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ABSTRACT

We present a general class of self-similar solutions of the full set of MHD equations that include matter
flow, electromagnetic fields, pressure, and gravity. The solutions represent axisymmetric, time-independent,
nonrelativistic, ideal, magnetohydrodynamic, collimated outflows (jets and winds) from magnetized accretion
disks around compact objects. The magnetic field extracts angular momentum from the disk, accelerates the
outflows perpendicular to the disk, and provides collimation at large distances. The terminal outflow velocities
are of the order of or greater than the rotational velocity of the disk at the base of the flow. When a nonzero
electric current flows along the jet, the outflow radius oscillates with axial distance, whereas when the total
electric current is zero (with the return current flowing across the jet’s cross section), the outflow radius
increases to a maximum and then decreases. The method can also be applied to relativistic outflows.

Subject headings: galaxies: jets — ISM: jets and outflows — MHD — stars: mass loss

1. INTRODUCTION

Bipolar outflows in galactic (protostars) and extragalactic (active galactic nuclei) environments seem to be associated with mass
accretion into a central compact object. Theoretical models involve various physical mechanisms which power and collimate the
outflows (nozzles, funnels, winds, magnetic fields; see Begelman, Blandford, & Rees 1984, for a review). We favor magnetodynamic
mechanisms for the following reasons:

1. The continuum radiation from jets (radio, optical, X-ray) is believed to be optically thin synchrotron, from electrons of energies
~100 MeV-10 GeV, spiralling along magnetic field lines ~1075-10"! G. Polarization measurements often show high degrees of
polarization (~ 60%, close to the theoretical maximum of 70% for synchrotron radiation), which suggests that the magnetic field is
organized on a large scale. The B field may also have small-scale fluctuations. Polarization measurements of bright knots and hot
spots suggests magnetic field orientation perpendicular to the jet direction, which agrees with the interpretation of hot spots as
shocks and as regions of particle reacceleration (e.g., Hughes, Aller, & Aller 1985, 1989a, b; for VLBI polarization measurements see
Wardle & Roberts 1988).

2. The high collimations observed in some sources (e.g., NGC 6251), and the evidence for continuing collimation in extragalactic
(FR I) and galactic sources (e.g., Mundt, Ray, & Raga 1991), makes mechanisms that involve initial precollimation (funnels) and
intergalactic ram pressure confinement unlikely.

3. N-body simulations of Alfvén wave effects in self-gravitating clouds (Pudritz 1988) suggest that magnetic fields of energy
densities comparable to gravitational energy play a role in producing the filamentary structure observed in galactic molecular
clouds (e.g., Bally et al. 1987; Ungerechts & Thaddeus 1987).

4. Magnetic fields “frozen ” into ionized accreting material are very efficient in extracting angular momentum and, thus, slowing
down protostars (e.g., Weber & Davis 1967; Mouschovias & Paleologou 1980; Pudritz 1985). On the other hand, thermally or
radiatively driven winds have an angular momentum per unit mass equal to that of the accreting matter.

The main objective of the present work is to develop time-independent magnetically driven and collimated outflows. We do not
discuss secondary questions, such as the reacceleration mechanisms of particles within the jets, the role of shocks and instabilities,
and the role of turbulence and viscosity in shearing the magnetic field. These topics are reviewed by Begelman et al. (1984) and
Hughes (1991).

Previous studies of magnetohydrodynamic (MHD) jets and winds have obtained estimates of the parameters of the outflows
(rates of mass, energy and angular momentum flow, average flow velocity, magnetic field configurations, etc.) without obtaining fully
self-consistent solutions (e.g., Koupelis & Van Horn 1989; Lovelace, Berk, & Contopoulos 1991, hereafter LBC). This is because of
the nonlinearity of the equations and the complications associated with critical and singular points. However, numerical solutions
have been obtained for both the nonrelativistic (Sakurai 1985) and relativistic regimes (Camenzind 1987). Here we present quasi-
analytic self-similar self-consistent solutions to the full set of ideal, time-independent, axisymmetric, nonrelativistic MHD equations
which describe outflows from a thin disk accreting into a central compact object. Quasi-analytic solutions of the full set of equations
have been obtained previously by Blandford & Payne (1982, hereafter BP), Tsinganos & Trussoni (1990), Tsinganos & Sauty (1993),
and others.
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The present work is a generalization of BP’s self-similar results, although we have followed a different approach in that we use the
formalism of the generalized Grad-Shafranov equation. In § 2 of this paper we derive the basic equations of our theory. We discuss
the physics and methods of solutions in § 3, and in § 4 we compare our analysis to the BP limit. Our main results are summarized in
§ 5. The relativistic equations are presented in the Appendix.

2. THEORY

2.1. Basic Equations

We follow the formalism of Lovelace et al. (1986, hereafter LMMS). In § 4, we will make the comparison with BP’s notation.

Let us consider a thin ionized accretion disk around a central compact object. The disk is threaded by a magnetic field, and
outflows of matter leave the top and bottom surfaces of the disk. The outflows are considered to be axisymmetric (6/0¢ = 0),
stationary (0/0t = 0), nondissipative, and nonrelativistic (the relativistic case is discussed in the Appendix). Nonideal effects (Ohmic
diffusivity, ambipolar diffusion—the drift of ionized particles to which the magnetic field is frozen, relative to the neutrals) are most
likely to be important only in the interior of the accretion disk (see Lovelace, Wang, & Sulkanen 1987; Koénigl 1989; Wang,
Sulkanen, & Lovelace 1992; etc.). We use a cylindrical, inertial coordinate system (r, ¢, z) with the origin fixed on the central object
and the z-axis perpendicular to the disk. The accretion disk (at z = 0) rotates counterclockwise and “ drags ” the magnetic field lines
backward, into a more and more toroidal configuration (B,) at larger distances. The matter flow rotates with the disk initially, but
becomes more and more axial farther out (see Fig. 1 of LBC).

Thus, following LMMS, the basic equations of our problem are those of ideal nonrelativistic MHD that include pressure and
gravity:

V:(pr)=0, ey
vxB="7, @
E+%va=0, 3)

VxE=0, @

p(v-V)v:—Vp+pg+%JxB, (5)

V-B=0, (6)

where v is the flow velocity, E and B are the electric and magnetic field, respectively, J is the electric current, p is the pressure, p is the
matter density, and g is the gravitational force per unit mass. In order to “close ” the above system of equations we also need an
equation of state to relate the pressure and the density. In what follows we assume for simplicity that the flow is adiabatic. We note
that more complicated equations of state have been used (e.g., outflows that start out isothermally and become isentropic; Parker
1963). Some people even consider the use of a polytropic equation of state too restrictive and prefer to specify a priori the form of the
outflow streamlines (e.g., Tsinganos & Trussoni 1990).

Owing to the axisymmetry, the magnetic field can be separated into poloidal and toroidal parts:

B=B,+8B,, ™
with

B=vexg, ®)
r

where P(r, z) is the magnetic flux function. The lines of constant ¥(r, z) in the r-z plane are the poloidal projections of the field lines.

When we solve the above system of equations we obtain a set of quantities conserved along flux surfaces. These quantities (the
functions F, Q, H, J, and S of P, defined below) are connected to the boundary conditions on the disk (at z = 0). Following LMMS,
the continuity equation (1) and V + B = 0 imply

|0,
dnp —E— = F(¥), 9)
P B, ( (
which, together with equations (3) and (4), implies that
~ F¥
v=rQ(¥)¢ + ) B. (10)
4np

We note here that v is in general not parallel to B (according to Jackson 1975, the field lines “frozen-into” the fluid drift with a
velocity ¢(E x B)/B> = (B x v) x B/B> = rQ(B, x ¢) x B/B?, which is equal to the component of v perpendicular to B). We will
come back to this in § 4, when we discuss the magnetic driving of the outflow.
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Conservation of angular momentum flow on each flux surface gives

—F¥)rvy + rBy = H(Y) . (11)
The Bernoulli equation (energy flow conservation) now becomes
f(dp/p) +310)? + @, — ro, Q¥) = J(Y), (12)
¥ = const.

which includes the enthalpy, matter flow, gravity, and Poynting flux —rQB,/F = —rQv, — QH/F (the —QH/F term is a function of
¥ and is included in J(¥)). We assume for simplicity that the flow is adiabatic; that is,

S(p, p) = ke(T — 1)" ' In(p/p") = S(¥) , (13)

where S is the entropy per unit volume of the flow. Here kg is the Boltzmann constant, and I' is the usual specific heat ratio
(adiabatic index). Finally, the poloidal component of the force balance equation (5) perpendicular to the flux surfaces (i.e., parallel to
VW), gives the generalized, nonrelativistic Grad-Shafranov equation for ¥(r, z) (LMMS):

F? F
(1 - Z—)A*‘I’ - FV<E> VY = —dnpri(J' + 1o, Q) — (H + rvg FYH' + v, F') + 4nrp(S'/k) » (14)
mp

where

010
= 4
ar=r arror o2
and primes denote differentiation with respect to ¥. Flow and magnetic field lines lie along ¥(r, z) = const. magnetic flux surfaces.
We emphasize that a solution to the Grad-Shafranov equation (14) for a given set of functions F, Q, H, J, and S, is equivalent to a
solution of the full set of basic equations, (1)—(6).

Equation (14) is a second-order partial differential equation of mixed type (Heinemann & Olbert 1978; LMMS), and the flow field
is in general separated by three critical surfaces which are not known a priori (they are obtained along with the solution for ¥). The
different regimes of the Grad-Shafranov equation are:

1. Elliptic for v2 < vc ,

2. Hyperbolic for v? < v} < 02,

3. Elliptic for v2, < v’ 2 vfms, and

4. Hyperbollc for ufms < vi.

Here v, = (v? + 1;2)”2 is the p0101dal ﬁow velocny, U, = ¢, Uap/(c? + v3)'/? is the speed of the cusp of the slow-mode wave front;
Vgme,tms = (1/2{c? + v + [(c2 + v})* — 2ol 2})”2 are the slow and fast magnetosonic speeds, respectively; ¢, = = (0p/0p)i? is the
adiabatic speed of sound; v ap = | B, |/(47zp)1/ ¥ is the poloidal Alfvén speed; and v, = | B|/(4np)'/? is the total Alfvén speed. Therefore,
since the techniques of 1ntegrat10n of elliptic equations are different from the techniques of integration of hyperbolic ones, the
numerical solution of equation (14) presents a computational challenge.

2.2. Renormalizations

Our goal is to solve equation (14) analytically. We do this by transforming it, from a partial, to an ordinary differential equation.
The method that is presented here simplifies the problem considerably by using special boundary conditions and special renormali-
zations of parameters; it reproduces however the interesting known characteristics of collimated outflows.

We first nondimensional r and z by redefining them as

r/a; and z/a; , (15)

where q; is a “ characteristic ” jet radius (this was identified as the initial jet radius in the solution of LBC; here it is more general). As
in BP, we assume a self-similar scaling (however, following the formalism of the generalized Grad-Shafranov equation and our
experience from LBC, we are able to consider a much wider class of boundary conditions on the disk). The main idea has been the
following: time-independent axisymmetric magnetic field configurations are characterized by a set of nested magnetic flux surfaces
Y(r, z) = const. In our case of jet configuration, there is a one-to-one correspondence between the value of ¥ and the distance ry at
which the flux surface intersects the plane of the disk; the general equation for the flux surface is of the form r = ry R(z; ry), where
R(0; rg) = 1. We simplify the problem by looking for self-similar solutions of the form

r=ryR(z/ry) =ryR(Z), (16)

where Z = z/ry is the renormalized z variable. The above scaling and a suitable choice of boundary conditions along the disk enable
us to separate the ry dependence from the Z dependence of our equations and to reduce the problem to the numerical solution of an
ordinary second-order differential equation. Note that in LBC, we made use of the Ansatz that P(r, z) = P(r/R(z2)), or equivalently,
r = ry R(z), which does not give a fully self-consistent solution.

Consider next the form of the relation between ¥(r, z) and ry. We would like to be able to rescale the ry terms in our equations,
and in order to do it, ¥ must have a simple power-law dependence on ry,

¥(r, 2) = (re)"Y , (17)
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where x is a free exponent, and ¥, = const. Consequently, the magnetic field scales as

B(r, 2) = (ry)* *B(2) . (18)

Thus, the free exponent x controls the initial field profile. At z = 0, B(r, 0) oc ¥~ 2 Note that in BP’s special solution the magnetic
field is taken to scale as r~ >4, which is equivalent to x = 3/4. Note also that for x < 1 the total axial electric current flowing into the
disk within a distance ra;, I = 2nc(ra;)By(r, z = 0) oc r*~*, has a double singularity at small radii. We will come back to thisin § 5.

Next, consider the Euler equation. The gravitational force term g scales as (ry) %, and because the V terms scale as (rg) ", we
choose

o, 2) = (re) "* N2, , ' 19

where v, is the initial rotational velocity at the characteristic radius, and ¥{(z) is dimensionless. Note that this corresponds to a

“Keplerian-like ” rotational profile, although v,(r, 0) can be different (but proportional to) v(r). The Bernoulli constant J(¥) scales
2

as v*, so that

J(¥) = (re)™'Jo05 . (20)

The constant Q('¥) scales as v4/r, so that
AF) = (rg) ™20 2. e

The constant H('¥) scales as rB,, so that
H(?) = (r¢)* 'Hoa; B, . (22)

F('P) scales as H(¥)/(rv,), so that
B
F(¥) = (re)* *F, v—o (23)
0

where, B, = B,(Z = 0). We consider finally the density and pressure terms. Using equation (9) and the above results, we obtain

2x—3 B(Z)
pr, z) = (re)™ " p(2) 0z (24)
o
The pressure must then scale as
p(r, 2) = (re)** *p(Z)B] . (25)
We will assume that the flow of matter is adiabatic for simplicity; hence, according to equation (13),
S(P) = kg(T — 1)"{[(2x — 4) — T(2x — 3)]Inry + In¢'} , (26)
where p(Z) = o p(Z)", and A" is a dimensionless constant. Note that the adiabatic speed of sound is
— a_p 12 _ -1/2 Ir—1q1/2 i -1/2
%=1z, = (re)” [ATP(Z) ™11 P0p = (re) ™2 CZ)vs . @7
S

The quantities V, p, p, C,, Jo, Qq, Hy, and F are dimensionless.

2.3. The Renormalized Equation

We now show that, using the expressions of § 2.2, the Grad-Shafranov equation (14) is reduced into one ordinary differential
equation of second order for R(Z) in terms of the renormalized variable Z = z/ry. As in our earlier work (LBC), we reduce the MHD
equations to the problem of obtaining the form of one field line, r = R(z). However, we now obtain the full solution for the flow and
the fields in the entire poloidal r-z plane (as shown in Fig. 1). The different quantities are given by equations (16)—(27).

Care is needed in taking derivatives with respect to “unnormalized ” variables because they depend on the parameter ry. As one
moves away from a given point in the -z plane, the nearby field lines have different values of . It is easily shown that

org| _ 1
or z=(r‘l’)r_R_ZR,, (28)
Org| _ R’
0z |, =)= - R - ZR"’ (29)
and hence that
0 1 VA
= =7 = - ——=
nZ| =4~ L R_zZR’ (30)
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FiG. 1.—Poloidal r-z plane. The thick line represents the solution r = R(z), with R(z = 0) = 1. A general field line characterized by ¥(r, z) = const, which
originates at ryq, is given by r = ryo R(z/ry,). The values of the other flow parameters along that field line are given by egs. (16)—(27). For the “even ” solution shown
here, v, || B,forz > 0,and v, || —B,forz <0.

0 1 R
—Z|\=2Z,=—————, 31
oz |, * r¢ R—ZR G1)
2? 1 Z?R”
a—rz-r‘l‘z=(r‘l’)rr— -:‘;(R—ZR,)S, (32)
o2 1 R?R"
i = = 3
622 Iy i (r‘i’)zz re (R _ ZR,)3 > ( 3)
where R’ = dR/dZ,and R” = d*R/dZ?. Thus, using equations (8) and (10), the magnetic field components are given by
B/(r, z) = (ry)* "> __R__ B 34)
e RR-ZR)
1 Hy + FoQyR?
B — x—2 0 0 =<0
¢(r, 2) = (ry R1—F,V,RR — ZR) 0> (35)
1
B(r, 2) = (re)* "2 === By,
A1, 2) = (ry) R(R — ZR) 0 (36)

where B, = xW¥,/a?. Taking into account that 4np = FB,/v, and factoring out the (rg)* 2B, terms, the Grad-Shafranov equation
(14) can be written as

(1~ Fo VR® = 20| ~ 72 4 (5 = D+ ) + (e + ey | = o (L) ) + Zitrah

3\ V.R w), 3

3 Fo (re),) 2x —4) —T'(2x — 3)
—(Ho + RV, Fy)| (x — DHo + RV{ x — = |Fy | + 4nR3C2 2 2>

(Hy + ¢ o)I:(x )H, + ¢<X 2) o:I +4n Cs<47r RV, T -1 , (37)

where primes denote differentiation with respect to Z,

Fy (ry),\" !
2 o \VY¥r
Q—I%%ﬁa , (39)
and
RQ H,V/(R — ZR’

V¢ - 0 + 0 z( ) (39)

1—F,V.R(R — ZR)) °
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The Bernoulli equation (12) gives
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1 V? 1 o ‘
r—_T(cf—cfo)+7‘(1+(R')2)+5 V§,+;§—RV4,QO=J0, (40)

where C2) = CX(Z = 0) = A T[Fo/4nV(Z = 0)]"*, and ®, = — (GM/a,)[1/(R* + Z*)"/*]. We will root-solve equation (40) to get
V, as a function of R, R’, and Z. Differentiating this equation with respect to Z gives

where

and

4R,R,Z) = — ( ~C o+ D—é’ - R'V,,,Qo>
PR R, Z)= —<C§

&R, R, Z) = [ —c? % +VA+ (R')Z)]

V.= + BR", (@1)
% ) 2
SR, R, Z)= r (R,R,Z2), BRR,Z)= 7 (R, R, Z),

R @ [1— F,V.RRR — ZR)]?

V. R — ZR\Hy + Q, F, Rz)
[1 — Fo V,RR — ZR)T’
VAR — ZR)Ho + Qo Fo R?)
[1 - Fo V,RR — ZR)T’
VAR — ZR)Ho + Qo Fo R?)

— [RQo + V, Fo V,R(R—ZR)],

+V§R’> +H,V,Z + V,F,V,ZR ,

R—-ZKR

+ HoR — ZR)) + V,FoR(R — ZR)) .

We can finally put everything back into the Grad-Shafranov equation (14) and thereby obtain an expression for R” as a function of

R,R,and Z:

where

and

F(R,R,Z)= —[1 —F,V,RR — ZR’)][—

YR, R, Z)=[1— FoV,RR — ZR’)]|:

F
R = Z (R,R, Z), 42)

(x—1) I_HIilf_]

1
RR—ZR) (R — ZR)?

Z + RR’ ) ) , A3 1+ (R)?
+ FO{ — 7 ——_[«R(R — ZR) + V,R(R — ZR)] + V,R(R — ZR)<2 - x> R—ZR} ZR’)Z}

" (R-ZR)?
3 3
+ F, Jo + RV,5 Qo | = (Ho + RV, Fo)l (x = DHo + RV,| x — 3 |Fo

1 ](2x—4)—F(2x—3)
T —1) ’

__R
V(R — ZR))

F
4nR*CH 2
+ar ‘[41: V.R(R — ZR)

R*+ 277 Z + RR’
T S— Fo ——= [#R(R — '— V,RZ].

Equation (42) is the final second-order ordinary differential equation for R(Z), where V, as a function of R, R’, and Z is given by
equation (40). We note again that equation (14) is the most general equation of axisymmetric ideal MHD flows which include fluid
pressure and gravity. In the present work, we concentrate on collimated magnetized matter outflows from thin accretion disks.

3. SOLUTION AND DISCUSSION

The physical situation is the following: Within the disk, the flow velocity is mainly azimuthal, o(r = a;, z = 0) & v, ¢, but there is
also a small flow out of the disk plane (v,(r = a;, z = 0) = V,q v, < v,). Our definition of v, as the initial rotational velocity at the
characteristic radius a; implies that V,(Z = 0) = (Q, + H, Vo)1 — Fo V) = 1; hence

Qy=1—(Fo+HpV, - 43)

Therefore, we integrate equation (42) numerically from Z = 0, with the “initial ” conditions R(Z = 0) = 1 and R'(Z = 0) = Ry, a free
parameter determined by the condition that the flow goes smoothly through the Alfvén singular point. We do not solve for the
initial acceleration through the cusp and slow magnetosonic critical points and will simply start the integration with V,, > V.. The
reason is the following: Consider the first-order term of the expansion of equation (40) near Z = 0,

VI
C520<— T/—o - Rg) + Vo Vol + (Rp)?) + VER, R + 6o Ry — Ry Qo =0, (44)
0
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where 8, = vg/v3, and vy is the Keplerian velocity at the characteristic radius g; (in our notation ®, = —6,03(R* + Z%)~'/2). Note
that BP have §, = 1; this is however very restrictive, and more recent work has do # 1 (Lovelace et al. 1987; Konigl 1989; LBC).

We see that when ¥, ~ 0, the pressure gradient term is the most important factor that controls the evolution of the outflow.
Therefore, for Vo < Cyo & Vs < V4, the problem is almost purely hydrodynamical, and the initial acceleration involves a “de
Laval nozzle "-type sub/supersonic transition very close to the origin of the outflow. Our equations include pressure and reduce to a
“solar-wind "-type outflow in the absence of magnetic fields. However, it is precisely the effect of the magnetic field in accelerating
the flow outward that we are interested in, and therefore, we consider situations where the fluid pressure is a secondary contribution.
BP neglect pressure altogether and start with V,, = 0 (but (pV,), finite).

For V, > V,,,, the important driving mechanism which counteracts gravity is the gradient of the effective magnetic field pressure.
In order to understand this, let us consider again equation (10). We see here that in general (i.c., when Q(¥) # 0) v is not parallel to B,
although we tend to think that in ideal (infinite conductivity) MHD, the matter flows along the field lines. The physical picture is the
following: magnetic field lines act like rotating spiral solid wires (along ¥ = const. flux surfaces) that confine beads moving freely
among them. The important point is that each surface of wires rotates rigidly with angular velocity (¥). In other words, the ionized
disk to which the magnetic field lines are anchored imposes a rigid body rotation to each magnetic flux surface ¥ = const. Note
however that v, = rQ only when B, = 0. It is now easy to understand why rotating spiral magnetic field lines can accelerate a flow
outward only when the direction of magnetic field winding is opposite to the direction of rotation (i.e., v, and B, have opposite signs,
for z > 0). Needless to say that the exact geometry of rotating field lines is obtained as a solution of the full set of MHD equations
which include matter flow.

BP consider purely poloidal rigid wires in their analogy (p. 885 of their paper) and conclude that the winds are centrifugally
driven. However, once a fluid element moves out of the plane of the disk, the magnetic field is not only poloidal anymore, and it is
precisely the “winding” of the field lines which produces collimation and axial acceleration: the analogy with the rotating rigid
wires holds at all distances (this point is not emphasized in the literature). Another way to look at it is that the rotation of the ionized
disk (to which the field lines are anchored) is indeed the prime mover of the rotating magnetosphere; however, it is the tension of the
magnetic field lines which “ mediates  this rotation at all distances. Therefore, we prefer to think that the jets are magnetically (and
not centrifugally) driven.

The Alfvén point is not a critical point, since the Grad-Shafranov equation remains elliptical as ¥, increases through Vap-
Nevertheless, it is a zero of the denominator of our main equation and, therefore, an important singular point. We have argued that
the important driving mechanism is the magnetic field. Therefore, the outflows start with a small velocity out of the.disk plane, and
as the flow moves away from the disk, energy is transferred from the electromagnetic field to the matter. In other words, the ratio of
poloidal kinetic energy density to poloidal magnetic energy density is initially small, 3pv2/(B;/87) = M3, < 1 (M, is the poloidal
Alfvén Mach number), whereas at large distances it is large, M3, > 1. Hence, a physical outflow solution goes smoothly through the
Alfvén point at some finite distance. This last requirement determines the initial opening angle, or R'(Z = 0). In general, we find a
unique value of R'(Z = 0) = Ry,

By analogy to the de Laval nozzle or the solar wind problem, we see here a deep connection between the transition through a
singular point and the acceleration mechanism of the flow: it is the gradient of the fluid (magnetic field) pressure which accelerates
the one special solution through the sonic (Alfvén) singular point. We see this explicitly in equation (40): the term which counteracts
gravity is the last term of the left-hand side, — RQ(¥)V,, which, as we said, is the Poynting flux contribution to the energy flux.

With increasing distance Z, the jet’s radius increases to a maximum value and then begins to decrease. We can see this by
comparing the different terms in the radial force balance equation. At large distances, the “ centrifugal ” term

2 x =
p U Qo t HoV? (rv): S B} @)
r 4nV; F, R a;
is balanced by the “ magnetic force ” term
1 B2 10B: Qf (rg)** ™3 B2
— = — O (x—1-ZR) T2, 46
4n r  8m or  4nV? x ) R® g (46)

which is the sum of the pressure (1/4m)B}/r and the tension (1/87) 0B3/0r. It is easily seen that when the jet radius R becomes large
enough, the magnetic term becomes more important, and “ the centrifugal force cannot support the jet against constriction by the
magnetic tension” (BP, p. 892). When x > 1, the magnetic tension is always inward (oc(x — l)Bﬁ/r) and the flow recollimates at
relatively small axial distances. This is expected since, for x > 1, the jet carries a nonzero axial current. The larger the value of x, the
larger the current, and thus the stronger the recollimation effect. On the other hand, when x < 1, the magnetic force is initially
outward, the flow reaches large distances, and the term — Z?R” becomes important in recollimating the flow. As x approaches unity,
the recollimation distances approach infinity. In Table 1 we can see how the axial distances of maximum radius vary, as we vary x,
for a representative choice of jet parameters.

The jet evolution at very large distances beyond the distance of maximum of R also depends on the value of the exponent x. When
x < 1, the magnetic field is almost purely toroidal, and at some very large distance the flow is chocked. BP suggest that the
introduction of some extra internal pressure (e.g., through reheating during the recollimation phase), or the addition of external
pressure, will help the flow “survive ” the collapse and “ bounce,” as obtained in Chan & Henriksen (1980) and LBC. However, the
flow is chocked not because the radius becomes extremely small (in that case, rotation would prevent the collapse), but because it
turns around toward the symmetry axis (i.e., R’ = — o0). Therefore, pressure might never be important, and it is probably the
assumption of steady state which breaks down at those distances. When x > 1, rotation is sufficient to hold the collapse, and the jet
evolves smoothly through a series of recollimations and bounces at logarithmically equal distances. BP have x = 3/4 < 1; therefore,
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TABLE 1
LONG-RANGE BEHAVIOR OF A REPRESENTATIVE SOLUTION FOR VARIOUS VALUES OF x

x R;) mes Zmn Rmn Vzmax
0.5 i 35 35 67 28.5 59
0.7 o 242 8.3 353 73 6.0
075 i 2.18 113 3980 188 6.0
08 i 1.94 20.3 8 x 10* 800 6.0
085 . i 1.71 56 6 x 10° 7865 6.0
0.856 ...coviniiiiii 1.68 2 x 10° 5 x 10'° 4 x 108 6.0
0.858 ..ooeiniiii 1.67 3.7
0.9 (i 1.47 37
10 o 0.99 1.3
101 oo 0.94 409 12 0.68
102 .o 0.89 57 5 0.65

Note.—Ellipses indicate entries that could not be found numerically to exist.

they cannot obtain those solutions. We believe this result is real (and not an artifact of our scaling) since it is also observed in other
analytical solutions (Tsinganos & Sauty 1993). It is also physically very interesting since, as we said, x > 1 solutions carry a nonzero
axial electric current, and Appl & Camenzind (1992) have independently shown that current-carrying jets are stable!

We end the description of our solutions with a note on the fast magnetosonic critical point. Our numerical integration seems to
indicate that there is a critical value of x < 1, above which the flow approaches (but never reaches) the fast magnetosonic point and
never recollimates. In that case, we can explicitly obtain the asymptotic form of our equations (assuming that, as Z — o0, R — o0
and R’ — 0). The Bernoulli equation takes the form

1 Q? H,Q
1y 0 0% _ ;. 47
2 z + Fo ‘/Ze + F() (1] ( )
and the Grad-Shafranov equation becomes
Ze Q2
. v )
where € = 1 — R'Z/R. At these distances, the flow crosses the fast magnetosonic point when
QZ
V:= ;ie . (49)
0
This gives
Vetms = [3(Jo — HoQo/Fo)1'?, (50)
Q3

tms = Fo[2/3(Jo — HoQu/Fo1 1)

Equation (48) has the obvious solution € = const., or equivalently,
RocZ'7¢, (52)

in the special case when x = 1. The value of € and the constant of proportionality are of course obtained only after we perform the
detailed integration of equation (42) from Z =0 and R(0) =1 to infinity. We get a similar solution if the flow approaches
asymptotically the fast magnetosonic point at infinity. In that case € = €. As we said, the above asymptotic analysis is valid when
Xerie < X < 1. When x < x_,, the jet radius will eventually recollimate, whereas when x > 1, the jet radius oscillates around a finite
value as Z — oo.

It is important to note that 8, = vZ/v3, the initial “gravity” parameter, plays a minor role in the asymptotic behavior of the
solutions. However, J, is an important parameter in detailed disk calculations of the origin of the jets, since at small axial distances
away from the central compact object, gravity is important, and the larger d,, the larger the initial azimuthal magnetic field
(Byo/B.o = H,) necessary to drive the flow to larger distances where gravity is unimportant (for very small values of | Hy |, no
large-scale solutions exist).

The above results can be seen explicitly in Table 1 and Figure 2. We report in Table 1 the axial distance of the fast magnetosonic
point (Z;.. = zems/a;), the axial distance where the radius begins to recollimate (Z,,,, = z,.,,/a;), and the radius and axial velocity at
that distance (R, = Fmay/@ and V.. = 0,.../0, respectively), for various values of x. These solutions have: §, = 1, F, = 0.1,
Q, =118, Hy= —1.89, J, = —1.66, # = 0.01, and I" = 5/3. Ry, is the initial slope required for each solution to cross the Alfvén
singular point. In Figures 2a-2c, we plot the poloidal field-flow lines for the solutions with x = 0.8, x = 0.9, and x = 1.02,
respectively. We see that when x < 0.856, the flow crosses the fast magnetosonic point and eventually recollimates at a finite
distance above the disk (Fig. 2a). The axial flow velocity attained at that distance is of the order of 5-10 times the initial rotational
velocity at the base of the flow. When 0.856 < x < 1, the flow does not cross the fast magnetosonic point and does not recollimate,
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F1G. 2—Representative outflow solutions for different values of the exponent x. F, = 0.1, H, = —1.886, §, = 1: (a) recollimating solution with x = 0.8; (b)

nonrecollimating solution with x = 0.9; (c) oscillating solution with x = 1.02.

although we continued our integration to Z > 10'! (Fig. 2b). However, V, — V... = 3.7 (eq. [50]). x = 1 is, as we saw before, a
special solution of the equations. The solutions with x > 1 never cross the fast magnetosonic point and develop a series of radial
oscillations (Fig. 2c¢).

4. THE BP LIMIT

We will finally compare our analysis to the BP limit, where x = 2 and §, = 1 (Keplerian flow on the disk). The scaling of our
quantities with radius on the disk is then: voc r Y2, Boc "2 =17 54 poac r?* 3 =732 and p oc r**~* = r~ 572, in accordance
with BP’s scaling. In the limit of zero pressure (cold MHD flow), BP start their integration from V,(0) = 0. Therefore, equations (40)
and (43) giveus J, = —3/2and Q, = 1. ,

Our notation follows the notation of LMMS; therefore, we need first to make the connection with BP’s notation (listed on the
left):

xeZ,
- RE2Z),
feV(2),
9o VeZ),  and
(GM/ro)!"* v, .
We can now easily make the connection between their and our dimensionless parameters:

ke Fq,
Ae —Hy/F,, and
€eoJy—QoHy/Fo=—3/2+ 1.
BP also use the following notation:
JeoR—-ZR',
T R?2+2R*+ 2% 12 _3,
Ue1+ (R)?,
S (R? + Zy)~1z
me M3, = F,V,R(R — ZR)),
nHMisMip—é‘z’-, and
(R — ZR)?
1+ (R)R* + 2%

t<—>Mi (53)
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TABLE 2
CHARACTERISTIC PARAMETERS OF THE BP SoLuTiON: F, = 0.03, —Hy/F, = 30

z R R v, v, M, M,

0 oo, 1 168 0 1 0 0
545 e 548 060 317 133 1 0.61

163w 106 039 444 113 235 1
100 ..ot 290 014 595 067 880 181
500 ., 516 002 664 046 204 262
1246 ..o, 573 0 687 044 260 312
5000 ..o 403  —-0005 713 067 237 420

We note here that m and n are simply the square of the Alfvén and fast magnetosonic Mach number, respectively (for a cold fluid).
Now, equation (39) in BP notation gives g = (¢ — Aim/¢)/(1 — m), and equation (40) (the Bernoulli equation with (Da/v(z, = —(R? +
ZH ™ Y2 gives:

1 U+ -5-¢&=-3, (54)
which, together with the above equation for g(y), yields equation (BP2.12) (we will use the prefix “BP” to refer to BP equation
numbers). BP then consider the z-component of the Euler equation (eq. [5] without pressure), which combined with the component
of the same equation parallel to the poloidal flow direction (which is just the differential form of the above Bernoulli equation),
yields a second-order differential equation for £(x) (R(Z), eq. [BP2.17]). We instead consider the generalized Grad-Shafranov
equation (this is just the component of the Euler equation along the direction perpendicular to the poloidal flow direction), again
combined with the poloidal component of the same equation (eq. [41]), and we again get a second-order differential equation for
R(Z) (eq. [42]). The two approaches are, however, mathematically equivalent since any poloidal component of the Euler equation
can be recovered from a linear combination of any two other poloidal components.

We check that equations (42) and (BP2.17) are indeed equivalent, by repeating BP’s calculation for the special case x = 0.03 and
4 = 30. The parameters of our integration, according to the above discussion, are: x = 3/4, 5, = 1 (initial Keplerian flow), F, =
003, Qy =1, Hy= —-09, Jo = —3/2, and C, =0 (no pressure). We begin the integration with R(0) = 1 and V,(0) = 0. R'(0) is
specified by the condition that the flow goes smoothly through the Alfvén critical point. BP stop their integration at an arbitrary
height Z,,., = 500. We continue past that distance, and we show explicitly the radius recollimation (R’ < 0). Table 2 displays the
characteristics of the solution at the surface of the disk (Z = 0), the Alfvén critical point (M, = 1), the fast magnetosonic point
(M, = 1), and the point where the radius begins to recollimate (R’ = 0) (these three special points are indicated in boldface). There is
reasonably good agreement between the entries in our table and those in BP’s Table 1 (p. 896). BP’s entries have small numerical
errors, since they do not exactly satisfy the Bernoulli equation (BP2.10).

As a final check, we derive the BP limit of the asymptotic form of our equations as obtained in the previous section. In BP
notation, equation (47) gives

1,1 3
- —i=-: 55
2 g 2 ©3)

" E'J 1/J 1
-2-8)-iE5) 9

5. CONCLUSIONS

(eq. [BP2.25]), and equation (48) becomes

(eq. [BP2.26)).

We have shown the existence of axisymmetric, time-independent, nonrelativistic, ideal, magnetohydrodynamic, collimated out-
flows from thin accretion disks around compact stars, with self-similar solutions of the full set of MHD equations which include
matter flow, electromagnetic fields, pressure, and gravity. The parameters of the solutions are normalized to their respective values
at the base of the flow (on the disk); hence, the same values of the dimensionless parameters apply to very different physical regimes.

The magnetic field accelerates the outflow perpendicular to the direction of the disk and provides collimation at large distances.
The outflow velocities that we obtain are greater than or of the order of “a few times ” the rotational velocity at the base of the flow
(last column of Table 1). Therefore, the nonrelativistic treatment of the present work is relevant to small-scale stellar outflows from
protostellar systems observed in our Galaxy. In order to describe extragalactic jets, which are thought to originate from the disk
surrounding a black hole, we need to solve the relativistic equations presented in the Appendix. Solutions with relativistic terminal
velocities have been obtained using the relativistic generalization of the method in LBC (Lovelace & Contopoulos 1992). The
solution of the full set of relativistic equations is obtained in Contopoulos (1994).

The distribution of electric current flow along the jets is the important factor which regulates the general morphology of the
outflow. The rotation of the disk drags the magnetic field lines and builds up a B, component with direction opposite to the
direction of rotation (for z > Q). Therefore, the electric current that threads the jet downward within a radius ris I = 2ncrBy, oc L

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...429..139C

8-
1
[

v e

o

=4
=
(=]
&

No. 1, 1994 MAGNETICALLY DRIVEN JETS AND WINDS 149

When x < 1 (as in BP’s solution), a singular current flows along the axis and the return (upward) current is distributed across the jet
(the total current is zero; I(r - o0) — 0). However, the electric current switches from infinite current density downward to infinite
current density upward near the axis (in a physical situation we would expect this central downward-current region to have a finite
radial extent). When x > 1, current flows downward across the jet. There is no return current in the solution; the circuit “closes”
outside the jet, i.., outside the region where our scaling is valid. We postulate that straight cylindrical jets are characterized by
x > 1, ie, by a nonzero electric current flowing along the jet. It is important to note again that Appl & Camenzind (1992) have
independently shown that current-carrying configurations are more stable than non—current-carrying ones.

In order to calculate total mass, angular momentum, and energy flows along the jet, we need to truncate our self-similar solution
with inner and outer physical cutoffs. We assume that the self-similar scalings are valid for r,(z) < r < 7, (2), with r;,(z = 0) = 0.1
and r,,(z = 0) = 10. This is an arbitrary (but convenient) choice that will only affect the values of the conserved quantities of the
flow. Using the above expressions and reasonable values §, ~ 1, x ~ 1, the conserved quantities along each jet direction are (see
LBC) the mass-flow rate in the jet across any z = const. surface:

y 2 -6 1 a; V7 M Y/ B,\?
e[ remewo ) () () e, e
the angular momentum about the z-axis flow rate:
f a \3/ B.\2
L,= £=co.,s., d*xr(pv,v, — B, By/dm) ~ 10™* Mo(km s AU yr~! (—H 0)( 1 A'U> <—1—°a> = const. , (58)

and the energy flow rate:

. 1 1 1 .
E= Jz:com d*x Pvz[i v} + 5 (rw)* + 3 2+ w+ CI)g:| + o J;=const,d2x E.B,

Q. H, a; \*?( M \'2( B, \?
~1L, F — — — ) = .
® O(JO F, )(1 AU) M, G const. , (59)

where pv(|v|%/2 +w + ®,) is the energy flux density carried by the fluid (w is the enthalpy per unit mass), (¢/4n) (E x B); is the
Poynting energy flux carried by the electromagnetic field, and @, is the gravitational potential. Note that in order to take into
account the two symmetric jet directions + z, we need to multiply the above effluxes by a factor of 2. These expressions can apply to
both galactic and extragalactic outflows. For example, for typical values Fy = 0.3, Hy = —5, Q, =1, and J, = — 1.5, we get
M~10""Mgyr tand E~ 10 Ly, foran M ~ 1 M, a; ~ 1072 AU, and B, ~ 10> G young stellar object and we get M ~ 10~ !
Mgyr 'and E ~ 10'3 L, foran M ~ 108 M, a; ~ 1 AU, and B, ~ 10* G extragalactic outflow.

We finally note that the magnetic field can be a very efficient factor in removing angular momentum from the disk. An estimate of

the timescale for accretion gives
(L2)aisk Paisi V5 \(
Tw~—F—~ 77— =T, 60
accer (Lz)jel Bz B¢ R rot ( )

where h/R is the ratio of height to radius of the disk and T, is the rotational period. We see that if we assume energy equipartition
between the disk rotation and the magnetic field (which is reasonable if the disk is sufficiently ionized), then even for a not-so-thin
disk, the timescale for accretion can be comparable to the rotational period. The magnetic field can then be dynamically important
in regulating the accretion.

We thank Demosthenes Kazanas for discussions and encouragement. This work was supported in part by NASA grant NAGW
2293 from the Origins of the Solar System Program.

APPENDIX

We consider here the more general case of relativistic axisymmetric magnetohydrodynamic flows for the case of a weak
gravitational field (|®,|/c* < 1) and negligible pressure. This approximation of relativistic and “cold” outflows is reasonable at
large distances away from the central object.

Following Lovelace et al. (1986) for the special relativistic limit where gravity and gas pressure are negligible, we obtain the
relativistically generalized Grad-Shafranov equation:

r’Q?  yF? 1 r*Q? yF , , , ,
<1 e %)A*‘P ~ 53 V(7) VY — FV(E V¥ = —(H + yro, FXH' + yro, ) — npr(J' + yr0,Q) , (A1)
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where again () = d()/d¥, y = (1 — |v|?/c®)~"/? is the Lorentz factor of the flow, p = ynu is an effective mass density in the
laboratory reference frame, and the four arbitrary functions F, Q, H, and J of ¥ enter through the following four relations:

F¥) = 4np —2- | B K (A2)

1 F¥
Q) =~ <u¢ - Z(Tp) B,,,) , (A3)
H(¥) = rB, — yF(P)rv, , ' (A4)
1+ J(ly) y(l - Qm:#*) : (AS)

Equation (A5) is the generalized Bernoulli equation. The notation is the same as in § 2. We consider again the same simple form for
the equation of a field-flow line,

r=ry(z) = ry Riz/ry) = ry R(Z) . (A6)

Here r and z are dimensionless as before, rescaled to the “characteristic” radius a;. Using the generalized Euler equation, the
following expressions enable us once more to rescale the ry, terms in the relativistic MHD equations:

Y(r, z) = (re)™¥o » (A7)
B(r, 2) = (ry)" *B(2), (A8)
ur, 2) = N2, , (A9)
oir, 2) = (re)?**0(2) B— | (A10)
F(¥) = (ry)*~Fo 22 (A11)
0
QAF) = (re) 712 2, (A12)
H(¥Y) = (ry)* " 'Hy a; B,, and (A13)
J®) = Jov5, (A14)

where V, p, F,, Qo, Hy, and J, are again dimensionless. Note that in the nonrelativistic case the scaling of v came out of the
gravitational potential scaling. Here the neglect of the gravity terms is very helpful because any scaling of v with ry, would be a
problem in the y = (1 — |v]?/c?)~ /2 terms. Now y(r, z) = (1 — | (Z)|*/c?)~'/? = y(Z). Note also that velocities are again normalized
to the initial rotational velocity v,, and not to the speed of light ¢, in order to make the connection with the expressions of § 2. The
expressions for (ry),, (ry)., Z,, Z ., (ry),., and (ry),, are the same as before (eqs. [28]-[33]). Using the above expressions and factoring
out (ry)* ~?B,, the generalized Grad-Shafranov equation takes the form

R2Q2 1 1+(R)? ., R+2Z2
[ 5 mnre -z | -t e gt R |

92 2R 1 + (R)? 1 ZR"
— R? Fy———|(Z + RR)| yV,R V.R V.R' —yV,.R ———
|:R ZR/ (R ZR)2 + OR ZR/ ( + )y z +y z +'),z YV R__ZR/
n2 QO R2V¢
+7VRG = 2L+ (RY) | = = (Ho + YRV, Follx = DHo + yRV,(x = DFe] + 7Fo 05, (AL9)
and the generalized Bernoulli equation the form
RQ,V, J
y(l——‘;—¢>=1+—§. (A16)
C'l c'l
This is the equation that we have to root-solve numerically to obtain V, as a function of R, R’, and Z. We also have that
RQ,+ H,V (R — ZR’
= o+ Ho V[ ,). (A17)
1 —9yF,V,R(R — ZR))
We now differentiate the Bernoulli equation with respect to Z, and after some algebra, we obtain:
V,=SF+4+R"¢, (A18)
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! where
SRR, 2)— PRGNS + EF) = FI1 — (RO Vilei)] + (R Vi)
T G[(1 — (RQq Vy/cD)] — (yRQo/c;NB + 6%) ’
SRR, 2) — TROERNE + E) = HT1 — (RO, V)]
T Y1 — (RQ, Vy/c)] — (PRQo/CINRB + 6%) °
and
R'Q, + yF, V, V,R(R — ZR’)
R, R =
#R. R, 2) 1 —yFoV,RR—ZR)
AR, R, Z) = Ho(R — ZR') + yFo V,R(R — ZR')
T 1 —yFyV,R(R — ZR) ’
. —HoV,Z —yFyV,RZV,
R R, Z)= 1 —9F,V,R(R — ZR) ’
F,V,V,R(R — ZR))
(f R, R,, Z = ’
( ) 1 —9yF,V,R(R — ZR))
3
, Y Vo A
FR R,2) =% ,
e A
3 n2
P V(1 + R+ V, B
4R,R,Z)=5 ,
®RD=a T orv, e
3 2 p/
o P VIR 4 V%
HR,R,Z)== .
R A
The above forms come in the expressions
Vo=A +V, B+R'EC+YE, (A19)
Y=F +V,9+R'H# =4 +R'YZ, (A20)

where
AR, R,Z)=F + 59,
PR, R,Z)= %+ .
Finally, going back to the generalized Grad-Shafranov equation and putting everything back, we obtain

R2Q2 1 1+ (R)? R? 4 Z2
1— —yFoV,RR—ZR) || - ———— +(x — 1 - R
[ 2 FVR( ):": RR—zr) T VR ZZrY (R — ZR)?

Q% —2RR'Z + R*(1 — (R)?)
-=2 F Z + RR)yV,R + V,RA + yRF) + yV, R(x — 2)(1 + (R)?
2 R — ZR): +Fo g~ | © + RRYGV.R + V.RA" +yRF) + ¢V, R(x — 21 + (R)?)
YV.RZ
Z r — n
+(Z+ RR)<V,R£Z +RS - _ZR,>R jl
Q, R?Y,
= —(Ho + YRV, Fo)[(x — )Hq + yRVy(x — 2)F ] + yFg —>——2—, (A21)
VAR — ZR))
which gives the final equation
M
R=2RR 2, A22
s ) (A22)
where
N(R,R,Z)=|1 R*05 Fo V,R(R — ZR) RE+22 +F ——1—(Z+RR’) V,RZ + yR ¥ WVRZ
A= 2 Vot (R—ZR) | "°R—2ZR z 4 R—ZR)’
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p;: and
. ’ RZV
MR, R, Z) = —(Hy + yFo RV)[(x — 1)Hy + yFo(x — 2)RV,] + yF(Q, 7
VAR — ZR))
R2Q2 1 1 +(R)? Q2 —2RR'Z + R*(1 —(R)?
~|1- —YFoV,RR—ZR) || - ————— + (x = ) =L | 4 20
[ z Mol )][ RR—zr) TV Rz |t 2 (R — ZR)

1
—F, R_ZR [(Z + RR)yV,R + V,RX* + yRF) + yV,R(x — 2)(1 + (R)?)] .

This is the final second-order ordinary differential equation for R(Z), which can be integrated numerically. The solution for the flow
and the fields in the entire poloidal r-z plane is obtained as before through equations (A6)—(A10).
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