, but with a center velocity which fluctuated as a nor-
mally distributed random variable. The grid spacing was taken
to be 0’1 (the units here are arbitrary, but for the sake of
concreteness, we will work in arcminutes). A series of observa-
tions was then constructed at intervals of 1’ by calculating an
average spectrum from those pixels of the original array lying
within a radius of 1.7, weighed according to their distance from
the beam center using the power pattern of the antenna, which
was taken to be a Gaussian with a FWHM of 1.7. Thus, the
number of spectra, or lines of sight, used in approximating
the convolution process for each observation was about
n(1.7/0.1)> ~ 908. It should be noted here that the discrete
nature of the convolution implies that the models we have
constructed do not actually simulate a purely random radial
velocity field, but instead sample velocity structure character-
ized by a length scale related to the bin size of the original
array, 0'1. Since a physical process generally becomes com-
pletely uncorrelated with itself beyond a few correlation
lengths, this implies that the objects we have simulated in our
models have velocity correlation lengths of about 005 or less,
which is more than 30 times smaller than the FWHM of the
beam.

After the model data cube was constructed, the artificial
spectra were subjected to the same analysis applied to the
actual observations (see § 3.2). In particular, the model data
was interpolated onto a square grid with spacing 0.5 (half that
of the sample spacing used for the observations themselves),
and a centroid velocity map was computed. The interpolation
scheme used in constructing velocity maps both for the model
spectra and for the actual observations is what we will refer to
as cone interpolation. This simply means that the centroid
velocity at a particular point in the sky is calculated by first
interpolating the data from all nearby observations to obtain a
spectrum at the desired location, and then applying equation
(5). Each individual observation used to compute the inter-
polated spectrum is weighed according to the formulae:

r
Woel—— r<r,
To

=0 rxr,

where W is the appropriate weight, r is the angular distance
between the observation and the point on the sky for which the
spectrum is being computed, and r, is the interpolation radius.
The interpolation radius for the model data (and for most of
the observational data, see § 3.2) was chosen to be 1!1. The
model results are shown in Figures 4, 7, and 9, and discussed in
§§ 4 and 5.

Several additional models were computed in a similar man-
ner for different sampling grids and interpolation radii.
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We find that the statistical properties of oversampled and criti-
cally sampled velocity maps are virtually identical for the
models, and thus conclude that the effects of grid spacing are
minimal (within certain limits). This conclusion was verified in
a similar investigation of sampling effects using the L1228 data.
In contrast, the interpolation process was found to have a
noticeable influence on the autocorrelation and structure func-
tions. These effects were investigated for the model data cubes
and for the L1228 and HH 83 observations, and it was found
that increasing the interpolation radius tended to shift the
entire ACF up slightly, preserving its general form, but intro-
ducing small spurious correlations. In addition, the shift was
more pronounced for very small lags, so that the innermost
points on the azimuthally averaged ACFs and SFs presented in
Figures 2, 3, 5, and 6 are probably influenced by the inter-
polation process and should be excluded from the curve fits
(see § 4). However, if the interpolation radius was not too large,
although these effects were noticeable, they were not appre-
ciable, and our conclusions about the nature of turbulence in
the objects studied remain unaltered. In particular, for the
interpolation radii used in the observations presented here, we
find that the spurious effects arising from the interpolation
process lead to an overestimate of the correlation length, 4., of
no more than 10% and have only a minor influence on the
overall shape of the statistical functions and on the results
presented in § 4.

3. OBSERVATIONS

3.1. Data

This paper presents the first results of a massive multiyear
effort to survey the structure and kinematics of nearby molecu-
lar clouds. Over the course of 5 years, over 10° spectra were
obtained with the AT&T Bell Laboratories 7 m offset Casse-
grain antenna, located in Holmdel, New Jersey. This paper is
based on a 300,000 spectrum subset of this molecular cloud
survey database that uses observations of the 110 GHz
J =1-0 '3CO, 109 GHz C'80Q, and the 98 GHz J = 2-1 CS
line. The 7 m telescope has a very clean Gaussian beam with a
FWHM of 100" between 98 and 115 GHz with a primary beam
efficiency of about 87% and an aperture efficiency of about
55% that is determined by the 14 dB edge taper of the illumi-
nation pattern. )

Observations used in this paper were obtained between 1985
December and 1991 June. During the beginning of this period,
we used liquid helium-cooled SIS receivers built at AT&T Bell
Laboratories that used Pb junctions produced by Ron Miller.
These Pb junction receivers had system temperatures ranging
from Ty ~ 60-250 K but suffered degradation with time and
repeated thermal cycling and required frequent replacement. In
1989 we switched to a mixer-block built by NRAO that used
more stable Nb junctions with a single sideband temperature
Tssp ~ 75-130 K.

The 7 m antenna is equipped with a flexible spectrometer
system consisting of 512 channels of 1 MHz wide filters
(consisting of two 256 channel filter-banks), and a 256 channel
filter bank consisting of 0.25 MHz wide filters. The 0.25 MHz
filter bank can be split into two 128 channel halves. The IF
processing electronics include a spectrum expander (Henry
1976) that can send a copy of the IF signal to one 128 channel
half of the 0.25 MHz spectrometer to produce a variable effec-
tive channel bandwidth (resolution) of 100, 50, 25, or 12.5 kHz
per channel. A given spectral feature can be observed simulta-
neously with 512 channels of 1 MHz filters, 128 channels of
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0.25 MHz filters, and 128 channels of 0.25 MHz filters that
have been processed through the spectrum expander to
provide higher resolution. Most of the data used in this paper
were taken with the 100 kHz resolution option of the spectrum
expander which gives a velocity resolution of 0.26 km s~ ! at
115 GHz.

The observations were made by both in-band frequency
switching, in which the reference frequency is displaced from
the signal by 6.4 MHz, as well as the multiple-mapping
position-switching mode described by Bally et al. (1987). All
data were calibrated with a blade chopper that permits rapid
comparison between the sky and a 77 K liquid nitrogen—
cooled reference load or the 77 K load and an ambient tem-
perature absorber. The receiver noise temperature and the
temperature scale are determined by comparing a room tem-
perature load to the liquid nitrogen load. Then the sky bright-
ness temperature is measured by comparison of the sky
emission with the cold load. A simple atmospheric model is
used to scale the observed intensities to the brightness tem-
perature that would have been measured by this antenna
above the atmosphere. The details of the receiver and cali-
bration procedure have been described elsewhere (Pound,
Bania, & Wilson 1990).

During the course of data acquisition the Bell Labs group
developed semiautomated schedule-driven observing that per-
mitted the 7 m antenna to conduct a sequence of observations
at a given frequency for up to 48 hr without the presence of an
operator. The key ingredient of this automated observing is a
macro-driven observing control program, OBS (to be
described elsewhere), that features automated integration time
estimation. SKY scans (spectra obtained by switching between
blank sky and a 77 K load) are used to determine the sky
brightness temperature and opacity. The resulting estimate of
the system temperature and the source elevation are used to
calculate the observing time required to obtain a spectrum that
has a specified noise level at a specific resolution. The scheduler
is triggered to shift sources according to the control macro
prescription at either a scheduled time, or when a source sets to
a prescribed elevation. An infinite loop can be used to sequence
observations that continue for an indefinite period of time,
which in practice is limited to 48 hr by cryogen replenishment
requirements.

The L1228, L1551, Mon R2, and Orion B observations are
all part of the Bell Labs survey, but in order to cover a larger
range in scales with the present analysis, we have included an
additional data set spanning a region just west of L1641 in the
Orion A cloud that was obtained with a higher spatial
resolution (beamwidth = 0:22) using the IRAM 30 m telescope
on Pico Veleta, Spain in 1989 April and December. For a more
detailed discussion of these observations, see Bally et al. (1994).

All data were reduced using the COMB spectral line
reduction package. Frequency-switched spectra were folded,
and linear baselines were removed from the spectra. Baselines
were fitted to that portion of the spectrum that is devoid of
emission. After inspection of the maps and images, additional
problems, such as bad channels, were fixed. COMB was used
to generate sets of spatial-spatial and spatial-velocity contour
maps and FITS images. The COMB program features an
automated “data extraction” and reduction package that
searches the raw data archived for spectra that satisfy certain
requirements such as location within a window of interest on
the sky and in frequency space, and have the desired back-end
configuration and noise requirements. The map-extraction
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TABLE 1
OBSERVED CLOUDS

CENTER COORDINATES VELoCITY
NUMBER HALF-POWER RESOLUTION
NAME TRANSITION «(1950) (1950) OF SPECTRA BEAMWIDTH (km s~ 1)
HHS83 ............ 13CoJ=2-1 05131063 —06°31'45" 1558 022 0.13
L1228............. 13COJ=1-0 20 58 00.0 +77 2300 883 1.7 027
L1551............. 13COJ=1-0 04 28 40.0 +18 0142 1181 1.7 0.14
Mon R2
) B3COJ=1-0 06 05 22.0 —06 2225 2157 1.7 0.27
2 s 1949 1.7 0.27
3 3052 1.7 0.27
Orion B
la ..o 13COJ=1-0 05 41 08.1 —01 0500 205 1.7 0.27
b oo 523 1.7 0.27
) (O 1200 1.7 0.27
2 s 4605 1.7 0.27
K 5216 1.7 0.27
O 5469 1.7 027

routines execute a prespecified set of reduction instructions,
placing the spectra into reduced data files and automatically
producing FITS data cubes ready for inspection.

Integrated intensity contour maps for the HH 83 molecular
cloud, L1228, L1551, Mon R2, and Orion B are presented in
Figure 1. Each data set is labeled with the appropriate tran-
sition (*3CO J=2-1 for the HH 83 data and !3CO
J =1-0 for the others) and the LSR velocity range over
which the intensity was integrated (in km s~ '). The center
coordinates, the number of spectra, the half-power beamwidth,
and the velocity resolution for each region are listed in Table 1.
Several of the clouds surveyed, in particular Mon R2 and
Orion B, were clearly composed of several distinct approx-
imately Gaussian velocity components that were isolated in
space and velocity prior to the statistical analysis, which was
then applied to each region separately. To facilitate the extrac-
tion of the different Gaussian components, we have introduced
convenient relative coordinate systems for L1551 and Orion B,
and the relationship of these coordinates to right ascension
and declination is shown by a directional indicator on each
map in Figure 1. In Orion B, many of the distinct components
overlapped, and it was not possible to isolate them spatially.
For these regions, it was necessary to separate the components
in velocity by performing the summation in equation (5) over
carefully selected velocity ranges, chosen by considering the
mean spectra, and then to combine the data from neighboring
regions to obtain a map of the entire component. For example,
region 3 in Orion B almost certainly lies in front of regions 2
and 4, and in order to isolate it, several subregions (see Fig. 1e)
were integrated over the Isr velocity ranges [3.0, 9.2] km s ™!
(region 3a) and [1.0, 7.5] km s~ ! (region 3b), and then juxta-
posed to obtain region 3. The higher velocity components
([9.2, 11.9] km s~ ! and [7.5, 12.7] km s~ ') are defined as
regions 2b (which was juxtaposed with the nonoverlapping
area, region 2a, in a similar manner to obtain region 2), and
region 4 respectively.

3.2. Constructing the Velocity Maps

Velocity centroid maps were constructed for each of the 12
regions defined above by interpolating the observed spectra
onto an oversampled, regular grid using the cone interpolation
scheme described in § 2.2.3. The grid spacing and interpolation

radius used for the Orion B, Mon R2, L1228, and L1551 data
were chosen to be 0.5 and 1’1 respectively, while those used for
the HH 83 molecular cloud observations were 0:05 and 0:25.
All lines of sight for which the average integrated intensity was
below a threshold level were ignored in the analysis. The
threshold levels, in K km s~ !, were as follows: 2.5 for Orion B
and Mon R2, region 1; 2.0 for regions 2 and 3 in Mon R2; 1.5
for L1228 and L1551; and 1.0 for HH 83. In order to further
suppress spurious emission that was not associated with the
clouds themselves, it was in some cases necessary to impose a
further restriction on which lines of sight to include in the
analysis, and for these a threshold temperature was introduced,
and all grid points for which the associated peak brightness
temperature fell below the threshold were replaced with null
pixels. The velocity windows, where possible, were chosen to
span about 120, (g, is the parent dispersion defined in § 4.1)
and were centered on the mean velocity of the ensemble mean
spectrum. A larger velocity range is not recommended because
the influence of noise is very sensitive to the number of chan-
nels used to calculate the centroid (DK 1985). In some cases it
was necessary to integrate over a smaller window in order to
isolate particular Gaussian components (see above).

4. RESULTS

4.1. Fluctuation Amplitudes

Correlation functions provide important insight into the
scale properties of a turbulent flow, but in order to understand
fully the role that turbulence plays in the dynamics of molecu-
lar clouds, it is also necessary to consider the mean amplitude
of the gas motions. Three fundamental statistical measures
intended to characterize the observed velocity fluctuation
amplitudes have been introduced by Dickman & Kleiner
(1985). The first, which they call the parent dispersion o, is the
root mean square of the radial velocity fluctuations averaged
over the entire volume of the cloud and, for an optically thin
line, can be obtained by combining all the observations in the
region and fitting a Gaussian to the ensemble mean spectrum
(note that fluctuations here merely means that the mean veloc-
ity u has been subtracted out, so o, in general will include
contributions from both systematic and turbulent motions; see
eq. [8]). The second is a measure of the typical spread in the
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radial component of gas motions along each line of sight. This noise-free, dispersion, ¢*. From equation (Bl), ¢f =

is the internal dispersion, o;, discussed in Appendix B, and is
simply an average line width for the region. The third sta-
tistical measure is the centroid velocity dispersion, g, given by
equation (4). As discussed in Appendix B, the observed cen-
troid dispersion includes a contribution due solely to instru-
mental noise that must be removed to obtain the true, or

(6% — 62)/2, where 2 is the noise variance defined in Appendix
B. For an optically thin line, the parent, internal, and noise-free
centroid dispersions are related (DK 1985):

oy = (0¥ + ol . (6)

p=

In order to employ this expression as a check on the consis-

TABLE 2
STATISTICAL MEASURES?®

Mean Mean Observed Noise-free ACF Indirect Turbulent
Signal/ LSR Centroid Centroid Noise Internal Parent Parent Centroid Turbulent
Noise  Velocity Dispersion Dispersion  Correction  Dispersion  Dispersion  Dispersion  Dispersion  Dispersion
Region (S/N) (17)] (CA] (o) [C*@)/C()] (o) (07) (0,) (0% (o)
19.7 6.19 0.23 0.23 1.01 0.38 0.44 0.42 0.12 0.39
5.9 —7.59 0.39 0.38 1.08 0.55 0.67 0.74 0.08 0.64
84 6.90 0.34 0.34 1.04 0.36 0.49 0.50 0.16 043
8.8 10.01 0.61 0.60 1.04 0.67 0.90 1.12 0.35 1.03
6.3 12.02 0.41 0.40 1.04 0.62 0.84 0.74 0.21 0.67
5.8 12.59 047 0.46 1.04 0.75 0.88 0.83 0.28 0.76
6.4 10.60 0.16 0.14 1.22 0.53 0.55 0.55 0.13 0.54
6.4 9.04 0.29 0.27 1.12 0.57 0.63 0.55 0.20 0.53
54 10.43 0.57 0.54 1.09 0.60 0.81 0.83 0.32 0.76
8.8 9.80 0.81 0.77 1.11 0.65 1.00 1.15 0.23 091
4.6 5.19 1.41 1.39 1.02 1.45 2.01 2.05 0.60 1.66
8.7 9.96 0.77 0.76 1.02 0.80 1.10 1.31 045 1.17
Heiles Cloud
28 s 5.96 0.30 0.29 1.09 0.68 0.74 0.77 0.21 0.74

2 All quantities, with the exception of S/N and the ACF noise correction, are given in km s ™%

® Kleiner & Dickman 1987.
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tency of our results, we define a new variable, the indirect
approximation of the parent dispersion, as d/, = (6** + ¢7)'/2.
The statistical measures described here are exhibited in Table 2
for our observations and for a similar study of Heiles cloud 2 in
the Taurus dark cloud complex by Kleiner & Dickman (1987).
Also shown are the average signal-to-noise ratio (S/N), the
mean centroid velocity in the Isr frame, u, and the ACF noise
correction, C*(t)/C(7) (see eq. [B2]), for each region. Denoting
the peak brightness temperature at position r as T, ,,(r) and the
rms amplitude of noise-induced fluctuations at r as T (r), we
define the average signal-to-noise ratio to be

S/N = (Toudr)>/T(r)) . ™

The angular brackets represent spatial averages over the face
of the cloud. Also shown in Table 2 is the centroid dispersion
due solely to the fluctuating, or turbulent, velocity component,
o*. This is obtained from the residual centroid maps after the
systematic velocity component has been removed as described
in Appendix A. The asterisk indicates that the noise variance

30 10K T T T
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20
10
£
§ o
o
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has been subtracted (in quadrature, as with ¢*). The final entry
in the table is the total amplitude of turbulent velocity fluctua-
tions averaged over the volume of the cloud, o,. If the contribu-
tions of the systematic and noise components to the parent
dispersion are independent of one another and of the turbu-
lent, or fluctuating, component, then

— 2 2 2
O',=V0'p'—0'cs-—0',,, (8)

where o, is the dispersion of the smoothed centroid velocity
map (Appendix A). If the systematic and fluctuating velocity
components were truly independent, then 62 would be equal to
62 + (6%)? + o2. In practice, we found this decomposition to
be only approximately valid.

A few features of Table 2 should be noted before we proceed.
First, the turbulent velocity disperion, o,, is never much less
than the parent dispersion, o,, implying that the turbulent
component of gas motions contributes a significant amount to
the bulk kinetic energy budget of the cloud. Also, the direct
estimate for the parent dispersion, ¢, agrees with the indirect
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FiG. 2—Shown are several illustrative examples of the biased autocorrelation functions for the raw (unfiltered) data. The various regions are defined in § 3.1.
Each panel (a) through (f) includes a contour plot of the two-dimensional ACF and a scatter plot of the array values (dots) as a function of the magnitude of their
corresponding vector lag, |t|. The solid and dashed lines indicate the best fit of the azimuthally averaged ACF to an exponential (e!*/*) and a power-law
{1/[1 + (| t|/z,)"]} form. The parameters z,, t,, and n are given in Table 3 for each region. The contour levels are —0.5, —0.4, —0.3, —0.2, —0.1, —0.05,0.05,0.1,0.2,
0.3,0.4,0.5,0.6, and 0.7, and anticorrelations are denoted by dotted lines. All lags are given in arcminutes.
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estimate, o), to within 20% in all cases, verifying the consis-
tency of our results. Any discrepancy can probably be attrib-
uted to the uncertainty in determining o; and o, discussed in
Appendix B.

4.2. Autocorrelation Function

Several illustrative examples of the biased autocorrelation
functions for the raw data are exhibited in Figure 2. The
unbiased estimators are similar and have been omitted from
the presentation to save space. Each of these figures, panels (a)
through (f), includes a contour map of the two-dimensional
ACF and a scatter plot of the actual ACF array values as a
function of the magnitude of their corresponding lag, | 7|. The
reflection symmetry of the ACF, evident in the contour maps,
follows directly from its definition in equation (1). Many of the
unfiltered maps exhibit a significant large-scale, systematic
component that manifests itself in the autocorrelation function
as anticorrelations for lags in the direction (or opposite the
direction) of the gradient and positive correlations for lags
perpendicular to it. This property of the ACF was exploited by
Spicker & Feitzinger (1988a) to obtain a value for the mean
direction of the kinematical major axis of the LMC. Large-
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scale gradients are most evident in the L1228 map of Figure 24,
and in the HH 83 and L1551 data, which look similar and are
therefore not shown. Note also the anticorrelations in all four
directions from an approximately isotropic central region in
the contour map for the Orion B, region 3, data. The results for
the remaining regions not shown in Figure 2 resemble closely
those that are presented. Similar plots calculated using the
filtered data are exhibited in Figure 3 for all 12 regions we have
surveyed.

It is apparent from the contour and scatter plots that the
ACFs are approximately circularly symmetric at small lags,
and it is therefore reasonable to consider the average of the
autocorrelation functions over azimuthal angle in deriving
scale properties of the velocity fluctuations and to compare
their characteristics to theoretical models of homogeneous, iso-
tropic, turbulent flows. In particular, the circular symmetry
implies that the velocity structure can be approximately char-
acterized by a single correlation length, 4., which is simply the
e-folding distance of a one-dimensional slice through the two-
dimensional ACF. The spread of points in the scatter plots is a
measure of how isotropic the two-dimensional ACFs actually
are, and any departure from isotropy will give a range of pos-
sible values for 4.. The observed correlation lengths, and the
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F1G. 3.—Similar to Fig. 2, but for the filtered data, and including all of the clouds in our survey. These ACFs have been corrected for instrumental noise using eq.

(B2).
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FiG. 3—Continued

range of their directional variation, derived from both the
biased and unbiased ACF estimators are exhibited in Table 3
for the raw centroid velocity data and for the residual (filtered)
maps. All of the results listed in Table 3 and presented in
Figure 3 for the filtered maps have been corrected for instru-
mental noise as described in Appendix B.

We have also fitted the azimuthally averaged ACF, C(|1]),
to the functional forms introduced by Scalo (1984), exp (—
|z|/z,) and 1/[1 + (| t]/7,)"], and have superposed the best-fit
results on the scatter plots of Figures 2 and 3 (solid lines denote
the exponential forms and dashed lines the power-law forms).
Table 3 lists the parameters, t,, 7,, and n, for each of the curves
along with the analogous results obtained from the unbiased
ACF estimators. Note that in general the ACFs of Figure 2 are
characterized by a sharp dropoff at small lags, followed by a
more gradual decrease on scales larger than the correlation
length, which cannot be modeled accurately with a simple
exponential form. Kleiner & Dickman (1987) have interpreted
this behavior as indicating shear layer turbulence in Heiles
Cloud 2 in Taurus. However, it could also be attributed to the
effects of large-scale gradients (notice that the filtered results of
Figure 3 tend to decay more rapidly than the exponential fits
for large lags) or to increased correlations at small lags due to
beam smoothing (see § 5.1).

Notice that the calculated ACFs were not in general

described very well by either the power-law or the exponential
models, but the former did, on average, give slightly better fits
(possibly only because the power-law fits include two free
parameters). However, both types of fits, and in particular the
best-fit values for the exponent, n, were found to be sensitive to
the precise value of the ACF near | t| = 0, where beam smooth-
ing (enhanced slightly by the interpolation procedure; see
§ 2.2.3) dominates, and where the noise correction (which is
somewhat uncertain for the more complicated regions; see
Appendix B) plays an important role. For these reasons, the fit
parameters 7., 7,, and » listed in Table 3 should only be regard-
ed as approximate descriptions of the true azimuthally aver-
aged ACF. Similar results for the model data cube discussed in
§ 2.2.3 are shown in Figure 4 and listed in Table 3.

4.3. Structure Function

Departures from stationarity due to large-scale systematic
motions will contaminate the small-scale structure of the ACF
and will therefore inhibit any autocorrelation analysis of turb-
ulent velocity fluctuations. In contrast, the structure function is
less sensitive to systematic trends and can still characterize
small-scale fluctuations even in the presence of linear gradients
(Scalo 1984; Townsend 1976). For this reason, we have com-
puted the SF in addition to the ACF, and our results are
exhibited in Figures 5 and 6 for both the raw and the filtered
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TABLE 3
TURBULENT LENGTH SCALES® AND SCALING LAws
UNFILTERED DATA FILTERED DATA
Correlation Exponential Power-Law  Power-Law Correlation Exponential Power-Law  Power-Law
(e~ 1) Length Scale Scale Exponent (e™!) Length Scale Scale Exponent
REGION EsTIMATOR [ (range)]® (z.) (z,) n) [4.(range)]® (z.) (z,) (n)
HHS83 ............ Biased 0.95(10.15) 1.0 0.69 1.5 0.51(+0.06) 0.57 0.38 1.7
Unbiased 1.55(10.5) 1.6 1.0 1.6 0.58(+0.08) 0.72 0.45 1.8
L1228............. Biased 7.5(+1.8) 1.5 53 1.8 2.8(10.5) 22 1.9 2.6
Unbiased 13.0(15.5) 11.6 74 1.8 3.0(+0.5) 24 2.0 2.7
L1551............. Biased 8.0(+1.3) 7.6 49 1.5 3.6(+0.4) 35 2.5 1.7
Unbiased 14.5(+6.0) 12.4 83 1.3 4.0(104) 43 29 1.8
Mon R2
1o Biased 59(+1.3) 59 35 1.4 2.7(+£0.2) 2.8 20 1.8
Unbiased 8.5(+ 1.5) 9.4 6.3 1.5 34(102) 3.8 2.6 2.0
2 s Biased 6.5(+2.0) 6.0 3.8 12 2.9(+0.6) 29 2.0 1.6
Unbiased 15.0(+5.0) 10.5 7.2 13 3.8(+0.8) 4.0 2.6 1.8
3 Biased 42(+0.7) 4.0 2.6 13 2.6(+0.4) 2.5 1.8 1.7
Unbiased 8.2(+2.3) 79 5.3 1.3 3.6(+0.4) 3.6 2.5 2.0
Orion B
la oo, Biased 1.7(£0.3) 1.7 1.2 1.7 1.7(+0.3) 1.7 1.4 2.1
Unbiased 2.8(+0.8) 2.5 1.8 1.8 2.8(+0.8) 2.6 19 2.4
| 1 I Biased 2.1(£0.05) 2.1 1.2 1.0 1.2(£0.2) 1.3 0.83 1.6
Unbiased 5.5(+£2.0) 3.1 2.1 0.82 1.5(+0.3) 1.6 1.0 1.4
| Biased 4.6(10.6) 46 30 1.3 3.0(£0.5) 29 2.0 1.6
Unbiased 8.5(+3.0) 10.1 6.3 1.6 4.5(+1.3) 4.7 32 1.8
2 Biased 9.0(+1.0) 8.6 52 1.1 3.0(£0.3) 2.8 2.0 1.7
Unbiased 18(+5.0) 153 109 1.1 3.5(+0.3) 3.6 2.5 1.7
3 Biased 9.5(+ 1.5) 71 49 098 2.2(+0.3) 2.3 1.5 1.7
Unbiased*® 3.9(£0.6) 3.6 2.5 1.7
S Biased 7.3(+1.3) 74 43 1.1 3.0(£0.5) 2.8 2.0 1.7
Unbiased 17.5(+5.0) 13.2 9.3 1.1 3.6(+0.6) 3.6 2.6 18
Model ............ Biased 1.5(10.05) 1.3 12 3.0 ..
Unbiased 1.6(+0.05) 14 13 30

* All distances are given in arcminutes.
® The range given is that arising from the anisotropy of the ACFs (see § 4.2).
¢ For Orion B, region 3, the number of nonzero pixels, N(z), decreases more rapidly with lag than the biased ACF, so the unbiased ACF exceeds unity at some lags

and is therefore unphysical (see eq. [7]).

data. Shown are one-dimensional scatter plots, similar to those
in Figures 2 and 3, of the array values comprising the two-
dimensional structure function for each region. The filtered
maps (Fig. 6) have been corrected for intrumental noise using
equation (B3). We have calculated only the unbiased versions
of the SF because in what follows, we are primarily concerned
with the functional form of the structure function at small lags,
where the number of data pairs, N(z), is large and where the
statistical error of the unbiased estimator is therefore not a
problem. Notice that most of the filtered maps tend to the

constant value two at large lags, suggesting that they are
indeed homogeneous, at least in terms of the variance (§ 2.1).
Phenomenological results in the theory of forced isotropic
turbulence predict cascade processes (in some situations) where
quantities such as the structure function take on power-law
forms, that is, S(|t|)oc|t|5, within a range of scales (or
wavenumbers) known as the inertial subrange (see §§ 4.4, 5.3).
For homogeneous, isotropic, incompressible, hydrodynamic
turbulence, s =2 (Kolmogorov 1941; Obukhov 1941). To
derive an analogous Kolmogorov exponent, s, from our obser-

30 T T T T 1.0F< T T :
'\\
20¢ E 0.8F\ + j
\
10F i os6f \} 1
\
< \
§ of i 04\ 1
o
—10F E 0.2
—-20F E 0.0p
~30 . L . -0.2 . . .
-30 -20 =10 0 10 20 30 0 2 4 6 8

arcmin

FIG. 4a

arcmin

FiG. 4b

F1G. 4—Similar to Fig. 2, but for the model data set described in § 2.2.3. On the left, (a) is shown a contour map of the two-dimensional biased autocorrelation
function, and on the right, (b) we present exponential (solid line) and power-law (dashed line) fits to the azimuthally averaged ACF superposed on a scatter plot of the

array values. The best-fit parameters are given in Table 3.
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F1G. 5—Logarithmic scatter plots of the observed one-dimensional unbiased structure functions with respect to the magnitude of their corresponding lag for the
unfiltered data. The solid lines indicate the approximate slope of each azimuthally averaged structure function obtained via a linear least-squares fit, and the best-fit

values are listed in Table 4.

vations, we have fitted each azimuthally averaged structure
function to a power-law form and have overlayed the results
on the scatter plots of Figures 5 and 6 (solid lines). The steep
rise of the structure function at the smallest lags is most likely
due to the effects of beam smoothing, and the innermost por-
tions of the SFs in Figures 5 and 6 have therefore been
excluded from the curve fits. It is important when calculating
reliable power-law indices to do the fitting over a wide range of

scales, so in all cases, we attempted to fit the data to a single
power law, even where such a form seemed inappropriate (as in
the filtered HH 83 data of Fig. 6a), simply to get a general idea
of the scale properties of the fluctuations. An exception to this
is the raw data for Orion B, region 4 (Fig. 5I), which exhibited
two distinct spectral indices, and we have included both in
Table 4, which also lists the best-fit indices for the remaining
regions including the filtered data, the unfiltered data, and the
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FiG. 6.—Similar to Fig. 5, but for the unfiltered data and including the noise correction given by eq. (B3). See Table 4 for the best-fit indices.

model. Figure 7 shows the one-dimensional structure function
S(| t]), for the model. The implications of these results will be
discussed below (§ 5.3).

4.4. Reynolds Stress and Turbulent Energy Transfer

Small-scale turbulent velocity fluctuations, when superposed
on more regular large-scale motions, will exert stresses on the

mean flow that can, for example, help support a cloud against
gravitational collapse. An understanding of how the turbulent
(Reynolds) stress varies with scale is therfore necessary in order
to determine the size range over which density concentrations
are likely to become gravitationally unstable. If the velocity
structure is isotropic and the density is assumed to be uniform,
the scale variation of the turbulent pressure (i.e., of each of the
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TABLE 4
KoLMOGOROV EXPONENTS®

Unfiltered Filtered
Region Data Data
HHS83 ............ 1.57 1.37
L1228 ............. 1.41 1.47
L1551 ..........et 1.22 1.34
Mon R2
) 1.05 1.13
2 i 097 1.04
3 s 094 129
Orion B
| F: S 0.71 0.95
) L 046 043
) 1.13 1.17
2 e s 1.00 1.10
3 1.00 0.98
L P 1.30, 0.67 1.07
Model ............ 1.37

® Derived from the unbiased structure func-
tions.

diagonal elements of the Reynolds stress tensor) is given by
(KD 1987)

pa®(L) = 3pc?(4/n)(N? — n?)~1 JI xP(cox, oo, do,
w=or

©®

where P(w,, w,) is the power spectrum and o = (02 + w?)'/? is
the spatial frequency. For a discretely sampled data set on an
N x N grid with spacing Al, L =nAl and w; = N/2n. The
upper integration limit, w,,,,, is just N/2. Thus, ¢*(L) is a
measure of the mean velocity dispersion of gas motions
occurring inside a region of size L. It should be noted, however,
that for compressible turbulence, density fluctuations can have
an important influence on the Reynolds stress, so that the
velocity dispersion calculated below may not be proportional
to the turbulent pressure, as in the case of incompressible turb-
ulence.

The estimator ¢2(L) can also be used to obtain an approx-
imate measure of the maximum rate at which energy can be
transported, on average, on a given scale L by dividing the
mean specific energy density of the turbulent motions on that
scale, 3/20%(L), by a characteristic time, L/a(L):

30°(L)

=3

(10)

1.00

s(I71)

0.10F E

0.01 .
1 10
|7| (arcmin)
Fi1G. 7.—Logarithmic scatter plots of the type shown in Figs. 4 and 5 for the
model data. The best-fit slope to the azimuthally averaged structure function is
shown by the solid line and is listed in Table 4.

MIESCH & BALLY

In the Kolmogorov-Obukhov scenario, turbulent energy is
injected into the flow at some outer scale, 4,, and drives the
formation of smaller and smaller eddies until it is converted to
thermal energy by molecular viscosity at a dissipation, or inner
scale A;. This and similar cascade models predict the rate of
energy transfer between scales, given by (L), to be constant
within the inertial subrange defined by 4; and A,. In actuality,
€(L) is an upper limit to the rate at which the energy present in
turbulent eddies of size L can be transferred to other scales or,
alternatively, can be dissipated and converted to thermal
energy before any transfer between scales occurs. The peak
value of €(L), presented for each region in the caption to Figure
8, is therefore a measure of the maximum turbulent heating
rate and can be used to evaluate the role of turbulence in the
thermal balance of the clouds we have studied. The mean value
for the maximum conversion rate of turbulent energy to
thermal energy through dissipation is found to be
~1.2 x 10~ *ergs g~' s~ !, which is comparable to the heating
rate due to cosmic-ray ionization and dissociation of neutral
hydrogen molecules, I',, ~ 1.9 x 10™% ergs g~ ! s ! (eg,
Spitzer 1978). However, if the turbulence is supersonic, dissi-
pation in shock fronts may lead to localized heating, and the
idea of an average dissipation rate would then be inaccurate.
Thus, as above, the latent energy dissipation rate defined in
equation (10) is only strictly applicable when the turbulence is
incompressible (unless the dissipation rate is proportional to
that in eq. [10], as is the case with the dilatation dissipation in
compressible turbulence described by Zeman 1990).

Figure 8 shows ¢?(L) (solid lines) and (L) (dotted lines) for
each of the observed regions, and Figure 9 shows the same
measures for the model data. We have presented only the
results obtained from the raw velocity data because the filtered
data looks similar on scales smaller than the half-width of the
smoothing function (see Table 7). On larger scales, the a?(L)
curves for the filtered data flatten out, taking on constant
values, while the &(L) curves become inversely proportional to
the scale, L. This is to be expected because the filtering process
removes velocity components on scales larger than the width
of the smoothing function, so the power spectra of the filtered
maps vanish for small wavenumbers.

As discussed in detail by Kleiner & Dickman (1985), the
variation of turbulent stress with scale, ¢%(L), has important
consequences for the gravitational collapse of density concen-
trations. Using order of magnitude estimates for the densities
in each region [n(H,) ~ 1000 for L1228 and L1551, 2500 for
HH 83, 200 for Orion B, and 600 for Mon R2], we find that in
all cases, the scale at which the turbulent dispersion, o(L),
drops below the sound speed in the cloud is smaller than the
thermal Jeans length [ ~25n(H,)~ /2 pc for a molecular cloud
with a kinetic temperature of 10 K; shown in Fig. 8 as solid
vertical lines]. This means that, in the regions we have studied,
all clumps that are large enough to overcome their thermal
pressure and collapse in the traditional Jeans analysis are
instead supported by turbulent pressure. This conclusion is
similar to that reported by Kleiner & Dickman (1987) and
Hobson (1992), who invoke intermittency in the gas motions to
account for the gravitational collapse and fragmentation that
eventually leads to the formation of stars. The additional cloud
support provided by magnetic fields further emphasizes the
apparent need for an intermittent velocity structure to allow
for gravitational instability. But note that these arguments are
only strictly valid in the incompressible case, where the Rey-
nolds stress is proportional to the a2(L) estimator, as discussed
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Fi1G. 8—Specific turbulent energy density, 0*(L) (solid lines), and latent energy dissipation rate, (L) (dotted lines), as a function of scale for each region (see text).
The solid vertical lines indicate the thermal Jeans length for each cloud assuming a kinetic temperature of 10 K and molecular hydrogen densities of 1000 for L1228
and L1551, 2500 for HH 83, 200 for Orion B, and 600 for Mon R2. Each of the 6%(L) curves is normalized with respect to its value at the maximum lag shown which is
given approximately by the corresponding parent dispersion listed in Table 2, i.e., 6*(L,,,) = 02. The €(L) curves are also given in terms of their maximum values,
which are as follows: (@) HH 83; max [e(L)] = 4.26 x 10~ % ergs g~* s, (b) L1228; max [e(L)] = 1.14 x 10~ * ergs g~ ! s~ !, (c) L1551; max [e(L)] = 2.65 x 103
ergsg™'s™ %, (d) Mon R2, region 1; max [e(L)] = 5.42 x 10" %ergs g~ s !, (e) Mon R2, region 2; max [e(L)] = 1.63 x 10~ 3ergsg~! s~ %, (f) Mon R2, region 3; max
[e(L)] = 3.47 x 10~ % ergs g~ * s, (g) Orion B, region la; max [e(L)] = 3.69 x 107 % ergs g~ s~ (h) Orion B, region 1b; max [e(L)] = 3.50 x 10 Sergsg~'s~ %,
(i) Orion B, region 1c; max [e(L)]| = 5.26 x 1075 ergs g~* s~ *, (j) Orion B, region 2; max [e(L)] = 1.06 x 10~* ergs g~! s™!, (k) Orion B, region 3; max
[e(L)] = 7.14 x 10 *ergs g~ ! s™*, and (/) Orion B, region 4; max [e(L)] = 2.02 x 10 “ergsg™'s~ 1.
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F1G. 9.—Similar to Fig. 8, but for the model data set

above. Compressibility effects could alter the turbulent pres-
sure enough to make collapse possible even without inter-
mittent velocity fluctuations.

The €(L) curves in Figure 8 are also similar to those reported
by Kleiner & Dickman (1987) and Hobson (1992) and, as they
suggest, may indicate the existence of a preferred scale where
the dissipation of turbulent energy is peaked, and where the
resulting loss of dynamical support may lead to gravitational
collapse. However, it is likely that the sharp drop at small
scales in many of these plots [and for the ¢%(L) measure as
well] is an artifact of beam smoothing, and does not signify any
real physical process occurring in the clouds (see § 5.1). Still,
the secondary peaks found, for example, near the thermal
Jeans length in Orion B, region 1c, and in Mon R2, region 1 do
seem to reflect the actual scale variation of the e(L) measure,
marking a local peak in the latent energy transport rate on
scales of several parsecs for these clouds.

5. DISCUSSION

5.1. Beam Effects

It is apparent from Figures 4, 7, and 9 that the spurious
correlations introduced by beam smoothing (and enhanced
slightly by the interpolation onto a regular grid, see § 2.2.3)
extend beyond the angular width of the beam itself. In particu-
lar, Figure 4 shows that the effective correlation length for the
otherwise random model velocity field is about equal to the
simulated half-power beamwidth of 1!7 (§ 2.2.3), but beam-
induced correlations of magnitude larger than 0.1 are present
out to lags of more than 10'. Thus, the structure seen in many
of the observed ACFs should be regarded with some skepti-
cism. With this caveat in mind, it is nevertheless interesting to
point out the roughly chessboard pattern of correlations and
anticorrelations present in the residual L1228 map (Fig. 3b),
possibly suggesting wave structure of some kind, and the recor-
relations about 20’ from the center of Orion B, region 1, along
the direction in which the small scale ACF is elongated
(Fig. 39).

Kitamura et al. (1993) have considered analytically the effect
of beam smoothing on the observed ACF and find that the
apparent velocity correlation length of a physical process after

Vol. 429

convolving the emission with a Gaussian radio telescope beam
pattern will equal (12 + 6%/In 4)*/2, where A, is the true corre-
lation length and 6 is the beamwidth. For the model data set
described above (§ 2.2.3), the underlying physical process is
uncorrelated (4, < 0), and the work of Kitamura et al. predicts
an observed correlation length due solely to the beam, of
0.85(1.7) = 1:44. The slightly higher value of 1:5-16 that we
have observed for our model can be attributed to the inter-
polation process (see § 2.2.3), and we thus find good agreement
with the analytical result. However, note that the analytical
work does not predict the spurious structure seen in Figure 4
at lags exceeding the beamwidth.

Beam smoothing also contaminates the structure function
out to lags of over twice the beamwidth (Fig. 7), but possibly its
most dramatic effect is on the ¢2(L) and €(L) measures shown
in Figure 9. Spurious structure is seen in these curves at lags
exceeding 10, and the peak of the latent energy dissipation plot
occurs at a relatively large lag of 4'. This casts some doubt on
the validity of the ¢%(L) and €(L) results in particular for the
HH 83 data (Fig. 8a), and the Orion B observations of regions
1a (Fig. 8g), 1b (Fig. 8h), and 3 (Fig. 8j). Note in particular the
similarity between the curves in Figures 8g and 9. The model
results also suggest that similar plots of the mean variance and
the latent energy dissipation rate presented for Cloud 2 in
Taurus by Kleiner & Dickman (1987) and for M17SW by
Hobson (1992) may be dominated by beam effects and caution
must be used in attaching to them any physical significance.

5.2. Turbulent Length Scales

We have listed the Kleiner & Dickman (1987) and the
Hobson (1992) results for the correlation length, 4., with our
own in Table S. The correlation lengths are those derived from
the biased ACFs of the noise-corrected filtered maps taken
from Table 3. Also shown are the resolution of each study and
the approximate extent of the region sampled. All scales are in
parsecs, and the distances used for the conversions are given in
the table along with their references. Note that in all cases, the
observed (biased) correlation length is within roughly a factor
of 2 of the beamwidth, and is in general 10-30 times smaller
than the size of the region. This is also true for the LMC
observations reported by Spicker & Feitzinger (1988a), even
though the angular resolution was much larger (15) and the
scales involved (hundreds of parsecs) exceed those of the
molecular cloud studies of Table 5 by several orders of magni-
tude. Furthermore, the correlation lengths listed in Table 3 do
not decrease with distance as expected if the linear scale of
velocity correlations were roughly the same in each of the
clouds studied. On the contrary, the angular correlation
lengths of Mon R2 (830 pc away) are comparable to or even
larger than those of L1228, which is only about 150 pc distant.
These results suggest that the observed correlation length for
each of these objects is not a measure of any absolute, intrinsic
scale characteristic of the flow, but is rather influenced by the
length scales introduced by the observations themselves. This
conclusion is verified by the work of Kitamura et al. (1993),
who have presented a correlation analysis of TMC 1C, a sub-
condensation in Cloud 2, and have found that the observed
correlation length increases approximately linearly with the
size of the region being sampled.

The results listed in Table 5 can be understood if it is rea-
lized that the correlation length is related to the size of the
largest velocity structures sampled by the observations because
for any self-similar turbulent hierarchy, the correlation length
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TABLE 5
CLOUD PARAMETERS

Half-Power Biased
Distance Size Beamwidth Correlation
Region (pc) Reference (pc) (pc) Length (pc)

HHS83 ............ 480 Gengzel et al. 1981 0.65 0.070 0.071
L1228............. 150 Fukuwi 1989 1.3 0.074 0.12
L1551............. 140 Elias 1978 1.8 0.069 0.15
Mon R2 .

) B 830 Racine 1968 17 0.41 0.65

2 e 18 0.41 0.70

K 26 0.41 0.63
Orion B

la .o, 400 Anthony-Twarog 1982 1.8 0.20 0.20

b oo, 30 0.20 <0.20

) (TP 5.3 0.20 0.35

2 e 10 0.20 0.35

3 11 0.20 0.26

4o 11 0.20 0.35
Cloud 2* .......... 140 Kleiner & Dickman 1987 1.6 0.04 0.1
M17SW*:

HCO™ ... 2200 Hobson 1992 1.7 0.20 0.25

HCN........... 1.7 0.20 <0.20

# Kleiner & Dickman 1987.
® Hobson 1992.

is related to the size of the largest “eddies” in the flow. For
Kolmogorov turbulence within the inertial subrange, 1, =
0.474,, where 4, is the outer scale, on which the turbulent
motions are driven (Kleiner & Dickman 1985). Any astronomi-
cal observation of velocity structure in molecular clouds can
only sample gas motions on scales larger than the resolution of
the telescope and smaller than the extent of the sampling grid,
or alternatively, the size of the cloud. If molecular cloud gas
motions are part of a turbulent hierarchy pervading the inter-
stellar medium and extending to much larger scales as orig-
inally proposed by Larson (1981), then the largest eddies
sampled by any set of observations will be comparable to the
extent of the data set, provided the scales introduced by the
observations do not extend beyond the bounds of the hier-
archy, and the observed correlation length will increase with
the size of the region sampled. If the turbulence is self-similar,
this increase will be linear. Similar conclusions were reached by
Houlahan & Scalo (1990), who considered analytical models of
hierarchical density structure and found that the correlation
functions they calculated were strongly distorted by image fea-
tures with sizes comparable to the extent of the data set. Thus,
the apparent dependence of the observed correlation length on
the size of the cloud discussed above and exhibited in Table 5
suggests that the observed motions are indeed part of a turbu-
lent hierarchy, which at the very least pervades the molecular
gas in the clouds we (and others) have surveyed. The question
of whether the atomic gas surrounding the cloud is part of the
hierarchy or not cannot be answered with molecular observa-
tions alone.

Kleiner & Dickman (1985) use the absence of any centroid
velocity correlations at scales between 1 and 10 pc to argue
against the existence of a turbulent hierarchy in the interstellar
medium on scales comparable to or larger than the complex
they observed (the Taurus dark clouds). However, as discussed
by Scalo (1987), this only rules out an incompressible
Kolmogorov-type cascade model and does not necessarily pre-
clude the existence of a more complicated, highly compressible

hierarchy for which an autocorrelation analysis will fail to
discern any significant correlations if the dynamic range of the
observations is insufficient. The dynamic range of the observa-
tions used by Kleiner & Dickman in their 1985 paper is about
56, smaller than that of most of the data sets presented here
(note also that they did not observe the effects of beam smooth-
ing presumably because their sampling interval was much
larger than the spatial resolution of the telescope used).

If an interstellar turbulent hierarchy does exist, and if the
intrinsic correlation length of the turbulence equals or exceeds
the scale of our molecular cloud observations, then the calcu-
lations of Scalo (1984) and Dickman (1985) mentioned above
(§ 2.2.2) imply that the effects of projection smearing should
vanish and the observed dispersion in centroid velocities
should approximate closely the true turbulent dispersion of the
gas motions. We find that is not the case with our observations.
The results listed in Table 2 show that the ratio of the observed
centroid dispersion to the actual turbulent dispersion is given
by ¢%/o, = 0.31 £ 0.07 for all the data sets listed with the
exception of L1228 and Orion B, region 2 where the ratios are
0.13 and 0.42, respectively. This seems to imply that the corre-
lation length of the turbulence does not exceed the scale of the
observations, but instead, in all cases, lies between about 1%
and 10% of the depth of the cloud, where the actual value
depends on the scale properties of the flow (see Fig. 4 in Scalo
1984). This result is consistent with the sizes and correlation
lengths listed in Table 5. However, as discussed above, if there
is indeed a turbulent hierarchy of gas motions pervading the
ISM, the correlation length derived from a finite range of scales
within the effective range of the hierarchy is not an intrinsic
scale of the turbulence, but instead depends on the size of the
region being sampled. In the case of projection smearing, the
range of scales being sampled is determined not by the scale of
the observations, but by the depth of the emitting region. Thus,
the projection effects discussed in § 2.2.2 depend only on the
shape of the correlation function, and the correlation length
used should be regarded as an effective correlation length
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specific to the scale range sampled (the depth of the cloud) and
determined by the functional form of the ACF or SF, rather
than an absolute, characteristic, turbulent scale length.

5.3. The Velocity Spectrum

If the gas motions in molecular clouds are indeed part of an
interstellar turbulent hierarchy, then observed systematic
motions would actually be stochastic velocity fluctuations on
scales comparable to the size of the data set, and any suppres-
sion of these by filtering would remove meaningful turbulent
structure. However, the statistical approach described in § 2
could still be employed to characterize gas motions in scales
smaller than the width of the filter. Therefore, in the case of
sampling a turbulent hierarchy at some intermediate range in
scales, the statistical analysis used here, although it cannot give
information on absolute, characteristic length scales in the
flow, can be used to obtain information on the form of the
statistical functions, and as a result, the scaling laws we have
derived do describe the physical nature of the hierarchy.

Although the correlation lengths for the biased ACFs of the
filtered maps (Table 3) are not much larger than those of the
model data set, it does seem clear from the best-fit exponents, n
and s, and from the unbiased ACF results that the observed
correlations are not due to beam smoothing alone, and instead
reproduce the correlation properties of the underlying physical
process responsible for the observed velocity fluctuations. In
particular, with only a couple of exceptions, the filtered maps
seem to be consistently well described by a power-law ACF
with an exponent n = 1.7 + 0.1, which is significantly less than
that found for the model, n = 3.0. It should be noted that even
the two exceptions, L1228 and Orion B, region 1, exhibit a
best-fit power law of ~ 1.7 in the unfiltered maps (Table 3), and
the higher value present in the filtered maps may be an indica-
tion that the noise correction for these regions (Table 2) is
overestimated. The best-fit power-law exponents, n, for the raw
velocity data exhibit a much larger variation than those of the
unfiltered maps and are generally smaller, being characterized
approximately by n= 1.3 + 0.2 (Table 3). The power-law
exponents for both the filtered and unfiltered data are found to
be independent of the size of the region. For H 1 gas motions in
the Large Magellanic Cloud, Spicker & Feitzinger (1988a)
report n = 1.85 4 0.03 for a radial cut to the biased ACF in the
direction of the kinematical major axis. However, their results
for the unbiased estimators and for radial cuts in other direc-
tions suggest larger exponents, n & 2.5 or in some cases exceed-
ing 3 (see their Table 1).

The Kolmogorov exponents listed in Table 4 provide more
useful measures of the scale properties of the turbulence than
the power-law exponents, especially if the velocity structure
arises from a turbulent cascade. In light of the smaller power-
law exponents describing our observations, it is perhaps sur-
prising that the Kolmogorov exponents, s, derived from the
structure function are consistent with, but still slightly shal-
lower than, those reported by Spicker & Feitzinger (1988a).
They find an average value for s of 1.27 + 0.21, with a
minimum and maximum of 0.98 and 1.55 (see their Table 4), a
range which spans most of our results exhibited in Table 4.
Our derived exponents also agree well with the range
0.75 < s < 1.0 which seems to characterize H 11 regions (Roy &
Joncas 1985; Roy et al. 1986; Castafieda 1988; but see also
O’Dell 1986 and O’Dell & Castafieda 1987, who find s ~ 0.2—
0.4).

Despite this agreement, however, our Kolmogorov expo-
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nents are not consistent with those found in other molecular
clouds using the autocorrelation function. Kleiner & Dickman
(1987), report s & 0.37 in Heiles Cloud 2 for their raw data and
s~ 0.15 after filtering and applying the noise correction.
Hobson (1992) finds somewhat higher values for M17SW, with
s ~ 0.33 for his HCO* observations and s ~ 0.52 for HCN,
but these are still much smaller than our results, with the pos-
sible exception of Orion B, region 1b. In order to investigate
this discrepancy, we have calculated the Kolmogorov expo-
nent, s, from the autocorrelation functions presented in § 4.2 by
fitting both the biased and unbiased versions to the function
form C(|t|) =1 — a|z|*. For homogeneous isotropic turbu-
lence and in the absence of systematic motions, this method
should give an identical value for s to that obtained from the
structure function. We find that the derivation of s using the
ACF does indeed tend to give lower values, especially if the
biased ACF estimator is used as in the Kleiner & Dickman
(1987) and Hobson (1992) work. The mean Kolmogorov expo-
nent derived via the unbiased structure function, using the raw
(unfiltered) data summarized in Table 4, is 1.03 with a standard
deviation of 0.31. The corresponding mean values obtained
from the unbiased and biased ACFs are 0.85 and 0.60, respec-
tively, with standard deviations of 0.26 and 0.23. The mean
Kolmogorov exponents derived from the filtered data were
found to be slightly steeper than, but still similar to, those
describing the unfiltered data, suggesting that the turbulent
velocity component dominates the small-scale structure of the
SF even before systematic motions are removed. The filtered
data give indices of 1.11 (using the unbiased structure
function), 0.85 (using the unbiased ACF), and 0.63 (using the
biased ACF) with standard deviations of 0.26, 0.24, and 0.24.
Thus, the shallower slopes reported for other molecular cloud
velocity fluctuation spectra may to some extent be the result of
using the biased ACF to derive the Kolmogorov exponent
rather than the unbiased structure function, as we have used
here. Note, however, that even the slopes obtained from the
biased ACFs presented here are steeper than those previously
reported by Kleiner & Dickman (1987) and Hobson (1992).

It is well known that the biased ACF estimator decays to
zero at large lags more slowly than the true ACF (Spicker &
Feitzinger 1988b; Priestly 1981), so the shallower slope
exhibited by that function is to be expected. The disagreement
between the Kolmogorov exponents obtained from the auto-
correlation and structure functions is probably due to the pres-
ence of small scale systematic trends in the velocity fields even
after the smoothed maps were subtracted. As discussed above,
the structure function is relatively insensitive to gradients and
will therefore reproduce more accurately the true fluctuation
spectrum. Alternatively, the steeper slopes found with the
structure function could be attributed to projection smearing
(§ 2.2.2; O’Dell & Castafieda 1987). For a process with a
Kolmogorov-type spectrum (s = %), O’Dell & Castafieda show
that projection smearing leads to an observed two-dimensional
structure function with a spectral index of 5/3 if the effective
correlation length of the turbulence is much less than the depth
of the cloud, which is the case for our observations (see above).
Taking all these effects into consideration, we find that the
most reliable estimate for the spectral (Kolmogorov) slope, s,
characterizing fluctuating gas motions in the molecular clouds
we have surveyed is 0.86 + 0.3.

It is interesting to compare this result with the predictions of
some theoretical models of turbulent flows. As mentioned
above, incompressible, homogeneous, isotropic turbulence
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with no magnetic field yields a power-law form for the struc-
ture function with an index of 2. Although this value is within
the range given above for the observed scaling laws, our results
do imply a somewhat steeper spectrum. In any case, the appli-
cation of the Komogorov model to the supersonic gas motions
typical of molecular clouds should be a priori suspect, and a
more realistic interpretation of the observed scaling laws must
include effects due to compressibility, magnetic fields, and self-
gravity (Kleiner & Dickman 1985). When dealing with com-
pressible turbulence, it is customary to break up the velocity
field into solenoidal (incompressible) and potential (com-
pressible) components that couple appreciably only on rela-
tively large and small scales, and that can thus be considered
approximately independently over a wide range in wavenum-
ber (Pouquet, Passot, & Léorat 1991). In the absence of mag-
netic fields, the spectrum of the solenoidal component is that
given by the Komogorov model modified by the presence of
compressive modes and is characterized by a power-law index
s = 2/(3 — #?) for subsonic turbulence (rms Mach number
A < 1)(Moiseev et al. 1981). Intermittency effects may also act
to steepen the velocity spectrum, but their importance is at
present unclear (Kraichnan 1990). When .# exceeds unity,
shocks form and a Burgers-like spectrum prevails, where s = 1
for the potential and, when the coupling is sufficient, the sole-
noidal velocity components (Kadomtsev & Petviashvili 1973).
Alternatively, if the solenoidal field is relatively strong, shock
formation will be suppressed as acoustic waves efficiently
diffuse along vortices, and the potential component will instead
follow an s = 1 power law (Zakharov & Sagdeev 1970; Passot,
Pouquet, & Woodward 1988). A structure function index of £
is also predicted when Kolmogorov-like reasoning is applied
to incompressible MHD flows (Kraichnan 1965). However,
Grappin, Pouquet, & Léorat (1983) have shown that the spec-
tral index of incompressible MHD turbulence can lie anywhere
between s = £ and 2 depending on the degree to which velocity
fluctuations are correlated with magnetic field fluctuations.
Also note that turbulent MHD flows are typically character-
ized by several spectral indices spanning different ranges in
wavenumber that depend on dissipation effects and the ratio of
magnetic to Kinetic energy (Zel’dovich, Ruzmaikin, & Sokoloff
1983). On large scales, where the magnetic energy is negligible,
a Kolmogorov (s = %) spectrum prevails, while the Kraichnan
result (s = £) holds on smaller scales, where the turbulent and
magnetic energy are in equipartition. The influence of self-
gravity has been considered in the self-similar star cloud turbu-
lence model of Henriksen & Turner (1984), which predicts
s = 1. In summary, the relation % < s < 1.0 is expected for the
structure function spectral index in three-dimensional, com-
pressible, hydrodynamic, self-gravitating turbulence, and % <
s < 2.0 is expected in the MHD case. The analogous scaling
laws in two spatial dimensions, which may, for example, apply
to inhomogeneous turbulence pervaded by a strong magnetic
field (Higdon 1984), are reviewed by Passot & Pouquet (1987).
Many of these phenomenological results have been verified by
numerical simulations (for a review, see Pouquet et al. 1991;
see also the recent simulations of two- and three-dimensional
supersonic hydrodynamic turbulence by Porter, Pouquet, &
Woodward 1992 who find that shock wave interactions are
important in the transfer of energy from small to large wave-
number within the inertial range for both the potential velocity
component, which evolves to an s = 1 power law, and for the
solenoidal component, which dominates the total kinetic
energy at late times and, for the forced problem, is consistent
with the Kolmogorov result, s = 2).
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The theoretical predictions agree well with those derived in
the present work from the observed structure functions of
radial velocity fluctuations in molecular clouds. In particular,
they imply that compressibility effects are important in molec-
ular clouds and that the weak acoustic model of Zakharov &
Sagdeev (1970), which predicts s = 3, is inapplicable. Also, if
magnetic fields are indeed dynamically important, the observa-
tional results presented here may indicate a high degree of
correlation between the turbulent velocity and magnetic field
fluctuations in molecular clouds. An alternative interpretation
due to Fleck (1983) is that, for a compressible medium in which
the mean density scales with region size as pl = constant
(thought to be the case for molecular clouds; see Myers 1987),
Komogorov-type reasoning leads to an expected spectral index
s = 4/3 rather than s = 2/3. Since this is steeper than that
observed, our results imply that compressibility effects that
tend to steepen the spectrum are less significant then energy
injection on small scales by, for example, young stars or super-
novae, which will act to soften it.

Fleck’s interpretation raises an important point. When com-
paring the observed scaling laws to theoretical cascade models,
it must be remembered that inertial range arguments only
apply in certain idealized situations and in particular are only
strictly valid when the flow has reached a quasi-equilibrium
state that is driven by a constant energy supply at some outer
scale. In contrast, the interstellar medium is more likely
described by decaying turbulence with energy injection on
multiple scales, implying that traditional cascade models,
although useful, should be applied with some caution. Note
that the e(L) curves of Figure 8 are certainly not consistent
with the constant value assumed by many cascade models.

Our results for the Kolmogorov exponents can be used to
derive a velocity dispersion region-size relationship of the type
first described by Larson (1981): Av oc I’. Since a power-law
structure function of the form S(|z|)oc|t|° gives y = 5/2
(Kleiner & Dickman 1985), then the value of s given above
implies y = 0.43 + 0.15 for the molecular clouds in our survey,
in agreement with observed indices obtained by other means,
which suggests a value between 0.35 and 0.7 (e.g., Larson 1981;
Myers 1987). Note in particular that Larson’s (1981) original
analysis, which included Orion A (where the HH 83 cloud is
located), Orion B, Mon R2, and L1551 revealed an index of
~0.38, which is close to that reported here. Figure 10 is a plot
of velocity dispersion, Av, versus region size, I, for all of the
clouds we have studied. The dispersion for each cloud is
defined as Av = o, S'(I)!/?, where S'(]) is the best-fit power law
to the structure function of the filtered data (Table 4), o, is the
centroid dispersion for the region (eq. [4]; Table 2), and I spans
the range in scales over which the appropriate power-law fit
was performed. The slope predicted by the Kolmogorov model
is also shown for comparison. Note that the spectra at the
smallest scales covered by our observations are slightly steeper
than those at the largest, but otherwise the derived slopes, and
more generally the functional forms of the ACFs and SFs, are
very similar for all of the clouds we have studied. This implies
that the hierarchy of gas motions in these clouds is approx-
imately self-similar.

5.4. Energy Injection and the Generation of Turbulence

Turbulent flows are inherently dissipative and as such
require a sustained supply of energy to maintain (Tennekes &
Lumley 1972). As discussed above (§ 4.4), the minimum time-
scale, on average, for the dissipation of turbulent energy at
some scale, L, is just t4,, ~ L/o(L), where o(L) is a character-
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F16. 10—Velocity dispersion plotted vs. region size for all of the regions
studied. The spectral indices and plot range for each object are those corre-
sponding to the curve fits of Table 4, and Av has been derived from power-law
fits to the structure functions for the filtered data in each region and is defined
in the text. The Kolmogorov slope is included for comparison.

istic velocity at that scale. Since the turbulence will decay
unless energy is supplied at a rate comparable to or exceeding
the dissipation rate, then, in order to sustain the observed
motions, the timescale for energy injection into the flow, Linjs
must be <tg4,. If a source supplies turbulent energy at a rate E,
then t;,; = E(L)/E, where E(L)is 1.5M_ ¢*(L), and M, and L are
the mass and size of the cloud. Thus, the ratio of the energy
injection timescale to the mean dissipation timescale is given

by
tini _J 3L M E \!
-8 =25 % 1074 £ 11
tdiss 8 [ ch J(loz MG))(IOO 20) ( )

where lec is the cloud size in parsecs and o(L) is measured in
kms™*.

There are a variety of physical processes that inject energy
into the interstellar medium, and some of the most important
are summarized in Table 6 along with the approximate scale
range over which they operate and the rate at which they
supply turbulent energy (for a more detailed discusson of
several of these injection mechanisms, see Bally et al. 1991).
Each rate includes an efficiency factor, #, which reflects how
effective the mechanism is in converting the energy it liberates
into interstellar turbulent motions. We will not attempt a cal-
culation of the efficiency factors here, but for a treatment of the
conversion process, see, for example, Miesch & Zweibel (1994).
The size, mass, and surface area of the cloud are denoted by L,,
M., and A_, respectively, in Table 6, and for those processes
that drive “bubbles” of hot gas into the surrounding ISM
(supernova, stellar winds, and H 1 regions), Q. is the solid angle
of the cloud as seen from the center of the bubble. Character-
istic timescales for several mechanisms (e.g., the free-fall time
for gravitational torques) are represented by t, and N rep-
resents the total number of outflows, hot stars, or supernovae
injecting energy into the cloud. For example, consider a super-
shell driven by multiple supernovae from an OB association.
In this case, the number of stars in the association that have
exploded as supernovae (~20) is denoted by N, the timescale
for any particular region of the ISM to be traversed by such a
supershell (~ 30 Myr for the solar neighborhood) is denoted by
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t, and Q, is the solid angle of the cloud as seen from the center
of the association (~0.1). The energy liberated by a single
supernova is represented by Egy. A typical velocity for the
postshock gas after the passage of a spiral density wave in the
solar neighborhood is AV ~ 10 km s~! (Spitzer 1978), and
Viow and V.4 are characteristic outflow and stellar wind veloc-
ities. The mass of a particular outflow is given by My,,,, and
M is the mass-loss rate in a typical stellar wind. Other symbols
found in Table 6 include the number of ionizing photons from
the central star in an H 1 region, Q, the ultraviolet radiation
flux incident on a typical molecular cloud, Xy, and the spiral
density wave pattern frequency, Q, (~1.4 x 107% yr™*;
Spitzer 1978).

Using equation (11) together with the observed relation
between the density and size of typical molecular clouds, n ~
4 x 103L_."* (Scalo 1987), and our results for the variation of
the specific energy density, 1.56%(L), with scale (§ 4.4), we find
that the maximum value of t;,;/t,; for all the clouds we have
surveyed occurs in Orion B, region 3, and is equal to 0.015(100
Z o/E). Since this value is less than unity for any source sup-
plying turbulent energy at a rate E > 1.5 %, we find that a
number of valid energy injection mechanisms exist which could
account for the observed turbulent motions in molecular
clouds on all scales, from 0.01 pc to the size of the cloud, L, (see
Table 6). This conclusion can be made even more general if we
employ the size-line width and size—density scaling laws first
introduced by Larson (1981). If the velocity dispersion and the
density of a region scale with its size as o(L) = o, L}, and
n = no L}, then equation (11) implies
t [

- 3
Znj _ 95 x 10_4L33+"+2<WOS_1>

diss
M E -1
2 1
X(loz Mo>(1003’@) > (12

where M, = (4n/3)(1 pc/2)3(2my)n,. Using the observed param-
eter values of 6, = 1.0km s}, n,=4 x 103cm™3,y = %, and
B = —1.2(Scalo 1987), equation (12) yields

Lini _ 96 x 10—4L23(~—E——)_1 . (13)

diss P 100 & (O]
The value of y derived in the present work, 0.43 4+ 0.15 (§ 5.3)
8IVES tyy;/taiss 0¢ L20°/E. Thus, the energy sources of Table 6
are certainly sufficient to sustain small-scale turbulent motions,
but in order to drive turbulence at scales larger than the size of
a typical giant molecular cloud (~40 pc), an energy injection
rate exceeding 100 &, is required. Since the energy injection
mechanisms that act on the scale of the cloud—UYV radiation,
Galactic differential rotation, spiral density waves, and gravita-
tional torques—supply more energy as the cloud size is
increased, then these processes may still be sufficient to main-
tain a turbulent hierarchy in the ISM extending to much larger
scales (recall also that t; is a minimum dissipation timescale).
Alternatively, if the turbulence is anisotropic, then large-scale
turbulent motions could be driven by small-scale energy injec-
tion. The question of whether such an inverse energy cascade
exists in the interstellar medium or whether a more traditional
Kolmogorov-type energy cascade from small to large wave-
number prevails is still an open one.

6. SUMMARY

We have presented a statistical analysis of 13CO emission
line centroid velocity fluctuations for five nearby molecular
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TABLE 6
GENERATION OF TURBULENCE IN MOLECULAR CLOUDS?

Scale Energy Injection Rate®
Source (pc) (Zo)
2 -1
Bipolar outflows .................... 0.1-1 1NV Moo Voiow d
0.5/\10/\5 My /\ 10 km s~/ \ 10* yr
. n 2 Q.
Huregions .....c..ococevvvinenn... 0.01-20 —_— —
regions ().01)(10‘e s_‘)(4n)
-1
Isolated supernovae................. 1-20 16! 1 Egn & !
0.01 /\ 103! ergs /\ 4n /\ 0.5 x 10 yr
Y 2
Stellar Winds .........ovoveereenn, 1-50 A A — Vuina 3
01 \10\1075 M, yr ' \10°km s—*/ \ 01
Supershells ...............c.ocoeneene. 150-200 0.4 — —N
pe 4'(0.01 20)(105 ! ergs \0.1/\ 30 x 106 yr
A
UV Radiation® .................... ~L, so 1| X .
0.001 \ 10G, /\ 1500 pc?
. n M.
Galacticshear ...................... ~L 0.08 —
¢ 1 0) 10° M, /\ 40 pc)
2
Spiral density waves................. ~L, 23( L M. av Qf -
0.1\ 10° My/\10 km s -t 14 x 1078 yr~?!
2 -1 -1
Graviational torques ............... ~L, 3s( L M. L. L
0.1\ 10° M/ \40 pc 106 yr

* See text for the definitions of the symbols.

® Each injection rate is given in units of the solar luminosity.
¢ The ultraviolet flux incident on the cloud, Xy, is given in terms of the Habing flux, G, = 1.6 x 1073 ergs

cm™ 257! (see Tielens & Hollenbach 1985).

clouds; Orion B, Mon R2, L1228, L1551, and the HH 83 cloud,
and our primary conclusions are as follows:

1. The model data cubes described in § 2.2.3 reveal that the
effects of beam smoothing are more pronounced than might be
naively expected, extending beyond the width of the beam itself
(§ 5.1). The innermost portions of the statistical diagnostics we
have presented are certainly influenced by the telescope’s
resolution, and similar measures previously reported in the
literature also seem to be polluted by beam effects at very small
scales.

2. The observed variation of turbulent pressure with region
size implies that, on scales where the turbulent stress is small,
thermal pressure is sufficient to support density condensations
against collapse, and on scales that are unstable in the tradi-
tional thermal Jeans analysis, the turbulent pressure assumes
the role of cloud support (§ 4.4). Thus, intermittency in the
velocity field or compressibility effects on the turbulent pres-
sure may be required to produce gravitational instability.

3. The turbulent length scales presented in § 4.2 for our
data, and those presented by other authors, are strongly
dependent on the range of scales sampled by the observations.
We suggest that this, together with the observed similarity
between the functional forms of the ACFs and SFs for different
data sets, may be evidence for a self-similar turbulent hier-
archy of gas motions extending over a wide range of scales in
the interstellar medium (§ 5.2). The scale invariance of the hier-
archy implies that the normalized statistics of the velocity
structure, limited by observational selection to a particular
wave number band in the effective inertial range (or, more
generally, the range of the hierarchy), will be identical regard-
less of the absolute scale. Thus, correlation lengths and any
other scales derived from the observed correlation functions,

such as integral scales or Taylor microscales, can describe the
self-similar form of the true ACFs and SFs, but in the band-
limited case, cannot give information on any absolute, intrinsic
length scales of the flow. This observational selection must be
considered in correctly interpreting the results of statistical
analyses similar to that described here.

4. The mean power-law index (or Kolmogorov exponent)
describing the observed velocity spectra is found to be
s =~ 0.86 + 0.3 (§ 5.3). This is consistent with phenomenological
predictions for isotropic turbulence when the effects of com-
pressibility, magnetic fields, and self-gravity are taken into
account. This index implies a size—velocity dispersion relation
of the form Av oc I, with y &~ 0.43 + 0.15, which agrees with the
range found by other studies and derived by different means,
035 <y < 0.7 (e.g., Larson 1981; Myers 1987). Our value is
also in approximate agreement with that describing velocity
fluctuations in H 11 regions, but is significantly steeper than
that found in similar correlation studies for other molecular
clouds by Kleiner & Dickman (1987) and Hobson (1992).

5. We have considered the generation of turbulence on dif-
ferent length scales in the interstellar medium and find that
there exist a number of physical processes that can supply
energy at a rate sufficient to sustain the gas motions observed
in molecular clouds (§ 5.4).

Although scaling laws and other useful information can be
obtained from the ACF and SF, the beam smoothing and
selection effects found in the present work do limit the utility of
the approach in characterizing molecular cloud gas motions.
In addition, correlation functions are known to be incomplete
in their description of turbulence and to suffer from “leakage”
effects, projection smearing, edge effects, and other geometrical
difficulties, all of which can lead to a misrepresentation of the
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underlying flow (Cantwell 1981; Jenkins & Watts 1968; Hou-
lahan & Scalo 1990). For these reasons, we do not recommend
the use of the two-point statistical analysis presented here in
quantitatively characterizing either the column density or the
centroid velocity structure of molecular cloud observations.
A more fruitful statistical approach may be to study the form
of the probability distribution of the centroid velocities and
their spatial derivatives. In a forthcoming paper, we consider
these probability distributions of the same data sets described
here (Scalo & Miesch 1994). Other alternatives include the
power spectra approach of Kitamura et al. (1993), the triangle
transformations introduced by Langer, Wilson, & Anderson
(1993), or the wavelet analysis described by Gill & Henriksen
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APPENDIX A
FILTERING

The validity of the statistical analysis presented here depends on the assumption of stationarity and therefore requires the
removal of any nonstationary velocity components from the data (§ 2.1). With this in mind, we have applied several low-pass filters
to the centroid maps to extract systematic motions such as those arising from the rotation of the cloud. The filtering is accomplished
by convolving the data with a smoothing function, and then subtracting the smoothed map from the original to obtain the residual
Sluctuating velocity component, which is then subjected to the correlation analysis. The convolution procedure is to be preferred
over simply fitting a polynomial surface to the data because such a fit necessarily imposes structure onto the map that may not
actually be present.

For the present work, we have employed two different smoothing functions, presented in Figure 11a for one particular choice of
the filter widths. The functions themselves are two dimensional, and we have plotted only a one-dimensional cross section versus
grid spacing, with the origin of the ordinate corresponding to the center point of the smoothing function. The first (represented by
the solid line) is an equally weighted moving average filter, which is simply a square two-dimensional step function in the spatial
domain. The dashed line corresponds to the smoothing function originally developed for geophysical applications by Zurflueh
(1967, which we will refer to hereafter as the Zurflueh filter). The frequency response of the filters is exhibited in Figure 11b, which
shows one-dimensional slices through the Fourier transform of each smoothing function as a function of spatial frequency in units
of cycles per unit of grid spacing. Clearly, the latter has the more desirable response, approximating a step function in the frequency
domain to a higher degree than the former, and avoiding negative values that reverse the polarity of spatial frequency components
and that can, as a result, introduce spurious high-frequency ripples into the smoothed output (Holloway 1958). In addition, the
symmetry of the Zurflueh filter implies that it introduces no spurious phase shifts, unlike the moving average filter (Zurflueh 1967).

.06 T T T T T
0.05} "

0.04 —
0.03
0.02 \

0.01 '

0.00

0.01

0123456
grid spacing

0.0 0.5
cycles per
unit grid spacing
F1G. 11.—One-dimensional slices through the spatial (a) and frequency (b) response of the two smoothing functions used to filter out small-scale structure in the
centroid velocity maps. The solid line represents an equally weighted moving average filter with a half-width of 2, and the dashed line corresponds to the original
Zurflueh filter (see text) having a half-width of 6. The smoothing function itself is normalized such that the array of weighing coefficients that defines the filter sum to
unity and the frequency response is given in terms of its value at zero frequency.
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TABLE 7
OPTIMAL FILTERS

Half-width
Region Type (grid units) Half-width

HHS83 ............ Zurflueh 42 21
L1228............. Zurflueh 24 120
L1551............. Zurflueh 36 18.0
Mon R2

) T Moving average 20 . 100

2 i Moving average 20 10.0

3 Moving average 20 10.0
Orion B

la coooooieennen. Zurflueh 30 15.0

b e Zurflueh 30 15.0

1C it Zurflueh 30 150

2 e Moving average 20 10.0

3 Moving average 25 12.5

S Moving average 25 12.5

For these reasons, the Zurflueh filter was also used, and recommended, by Spicker & Feitzinger (1988a, b) in their study of H 1 gas
motions in the LMC.

Despite the numerous advantages of the Zurflueh filter over the moving average filter in principle, we find little difference between
the two in practice when applied to our data sets. Since roughly the same degree of smoothing can be achieved with a smaller
convolving array in the case of the moving average filter (Fig. 11), the application of this filter is more computationally efficient and
for this reason has been implemented for our largest data sets (see Table 7).

The optimal smoothing function for each region was found by applying filters of various widths, beginning with the widest and
decreasing the width until the anticorrelated sidelobes, characteristic of large-scale gradients (see § 4.2), were no longer discernible in
the autocorrelation function of the residual velocity map. Such a procedure is rather qualitative and imprecise, but we find that our
conclusions are insensitive to the precise value chosen for the optimal filter width. To achieve the desired cutoff wavelengths for the
Zurflueh filter, we have constructed a series of wider smoothing functions through bilinear interpolation of the 8 unit filter originally
presented by Zurflueh (1967). In the same paper, Zurflueh finds that the properties of the filters he developed are insensitive to effects
of interpolation and grid spacing, so that our wider filters should retain the general characteristics of the originals. The optimal filter
width chosen for each region is listed in Table 7 along with the type of filter used (see § 3.1 for the region definitions).

When applying these filters, it is more computationally efficient to carry out the convolution process in the frequency domain,
where it becomes simply a product between the Fourier transform of the smoothing function and that of the velocity map. Instead
we have chosen to do the filtering solely in the spatial domain because, despite its disadvantages in terms of efficiency, it enables us
in each map to treat the pixels where there is no significant emission as nulls, rather than zeros, and thus ignore those pixels when
computing the spatial integration of the convolution kernal. Such a procedure is impossible to carry out if the filter is applied in the
frequency domain. In addition, it is more straightforward to extract both the systematic and the fluctuating components from the
centroid maps when Fourier transforms are avoided.

APPENDIX B
INSTRUMENTAL NOISE CORRECTIONS FOR THE ACF AND SF

Following Dickman & Kleiner (1985), we define the noise-induced error in the observed centroid velocity of an emission line as
6v,(r) = v.(r) — v¥(r), where v (r) is the measured value obtained using equation (5), and v¥(r), is the value which would have been
obtained in the absence of instrumental noise. The error, v (r), is expected to be randomly distributed with zero mean and a
variance which we denote as ¢2. If it is also spatially uncorrelated and independent of the actual value of the centroid velocity, vX(r),
then the observed centroid variance, defined in equation (4), is given by

ol = (6¥* + a7, (B1)

where 6*2 = (v*?*(r)) is the noise-free variance.
White noise manifests itself in the autocorrelation function as a spike at the origin and, when superposed on the noise-free ACF
(and renormalized to ensure that the ACF is unity at T = 0), leads to an underestimation of the true correlations at nonzero lags.

Thus, in the presence of instrumental noise giving rise to a centroid variance of 62 as described above, it is necessary to apply a
correction to the ACF at nonzero lags of the form (DK 1985)

C()

O =1 ooy

T#0 (B2)
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to obtain the noise-free autocorrelation function, C*(z). A similar analysis of the effects of instrumental noise on the structure

function gives
S*(t) =

for the noise correction [with S(0) = 0 by definition].

S(x) — 2(0,/0.)?
1 —(o,/0.)?

T#0 (B3)

In order to apply equations (B2) and (B3), it is first necessary to estimate the noise variance, 62. This can be done in several ways
(DK 1985), but the most straightforward is to create a large number of model Gaussian spectra whose center velocities vary
randomly with a normal probability distribution having a standard deviation equal to o*. If artificial white noise is then added to
each line, and the new centroid velocities are calculated, the total centroid dispersion, a,, can be obtained from the statistical
properties of the ensemble of model spectra. The model dispersion, 6*, can be adjusted until the simulations reproduce the observed
centroid variance given by equation (4). The nose variance then follows directly from equation (B1); 62 = 62 — 6*2. We have
computed the noise variance in this manner and have checked the result for each cloud using the approximate relation given by
Dickman & Kleiner (1985, their eq. [67]). The two methods agreed in all cases to within 10%.

The noise-induced error in the centroid velocity for each iine, Jv,(r), and in turn the noise variance, 62, will in general depend on
the signal-to-noise ratio, the line width, the spectral resolution, and the number of spectrometer channels over which the summation
in (3) is carried out (DK 1985). For the average line width, which is equivalent to the internal velocity dispersion defined by DK
1985, and which will be denoted as o;, we have considered several independent means of estimation, including the direct calculation
(KD 1985, eq. [20]) and an estimate based on the area under the line and the assumption that it is approximately Gaussian (Kleiner
& Dickman 1985, eq. [18]). However, we find from numerical simulations of model lines superposed with Gaussian noise (and from
insight obtained by studying the ensemble mean spectra) that more reliable estimates can be obtained by actually fitting a Gaussian
to each spectral line or by counting the number of channels in which the brightness temperature exceeds 50% of its maximum value
to obtain the FWHM for each line, which is in turn proportional to the dispersion. For the more complicated regions (such as Orion
B), where the lines were not in general single-component Gaussians and where their shapes often varied across the map, it was
difficult to define an average linewidth or dispersion and, for this reason, we estimate that the noise variances are uncertain to as

much as 20%.

As a final note, for maps composed of a juxtaposition in space and velocity of several subregions (see the discussion of Orion B,
§ 3.1) we find that the noise corrections are simply given by equations (B2) and (B3) with o2 replaced by an effective noise variance
that is equal to the average of the noise variances in each subregion weighed by the number of pixels (excluding null pixels).
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