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ABSTRACT

The tidal evolution of close binaries in the limit of e — 1 is studied in this work. We use Hut equations to
obtain the time derivatives and timescales for the evolution of the eccentricity, semimajor axis, and stellar
rotation rate in the high-eccentricity binaries.

We find that in some of the highly eccentric binaries the tidal shear changes near periastron on a timescale
shorter than the convective timescale, so that the turbulent viscosity could be reduced. We consider three
different recently proposed approaches to viscosity reduction and show that for all three theories the tidal
evolution for highly eccentric binaries is quite different from that encountered in low-eccentricity systems. In
particular, the semimajor axis decreases on a timescale much shorter than the eccentricity, and the periastron
distance stays constant in time.

We suggest to test the different approaches to viscosity reduction by comparing the age of any known
highly eccentric binary with its tidal timescales. The proposed test is applied to Gl 586A, a nearby binary
recently found to have an extremely high eccentricity. The test indicates that this binary may indeed be used
to reject the approach which assumes a nonreduced viscosity.

Subject headings: binaries: close — stars: rotation — stars: individual (Gliese 586A) — stars: interiors

1. INTRODUCTION

The orbital elements of the nearby double-line spectroscopic
binary Gl 586A were determined recently by Duquennoy et al.
(1992). The most remarkable feature of this system is its
extremely high orbital eccentricity of 0.9752 + 0.0003.
Duquennoy et al. pointed out that despite the long orbital
period of 890 days, the very high eccentricity implies quite a
small periastron distance, of ~10 Rs. Duquennoy et al. noted
also that the tidal interaction is expected to decrease the
orbital period and eccentricity, implying even higher initial
eccentricity. They argued that this suggestion would have
resulted in periastron separation too small to accommodate
the two stars in the pre-main-sequence phase, when the stellar
radii were larger.

The problematic evolutionary history of Gl 586A, as noted
by Duquennoy et al., is typical of extremely high eccentric
spectroscopic binaries. With the expectation that more systems
of this kind will be discovered in the near future, we study in
this work tidal evolution of binaries in the limit of e —» 1. We
obtain the time derivatives and timescales for the evolution of
the eccentricity, semimajor axis, and stellar rotation rate for
highly eccentric binaries. The timescales are functions of the
coupling between the shear (velocity gradient) in the stellar
envelopes, induced by the tidal interaction between the two
components, and the turbulent viscosity.

In highly eccentric binaries the tidal interaction varies on a
timescale which is a small fraction of the orbital period, and
thus can be in some cases comparable to or shorter than the
stellar convective timescale. In such cases, the turbulent vis-
cosity could be reduced (Zahn 1989) by an amount which is
still not clear. We consider here three approaches to this
reduction.

The first original approach ignores the reduction of the turb-
ulent viscosity (e.g., Zahn 1977). The second assumes a
reduction linear in the ratio between the timescale for varia-
tion of the tidal interaction and the convective timescale (Zahn

1989, 1992). The third approach (Goldman & Mazeh 1991)
argues for a reduction which is quadratic in the above ratio.

In systems with highly eccentric orbits, the only relevant
reduction of the tidal efficiency is the one at periastron. This is
so because the tidal interaction is effectively confined to the
periastron passage, due to the strong dependence of the tidal
forces on the separation between the two stars. We take advan-
tage of this simplifying feature and derive tidal timescales for
these systems for the three different approaches.

The orbital periods of the highly eccentric binaries are typi-
cally long. Nevertheless, we show that the high eccentricity
could yield tidal evolution timescales which are shorter than
the age of the system. This fact suggests that some of these
systems can be used to test the different prescriptions for the
reduction of the turbulent viscosity. We show that G1 586A can
serve as one of these test cases.

We also show that for the three theories the tidal evolution
of the eccentricity and the semimajor axis in the limit of e — 1
are such, that the periastron distance stays constant in time.
This surprising result resolves the apparent difficulty raised
by Duquennoy et al. regarding the periastron separation of
G1586A at its formation epoch.

2. HUT EQUATIONS IN THE LIMIT OF e — 1

The tidal evolution of a binary system originates in the inter-
action between its two components, which induces a shear
(velocity gradient) in the stellar envelopes. The coupling of the
shear with the turbulent viscosity in the convective envelopes
of late-type stars causes the induced tidal bulges to lag
(precede) the line connecting the stars centers. The resulting
torques act to synchronize and circularize the orbit (Zahn
1966, 1977; Alexander 1973; Lecar, Wheeler, & McKee 1976;
Hut 1981).

To study the tidal evolution of binaries with extremely high
eccentricity, we employ the time derivative of the orbital ele-
ments obtained by Hut (1981), which are valid for any value of
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eccentricity. Hut equations are based on the weak friction
approximation (Darwin 1879; Alexander 1973), which assumes
that the tidal dissipation causes a constant time lag between the
varying tidal force and the resulting stellar deformation. The
magnitude of the time lag is proportional to the viscosity in the
stellar envelope. Thus, the assumption of constant time lag
translates into an assumption of a constant viscosity with
respect to the orbital phase. In cases where the tidal torque and
the induced tidal shear vary on a timescale which is compara-
ble to or shorter than the convective timescale, the effective
viscosity could be reduced (Zahn 1989). For an eccentric orbit,
the tidal shear and the timescale on which it changes are differ-
ent for different orbital phases. Therefore, the reduced viscosity
varies with the orbital phase, so that the tidal time lag is no
longer constant, and the analysis of Hut (1981) may need some
modifications.

There are, however, two limits in which Hut equations are
valid even for a reduced viscosity. The first is the limit of e — 0,
where the timescale for variations of the tidal interaction is
constant along the orbit. The other limit is that of e — 1, for
which the tidal interaction is effective only in a small time
interval around periastron. This is so because of the steep
dependence of the tidal torque on the instantaneous orbital
separation r. Therefore, the only relevant values of the reduced
viscosity are those in the narrow time interval around perias-
tron. In the limit of e — 1 one can use a representative value for
the reduced viscosity in this time interval.

Hut assumed tidal dissipation only in one of the binary
members, which we will denote as the primary, and treated the
other star, denoted the secondary, as a mass point. He also
assumed an alignment of the primary rotation angular
momentum and the orbital angular momentum. Taking the
limit of e » 1 and replacing (1 — e2) by 2(1 — e), we obtain
from Hut (1981) that the tidal time derivative of the semimajor
axis a, the eccentricity e and the stellar rotation angular veloc-
ity Q, are given by

a=—2 % q(l + q)<§)3(1 - e)‘15/2<1 -0.79 éj)a , (1)

8
é=—2 % q(l + q)<§-> a- e)-13/2(1 ~0.79 £>e )

Q= -0.58 % qzr;2<§>6(1 -97Q-9Q,), )

where k is the apsidal motion constant of the primary (e.g.,
Kopal 1978) and T is a characteristic timescale which is
inversely proportional to the primary turbulent viscosity. The
mass ratio between the secondary and the primary is denoted
by g, R is the primary radius and r, is its gyration radius:

1
2

9 = MRZ ’ (4)

where I is the primary moment of inertia, and M is its mass.
Hut (1981) defines Q —the pseudosynchronization stellar
rotation angular velocity, as the value of Q for which Q van-
ishes. He obtained an expression for Q,, as function of the
eccentricity. For small values of e, it equals the mean orbital

angular velocity w. In the limit of e — 1, of interest here,
Q,, = 08250, = 1.167(1 — ¢)"*?w, ®)

where w, is the orbital angular velocity at periastron. The
value of Q reflects the fact that the tidal interaction is most
effective near periastron, so that the stellar rotation is synchro-
nized not with the mean orbital angular velocity but with a
value determined near periastron.

3. TIDAL EVOLUTION TIMESCALES FOR e — 1

For general values of P, e, and Q, one can define timescales
for tidal evolution of the semimajor axis and eccentricity by

’I:t(P’eaQ)=_.a (6)

T(P, e, Q) = —

Q.|

™

Another interesting timescale is the one needed for reaching
pseudosynchronization:

Q-Q,
RS(P’eaQ)='_Q_QS' (8)

ps

This timescale is relevant only in systems for which pseudo-
synchronization could indeed be reached, namely, systems
where the variation timescale of Q is much shorter than that of
Q,, itself.

We wish to express the three timescales in terms of
T(P)—the timescale for circularization in nearly circular
binaries. Using the definition of T (P) as

T.(P) = T(P, e = 0, Q = w),

Hut equations yield

2T 1 a\®
P =nkqi+9 <§) ' ©)

Therefore, for a nonreduced viscosity, T.(P) is proportional to
(P/Py)*%3 (Zahn 1977; Mathieu & Mazeh 1988) and can be
expressed by

T.(P) = To(P/Py)**? , (10)

where P, and T are arbitrary fiducial values.

In case that the tidal shear varies on a timescale t, which is
comparable to or shorter than the convective timescale, the
turbulent viscosity v, is reduced to a fraction 5 of the non-
reduced viscosity v, ¢:

Vi =NV - ¢! 1)

If we set the fiducial value of P, as equal to the convective
timescale, then

n=1 forzt,>P,, (12)
75 \"
n= P_o for 7, < P, (13)

where n =0, 1, 2 for the three theories of viscosity reduction.
The timescales for tidal evolution are inversely proportional to
the viscosity and thus inversely proportional to .
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Substituting equations (9) and (10) in equations (1)—(3) and
(6)—(8) yields

P\ 5.25
— gt T TR 11
T=n T°<P0) —onaey 79 W
P\ 5.25
T = —lT - —_ _ 1372
e n 0<P0> 1 _ 0.79(Q/st) (1 e) ) (15)
P 16/3 1+q r2 R 2
=p (=) 1Ll ) Z) e
T =1 {%) L= <0'06 ~) -2, (6

where r? is normalized to its solar value (Allen 1978).

The reduction in the turbulent viscosity is determined by the
timescale for the variation of the tidal shear near periastron, t,.
There are two natural timescales at periastron: w, ', and Q™ 1.
In Appendix A we study the time dependence of the tidal shear
near periastron, for given Q in the limit of ¢ — 1, and adopt as a
representative expression

Q 27]-1/2
T, = 2 I:l + 0.3(—) :I R
@p st

so that in the limit ofe — 1

&_ B 3/25— g 271-1/2 18
Po_o.225(1 ¢) 7 [1+0.3<Q ) . (18)

PS.

Equations (14)—(16) indicate that the three tidal timescales
are not constant. In fact, they could vary on timescales shorter
than themselves. Therefore, the time dependence of e, a, and Q
is not necessarily exponential, and could be more complex.
Such time dependence is indeed exhibited by the solutions of
the tidal equations, presented in the next section.

We are interested in binaries consisting of late type stars
with masses around 1 M. For these stars we take P, = 20
days, a value that appears in the theories for reduced viscosity
as the boundary between the regimes of reduced and non-
reduced viscosity (Goldman & Mazeh 1992). Using the value
of 18.7 days for the transition period of the Galactic halo stars
(Latham et al. 1992), and T,(P) = 1.5 x 10!° yr (the Galactic
halo age) we obtain T, = 2 x 10'° yr.

When tidal dissipation takes place in the envelopes of both
stars, the rates T, * and T ! are the sum of the rates due to the
dissipation in each of the stars. However, the rate of the evolu-
tion of the stellar rotation depends on dissipation only in one
star. Therefore, for two equal stars, the ratio of T, to T, (or to
T,) is larger by a factor of 2 compared to the case where the
dissipation takes place only in the primary. This factor has to
be taken into account whenever equations (14)-(16) are
applied to a specific system.

17

4. EVOLUTION EQUATIONS FOR a(t), e(t), AND Q(t)
IN THE LIMIT e — 1

From equations (14) and (15) follows that in highly eccentric
binaries, the timescales for tidal evolution of the eccentricity
and the semimajor axis are related by the simple expression

T,=(1-9T,, (19)
independently of the values of Q, w, T, and #. It implies that
T, < T,, contrary to synchronized nearly circular binaries,
where the opposite is true. Inserting the definitions of T, and T,
(egs. [6] and [7]) into equation (19) results in

a é

a 1—e

(20)
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Equation (20), which was obtained also by Lecar et al. (1976)
from an analysis similar to but less general than that of Hut
(1981), is very interesting. It implies that, as long as e — 1, the
periastron separation r, does not change in time:

21

in spite of the evolution of a and e. In Appendix B we comment
on the physical interpretation of this result. As an illustration,
we note that for the observed eccentricity of Gl S86A, equation
(20) is satisfied to a precision of one part in 103,

The constancy of the periastron distance during tidal evolu-
tion, as long as the eccentricity stays close to unity, together
with angular momentum conservation, implies that w,, is con-
stant during the evolution. Thus, from equation (5) it follows
that Q, is constant too. If during this phase of evolution Q is
much smaller than Q,; or does not change in time, then 7, and
consequently the viscosity reduction factor n are also constant.
The constancy of these quantities enables us to obtain simple
equations for the time evolution of a(t), e(t), and Q(¢) in the limit
ofe— 1.

Inserting equations (6) and (8) in equations (14) and (16),
respectively, yields

r, = a(l — e) = constant ,

- Z =7 =ndll - e)‘15’2a—8<1 —-0.79 Q—) )
a PS
Q 1
“@oay T, orRd-9TeT, @)
ps. ps

where A and B are constant in time. Using equation (21) again,
the last two equations yield

_8 pca1-079 2 24
= nca ( Pq,.) (24)
o i
e =
ps,

where C and D are also constant in time.
To solve these equations we introduce the dimensionless
variables

x=—, (26)
Ao
Q

y=g- @7

where q, is the value of a at ¢t = 0. Similarly, we denote by y,
the value of y at t = 0. The constants C and D can then be
expressed in terms of T, , and T, o, the two timescales at t = 0,
and in terms of a,, and y,. Doing so, and using equations (13)
and (18) to express 7, yields

. 1 1+03y5\" ),
= — 1—0.79y), (28
* T T (1= 0.79,) <1 1 032) ¥ . 28
. 1 1+ 0.3y5\"? -3/2
= — — =0 -1. 29
y Tps’0<1+0‘3y2 x My =1 (29)
Equations (28) and (29) yield the relation:
1 T 1—y
— =0 1 079(y, — 0.211 < >]
' nw—ownio(“ N+ 02T
(30)
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FiG. 1.—The semimajor axis as function of the stellar rotation rate. The
dots indicate time in units of T, o, for nonreduced viscosity.

This relation is independent of the value of 5 or the absolute
values of T, and T, ,. It depends on two parameters: the
ratio between T, o and T, , and on y,—the value of y at x = 1.
For given values of these two parameters it is possible to solve
numerically equations (28) and (29) for each of the theories and
obtain x and y as functions of time, measured in units of T, ,.
The translation between this dimensionless time and the real
time is through the absolute value of T, ,, which is different for
the different theories for viscosity reduction.

Figure 1 displays the variable x, which measures the semi-
major axis in units of its value at t = 0, as a function of y—the
stellar rotation in units of Q.. The values of the parameters
Ts,0/T,0 and y, were chosen in Figure 1 as 0.125 and 0.28,
respectively, to present the case of Gl 586A, as discussed in the
next section. The dots indicate some representative values of
time in units of T, ,, for nonreduced viscosity theory, for
which n=0. For n =1 and n =2 the same dots will corre-
spond to earlier times.

The graph includes three main parts. The left part exhibits a
steep decrease, representing an early phase of the system,
where T, < T,; and x > 1. At that phase of the evolution the
semimajor axis decreases almost without any change in the
stellar rotation. However, as a decreases, equation (21) implies
that (1 — e) increases, so that T, eventually becomes shorter
than T,. The system enters, therefore, another phase of the
evolution, where Q varies faster than a. This phase is presented
in the graph by the middle part with the moderate slope. At the
last phase of the evolution Q is very close to Q,, which implies
that y is very close to unity, and therefore only a keeps decreas-
ing. This stage of the evolution is presented by the right steep
part of the graph.

5. PROPOSED TEST

We expect a binary system with an age substantially longer
than T, to be pseudosynchronized at the present epoch. The
evolutionary timescale depends, as we have shown, on the spe-
cific viscosity reduction approach. This suggests an observa-
tional test for these theories. A theory can be rejected if we find
several systems with rotational rate substantially different from
their Q, and for which the theory predicts evolutionary time-
scales shorter than the systems ages.

Moreover, even pseudosynchronized systems with highly
eccentric orbits or systems with unknown rotational period,
can help us to reject a viscosity reduction approach. This can
be done if we find systems with T, substantially shorter than
their lifetimes. A theory can be rejected if it implies astro-
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physically unrealistic initial parameters, like a very large semi-
major axis, and/or an eccentricity which is different than unity
only by a very small fraction.

Obviously, highly eccentric systems can help us to dis-
tinguish between the different approaches to viscosity
reduction, only if the timescale for variation of the induced
shear is shorter than the convective timescale. The different
theories will predict different timescales only for such systems.
It can be shown that if the timescales T, or T, for nonreduced
viscosity are significantly shorter than ~ 10% yr, the relation
between the period and the eccentricity is such that it guar-
antees that 1, < Py. Thus, the theories that allow for a
reduction of the turbulent viscosity will predict substantially
longer timescales. A comparison of the different timescales and
the age of the system could therefore help in assessing which of
the three approaches is in better agreement with the observa-
tions.

6. APPLICATION TO Gl 586A

We apply now the evolution equations and the proposed
test to Gl 586A. Combining the measured orbital elements
with the observed stellar spectral types allowed Duquennoy et
al. (1992) to estimate the orbital inclination i ~ 60°. From this
value we estimate masses of 0.75 M and 0.5 M, and corre-
sponding stellar radii (Allen 1973) of 0.85 R and 0.65 R, for
the two components.

The circularization timescale, T (P), depends on the masses
of the stars and their metallicities (Mathieu & Mazeh 1988).
The value we have used for T, was calibrated for a binary
consisting of two 1 M, stars. From Mathieu & Mazeh (1988)
follows that for the two components of Gl 586A, T.(P) is
shorter by a factor of ~ 1.5 than that of a binary of two 1 Mg
stars. In view of the other uncertainties in the theory, we disre-
gard this factor; keeping it would only strengthen our conclu-
sions. As explained in § 3, we take T, for Gl 586A to be larger
by a factor of 2 than the value computed for the case when tidal
dissipation takes place in one star only. We adopt a value that
is the mean of the values corresponding to the two stars.

An observational upper limit of 3 km s~ ! on the projected
rotational velocities of the stars was obtained by Duquennoy
et al. (1992). For i ~ 60° and the stellar radii estimated above
this implies for the two stars

Ql 2
—<025; —<032.
Q, <025 ; Q, <032 (31)
In what follows a mean value of
Q .
- <
o S 0.28 (32)

ps
is adopted.

Substituting the values of e and P of Gl 586A in equations
(13) and (18) yields
n = (0.04)" . (33)

The timescales for tidal evolution, at the present time, are
therefore

T, o S (25" x 3 x 10° yr, (34)
T,0 S5 x 8 x 107 yr, (35)
Tps0 ~ (25" x 107 yr, (36)

where r, = 10.5 R, was used.
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Let us assume for Gl 586A an age which is typical to its
environment, say 5 x 10° yr. Support for this assumption
comes from the lack of photometric or spectroscopic indica-
tions for stellar activity which characterize young stars
(Duquennoy et al. 1992).

We solved numerically equations (28) and (29) for the
parameters of Gl 586A: T, /T, o = 0.125 and Q(t = 0)/Q,, =
0.28, which is the observational upper limit. We obtained the
semimajor axis and the stellar rotation rate as functions of time
measured in units of T, o. The solution is presented in Figure
1, where time ticks in units of T, , are shown for the case of
nonreduced viscosity, n = 0, and the present time is denoted by
t=0.

We first address the theory of nonreduced viscosity, corre-
sponding to n = 0. For this theory, T, o is ~2 x 1072 of the
system age. The numerical solution of equations (28) and (29)
for the present parameters of Gl 586A implies that had we
waited a time equal to 2T, o, Q would be ~0.93Q,;, namely,
almost pseudosynchronized. Therefore, if the system age was
just larger by a fraction of ~4 x 1073 of its present age, it
would have been pseudosynchronized. Thus, the chance to
observe the system in its present state is quite small,
~4 x 1073, Assuming that the stars are pseudosynchronized
but not aligned (so the observed velocities are smaller than V
sin i) does not alleviate the difficulty, since the timescale for
alignment roughly equals that for pseudosynchronization.

Another serious difficulty follows from the required initial
parameters of the system. The adopted age corresponds to a
formation epoch at t = —5007T,, ,. For this value, the numeri-
cal solution of equations (28) and (29) implies an initial eccen-
tricity which differed from 1 by merely ~4 x 10~7. Such an
extreme initial eccentricity is indeed quite unlikely according
to observed eccentricity distributions (e.g., Boffin, Cerf, &
Paulus 1993). Moreover, the initial semimajor axis was
~7 x 10* times larger than the present one: ~0.7 pc. Most of
the time the orbital separation was twice this value, and thus
the system had no chance to survive against the tidal dis-
ruption in the Galaxy (e.g., Close, Richer, & Crabtree 1990;
Wasserman & Weinberg 1991). The initial rotation velocity
had to be ~86 km s~ ! in a direction opposite to the orbital
rotation. These extreme initial conditions, and the very short
T,s,0 compared to the system age, point quite strongly to the
conclusion that the turbulent viscosity has to be reduced.

For a linear reduction (n=1), T, , is a factor of ~20
shorter than the age of the system. Therefore the chance to
observe it in a nonpseudosynchronized rotation is ~0.1. The
initial semimajor axis had to be a factor of ~ 14 larger than the
present one, corresponding to a value of 27 AU and an initial
eccentricity differing from 1 by ~1.8 x 1073, The initial stellar
rotation rate was in this case ~80 km s~ ! in a direction
opposite to the orbital rotation. These parameters are quite
unlikely, but not as extreme as in the case of nonreduced vis-
cosity. Therefore, this system cannot conclusively prove the
theory nonviable, and more similar binaries are required to
establish this conclusion.

For quadratic reduction (n = 2) T, , is a factor of ~1.25
longer than the system age. Therefore, there is no problem in
Gl 586A not being pseudosynchronized. The initial conditions
of the system were very similar to the present ones. The eccen-
tricity was ~0.978, the semimajor axis was larger than the
present one by ~ 15%, and the rotation velocity was ~6 km
s™! in an opposite direction to the orbital rotation. These
parameters are very reasonable for the formation epoch of the
system.
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7. DISCUSSION

This work studied the tidal evolution of highly eccentric
binaries. We have shown that in some of these binaries the
tidal interaction varies on a timescale which is comparable to
or shorter than the stellar convective timescale. In such cases,
the turbulent viscosity could be reduced, and we considered
here three different approaches to this reduction. The analysis
was done by utilizing the fact that the tidal interaction is effec-
tively confined to a short time interval around periastron
passage. We have shown that for all three theories tidal evolu-
tion for highly eccentric binaries is quite different from that
encountered in low eccentricity systems. In particular,the semi-
major axis decreases on a timescale much shorter than the
eccentricity, and the periastron distance stays constant in time.

One should be aware that all three theories considered here
assume an evolution due to the interaction between the
induced tidal shear and the turbulent viscosity in the convec-
tive envelopes of late type stars. A completely different theory
is that of Tassoul (1987, 1988), which attributes the tidal evolu-
tion to large-scale transient meridional currents induced by the
tidal distortion of the stellar axial symmetry. Tassoul’s theory
was not considered in this paper, since the published timescales
referred only to circular binaries and not to highly eccentric
systems considered here.

We pointed out that the highly eccentric binaries can serve
as laboratories for testing the theories for viscosity reduction.
An unpseudosynchronized system would strongly constrain
any theory which predicts for this system an evolutionary time-
scale significantly shorter than the system age. Moreover, we
found that if the timescale for the evolution of the semimajor
axis is much shorter than the system age, that system was
created with extreme initial parameters. For example, for non-
reduced viscosity Gl 586A had to be formed with a semimajor
axis of the order of 1 pc. This value would have made the
system susceptible to tidal disruption in the Galaxy.

The theories for viscosity reduction have been tested recent-
ly against samples of short-period binaries, by studying the
dependence of the circularization timescale on the orbital
period in the limit of e — 0. This is done by deriving a tran-
sition orbital period which separates circular from eccentric
binaries in coeval samples of different ages (Mazeh et al. 1990).
However, the data cannot yet point to the correct theory
because of the fuzziness of the transition between the circular
and eccentric binaries (Mathieu et al. 1992).

The advantage of the new proposed test is that it requires
only a small number of systems with age estimation. The
example of Gl 586A shows that the theory with nonreduced
viscosity can be proven nonviable on the basis of even one
system. For the linear reduction approach, the predicted initial
conditions of Gl 586A are not as extreme as for nonreduced
viscosity. Therefore, a number of similar systems are required
to distinguish between the linear and the quadratic reductions.

The proposed test relies partly on the assumption that
pseudosynchronization will be achieved within a few corre-
sponding timescales. This requires that the other effects on the
stellar rotation rate be negligible compared to the tidal inter-
action. This assumption breaks down in magnetic active stars
with strong stellar winds, which could result in an efficient
magnetic braking. Mass transfer between the two components
of the binary system can also delay the pseudosynchronization.
Unless one of these effects is strong enough, we expect old
enough binaries to be pseudosynchronized.

Hall & Henry (1990) studied the pseudosynchronization of a
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sample of 22 binaries with moderate eccentricity and known
rotational periods. They found only three unpseudo-
synchronized systems, all of which contain chromospherically
active stars, suggesting strong magnetic braking at the present
epoch. Moreover, all three binaries contain a giant star that
almost fills its Roche lobe, so that mass transfer had been also
possible. In contrast, all binaries in the Hall & Henry sample of
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So far, the only known high-eccentricity binary with rela-
tively short period is Gl 586A. Hopefully, the ongoing large
radial-velocity surveys for spectroscopic binaries (e.g., Griffin
1992; Latham 1992; Mayor et al. 1992) will yield in the near
future more interesting eccentric systems, from which we will
be able to learn some more astrophysics about tidal circular-
ization and synchronization.

confirmed pseudosynchronization involve small dwarfs well
within their Roche lobes. The two stars in G1 586A are far from
filling their instantaneous Roche lobes, even at periastron, and
the observed spectral types of the stars imply quite weak stellar
winds.

This work was supported by the US-Israel Binational
Science Foundation grant 90-00357.

APPENDIX A

TIDAL SHEAR TIMESCALES

The reduction in the turbulent viscosity depends on t—the timescale for variation of the tidal shear near periastron. General
expressions for the tidal shear, at different locations in the stellar envelope and for any orbital phase, are given in Alexander (1973).
In order to arrive at an estimate for the above timescale, we consider here for simplicity only the shear in the equatorial plane of the
star (which is assumed to coincide with the orbital plane) and in the envelope regions that are on the line connecting the centers of
the two stars. In this case the shear, at a true anomaly 6 and separation r, is given by

S(t) ocdit [r=2 sin (20 — 2Q1)] (A1)

where 6 = t = 0 denote the periastron.

We note in passing that equation (A1) explicitly shows that the average of S(t) over a long enough time vanishes by definition.
Over one period the average is only a fraction of ~0.1 x (1 — €)*? of S(t = 0). A zero average is a necessary condition for the shear
reduction.

Expressing r in terms of 6

1-¢?

r=aq——,
1+ecosf

(A2)

and evaluating the differentiation in equation (A1) we obtain S(t) in terms of the shear at periastron for the case of a nonrotating star
Sit=0,Q=0):

S(¢) 3e(1 +ecos ) . . . (1 +ecos6)? .
=— 20 — 2Q8)8 + ~ -Q). A3
SC=0,9=0) A+ o'w, sin 6 sin ( 2Q1)0 + 1+ 9%, cos (20 — 2Qt) 6 — Q) (A3)
Since S(t = 0) = 0, a possible estimate for 1, is
S 1/2
=2 , A4
T ﬂ<§>t=0 (A4)

which is the period of a cosine function matched to S() at periastron. We used this estimate, as well as plots of S(t) for different
values of Q2 and found that for absolute value of @ much smaller than w,

2

Ty~ o’ (A3)
while for absolute value of Q much larger than w,
3
Ty ™~ ﬁ . (A6)

The overall behavior can be represented by an approximate interpolating formula

27]-1/2 277-1/2
‘cs=£|:1+< Q ):| =£|:1+0.3<Q>] . (A7)
W, L5w, w, Q,,

This result is not surprising, as there are two natural timescales for the shear variation. One is w, ' and the other Q™ '. Our result
is a combination of these two timescales.
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APPENDIX B

CONSTANCY OF PERIASTRON DISTANCE DURING TIDAL EVOLUTION FOR e—1

The constancy of the periastron distance in the limit e — 1 can be derived from relatively simple physical considerations. The tidal
force comprises of nondissipative and dissipative parts. The nondissipative force is independent of the viscosity, and it cannot
change the orbital energy and angular momentum. Its only effect is to induce a rotation of the periastron.

The dissipative force, which is due to the lag caused by the viscosity, is the one that can change the orbital energy and angular
momentum. Clearly, only the dissipative part is relevant for the tidal evolution discussed in this work. The result of the two parts of
the tidal force is a rotation of the periastron combined with evolution of the period and eccentricity.

The dissipative force includes a tangential and a radial component, the latter being proportional to 7 (Hut 1981). For highly
eccentric binaries the tidal interaction is effective essentially only at periastron. There, the radial component of the tidal dissipative
force vanishes and the tidal dissipative force is thus purely tangential.

At periastron, this tangential force imparts to each star a differential orbital velocity which is perpendicular to the radius vector,
without changing the latter. Therefore, in the next revolution, it will be also the periastron. The actual location in space of the
periastron after one period has been slightly rotated, as a result of the nondissipative force, but the periastron distance is the same,
as stated in equation (21). This explains why equation (21) was obtained also by Lecar et al. (1976), who assumed a purely tangential

tidal dissipative force.

More formally, for a dissipation confined to a time interval ¢t and a phase interval 50 centered at periastron, the changes in the

orbital energy and in the orbital angular momentum are given by

0E,, = N80 = Nw,dt , (B1)
6h=Nodt, (B2)
implying
0E,, = w,0h , (B3)
where N denotes the tidal torque at periastron,
M 1 M 2
= B4
Eorb 2a ( )
is the orbital energy, and
h = G1/2 M1M2 1/2(1 _ e2)1/2 (BS)

is the orbital angular momentum.

1z 4
(M + M,)'?

Using equations (B4) and (B5) to express 6E,,, and dh in terms of da and de and substituting in equation (B3) yields equation (21).
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