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ABSTRACT

Evacuation of matter from voids is investigated using numerical simulations. Cold dark matter—type and
simple power-law models with different density parameters and scales are used. The density distribution of
model samples is compared with the distribution of observed samples of galaxies.

Our goal is to restore the actual distribution of matter from the observed distribution of galaxies as accu-
rately as possible. Based on the assumptions that the dominating constituent of the universe is dark matter,
and that in systems of galaxies the dark matter is concentrated approximately as strongly as visible galaxies,
we calculate from the discrete distribution of particles and galaxies continuous density fields using a smooth-
ing length not exceeding the characteristic radius of systems of galaxies.

We compare the mass-weighted density distributions of model and real samples and find that they are dif-
ferent. Models contain a smooth population of particles in low-density regions which has no counterpart in
the observed distribution of galaxies; in other words, galaxies do not follow the matter distribution in the
whole range of densities. This disagreement between modeled matter distributions and the observed galaxy
distribution does not depend on the details of the considered models but is a generic feature of the range of
models considered in this paper. However, the disagreement is a feature of the smoothing scale we chose to

investigate here.

To simulate the observed distribution of galaxies, the distribution of matter in models is truncated at a
certain threshold density. We demonstrate that the threshold density is equal to the mean density of matter.
Particles in high-density regions can be identified with the clustered population, including dark coronae
around galaxies and clusters. Particles in low-density regions form the void population. During the evolution
particles flow from low-density regions to high-density ones. In the present epoch approximately 15% of
matter lies in voids and 85% of matter forms the clustered population.

This result poses a problem for some cosmological models, since the density of the clustered population is
according to available estimates Q. = 0.15 of the critical cosmological density, and the total density including
the matter in voids is Q... & 0.20. Possibilities to hide some dark matter in intermediate-density regions are

discussed.

It is demonstrated that the fraction of matter in the clustered population, F,, is related to the conventional
biasing parameter via b = 1/F,. Thus, the biasing parameter cannot be considered as a free parameter; its
value is determined by the data discussed above. The value of the biasing parameter depends on the smooth-
ing scale; for our adopted scale 1.2 h™* Mpc, b ~ 1.18.

Subject headings: cosmology: theory — galaxies: clustering — large-scale structure of universe —

methods: numerical

1. INTRODUCTION

Properties of the large-scale structure of the universe are
largely determined by the density field. From observations we
can find the distribution of matter associated with galaxies, but
the mass distribution of the universe can be inferred only indi-
rectly. To find the matter distribution, we must know how
much matter belongs to the voids and how matter is distrib-
uted.

In early cosmological studies the question whether galaxies
follow the matter distribution or not was not discussed. That
this is a problem was first recognized from three-dimensional
studies of the distribution of galaxies in space (Gregory &
Thompson 1978; Joeveer & Einasto 1978; Tarenghi et al.
1978; Tifft & Gregory 1978; Tully & Fisher 1978). In these
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papers it was demonstrated that the universe has a filamentary
and cellular structure: most galaxies are concentrated into fila-
mentary superclusters, and the space between superclusters is
devoid of visible galaxies. On the other hand, numerical simu-
lations available in the late 1970s (Zel’dovich 1978, and refer-
ences therein) indicate the formation of a network of filaments
but reveal also a striking difference between theory and obser-
vations. In simulations, a more or less homogeneous popu-
lation of nonclustered test particles exists in low-density
regions, which has no counterpart in the observed distribution.
This discrepancy was discussed by J3eveer, Einasto, & Tago
(1978). They found a filling factor of 0.01 for the matter associ-
ated with galaxies and emphasized that since “it is very
unlikely that the process of galaxy and supercluster formation
was effective enough to evacuate completely such large volumes
as cell interiors,” there must be dark matter in voids.
Quantitatively the difference between the distribution of
matter and the distribution of galaxies was demonstrated by
the multiplicity test by Zel’dovich, Einasto, & Shandarin (1982,
hereafter ZES) and Einasto et al. (1984, hereafter EKSS). This
test clearly emphasizes that galaxy formation is biased relative
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to the mass distribution. ZES also gave an estimate of the
fraction of the matter which still resides in low-density
regions—about 50%. To estimate the fraction of matter in
voids, subsequently other tests were used—the filling factor
test and the fraction of isolated galaxies (Einasto & Saar 1987),
the percolation test (Gramann 1990), and the void probability
function test (Einasto et al. 1991). The results of these tests gave
values for the fraction of matter in voids between 0.2 and 0.5,
with relatively large scatter.

The evolution of voids has been recently studied by van de
Weygaert (1991) and Dubinski et al. (1993). They demonstrated
that the density of matter in voids decreases steadily due to the
outflow of matter from voids. These numerical calculations are
confirmed by observations; Freudling, Martel, & Haynes
(1991) have found that galaxies move away from the large void
located between the Local and Hercules superclusters.
However, the poor resolution of such observed velocity maps
does not allow us to investigate a possible difference between
the underlying matter distribution which drives the peculiar
velocity and the galaxy distribution.

In this paper we investigate this issue using a completely
different approach. For this purpose, we have simulated the
evolution of the matter in voids numerically, using a conven-
tional N-body code. Simulation of the galaxy distribution
using a combination of gravitational and hydrodynamical
codes, such as those by Cen & Ostriker (1992a, hereafter CO;
1992b), Katz, Hernquist, & Weinberg (1992), or Evrard,
Summers, & Davis (1994), suggest that while the distribution of
galaxies in high-density environments closely follows the
matter distribution, there are fewer galaxies than expected
from the available matter in low density. Earlier, this was pos-
tulated from theoretical considerations by ZES. This observa-
tion motivated us to investigate the division of matter between
high- and low-density regions and compare it with the
observed galaxy distribution.

The paper is organized as follows: In § 2 we discuss observa-
tional and model data used. In § 3 we analyze the evolution of
the density distribution using models with cold dark matter—
type (CDM-type) and simple power spectra of different scales
and density parameters. Using a threshold mechanism, we
divide the matter into clustered and nonclustered populations,
and follow the decrease of the amount of matter in voids. In § 4
we try to answer the question. Which test particles can we use
to investigate the overall distribution of matter? In dense
regions galaxies seem to be good tracers of the matter distribu-
tion, but it is not clear whether galaxies trace the mass in all
density regimes. We derive the threshold density of the matter
associated with galaxies by comparing simulations with obser-
vations using the density distribution test. In § 5 we analyze the
evacuation of voids by analytical calculations. In § 6 we con-
sider the linear biasing model. In § 7 we discuss our results.

Throughout this paper, h denotes the Hubble constant in
units of 100 km s~ Mpc 1.

2. DATA USED

2.1. Observational Samples

The main issue of this paper is the study of the distribution
of matter in voids and high-density regions. From earlier
studies it is well known that most galaxies are concentrated to
filamentary systems and superclusters, and the space between
superclusters is almost devoid of galaxies. It is well known that
different systems of galaxies define voids of different size. Thus,

EINASTO ET AL.

Vol. 429

voids defined by rich clusters of galaxies contain a number of
smaller systems and filaments (ZES). Examples are the void
between the Local and Hercules superclusters, or the Northern
Local void (ZES; Einasto et al. 1994), and the Bootes void
(Kirshner et al. 1981). Detailed studies have shown that such
large voids are not completely empty; in particular, the North-
ern Local void is filled with a network of faint galaxy filaments
(Joeveer & Einasto 1978; Freudling, Haynes, & Giovanelli
1988), and in the Bootes void a number of galaxies have also
been found (Balzano & Weedman 1982; Zmoody et al. 1987;
Peimbert & Torres-Peimbert 1992).

In the present paper we are interested not necessarily in the
structure of these large voids, but more generally in low-
density regions defined by both luminous and faint galaxies,
including dwarfs. To investigate this we need complete data on
galaxies up to a fairly faint absolute magnitude limit. For this
purpose only nearby regions of the universe can be used, where
data on faint galaxies are fairly complete.

We have used a cubic sample around the Virgo Cluster, V20,
chosen from the Huchra (1991) compilation of galaxy redshifts,
which contains information on all available redshift sources.
Data were reduced as described by EKSS. The velocities were
corrected for the solar motion and the Virgocentric flow. The
dynamic velocities in clusters and rich groups were compressed
to eliminate the “finger of God ” effect. The sample is absolute
magnitude-limited. The sample size L, the absolute magnitude
limit M, and the number of galaxies N are given in Table 1.
The supergalactic coordinates of the center of the sample were
taken as follows: X, = 0, Z, = 0; the coordinate Yj is given in
Table 1. The sample consists of galaxies with absolute magni-
tudes brighter than — 15.0 (absolute magnitudes correspond to
the Hubble constant H = 100 km s~ Mpc™!). In the volume
under study this sample contains all dwarf spiral and irregular
galaxies observed by Fisher & Tully (1981) and by other
authors in radio surveys which have a limiting redshift ~ 3200
km s~ 1. Thus the Local Supercluster is the only region where
almost complete data are available on relatively faint galaxies
for a large region in space.

To study the dependence of statistical properties on the
luminosity of galaxies, we have formed also a subsample of
galaxies with higher luminosity cutoff; data on this subsample
(V20b) are also given in Table 1.

2.2. Models

To investigate the evolution of the matter distribution, we
have performed a series of three-dimensional simulations using
a particle-mesh code with N = 643 particles in a 64 mesh; for
details see Gramann (1988). The comoving box sizes were
L =40, 60, and 80 h~! Mpc, giving the nominal resolution
0.625,0.94, and 1.25 h~! Mpc, respectively.

Models have been designated as follows: the first number
shows the size of the computational box in tens of mega-
parsecs, the second number indicates the absolute value of the
effective spectral index in the computational box. To avoid too

TABLE 1
SUMMARY OF PARAMETERS OF OBSERVED SAMPLES

L Y,
Sample (h"*Mpc) N M, (h"'Mpe) o5 oy,
V20.......eeel 20 1196 —15.00 15 092 4.61
V20b........... 20 627 —17.00 15 090 4.75

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...429..465E

No. 2, 1994
TABLE 2
SUMMARY OF PARAMETERS OF MODELS
L

Model Q n, (h~* Mpc) N og 012
Midle ........ 1.0 ~—1 40 262,144 0.63 3.50
Mdlel ...... 1.0 ~—1 40 225,185 0.74 4.08
M4l ......... 1.0 ~—1 40 262,144 0.90 4.73
M41.1 ... 1.0 ~—1 40 232,478 1.02 5.35
M42e ........ 0.2 ~ =2 40 262,144 0.68 3.32
M42el ...... 0.2 ~-=2 40 214,936 0.85 4.09
M42 ......... 0.2 ~ -2 40 262,144 0.80 417
M421 ....... 0.2 ~—-2 40 218,991 0.97 5.03
Méle ........ 1.0 -1 60 262,144 0.75 3.72
M6l ......... 1.0 -1 60 262,144 0.98 474
Mé62e ........ 1.0 -2 60 262,144 0.83 3.33
M62 ......... 1.0 -2 60 262,144 1.57 5.85
M8le ........ 1.0 ~—1 80 262,144 0.54 3.09
M8lel ...... 1.0 ~—1 80 215,468 0.72 3.81
M81 ......... 1.0 ~—1 80 262,144 0.81 427
MS811 ....... 1.0 ~—1 80 227,397 0.94 495
M82¢ ........ 0.2 ~—-2 80 262,144 0.80 3.19
M82e.l ...... 0.2 ~-=2 80 211,498 1.02 4.04
M82 ......... 0.2 ~—2 80 262,144 1.21 499
MS821 ....... 0.2 ~—-2 80 221,902 1.45 592

complicated numbering of models, other parameters involved
(the density parameter and the form of the power spectrum) are
not included in model designation; they can be found in Table
2 and are briefly described here. For the density parameter we
have used two values, a closed universe Q = 1 (models M41,
M61, M62, and M81); and a low-density universe with matter
density Q,, = 0.2 and the density associated with cosmological
constant Q, = 0.8 (models M42 and M82). In models M41,
M42, M81, and M82 a CDM-type initial spectrum was given
according to the formula used in Gramann (1988). Models
M61 and M62 have pure power-law spectra with indices
n= —1 and n= —2, respectively. Initial spectra are plotted in
Figure 1. In models M42 and M82 the effective spectral index,
N, throughout the scale interval L/32 < A < L is nyy ~ —2;
in models M41 and M81 the effective spectral index is n ~
— 1, which justifies the designation of respective models.
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F1G. 1.—Initial spectra of models. As the argument we use the scale
I = 2n/k. Spectra for models M41 and M42 are plotted as solid lines, for

models M81 and M82 as dashed lines, and models M61 and M62 as dotted
lines.
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To get samples similar in size to the observed sample V20,
we have divided models M41 and M42 into eight cubic sub-
samples of size L = 20 h~! Mpc, and randomly diluted these
subsamples to have the same number of objects as the
observed sample V20.

To simulate the distribution of the clustered population of
matter, models have been truncated at threshold densities
D, =1, 2, and 5 (see below); respective models are designated
as M41.1, ..., with similar designations for models M42, M81,
and M82.

To follow the evolution of models, we have stored and
analyzed data for a number of time steps. Models were evolved
until the rms density dispersion reached a value that exceeded
the observed value (see below). In the table we give data on two
epochs, denoted as M41le and M41 for the earlier and later
epochs, respectively, and similarly for the rest of models.

2.3. The Density Field

We shall divide the matter into two components, located
respectively in high- and low-density regions. The evolution of
these two components is different: the matter flows away from
low-density regions and concentrates into high-density
regions. This difference in the evolution is well known from
analytical studies (Zel’dovich & Novikov 1983) and numerical
simulations (see van de Weygaert 1991 and Dubinski et al.
1993 for recent papers).

The two regions are also different in their galaxy content.
CO have demonstrated that the density of model galaxies
drops rapidly with the decrease of the matter density, and
below average matter density D,, = p,./p,, = 1 there are practi-
cally no galaxies in low-density regions (see Fig. 4a in their
paper). Our analysis of the density distribution of the galaxy
population confirms these theoretical calculations (see the next
sections).

The basic constituent of matter in both high- and low-
density regions is the dark matter. Visible galaxies can be con-
sidered as test particles which indicate also the distribution of
the underlying dark matter in the clustered component. It is
natural to assign all the matter which is located in systems of
galaxies (clusters, groups, galaxies with their dark coronae) to
the clustered matter.

We assume that in high-density regions galaxies follow the
matter distribution. There are two reasons to do this, one
observational and one theoretical. Observationally it is known
that the number density of galaxies in groups and clusters of
galaxies follows the total spatial density of matter (Vennik
1986; Hughes 1989). Theoretically CO have shown that in
high-density regions the density distribution of simulated gal-
axies follows closely the total matter density.

Now we turn to low-density regions. Theoretical results by
CO show that when the spatial density decreases below the
mean density, then the density of galaxies drops rapidly to
zero. This result is confirmed by observational evidence men-
tioned in § 1 and discussed in more detail in the following
sections. Initially positive and negative density fluctuations are
of equal amplitude and scale; thus the mean density level
divides the matter naturally into similar high- and low-density
regions. We can use this mean density level to divide the matter
into clustered and nonclustered components. In principle,
during the evolution this threshold density can change; thus
we take the present value of the threshold density as a param-
eter which must be derived from the comparison of models
with observations.
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Based on the considerations discussed above, we assume
that the total density of matter p,, is equal to the clustered
matter density, p,, or to density of matter in voids, p,:

p. if pu=p,,
Pm = . 1
" {pv if pm<pe; M

here p, is the threshold density which divides the matter into
the clustered and nonclustered (void) components. Instead of
absolute densities we can also use relative densities in units of
the mean matter density, D = p/p,, and D, = p,/p,,. Calcu-
lations by CO show that in models the transition from the
clustered to the nonclustered component is not so sharp as
indicated in our equation (1) (see also Figs. 5 and 6 for the
observed distribution of the matter density); thus this formula
must be taken as an approximation.

The observed density field corresponds to the location of
galaxies in the redshift space; in models we calculate the
density field in the real space. This raises the question whether
the density fields determined in the different spaces are compa-
rable. To investigate this problem, we have calculated the
density distribution function both for the real space and for
redshift space in models. These calculations demonstrate that
the density distributions are practically identical (in the critical
region D = 1 the change AF, ~ 0.002). This result is expected,
since the velocities of particles are determined by the spatial
derivative of the gravitational potential, which is a very
smooth function and does not change rapidly around dense
systems of galaxies. For this reason, particles in the critical
transition region have identical velocities; in other words, the
use of the real space instead of the redshift space in models
does not move particles from the clustered component into the
nonclustered component and vice versa, and the density dis-
tribution is not distorted. Thus we can ignore the difference
between the real space and the velocity space.

2.4. The Smoothing Length

The input data in both models and observations are catalogs
of particles or galaxies. Our basic test is the comparison of
density fields of models with observations. Thus we have to
find the continuous density fields from discrete distributions of
model particles or galaxies. The problem here is which smooth-
ing method to use in order to avoid a distortion of the true
density distribution.

The dominating constituent in the mass budget of the uni-
verse is dark matter which consists of particles of very low
mass. With high accuracy the actual distribution of dark
matter can be considered as a continuous function with density
enhancements around galaxies and in systems of galaxies.
These density enhancements define the division of the dark
matter into high- and low-density components.

For smoothing we have used the CIC scheme with a certain
smoothing length. Formally, the smoothing length is a free
parameter of the problem. In previous studies of the density
field, usually fairly large smoothing lengths were used. In the
present study we chose to use a much smaller smoothing
length for the following reason.

From observations we know that dark coronae of galaxies
have a characteristic radius of several hundred kiloparsecs, and
galaxy systems have a radius of the order of 1 h~! Mpc (see
below). When we use a smoothing length much larger than the
size of galactic coronae or systems of galaxies, then a part of
the particles located actually in high-density regions are moved
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into low-density regions and vice versa. To get the true dis-
tribution of densities, we want to avoid this mixing of different
components. The smallest structural units we consider in this
paper are groups and clusters of galaxies, since the majority of
galaxies are situated in groups, clusters, and filaments joining
them (see EKSS). Radii of groups, clusters, and filaments of
galaxies vary in rather narrow lumits from ~0.5to ~1.5h~!
Mpc (EKSS). To avoid any broadening of the actual density
distribution, the smoothing length should be at least 3 times
smaller than the scale of systems of galaxies. In this case we
encounter, however, another problem. If the smoothing length
is considerably smaller than the mean separation between par-
ticles in the sample, then the smoothing yields not a contin-
uous density field but a number of isolated density peaks
around particles.

Thus, as a compromise between the theoretically preferred
and practically possible values, we use the same smoothing
length as the characteristic size of systems of galaxies. The
distribution of dark matter in groups and clusters of galaxies
follows the distribution of visible galaxies (Vennik 1986;
Hughes 1989), and we can take the smoothing length equal to
the mean value of radii of clusters and groups, ~1.2 h~! Mpc
(EKSS). In this case, the clustered and nonclustered matter will
not be mixed by excessive smoothing. An independent motiva-
tion for the choice of the smoothing scale is the simulation by
CO. These authors found a significant deviation of the galaxy
distribution from the matter distribution for a 1 h~! Mpc
Gaussian smoothing window, which is smoothed away when a
much larger smoothing length scale is used.

To investigate the influence of the exact choice of the
smoothing length on the results discussed below, we have per-
formed calculations with different smoothing lengths within
the range allowed by sizes of systems of galaxies, namely, 0.6,
1.2, and 1.6 h~* Mpc. Absolute values of various statistics used
depend slightly on the smoothing length. In this paoper we are
mainly interested in model statistics relative to observations.
When model and observed statistics are treated in a similar
fashion, results are almost independent of the smoothing
length.

To see what happens with a larger smoothing length, we
have used a 8 h~! Mpc Gaussian smoothing window in models
and in a larger observational sample the Local and Hercules
superclusters. In this case, groups and clusters of galaxies dis-
appear completely, and only large over- and under density
regions are seen. Most rich clusters (found by small-scale
smoothing) are located in high-density regions, but a number
of smaller groups and clusters are also situated in low-density
regions. Such an approach is useful in studying superclusters of
galaxies and large underdense regions between superclusters.
However, the density distribution found by large-scale
smoothing is very different from the actual density distribution,
which by definition is known in the case of the models. There-
fore, such a larger smoothing scale smoothes away the signal
we are looking for and which is discussed in detail in § 4.

3. EVOLUTION OF VOIDS: NUMERICAL SIMULATIONS

3.1. Evolution of V oids

We have followed the density evolution of matter in voids.
As discussed above, the mean density level divides the matter
naturally into the low- and high-density regions. Since initial
positive and negative density fluctuations are similar and inter-
changeable, the amounts of matter in the two regions are
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equal. For this reason we have used this fixed threshold density
D, =1 to divide the matter into components. During the evo-
lution the fraction of matter in voids, F,, decreases. This
process is illustrated in Figure 2.

The rms dispersion of relative density fluctuations grows
with expansion factor a, and we can use this dispersion as an
argument for the density evolution of matter. We have calcu-
lated the rms fluctuations o, , of relative densities (densities
expressed in units of the mean density) using the smoothing
length 1.25 h~* Mpc. For comparison with other investigators
we have calculated also the conventional dispersion a4; both
dispersions are given in Tables 1 and 2.

The fraction of matter in voids versus the rms dispersion o, ,
T N T T is plotted in Figure 2. Figure 2 demonstrates that models with

1 2 3 4 5 different density parameters Q, effective power indices, and
Oy scales have rather similar rates of the evacuation of voids in
terms of the density dispersion. A further discussion of the void
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F1G. 2—Fraction of matter in voids, F,, is shown as a function of the rms

dispersion of relative density fluctuations, g, ,. Curves for models M41 and
M42 are plotted as solid lines, for models M81 and M82 as short-dashed lines,
and for models M61 and M62 as long-dashed lines.

evacuation is given in § 4.2.
The density evolution in models is shown in Figure 3. Here
we plot the fraction of matter in low-density regions for a
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F1G. 3.—Evolution of the integrated density distribution. The fraction of matter in regions with density D < D, is plotted for different epochs, indicated by the rms
density dispersion o, ,. Panels ad are for models M41, M42, M81, and M82, respectively.
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variable threshold density level D, expressed in units of the
mean density (the mass-weighted integrated density
distribution). Curves correspond to different epochs, shown by
the rms density dispersion o, ,. Data on models M41, M42,
MS81, and M82 are given on different panels. We see that par-
ticles move gradually into high-density regions, and the frac-
tion of matter in low-density regions drops. The density
evolution of models M61 and M62 is very similar and is not
plotted here.

We note that the density distribution functions are feature-
less. Thus the density distribution itself gives no hint at which
level we have to make the division between high- and low-
density populations. The threshold density which corresponds
to actual galaxy populations is to be determined from the com-
parison of models with observations.

3.2. Matching Models with Observations

To identify the present epoch of the model, the rms disper-
sion of density fluctuations is used. What is needed is the
global value of this parameter for a representative sample.
Since we use the dispersion averaged over a scale g, ,, smaller
than used in previous studies, we have to derive it from the
observations.

The density dispersions for model samples are given in Table
2. We see that the dispersion depends on the threshold density:
samples with higher threshold densities have larger disper-
sions. The dispersions are almost proportional to the inverse
value of the fraction of the clustered matter (see § 6 for further
discussion). A high threshold density corresponds to a sample
of more clustered galaxies. Bright galaxies are more clustered
than normal galaxies, but this phenomenon is observed only
for very bright galaxies (M < —20.0 for Hubble constant
h =1;e.g., Einasto 1991). To find the possible influence of the
absolute magnitude on the density dispersion, we have calcu-
lated o, , and o4 for subsamples taken at higher magnitude
limit, M, = —17.0. Results show that the dispersion o, , does
not depend on the magnitude limit. This result is in agreement
with other studies which show the magnitude dependence only
for very bright galaxies.

To find the possible influence of the number of galaxies, we
have calculated this dispersion also for full and diluted model
samples. Our results show that dilution does not change the
density dispersion if it is not excessive. Similarly, Einasto,
Klypin, & Saar (1986) found that dilution does not change the
correlation function except in extreme cases when the dilution
changes the structure (less dense systems disappear
completely).

We can adopt o3 = 0.9 in good agreement with the tradi-
tional value (Davis & Peebles 1983), and o, , = 4.6. These
observed values correspond to the clustered matter in galaxies,
and they are to be compared with truncated models D, ~ 1
which correspond best to the distribution of the clustered
population.

The rms dispersion for all of the matter can be found by
iteration. First we assume that the observed dispersion corre-
sponds to all of the matter, and find from Figure 2 the fraction
of matter in voids for this dispersion value. The density disper-
sion for truncated models scales as (see eq. [31] below)
(61.2)m ® (61.5). F.. From the corrected dispersion we find a
new value of F, and repeat the procedure, which converges
rapidly. We find for our adopted value of the fraction of the
clustered matter, F, = 0.85 (see below), the rms matter density
distributions (gg),, = 0.8 and (0 ,),, = 4.0. In § 4.2 we discuss
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an independent method to derive the value of the density dis-
persion for the present epoch. The rms errors of dispersions
will be discussed in § 7.3.

4. DISTRIBUTION OF CLUSTERED AND
NONCLUSTERED MATTER

4.1. Influence of the Threshold Density Level

The density distribution of the clustered matter depends on
the threshold density used to divide the matter into clustered
and nonclustered components. This dependence is illustrated
in Figure 4. The distribution of test particles in regions above a
given threshold density D > D, is shown. If the threshold
density is zero, then we consider all test particles as representa-
tives of the clustered population, and the fraction of particles in
systems F. = 1. The respective distribution of particles in
simulation is shown in Figure 4a (D, = 0). With increasing
threshold density we first remove particles from the lowest
density regions [Fig. 4b (D, = 1)]. At a certain threshold
density we exclude the filaments that join clusters, and are left
with only well-isolated systems [Fig. 4c (D, = 5)].

This figure shows that we can use the threshold density to
simulate the distribution of particles associated with galaxies of
various luminosity as well as galaxies in systems of different
richness. Figure 4c (D, = 5) corresponds to clusters of galaxies
which are well isolated from each other. A somewhat lower
threshold density (and a higher fraction of matter in galaxies)
corresponds to bright galaxies which are located not only in
clusters but also in cores of groups of galaxies. Such groups
populate filaments which join clusters into an infinite network.
Dwarf galaxies populate the lowest density regions; they corre-
spond to the smallest value of the threshold density.

The question of which threshold density level corresponds to
all galaxies (including faint dwarfs) can be answered by com-
paring the distribution of model particles with real galaxies
using various statistical tests. The zero hypothesis—galaxies
follow the matter in the whole density interval—corresponds
to the threshold density value D, = 0. Thus the question, Do
galaxies follow the distribution of matter? can be reduced to
the determination of the threshold density. In the next section
we apply the mass-weighted integrated density distribution to
compare the observed and model distributions.

4.2. Density Distribution Test

We shall now compare the density distribution of models
with observations. To make model samples as close as possible
to the observed sample, we have used eight diluted subsamples
of size L = 20 h~! Mpc. In Figure 5 we compare model sample
density distributions with the observed density distribution, for
models M41 and M42. Essentially this figure is an enlargement
of the lower left-hand part of Figure 3. As seen from Figure 3,
models M81 and M82 have a density distribution which for
identical density dispersions is close to the respective distribu-
tion for models M41 and M42, and also to the mass distribu-
tion for models M61 and M62. Thus the results for models
M41 and M42 are representative for all models used in this
paper.

The comparison of the density distribution results in Figures
3 and 5 correspond to the zero hypothesis: observations are
compared with model samples taken at the zero threshold
density level. To see the influence of the density dispersion, we
give in Figure 5 the density distribution for two epochs charac-
terized by two values of the density dispersion.
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F1G. 4—Distribution of particles in the CDM model M42. A L/16 thick slice of side length L = 40 h~! Mpc has been plotted. Different panels correspond to
different threshold densities. Panel a (D, = 0) shows the distribution of all particles in the slice, panel b(D, = 1) the distribution of particles in regions with density
D, 2 1, and panel ¢ (D, = 5) the distribution of particles in high-density regions D,, > 5. In panel d (1 < D, < 2) we show the distribution of particles in the

intermediate-density regions, 1 < D,, < 2.

We see an essential difference between the observed and the
model distributions. The model samples have smooth distribu-
tions which start from zero and continue smoothly to larger
density values. This distribution at low density values is due to
the presence of a fairly large fraction (about 15%) of particles in
low-density regions, D < 1. The observed mass-weighted dis-
tribution F(D) becomes significantly larger than zero only at
D > 1. This is the manifestation of the fact that the observed
sample does not contain particles in low-density regions. Indi-
vidual model subsamples have different fractions of particles in

high-density regions and thus have widely different integral
density distributions, which leads to a scatter of curves.
However, in low-density regions all curves differ from the
observed integral distribution by a wide margin.

Model samples can be brought into agreement with observa-
tions when we exclude particles from low-density regions of
model samples using the threshold mechanism with D, = 1.
This threshold density is preferred empirically, since the
observed distribution starts just at this density level. The inte-
gral density distribution of the truncated model samples is
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FIG. 5—Mass-weighted integrated density distribution of models compared with the density distribution of the observed sample V20 (filled circles). In different
panels data for models M41 and M42 and earlier epoch models M41le and M42e are given. Model samples have been divided into eight subsamples of size L = 20
h~* Mpc, and diluted to have in models the same number of particles as in the observed sample; these samples are plotted by dashed lines. Solid lines show the

density distribution for full nondiluted models.

shown in Figure 6. Here we also have divided the truncated
sample into eight subsamples of size L = 20 h~! Mpc and
diluted models to have the same number of particles as in the
observed sample. Models represent the observed distribution
fairly well. There is a scatter of curves for subsamples due to
differences in the density distribution in the high-density
region. At low densities all model curves are close to the
observed one.

Different panels demonstrate the mass-weighted integral
density distribution for different models and epochs. The early-
epoch models M41le and M42e correspond to the rms density
dispersions o, , = 3.5 and 3.3, respectively, whereas the basic
models have dispersions o, , = 4.7 and 4.2, respectively (see
Table 2). We see that when the density dispersion is less than
the observed value (reduced to the matter density distribution),
most individual curves of the density distribution lie systemati-
cally higher than the observed one. Similarly, when the model
density dispersion is higher than the observed value, then
model curves lie preferentially below the observed curve.

For comparison, we plot the density distribution in non-
diluted full samples in Figure 5 with solid lines and in non-
diluted truncated samples in Figure 6. We see that the density
distribution of full samples lies just in the middle of the dis-
tributions for diluted smaller subsamples. This demonstrates

that the division of a sample into subsamples and the dilution
do not change the mean density distribution. We can use the
mean density distribution of truncated model samples to
derive the model which best reproduces the observed density
distribution. Using this method, we get the best-fit model
epochs (in terms of the rms density dispersion of the full model)
3.26, 4.04, 3.97, and 4.84, respectively, for models M41, M42,
MS8I1, and M82. The mean value with its standard deviation is
4.0 £ 0.6. This value coincides with the value directly calcu-
lated from observations and reduced to the matter density
dispersion.

In spite of differences in the distribution function at larger
density values in the critical low-density region, all models
have almost identical behavior—they start as the observed
curve at the density value D = 1. This shows that we can reject
the zero hypothesis and adopt the hypothesis that galaxies
represent the distribution of matter only in high-density
regions.

4.3. Mean Value of the Threshold Density
and the Fraction of Matter in V oids
We can get an observational estimate of the threshold
density by fitting data on sample V20 to a straight line. It
crosses the x-axis at D, = 0.88 + 0.05. A similar procedure
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FI1G. 6—Mass-weighted integrated density distribution of truncated models compared with the observed sample V20. Particles from low-density regions D < 1
have been removed; the sample has been divided into eight subsamples which have been diluted as in the previous case. Designations are as in Fig. 5.

applied to model data with D, = 1 yields D, = 0.97 + 0.06. The
difference between the fitting value and the actual one is due to
the departure of the data from a straight line. Applying the
respective correction to the observed value, we get, for V20,
D, =091 + 0.08, which within the errors coincides with the
theoretically preferred value D, = 1. Thus we can adopt a
rounded value for the observed sample, D, = 1.0 &+ 0.1. This
method of determining the threshold density of the clustered
matter is model-independent.

From Figure 2 we can derive by interpolation the fraction of
matter in voids for the adopted density dispersion and thresh-
old density levels. The figure demonstrates that the fraction of
matter in voids is systematically lower in models M41 and
MS81. These models differ from models M42 and M82 in two
respects: they have a higher mean density and a flatter spec-
trum. Models M61 and M62 were generated specifically to
clarify this problem; both have closure density, but each has a
different spectral index. The density distribution in model M61
is close to the distribution in models M41 and M81, and that in
model M62 is close to that of models M42 and M82. Thus
these models show that the principal factor, which determines
the rate of void evacuation, is the power spectrum index.
Models with flatter spectra evolve more rapidly for a given rms
dispersion of density fluctuations.

Presently we have no firm reason to prefer one of the above

models; moreover, the difference between models is rather
small, and thus we adopt the mean value of F, from all six
models, F, = 0.15 + 0.02. This error is given by the scatter of
individual values. A detailed discussion of errors is given in
§ 7.3; with all error sources considered, we get a rms error
+0.05. The corresponding fraction of clustered matter for our
chosen smoothing scale is

F, =085+ 005

5. EVOLUTION OF VOIDS: ANALYTICAL CALCULATIONS

As seen from the estimates given above, the fraction of
matter in voids is far too small to close the universe (either
Q=1 or Q+ Q4 =1). Because these numbers have been
obtained on the basis of numerical simulations of model uni-
verses, it would pay to check them by independent estimates.

For this we need to find the evolution law of density in a
void. If we knew the behavior of the density contrast §,(¢) (the
subscript v denotes “void ), we could take it as a rough esti-
mate for the quantity F, describing the fraction of mass in
voids. Since the density distribution in voids is rather flat in
later stages, and voids cover by far the major part of the space,
we may hope that this estimate will be good enough.

In order to get the density behavior in a void, we could use
two exact nonlinear solutions—that of one-dimensional per-
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turbations and a spherical top-hat perturbation—that describe
the typical geometry of the elements of structure. Certainly the

main problem in void evolution is the expansion of voids that
1 depends on their density profile; this topic has been covered
well by Bertschinger (1985) and recently by van de Weygaert
(1991) and Dubinski et al. (1993). If we are interested only in
the behavior of the central density of a void, we may reduce
our problem to a local analysis.

In the one-dimensional case (unidirectional expansion;
density and velocity profiles depend on one spatial coordinate
only) the Lagrangian displacement amplitude b(t) of a particle,

X(®) = q + b(ew(q) , @

oberys the (exact) equation (Buchert 1989 and references
therein)

b+ 2Hb — 4nGpb=0. 3)

Here H = d/a is the Hubble function and p the mean density of
the universe. This equation coincides with the linear equation
for density evolution and can be solved exactly for Friedmann-
Lemaitre cosmologies.

The important point here is the relation between the dis-
placement amplitude and the density contrast that can be
written as

1
T 1 - &bty

where D(t, r) is the normalized density and we have supposed
that the initial density perturbations d(r) < 1.

If we consider now two typical initial density perturbation
profiles, of the same absolute value of the amplitude extremum
d; at t; (and of the same scale), but of different signs, then at the
moment t,, when b(t;) = b;/0;, the positive density pertur-
bation will formally diverge (the first crossing). This moment is
usually loosely identified as the epoch of structure formation.
At the same moment the normalized minimum density of the
negative perturbation, D,(t), and the corresponding density
contrast, J,(t), reach the values

Dyt)=1+064)=05. )

The subsequent evolution of D, depends on the model; for the
simplest Q, = 1 model we get

D(t,r) =1+t r) )

1

D,(x) = m ,

(©)
where x = 1 4 z is the redshift parameter and x, describes the
epoch of structure formation. For the present moment D, =
1/(1 + x;), and F, = D,, if we consider the density throughout
all voids to be close to D, and suppose that voids cover most of
the space.

Now, unidirectional expansion clearly underestimates the
evacuation rate of a void. While high-density structures fre-
quently resemble walls, a typical void is rather spherical, and
nonspherical voids get more spherical in the course of expan-
sion (see Bertschinger 1985). Because of this we can use an old
trick (Zel’dovich & Novikov 1983) of treating the large-scale
perturbations as pieces of cosmological models of different
density. This also means that we ignore the coordinate depen-
dence of the perturbed density.

Let us consider simple universes with Q, = 0 and Q, = 1. If
we describe our void as a cosmological model of lower density
with the present density parameter Q,, then the age T, of that
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model at the redshift parameter x, is (Zel’dovich & Novikov
1983, chap. 3,§ 4)

2
b= S H 0
(this relation is valid for all values of Q, if the universe is young
enough, x > 1), and its density changes as

1-Q

- ®)

PPN e
X)) =1-7 O — 1)

(we mean by Q, the value of the density parameter at the
present epoch x, = 1).

The last formula gives us the amplitude of the negative
density contrast as

ﬁ_l_’u I_Qv

—0,x,) = =1-Q/x)= T+ — 1)

©®

(the density parameter of the background model is Q = 1).
We shall also need a formula for the age of the background
model T:

2

T 3H, X’

T (10

where x is the “real ” redshift parameter.

While voids usually become more spherical during their
evolution, the first structure will probably form by one-
dimensional collapse. This allows us to use equation (4) to
describe the evolution of the density contrast of generic pertur-
bations of positive amplitude in our main Q = 1 universe at
early times, and to write
1 Xg

1~=L, (11)

5=1—x,/x— x

c

Here, of course, the epoch of structure formation depends on
spatial coordinates, x, = x{r). We shall sclect the value of x,
that describes the positive density perturbations of the same
initial spatial scale as our voids, and of maximum amplitude,
and shall call this X —the epoch of formation of large-scale
structure. As we have to compare perturbation amplitudes at
equal times, we get from the requirement T, = T the relation
between redshifts

X, = x(Q,) "1 12)

Comparing now the amplitudes of density perturbations of
different sign at early times, as we did before, and using the fact
that both x, > 1 and Q, x, > 1, we obtain an implicit formula
for Q,:

1-Q
X,=—QZ/3". (13)
Any assumption about the epoch of formation of the large-
scale structure X  will give us a value of the present normalized
density in voids, Q,, and this parameter can be used as an
estimate for the fraction of matter in voids F, as before, but in
this case for a large-scale structure consisting of spherical voids
and of superclusters that had planar geometry at their forma-
tion.

Similar estimates can be made for models with a cosmo-
logical constant. The solution for the amplitude b(x) is well
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known (Peebles 1980, chap. 4, § 13). The growing mode of the
solution can be written as (Saar 1973)

ydy
9(»)?*’

where we have introduced the normalized Hubble function
g(x) = H(x)/H, [the Hubble function itself is defined as H(t) =
a(t)/a(t)].

For a Friedmann-Lemaitre model this function is given by

bix) = g(x)r (14

=0 +(1-Q—Q)x*+Q,, (15)

and Q and Q, are the values of the normalized density and the
cosmological constant at the present time. We shall consider
only flat model universes, where Q + Q, = 1, and, consequent-
ly,

gF=0x*+1-Q. (16)
For early times (large x) we get
2
blx) = <5 > a7

and the density contrast of generic positive perturbations d, is
related to the redshift parameter of structure formation x, by

5.00) = —2>—

5Qxb(x,) (18)

[6.(x, r) is a function of spatial coordinates, of course, but this
is taken care of by b(x/, r)]. We can also easily calculate the
underdensity of voids, using the density evolution law (Saar
1973)

Qx3

) == (19)

and the fact that the cosmological constant for both models is
the same. We use the formula for the age of the universe (eq.
[7]) to get the relation between the redshift parameters of dif-
ferent models, as at early times the cosmological constant does
not influence the expansion of the universe. The function g is
given by equation (16) for our main universe, and by equation
(15) for the void. Finally, we get the expression for the absolute
value of the underdensity contrast (at early times):

QAx)— Q) 1-0Q,—Q,
Qx) | QiR

—0,(x) = (20)

As usual, we suppose that the over- and underdensity ampli-
tudes (eqs. [18] and [20]) have to be equal (this is the case for
Gaussian perturbations, at least), and this gives us the equation
we need:

-9, 2
Q'PQ2R " 5Qb(x))

(we have also used the fact that Q + Q, = 1). It will look better
if we use the normalized void density w:

@1

w=Q,/Q. (22)
The equation for this density can be written as
o +fQ xJ0*? =1, 23)
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F1G. 7—Fraction of matter in voids F, vs. the redshift of the formation of
structure, z,,,, for linear voids and walls (solid line) and for spherical voids and
dense walls. Lines of increasing dash length indicate models with density
parameter Q, = 0.2, 0.4, 0.6, 0.8, 1.0. The density of matter in voids in the
model can be calculated from the fraction of matter as follows: Q, = F,Q,,.

where the function fcomes from equation (18):

2
50b(Q, x;)

As before, we shall use Q, as an estimate for F,,.

The solution of equation (23) is illustrated in Figure 7, where
we have plotted the present fraction of matter in voids F,, for
different values of the background density (or cosmological
constant, as we suppose Q + Q, = 1) versus the redshift of
formation of structure. For comparison, we have included the
curve for the case of unidirectional expansion of voids (for
Q = 1), too. If we fix the fraction of matter in voids, we can find
a range of suitable structure formation times in our simple
models (for F, = 0.15, z, lies in a reasonable interval 1.0-2.0).
We have to bear in mind, however, that this has been done at
the expense of introducing the cosmological constant, that may
be not a popular move. On the other hand, these models can
reconcile the inflation scenario requirement of flat space sec-
tions (k = 0) with the small observed void density.

fQ, xp) = 24

6. THE LINEAR BIASING MODEL

The fraction of the clustered matter is related to the conven-
tional biasing parameter b. The biasing parameter is usually
defined through the galaxy (clustered) and matter density con-
trast

pc—ﬁc':bpm-_[)m‘

= (25)
Pc Pm
We can write equation (25) in the following way:
Pe = ﬁc + ch(pm - ﬁm) s (26)

using the designation F, = p./p,-

In high-density regions the density is much higher than the
mean density, and we can neglect mean densities in both sides
of equation (26):

pe =DbF p, . 27

The density of the population cannot be higher than the total
density; thus bF, < 1. On the other hand, it is unlikely that the
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density of matter associated with galaxies decreases with
increasing matter density (recall that in the calculation of F, we
attribute all of the matter in high-density regions to the clus-
tered component). Thus we are left with the only possibility,

b= (28)

1
F,~
The numerical value of b depends of course on the smooth-
ing length used, similar to F,. In regions of lower density we
cannot neglect mean densities, and, since density cannot be
negative, we must write the biasing law in density terms as
if pm=p,,

follows:
_ Pm— ﬁv
““{0 i P < o -

We come to the conclusion that the linear biasing scheme, if
we apply it to the present epoch when density fluctuations are
large, and if we eliminate the physically nonrealistic negative
densities, has almost the same form as truncation by a certain
threshold density level (see eq. [1]). Here p, plays the same role
as the truncation density p, in equation (1).

Conventionally biased numerical models are defined
through the ratio of galaxian and mass rms density dispersions
(.., Loveday et al. 1992)

(29)

bs - (Us)c (30)

(GS)M '

Substituting the bias factor with the fraction of matter in gal-
axies (eq. [28]), and using dispersions averaged over smaller
scales, we get the formula

@12 =1 n 3 G

14

a similar formula is valid also for rms dispersions g5. Our
calculations show that this formula is satisfied with sufficient
accuracy (see Table 2). These formulae are quite general and do
not depend on the particular physical biasing mechanism.

7. DISCUSSION

7.1. Comparison with Previous Determinations

It is well known that the power spectrum and its Fourier
transform, the correlation function, are insensitive to the addi-
tion of a smooth homogeneous population of field particles.
Such a population corresponds in Fourier space to wavenum-
ber k = 0, which means multiplication of the whole spectrum
by a constant, so that the shape of the spectrum is not changed.

Most tests previously used to estimate the fraction of the
mass in voids suffer from the dependence on the number
density of particles, i.e., from dilution. Depending on the dilu-
tion level, the signal changes. In the multiplicity function test
the signal is strong enough to demonstrate that the zero
hypothesis (there is no biasing) is rejected with high probability
(see the next section). However, in this method the error in the
level of the threshold density to define clustered and non-
clustered populations is still large.

Another test previously used to discriminate biased and
nonbiased models is the void probability function tests.
Einasto et al. (1991) investigated the effect of dilution to the
void probability function and found a strong dependence.
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Thus the error of the determination of the density truncation
level is rather large (see Einasto et al. 1991 for details).

A frequently used test is also the filling factor test. The filling
factor, f(D), of a sample is defined as the fraction of the total
volume where the density is equal to or greater than D = p/p
(density is expressed in units of the mean density). Essentially
the filling factor is the volume-weighted density distribution.
For consistency with the mass-weighted density distribution
we can express the volume-weighted density distribution also
as the fractional volume where the density is equal to or less
than D.

To check the sensitivity of this method, we have made
respective calculations for models M41 and M42. It is conve-
nient to calculate the volume in units of grid cells and to take
the density in a grid cell equal to its mean value. If the mean
number of particles per cell is much greater than unity, then the
filling factor is almost independent of the number of particles.
In the other case the filling factor depends on the number of
particles in samples. We compare model samples with observa-
tions; in observed samples the mean number of galaxies per
grid cell is smaller than one particle per cell, thus we have to
dilute model samples to have a comparable number of objects
in observed and model samples.

Density distributions for full samples M41 and M42, and for
truncated samples M41.1 and M42.2, are shown in Figure 8 by
solid lines; distributions for diluted subsamples of size L = 20
h~' Mpc, by dashed lines. We see that the full nondiluted
sample deviates strongly from the observed distribution, and
the truncated nondiluted sample represents observations well.
With dilution the comparison becomes nonconclusive: both
the trunctated and the nontruncated models are consistent
with the observations over a wide range of threshold densities.

As a further test the fraction of isolated galaxies in diluted
models was compared with observations for different neigh-
borhood radii. This test again demonstrates that nontruncated
models give a poor fit to observations, but the determination of
the correct truncation level is difficult.

The insensitivity to truncation level and strong dependence
on the dilution explain the results of Weinberg & Cole (1992),
where a number of tests (the correlation function, the void
probability function, the nearest-neighbor distribution, and
others) were used to compare observed samples with diluted
model distributions, and only marginal differences were found.
Similarly, Little & Weinberg (1993) used the void probability
function to investigate statistical properties of voids in numeri-
cal simulations. A wide range of initial Gaussian models were
considered, and results were compared with void probability
functions of observed samples. Again only marginal differences
between biased and unbiased models were found.

This comparison demonstrates that the mass-weighted
density distribution is the only test which (1) is sensitive to the
truncation level, and (2) is practically independent of the dilu-
tion level. In our determination of the truncation level and the
fraction of matter in voids we can use only this test.

7.2. The Zero Hypothesis

The zero hypothesis corresponds to the case in which all
galaxies belong to the clustered component, F, = 1, and thus
follow the distribution of matter, or, in other words, the galaxy
formation is not biased.

The strongest argument against the zero hypothesis comes
from the comparison of the mass-weighted density distribution
of real galaxies and unbiased model particles; they are com-
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FIG. 8.—Volume-weighted integrated density distribution for eight subsamples of models M41e, M41le.1, Md2e, and M42e.1 compared with the observed sample

V20. Designations as in Fig. 5.

pletely different. This method is the most sensitive test for
comparison of particle distributions in a low-density environ-
ment.

Another strong argument for rejecting the zero hypothesis
comes from the multiplicity test. As demonstrated by ZES and
EKSS, in models there is a numerous population of isolated
particles in low-density regions, more or less evenly distributed
over the whole low-density region. These particles belong to
multiplicity classes 1 (singles) and 2 (doubles). In observations
there is a very small population of singles and pairs. At only
slightly larger neighborhood radius these galaxies join larger
systems, which shows that they form outlying parts of these
systems (Einasto 1990). At similar neighborhood radii the
population of isolated particles in models is still rather numer-
ous for details see ZES and EKSS).

Thus our present study of the mass-weighted density dis-
tribution of real galaxies and model particles, and previous
investigation of the multiplicity functions, demonstrate that we
can reject the zero hypothesis by a wide margin: galaxies do
not follow the matter distribution in the whole density interval.

7.3. Error Analysis

We have found an observational estimate for the threshold
density to divide the clustered and nonclustered matter, D, =
1.0 £ 0.1. This value is determined by the mass-weighted
density distribution function, shown in Figures 5 and 6. The

formal error of this value was determined from the scatter of
individual data points on this diagram—how accurately they
determine the point of crossing the x-axis. Theoretical model-
ing of galaxy formation by CO also confirms this threshold
density.

The threshold density and rms dispersion of density fluctua-
tions determine the value of the fraction of matter in voids. The
error on F, is due to four factors, the error of the threshold
density level to define the clustered matter, the scatter of indi-
vidual F, values for different models, the random error in
determining the observed value of the density dispersion, and
possible systematic deviation of the Virgo sample from a repre-
sentative sample of the universe.

The error of D, is so small in comparison with other errors
that it plays no role in the error budget of F,. The second error
corresponds to the uncertainty of our knowledge of the initial
spectrum of density fluctuations; this error can be found from
the scatter of individual values of the filling factor at o, , = 4
and is +0.02. The third and fourth errors reflect our uncer-
tainty in determining the rms density dispersion. Unfor-
tunately, the Virgo sample is the only one available with data
on faint galaxies needed to derive the density field with higher
resolution. To have an idea how much the dispersion can
change from place to place, we can use subsamples of model
samples and derive for each of them the density dispersion.
This exercise gives a rms error for the density dispersion of
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+0.7. Adopting this value for the possible systematic uncer-
tainty of the observed value of 6, ,, we can calculate also the
respective error of F, using the slope of curves given in Figure
2. The resulting error of F, is +0.02. The random error due to
the uncertainty of the rms density dispersion of the observed
sample was estimated above using the density distribution test
and is +0.7, which also leads to an error in F, of +0.02, and to
the overall error of +0.04. We adopt a round value of the error
of +0.05.

A comment on the accuracy of our results is related to the
determination of the observed power spectrum. From observa-
tions one gets the power spectrum using redshifts of galaxies as
distance indicators. As emphasized by Kaiser (1987) and
Gramann, Cen, & Bahcall (1993), the spectrum in the redshift
space is steeper than in the real space. Thus one may assume
that the spectral index in the real space is flatter than the
observed value, which may lead to a revision of the CDM
model to improve its agreement with observations. This adds
another uncertainty to our results. Formally we have taken
this into account by the rms scatter due to differences in
models used.

7.4. Where Is the Dark Matter?

The principal result of our study is that the fraction of
matter in voids is rather low, ~15% of the total amount of
matter or even less. On the other hand, it is well known that
the total mass of all systems of galaxies, including their invisi-
ble halos, is about 15%-30% of the critical cosmological
density (Faber & Gallagher 1979; Davis & Peebles 1983;
Gramann 1990; see also Bahcall & Cen 1992). Thus we see here
a problem for the standard flat model of the universe. The
problem is, of course, not new, but no final answer is available
yet.

If one wants to accept the flat model of the universe, one
has to hide the dark matter somewhere. Is this possible? Where
can the excessive dark matter be located ?

If we define low-density regions by the mean density level,
then we see no possibility of increasing considerably the frac-
tion of matter in voids. The observed density dispersion indi-
cates that the void evacuation has advanced far enough; thus
in voids there is very little room to hide large amounts of
unseen matter.

The second possibility for hiding some dark matter is in
regions not covered by current mass estimates of the clustered
component. Let us assume that the division between the clus-
tered and nonclustered matter is not so sharp as assumed
above, and the threshold density for the matter associated with
luminous galaxies lies higher, say at D, = 2. In this case not all
matter in the intermediate density interval is associated with
(mainly dwarf) galaxies, and some matter can escape dynami-
cal estimates of the mass of systems of galaxies. The model
distribution of particles between these threshold density levels
is given in Figure 4d (1 <D,<2). We see that the
intermediate-density matter populates filaments and forms
rarefied halos around clusters. This or a similar intermediate-
density region seems to be a suitable place to hide some addi-
tional dark matter. The prospects for finding large amounts of
dark matter in intermediate-density regions are, however,
rather limited, since the expected amount of matter between
density levels D = 1 and D = 2 is of the order of 10% of all
matter (see Fig. 3 for the distribution of density). This figure
shows that about 75% of all matter is located in high-density
regions, D > 2, well within the domain where direct mass esti-
mates of systems of galaxies are possible.
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Intermediate-density regions can be populated with
extremely faint galaxies. Dwarf galaxies trace the total mass
distribution better than bright ones. Because of the importance
of this question, several observational programs were started
to investigate the distribution of dwarf galaxies. Einasto (1988,
1990), Eder et al. (1989), Schneider et al. (1990), and Thuan et
al. (1991) compared the distributions of bright and faint gal-
axies. A number of tests (multiplicity function and nearest-
neighbor tests) were used. Results show that there is no major
difference between the distributions of faint and moderately
bright galaxies. All galaxies avoid regions between super-
clusters.

The last possibility for hiding extra dark matter is high-
density regions where, according to our calculations, over 75%
of all matter is concentrated. How to put dark matter there
without luminous galaxies is not clear. One possibility is to
assume that in some high-density regions galaxy formation did
not take place at all (phantom clusters). But this means that
some additional processes must be important which suppress
the galaxy formation selectively in some high-density regions.
Presently this seems to be an unlikely possibility.

We can summarize by saying that, within the validity of our
models, the majority of the matter in the universe lies in
regions well above the threshold density D, = 2. This corre-
sponds to compact groups and clusters. If available dynamical
data on masses of systems are not completely wrong, we live in
a low-density universe.

Some methods yield values up to 1 for the density parameter
(Strauss et al. 1992 and Nusser & Dekel 1993, to name only a
few recent determinations). Why the discrepancy between dif-
ferent estimates is so large is still unclear.

8. CONCLUSIONS

We use N-body simulations to investigate the evacuation of
voids and to derive the fraction of matter situated in voids.
Models have been compared with the observed distribution of
galaxies in and near the Virgo supercluster, and with analytical
calculations. To compare models with observations, we try to
reconstruct the actual distribution of mass as accurately as
possible using a rather small smoothing length to calculate the-
continuous density field. Our principal results can be sum-
marized as follows:

1. The comparison of models and observations using their
density distributions shows that galaxies do not trace the mass
in the whole universe. There exist low-density regions in simu-
lations, whereas real underdense regions are completely devoid
of galaxies.

2. Numerical simulations show that the fraction of matter in
voids in the present epoch is F, = 0.15 + 0.05 for a density
field smoothed on a scale of 1.2 h~* Mpc.

3. There is very little room to hide large amounts of dark
matter needed to save the flat cosmological model. If a nonde-
tected dark population exists, it should be located in regions
where the density exceeds the mean density of matter in the
universe.

4. The conventional bias parameter b is simply related to
the fraction of matter associated with galaxies, b = 1/F,.
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