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ABSTRACT
We describe an automatic, objective routine for analyzing the clumpy structure in a spectral line position-

position-velocity data cube. The algorithm works by first contouring the data at a multiple of the rms noise of
the observations, then searches for peaks of emission which locate the clumps, and then follows them down to
lower intensities. No a priori clump profile is assumed. By creating simulated data, we test the performance of
the algorithm and show that a contour map most accurately depicts internal structure at a contouring interval
equal to twice the rms noise of the map. Blending of clump emission leads to small errrors in mass and size
determinations and in severe cases can result in a number of clumps being misidentified as a single unit, flat-

tening the measured clump mass spectrum.

The algorithm is applied to two real data sets as an example of its use. The Rosette molecular cloud is a
“typical” star-forming cloud, but in the Maddalena molecular cloud high-mass star formation is completely
absent. Comparison of the two clump lists generated by the algorithm show that on a one-to-one basis the

clumps in the star-forming cloud have higher peak temperatures, higher average densities, and are more gravi-

tationally bound than in the non-star-forming cloud. Collective properties of the clumps, such as
temperature—size-line-width-mass relations appear very similar, however. Contrary to the initial results
reported in a previous paper (Williams & Blitz 1993), we find that the current, more thoroughly tested

analysis finds no significant difference in the clump mass spectrum of the two clouds.

Subject headings: ISM: clouds — ISM: individual (Rosette Nebula, Maddalena Cloud) — ISM: structure —
methods: analytical — stars: formation

1. INTRODUCTION

Within the solar circle, half the mass of the interstellar
medium is in the form of molecular clouds (Dame 1993),
ranging from high-latitude clouds with masses of a few times
10 M and sizes of a few parsecs to giant molecular clouds
(GMCs) with masses as large as several times 10 M ¢ and sizes
greater than 100 pc. Star formation has been observed in each
type of molecular cloud, from the smallest (Magnani, Blitz, &
Mundy 1985) to the largest (e.g., Myers et al. 1986). Because the
stars form from the clouds, understanding their formation and
evolution explains the earliest stages in the process of star
formation. The molecular clouds are always observed to be
highly fragmented (e.g., Blitz & Shu 1980 and references
therein). Thus the ability to quantify the fragmentation or
clumpiness of clouds may make it possible to learn how cloud
structure is related to cloud formation and evolution.

Molecular clouds have been observed at optical, infrared,
and millimeter wavelengths by means of, respectively, the
stellar extinction due to associated dust (e.g., Dickman 1978),
the thermal emission of this dust (e.g., Cox, Deharveng, &
Leene 1991), and the rotational and vibrational spectral lines
of the molecules themselves (e.g., Turner & Ziurys 1988). Radio
spectral line mapping has the advantage over optical and infra-
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red of providing high velocity resolution which not only gives
dynamical information about the cloud but also separates out
components along the same line of sight, creating a “data
cube” with intensity a function of two positional and one
velocity coordinate.

The most commonly used tracer of molecular gas is the CO
molecule because of its high abundance. However, the volume-
averaged density of a molecular cloud is typically n ~ 100
cm ™3, an order of magnitude less than that needed to excite
CO emission, suggesting that the clouds consist of density
enhancements with a surface filling fraction\of unity but a
volume filling fraction of about 10% (Blitz\& Shu 1980).
Higher resolution mapping, which became possible with larger
telescopes and lower noise receivers, showed that these density
enhancements form discrete, localized clumps of emission (e.g.,
Blitz & Stark 1986). The measurements of the far-infrared C i1
line by Stutzki et al. (1988), which traces the presence of
ionizing photons, provide further independent evidence for
clumpiness: ionizing radiation penetrates far deeper into the
cloud than would be expected in a uniform medium. All molec-
ular clouds that have been observed at high resolution show a
clumpy internal structure, and it is through an understanding
of this structure that questions about cloud evolution and star
formation can be addressed. For example, are evolutionary
differences (i.e., star forming or not) between clouds reflected in
the distribution of clumps? Even in a star-forming cloud, there
are clumps that do not form stars: what are the conditions of
these clumps, and will they eventually form stars, or are they
simply inert gas? What is the effect of stars on clumps—can
star formation be induced in clumps by nearby stars? Do the
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clumps themselves possess internal structure? Can we see the
actual process of clump formation?

There have been several observations of different molecular
clouds with the purpose of observing and describing the
clumpy internal structure (Lada, Bally, & Stark 1991; Loren
1989; Bally et al. 1987; Carr 1987; Stutzki & Giisten 1990;
Herbertz, Ungerechts, & Winnewisser 1991; see Blitz 1993 for
a review). 13CO is the most commonly used tracer for such
observations because it has reasonably strong lines without the
strong saturation effects associated with CO along most lines
of sight. However, other optically thin lines can be and have
been used. Because these lines directly trace the column density
rather than the temperature, clump peaks are readily apparent
as emission maxima in the data cube. The emission associated
with each peak determines the clump size and mass, and as
long as individual clumps are sufficiently well separated, it is
possible to catalog clumps and clump quantities by eye—the
method used for the majority of cases above. In regions of high
clump density, blending of emisson makes estimates of the
relative contributions of each clump more difficult to calculate
accurately. Eye analyses generally split up the blended emis-
sion by an intuitive extrapolation of the size of the contributing
clumps, thereby imposing a subjective slant on the data
analysis. Moreover, as such data sets become increasingly large
and more common because of faster telescope systems, manual
analyses simply become unfeasible. An automatic structure
analysis routine can handle large data cubes efficiently and
objectively, making possible uniform comparisons of large
numbers of clouds—an important step to understanding cloud
structure and evolution. The first such routine, hereafter
referred to as Gaussclumps, was developed by Stutzki &
Giisten (1990), who fitted the data with a sum of triaxial Gauss-
ians. The algorithm that we have developed is closely based on
eye-analysis techniques, and simply automates the process.

This paper describes, tests, and applies this new algorithm,
for analyzing the clumpy structure of spectral line data cubes.
We describe how the algorithm, henceforth called Clumpfind,
works, and compare it with the different approach of Gauss-
clumps in § 2. It is tested on simulated data, and its per-
formance is evaluated, in § 3: the results of the simulations
determine optical values of user-entered variables and demon-
strate the effect of blending. In § 4 we apply the algorithm,
comparing the clump properties in a star-forming GMC and a
non-star-forming GMC. We conclude in § 5.

2. THE CLUMP-FINDING ALGORITHM

2.1. Appearance of the Data

The internal structure of molecular clouds observed in
millimeter-wave spectral lines is most readily seen in contour
maps. Clump analysis by eye, or by the algorithm we describe
here, work not on the actual continuous intensity map itself
but on its representation as a set of discrete contours. The
appearance of such a map is that of a set of peaks surrounded
by gradually decreasing contours (see, e.g., Fig. 8). For the case
of an optically thin line, intensity peaks correspond to density
maxima in the cloud which are the clump peaks themselves. It
is therefore an easy matter in principle to count the clumps (it is
shown in § 3.2 that this consideration alone determines how
best to contour the data). However, to go beyond simply
counting the numbers of clumps and actually describing their
physical properties requires following the clump profiles to
lower levels. In the case where the clumps are well separated,
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each peak can be readily and unambiguously followed down to
the noise level of the map.

As the clump-to-clump separation decreases, however,
blending of clump emission will occur above the noise level,
corresponding to contours that surround more than one peak.
Each peak still corresponds to a clump, but now the task of
following the clump profile out to lower intensities requires
dividing up these shared contours. It is this step that is the
most subjective in producing a list of clump properties by eye.
The Rosette molecular cloud is an example where there clearly
is some blending of emission but it is sufficiently mild that
clump decomposition by eye is still possible (Blitz & Stark
1986).

When there is strong blending so that there are many peaks
sharing contours at high intensities, it becomes more difficult
for the eye to divide up the blended emission accurately and
correctly describe the clumps. Part of the problem is the diffi-
culty with visualization of the full three-dimensional structure
using only two-dimensional slices. A computer routine has the
immediate advantage of not being hindered by a three-
dimensional array and also of applying the same rules used in
the low-level blending case in a uniform, unbiased way both
from clump to clump within a single data cube and from one
data cube to another.

Ultimately there is the case where clumps are so close
together in projected position and radial velocity that they
appear as only a single peak. In this case the observations
cannot distinguish between the different clumps, and errors
will inevitably result, no matter what method of clump analysis is
used. It has already been demonstrated in the case of CO
surveys of the Galaxy (which are severely blended because of
the low contrast of CO emission and velocity crowding at the
tangent points) that cloud decomposition can be very mislead-
ing (Adler & Roberts 1992).

The computer algorithm that we have developed was moti-
vated by how the eye decomposes the maps into clumps and
mimics what an infinitely patient observer would do in the
same manner that we have heuristically described above.
However, the nature of the observations—finite resolution and
instrumental noise—make additional considerations neces-

sary.

2.2. Description of the Algorithm

Spectral line mapping of a molecular cloud produces a data
cube or a set of pixels in position and velocity measuring the
emission, generally in temperature units. Clumpfind directly
reads the data cube into a three-dimensional array and, just as
in producing contour maps, requires a contouring interval
with which to “view” the data. Linear contours are assumed,
T = AT, 2AT, 3AT, ..., where AT is a user-defined parameter
whose value we discuss in § 3.2.

Clumpfind traces structures by connecting pixels, at each
contour level, that are within one resolution element of each
other. Generally, the resolution is equal to the beam size in
position (or the width of one spectrometer channel for the
velocity axis). For example, if the mapping is made at full beam
spacing, then one resolution element is just the distance from
one pixel to its immediate neighbor, but is twice this for fully
sampled (half-beam) observations. However, if the observa-
tions are undersampled, then structures smaller than the map
grid spacing cannot be detected, and the effective resolution is
again equal to the interpixel distance.

Typically, the contour levels are only 1 or 2 pixels wide (i.e.,
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down the steepest gradient of a clump profile each or every
other pixel is at a different contour level). The task of connect-
ing neighboring pixels within the same contour level and of
then following structures from one contour level to another
therefore requires careful consideration. We introduce the
parameter N, which limits a neighboring pixel to be 1
resolution element away in at most N, ;, = 1, 2, 3 axes (either
position or velocity). Figure 1 demonstrates how the neighbor-
hood of a single pixel depends on the value of N,,. It is
assumed, for diagrammatical ease, that the resolution is equal
to the interpixel distance (if the resolution is greater, then there
are more pixels along each axis of the cube). If N,,;, = 1, only
pixels that share the faces of a cube are considered to be neigh-
bors (each pixel has 6 neighbors). If N,,;; = 2, all pixels along
the edges, but not including the vertices, of a cube are con-
sidered to be neighbors (each pixel has 18 neighbors). If
N,is = 3, all pixels in the cube are considered to be neighbors
(each pixel has 26 neighbors). It is shown in § 3.2 that the value
of N, is critical to the accuracy of the clump decomposition.

The two parameters, AT and N,,;,, dictate, respectively, how
the data are contoured and how the pixels in the data cube are
connected. Clumpfind now works on the full three-dimensional
data cube in exactly the same way as the eye analyzes a two-
dimensional contour map as described in the previous sub-
section. Clumps are located by their peaks, which are local
maxima in the map. A local maximum is an isolated (three-
dimensional) contour, i.e., at set of pixels at one contour level
that is not connected to other pixels at higher levels.

Clumpfind works from the highest contour levels to the
lowest. At each level, isolated contours are identified and
labeled as new clumps. The other contours at this level are
extensions of previously defined clumps. Contours that sur-
round just one peak are simply assigned to the corresponding
clump, but blended contours that surround more than one
peak must be split up using a “friends-of-friends” algorithm:
the unblended part of each contributing clump (defined at
higher contour levels) possesses an immediate neighborhood
defined by the parameter N,,; that extends into the shared
contour level. Similarly, the pixels in these neighborhoods have
neighbors that further extend into this contour level, and so on.
Eventually, all the pixels in the blended contour level are con-
nected via their “friends” to a clump to which they are thereby
assigned. There may be a small number of pixels “in the
middle” that end up being connected to more than one clump
in this way. These are assigned to the clump whose peak is
closer. The process is repeated at the next lower contour level,
including any newly merged clumps. As we have emphasized,
an important part of the clump decomposition lies in the han-
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FiG. 1.—Diagram of neighboring pixels for different values of N, ;. A neighbor is 1 resolution element away in N
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dling of the blended emission. We test the performance of this
method using simulated data in § 3, from which we find that,
despite the simplicity of this approach, clump parameters are
accurately determined.

The input to Clumpfind is a data cube of intensity in posi-
tion and velocity. The output is a companion data cube of
clump assignments in position and velocity. Therefore, by
‘combining the two data cubes, each position corresponds to an
intensity and a particular clump. Conversely, by searching the
second data cube for any one clump, its extent and profile are
easily followed: this way different clump properties can be
quickly calculated (Appendix A), individual clumps can be
plotted in relation to the rest of the data cube, and so on.

As a visual example we describe how Clumpfind would work
on a two-dimensional contour map in Figure 2a. Starting from
the highest level, it would define clump A. At the next lower
contour level, clump A extends and clump B appears. Clump C
appears at the next level and A and B merge: the surrounding
contour is split up between the two using the friends-of-friends
method. At the next (second lowest) level, clump D appears
and A and C merge. The shared contour surrounding A, B, and
C s split up between them. Finally, A, B, C, and D all merge at
the lowest contour level. The final result is four clumps defined
as in Figure 2b.

2.3. Variations on the Method

A possible problem with the approach described above is
that each pixel in a blended region is either assigned com-
pletely to one clump or completely to another when in fact the
measured intensity is actually a sum of emission from each of
the contributing clumps. A more sophisticated treatment
would be to permit each pixel to be assigned fractionally to
more than one clump. We have, in fact, developed such an
algorithm with fractional assignments based on extrapolating
the unmerged parts of clumps into blended regions, but found
its performance to be no better than the simple single-
assignment approach. Indeed, the simulations, which we
describe in § 3, demonstrate that this kind of analysis is
unnecessary, since the simple friends-of-friends approach
works extremely well. The reason that blending can be treated
in such an unsophisticated fashion, and also that previous
clump decompositions by eye proved so successful, is that the
degree of blending of the clumps that are seen in the data is
typically very small. Appendix B shows, for the case of two
Gaussian clumps blended together, that if more than just
~10% of the flux of one is blended with the other, then the
individual peaks of the two clumps will not be resolved and
they will not be identified as distinct. Therefore, if the peaks of

= 1, 2, 3 axes (either position or velocity).

axis

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...428..693W

696

F1G. 2a
F1G. 2.—(a) Sample contour map to demonstrate how Clumpfind works. (b) The clumps found by Clumpfind.

the clumps can be distinguished, more than 90% of their flux is
contained within the unblended contours and is therefore
easily assigned. These numbers are less extreme if large
numbers of clumps are all blended together, and also may be
different for non-Gaussian profiles. For moderate blending, if
the peaks of each clump remain detectable, the flux contained
in the blended contours will probably still be relatively small.

On the other hand, it is clear that clumps can readily merge
and appear as a single peak which cannot be deciphered using
any algorithm that identifies clumps as local maxima in the
data cube. FEither a completely different method of clump
deconvolution must be employed (which attempts to determine
the constituent components of the blend, and therefore neces-
sarily assumes a particular clump profile), or the cloud should
be reobserved in a different molecular line that samples higher
densities for which the blending may be less severe.

2.4. Comparison with Gaussclumps

The identification of clumps and clump properties is affected
by an observer’s philosophy about how to separate blended
emision into discrete units. There exists in the literature one
other automated routine for clump deconvolution: Gauss-
clumps (Stutzki & Giisten 1990), which fits the data in a gener-
alized least-squares sense as a sum of three-dimensional
Gaussian clumps. The assumptions of this method and those of
Clumpfind are quite different, and we discuss them here.

The basic assumption of Clumpfind is that local maxima in
the data are the peaks of clumps, and thus that the number of
peaks in the data cube is equal to the number of clumps in the
cloud. The corresponding assumption of Gaussclumps is that
the clump profiles are triaxial Gaussians. There are both
advantages and disadvantages to either of these differing phi-
losophies. By fitting the data points, Gaussclumps works
directly on the continuous intensity distribution. Clumpfind,
on the other hand, contours the data into a finite number of
intensity steps. For a single, isolated peak, Clumpfind will
always find one clump, however peculiar the profile may be.
Gaussclumps, on the other hand, may find many clumps (each
fitted clump having 11 free parameters) associated with this
peak, depending on the profile’s degree of departure from a
single tri-axial Gaussian. For the case of several clumps
blended together, if the peak of any one clump is not visible in
the data, that clump will not be found by Clumpfind. To
deconvolve such a blend requires fitting the peaks that can be
seen, and then fitting the residuals of these fits. The fitting,
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however, requires a particular clump profile or shape which
must be assumed a priori, as in Gaussclumps.

In practice, the real differences between these two
approaches are small. Observationally, the large-scale three-
dimensional clumpy structure seen in a data cube consists of
clumps that are fairly circular and are not strongly blended
together. (Elongated structures, e.g., wisps or filaments, are
often seen at smaller scales, but even then typically break up
into multiple peaks.) Under these conditions, (and since clump
profiles are not greatly different from triaxial Gaussians),
Clumpfind and Gaussclumps both agree well on the size and
location of the largest clumps. We have run some of the simu-
lations described in the following section on Gaussclumps in
addition to Clumpfind and find that, whereas Clumpfind
misses low-mass clumps that lie below the lowest contour,
causing the mass spectrum to flatten at the low-mass end, there
is a tendency for Gaussclumps to find enhanced numbers of
low-mass clumps from the residuals of the fits to more massive
clumps, particularly in the case where the simulated clump
profile is not Gaussian in position. This has the opposite effect
of steepening the mass spectrum at the low-mass end. At inter-
mediate to high masses, we find that both algorithms generally
perform well, except in cases of very high blending, when the
both fail. We discuss these results for Clumpfind in more detail
in the following section.

3. TESTING WITH SIMULATIONS

The complexity of the three-dimensional structure in a data
cube makes it important to check the performance of Clump-
find in realistic cases and to assess its limitations in terms of
blending, signal-to-noise ratio, and resolution. This is best
done by creating simulated data and modifying the input con-
ditions in a controlled way. In doing so, we have found more
general results about analyses of this type of structure that go
beyond the application of this particular algorithm.

3.1. Creating Simulated Data Cubes

To create a simulated data set, we first need to create a
simulated clump. This requires specifying the mass, tem-
perature profile, size, and line width. Since the integrated tem-
perature is proportional to the mass, only three of these are
independent. If there exists a relation between mass, size, and
line width (e.g., Larson 1981), we need only to specify two: the
temperature profile and mass. Observations of an isolated
clump generally exhibit a Gaussian velocity profile, which we
adopt for the clumps in the simulations. Similarly, we have

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...428..693W

No. 2, 1994

chosen a Gaussian for the spatial properties of a clump; the
simulated clumps are therefore triaxial Gaussians. For existing
data sets, the widest clumps are usually only 5-6 pixels wide,
so that the differences with other profiles (e.g., an inverse power
law) are small. We have created simulations with different
clump profiles and find that the performance of Clumpfind is
not significantly affected.

With the adoption of a triaxial Gaussian profile, the clumps
are then completely specified by their mass, with the size and
line width determined via mass—size-line-width relations. We
have attempted to use the observations to guide us, but rela-
tions that have appeared in the literature cannot be exactly
followed, since, as we will show here, they are inconsistent with
each other.

For an optically thin tracer all the clump emission is
observed, and the mass is directly proportional to the inte-
grated intensity. For any reasonable clump profile with a
central peak, dimensional arguments then imply

M o T,  AR*AV |

where T,..,, AR, and AV are the peak temperature, clump size,
and (FWHM) line width, respectively (see Appendix A).

Beginning with Larson (1981), relations between size and
line width have been both observationally measured and theo-
retically (Myers & Goodman 1988) deduced. Larson’s size—
line-width relation, AR ~ AV?, together with his density-size
relation, 7i ~ AR™', imply T, ~ M™% so that the more
massive clumps have lower temperatures than the less massive
clumps, which is not seen in any of the aforementioned studies
of molecular cloud structure. The assumption of small optical
depth and these mass—size-line-width relations are therefore
incompatible.

In fact, the peak temperature of 3CO increases from ~1 K
for the smallest (a few solar masses) clumps to ~ 10 K for the
largest clumps of ~ 10? solar masses (Blitz 1993 and references
therein), so that T, ~ M%? is a better approximation. The
simulations presented here use this scaling along with
AV ~ M°%2? and AR ~ M°25 (these are similar to what are
actually found for two real cloud data sets in § 4). A random
ellipticity is then chosen so that clumps have aspect ratios
varying from 1 to 2. Changing these relations is easily done and
is found to have no significant effect on the performance of the
algorithm.

In these simulations, then, the clumps are completely deter-
mined from their masses. By now imposing a mass distribu-
tion, ie., the number of clumps as a function of mass, a data
cube may be created by simply combining (summing the emis-
sion from) a family of such clumps. An input list with the
position, peak temperature, size, line width, and mass of each
clump is created. There are two types of simulation, unblended
and blended: in the first case the clumps are positioned com-
pletely separately from one another in a regular grid. In the
second case the clump positions are random, with more
massive clumps selected from a tighter range in position and
velocity so as to simulate the situation within a GMC where
the more massive clumps are confined closer to the center of
the cloud and have a smaller velocity dispersion about the
mean cloud velocity (Blitz 1993). Finally, Gaussian random
noise is added to each pixel. Aside from the noise, all the flux in
the map therefore comes from the clumps in the input list. The
output of Clumpfind is a similar table of clump parameters
which may be compared to the input by matching coordinates
of clump peaks.
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3.2. Optimal V alues of the Parameters

By running the same simulation with different values of the
two input parameters, AT and N,,;,, we can find the optimum
values that maximize how well the output matches the input
and are therefore most likely to give the most accurate analysis
when applied to real data.

As we show here, the optimum values of the parameters can
be determined without making a direct comparison of clump
properties such as size, mass, etc., but simply by counting the
clumps, i.e., how many clumps does the algorithm find that
match with those of the input list of the simulation, how many
does it not find, and how many clumps does it find that do not
match up with any in the original input list? The detailed
workings of Clumpfind (e.g., following clumps to lower inten-
sities, dealing with merging, etc.) are not relevant to the dis-
cussion here: the number of clumps is simply determined by
counting local maxima, and the results in this subsection could
just as easily have been achieved by eye.

There are three errors that may result from the clump decon-
volution: some clumps in the input may go undetected, clumps
additional to those input may be falsely created, and some of
the flux in the map may not be assigned to any clumps at all.
We expect these errors to increase as the noise in the simula-
tions is increased, and as the blending of clump emission is
increased. We have created two types of simulations, one
where clumps are widely separated so that there is very little
blending of clump emission and a second where blending does
occur. In Figures 3a and 3b we plot how each of these varies as
a function of the two input parameters for a blended and an
unblended simulation.

As long as there is no lower limit to the clump spectrum,
there will always be some clumps below the detectability limit
of a map, because of either resolution or temperature sensi-
tivity or both. So as not to confuse chance agglomerations of
noisy pixels as real structure, all clumps detected by Clumpfind
must contain at least four resolution elements, with at least one
in the second intensity range or higher, to be considered real.
Since this requires T, = 2AT, the detection limit changes
with AT, so we expect Clumpfind to be unable to detect small
clumps at large contour increments. However, all clumps with
peaks above the second contour level should in principle be
detected. The first panel in Figures 3a and 3b plots the percent-
age of clumps that Clumpfind does not detect, but should.
These clumps may be missed due to noise lowering the peak
temperature below detectability or blending with nearby
clumps that can “hide” the peak (Appendix B).

For the unblended case this percentage is very small for all
values of AT/T,,,. There is a slight increase as AT/T,,
decreases below 2, since it increases the likelihood that noise
can lower a pixel by a complete contour level and decrease
detectable clumps’ peaks to below detectability. The percent-
age actually dips below zero because the minimum detectable
clump mass can be less than that expected by setting T = 2AT
in the mass-temperature relation. The Gaussian clump profiles
in the simulations possess extended wings that collectively
increase the peaks of all clumps above that predicted by this
relation, with the effect that supposedly undetectable clumps at
a given AT may in fact extend above the second contour level
and be identified by the algorithm. The result is that Clump-
find, instead of missing clumps, actually appears to find more
than it should!

For the blended case the percentages are higher overall than
would be expected, and along with the increase at AT/T,,, =

ms
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F1G. 3.—Errors made by Clumpfind as a function of the two user input parameters AT and N,,;, for an unblended (a) and blended (b) simulation. The first panel

(top) in each is the number that are not detected as a fraction of the number that are theoretically detectable(T,

veak > 2AT). The second panel is the fraction of clumps

in the output that do not match up with any clumps in the input (for N, > 1 these are generally noise spikes). The third panel is the sum of the first two and
represents the total number of errors that Clumpfind makes. In the fourth panel the mass of all the output clumps is plotted as a percentage of the sum of the input
and demonstrates that increasing flux is missed as the lower threshold T = AT increases.

1.5 there is also a slight increase at high AT/T,,,, which is due
to the lack of contrast as the increments in contouring levels
increase and peaks which could be distinguished at a smaller
contouring interval merge. N, = 1 appears to find clumps
more reliably than higher values of N, but, as becomes clear
from the next panel, this is due to the very large number of false
clumps that are found with N,,;, = 1, some of which happen to
match up with an input clump.

The percentage of false clumps, or clumps that the algorithm
finds but which do not match up with any clump on the input
list, is graphed on the second panel of each of Figures 3a and
3b. This error is very small except for N,,;; = 1 or AT/T,,, <
1.5. The problem with N, ;; = 1 is that each pixel is only con-
nected to 6 others (Fig. 1), compared to 18 for N,,;, = 2 and 24
for N,,;, = 3. Contour levels that are typically only 1 pixel wide
(cf. § 2.2) cannot be adequately followed with a limited neigh-
borhood defined by N,,;, = 1 that lacks diagonal partners, and
therefore are broken up into disconnected regions which can
take on the appearance to Clumpfind of a new, false clump.
With unlimited memory the data cube could be smoothed to a
finer grid and the problem of connecting pixels would be aca-
demic. When working directly on the raw data cube, however,
itis clear from these figures that we must use N,;, > 2.

Even for N, > 2, however, there are large numbers of
errors for AT/T,,, = 1.5. It is to be expected that if the contour
increment becomes too small, then the noise of the observa-
tions will appear as a number of spikes at different contour
levels giving the appearance of false structure. Increasing the
increment will decrease this effect but will lower the contrast
(number of contours per clump) in the map. Therefore, the
optimum setting for the parameter AT should be the smallest
contour level which is not severely affected by noise. Figures 3a
and 3b show that this is at AT/T, , = 2, for which there are
almost no errors due to false clumps. The errors increase
rapidly, however, for smaller contour increments. We conclude
that the structure seen in a map that is contoured at increments
less than twice the noise level is liable to be confused with
noise.

The third panel is simply the sum of the two errors and
demonstrates that Clumpfind makes the fewest errors when
N.is = 2, 3 and AT/T,, > 2. There is a slight preference for
AT/T,., = 2, but it is the total flux recovered that really settles
the issue. The fourth panel shows how the sum of the output
clump masses as a fraction of the sum of the input clump
masses decreases as the lowest level T = AT increases. This is
simply due to truncation of the clump profiles (the increase
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F1G. 4—(a) Integrated velocity map and (b) position-velocity slice along x = 4’ of a simulated data cube with the parameters of Table 1. Contours start at 4 K km
s~ ! and increase linearly by 2 K km s ™! for the integrated map, and 1 K increasing by 0.5 K for the position velocity slice. The data cube consists of 200 clumps
ranging in mass from 1 to 500 M, with a mass distribution dN/dM ~ M ~1-5.
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above 100% for AT/T,,,, = 1.5 is due to counting some of the
noise as clumps). The contrast in the map increases, and the
truncation of clump edges decreases, as the contouring interval
decreases. However, contours can be contaminated by noise
for a contouring interval that is too small. The optimum
contour interval represents a balance between these consider-
ations.

There are therefore two reasons to choose contour
increments AT = 2T,,,: (1) it is the smallest contouring inter-
val (hence lowest mass detectability and greatest contrast)
which is not overwhelmed by the noise, and (2) it allows clump
mass estimates to be more accurate by extending as far as
possible into the wings of the emission. We emphasize again
that this is a general statement about the contouring of molec-
ular cloud observations with the intent of accurately showing
structure and not about the internal workings of Clumpfind
itself.

3.3. Performance of the Algorithm

We have demonstrated that the optimum values of the input
parameters are N,,;, = 2 or 3 and AT = 2T, ,. Here we show
the comparison of input and output clump lists for a typical
simulation using these optimum parameter values. Two
hundred clumps ranging in mass from 1 to 500 M from a
mass spectrum dN/dM ~ M ~!° were placed at a distance of
1000 pc and sampled at 1’ in position and 0.68 km s~! in
velocity (corresponding to full-beam sampling on a 12 m tele-
scope and 250 kHz filter banks at the frequency of !3CO).
These parameters are summarized in Table 1. Once again,
blended and unblended data cubes were created. An integrated
velocity map and a position-velocity slice of the blended simu-
lation (shown in Figs. 4a and 4b) compare well with existing
maps of GMCs.

Figure 5a is the comparison between input and output for
the ideal case with no blending of clump emission, and zero
noise added to the data cube. Figure 5b plots a similar com-
parison for a blended, noisy simulation corresponding to the
maps in Figures 4a and 4b. There are six panels, four of which
plot input on the x-axis against output on the y-axis and two of
which plot the mass spectrum and a least-squares fit for the
input and output clump lists separately. Clumps whose peak
positions agree (within 1 resolution element in each axis) can
be directly compared and are plotted as filled circles. Clumps
which do not match up are plotted as crosses, either in a line
along the x-axis for those which are in the input clump list but
have no matching output (“missing” clumps), or along the
y-axis for those in the output clump list with no corresponding
input partner (“false ” clumps).

TABLE 1

SIMULATION PARAMETERS

Parameter Value or Specification

Distance ............cooeviiiienns 1000 pc
Resolution ..............ceeenenn. 1, 0.68 km s~ !
Number of clumps ............... 200
Massrange ...............ooelen 1-500 M,
Mass spectrum ................... dN/dM c M ™13
Clump profiles ................... Triaxial Gaussian
Scaling relations:

Temperature ................... Tpea ¢ M3

SiZE oviveriiieee AR oc M©-25

Line width .............c.ce... Av oc M°2
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As expected, the match is excellent in the noiseless,
unblended case (Fig. 5a). In principle, since T, = 0, the con-
touring interval can be arbitrarily small. However, in practice,
for very small contour intervals, each data point is at a
separate contour level, and the algorithm breaks down. We set
contour levels at AT = 0.5 K for uniformity with the noisy
simulations that we discuss next. Sizes, line widths, and the
lower ends of the masses are underestimated due to the trunca-
tion of the clump profiles at the lowest working level in Clump-
find, T = AT. Thus, it is the comparison of continuous input
clump parameters with measurements from a discrete data
cube that is responsible for the small deviations from a straight
line and serves as a benchmark to compare with the effect on
the output of adding noise and allowing blending. Mass errors
are greater for smaller, lower mass clumps for which the trun-
cation is relatively more severe. Sizes and line widths, which
vary less from clump to clump (see § 3.1) are more uniformly
affected), however. There are no clumps in the output that do
not match up with the input (i.e., there are no crosses along the
y-axis) but Clumpfind fails to detect clumps with T, <
2AT = 1K (i, crosses along the x-axis). This is simply due to
the requirement that a clump contain at least 1 pixel in the
second working level or higher. The same temperature sensi-
tivity limit will apply to real data and can be translated into a
mass-sensitivity limit if a mass-temperature relation is known.

Care must be taken when applying the mass-sensitivity limit
to statistics, since noise can make clumps that lie right on this
limit undetectable. The more relevant mass is the completeness
mass above which all clumps are found. Clumps on the detec-
tion limit have only 1 resolution element (pixel) above 2AT,
which may be dropped below this minimal level by noise.
Clumps with more than 1 pixel above the second contour level
are much less likely to be “lost in the noise” in this way.
A heuristic criterion for completeness then is that there be
more than 1 pixel with T >2AT—a resolution-dependent
criterion—which approaches the basic mass-sensitivity limit in
the case of infinitely good resolution (more pixels per clump).
For the simulations, which are made to resemble real data, this
completeness mass was of order 3—-4 times greater than the
theoretical mass sensitivity.

As a more realistic example, Figure 5b is the comparison
between input and output for a simulation with blending of
clump emission and noise with an rms of 0.25 K per pixel (so
that contours are set to AT = 2T, = 0.5 K). The comparison
is, naturally, not as good as the preious ideal case, but is never-
theless generally within a factor of 2 for sizes, line widths, and
masses. The combination of noise which tends to increase the
maximum, and blending (adding together) of clump emission,
explain why the output peak temperature is found to be greater
than the input. The effect of truncation, which lowered the
output (measured) sizes, line widths, and masses below the
input in the noiseless, unblended simulations, is no longer as
apparent. This may be due to the parts of the extended wings of
clumps that would lie just below the lowest contour, T =
AT = 2T,,,, with no blending, being boosted into this contour
because of blending. Also, if the wings are quite extended, so
that there are more pixels that lie just below the lowest contour
than just above it in the absence of noise, then noise will also
tend to increase the overall number of pixels that are found in
the lowest contour. Since Clumpfind defines clumps out to this
lowest contour level, size, line widths, and masses will tend to
increase because of these effects.

There are now several clumps along the x-axis that are unde-
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FI1G. 5—a) Output clump properties as measured by Clumpfind against the input values. Clumps that are in the input but not matched to any in the output
appear as crosses along the x-axis (“ missing ” clumps). There are such large numbers of small clumps that are not detected that the crosses are in fact indistinguish-
able in this figure. Crosses along the y-axis are clumps that are in the output but have no counterpart in the input (“ flase ” clumps). The two panels on the far right are
the clump mass distributions of the input and output with a least-squares fit to the power-law exponent indicated. Here the simulation consists of completely
separated clumps (no blending), and no noise has been added to the data cube. Clumps below the detection limit T = 2AT are not detected, and masses, sizes, and
line widths are underestimated because of truncation of the clump profile at T = AT. (b) As in (a), but for a simulation with blending and noise(T;,,, = 0.25 K) (see
Figs. 4a and 4b). Noise tends to increase the measured peak temperatures above input and acts in the opposite sense of the effect of truncation by increasing masses,
sizes, and line widths. The increased scatter in the size and mass relations is also due to the noise, but the number of missing and false clumps—crosses along each
axis—increases because of blending.
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tected yet are above the detection limit T, = 2AT =1 K.
These are the missing clumps discussed in the previous sub-
section and result from close merging of two or more clumps.
The noise in the map limits the contouring and therefore the
temperature contrast of the map. Similarly, the resolution with
which the cloud was observed also limits the ability to deter-
mine structure. Therefore, although these missing clumps rep-
resent errors in the analysis, they are unavoidable errors: the
clumps are not resolved. However, for clumps that can be
resolved, Figure 5b shows that clump properties are measured
accurately despite (low-level) blending and noise.

There are five clumps along the y-axis which are found in the
output but which do not match up with any in the input. Since
N.s > 1, these “false” clumps are not due to disconnected
contour levels, nor are they likely to be noise effects, since
AT/T,,s = 2. Rather, they are the results of merging of more
than one clump into one large apparent clump whose peak
does not match with any of the original. As we discuss in the
next section, blending inevitably causes loss of information
about the input clump properties.

In summary, Clumpfield can detect and accurately measure
individual clump properties in realistic simulations (i.e., includ-
ing noise and blending). The optimum values of the user input
parameters are AT = 2T, and N, = 2 or 3, for which only a
listing of clumps with peak temperatures T, ., > 2AT = 4T,
can be expected to be detected.

3.4. Determination of the Mass Spectrum

Besides measuring individual clump parameters, the collec-
tive properties of the clump ensemble are also of interest par-
ticularly for understanding the formation and evolution of
clouds. One such quantity is the mass spectrum or distribution
of numbers of clumps with mass. The way in which the mass of
a cloud arranges itself should be a basic signature of its forma-
tion and evolution. All the previous analyses of clumpy struc-
ture in molecular clouds discussed in the Introduction have
found strikingly similar distributions dN/dM ~ M ~1-5 (Blitz
1993). It is not understood why these distribtions should be the
same from cloud to cloud.

The determination of the mass distribution is not straight-
forward: clumps must first be accurately identified and their
masses measured over at least two orders of magnitude. The
numbers are binned by mass and generally fitted to some func-
tional form (most often a power law). Since statistical errors are
larger for small numbers, it is also clearly an advantage to map
enough of the cloud, and at sufficient sensitivity to be able to
detect large numbers of clumps to better determine the mass
distribution. We ran a simple test of randomly selecting N
clumps with masses from 1 to 1000 M, from an infinite pool
with mass distribution dN/dM ~ M~ !-%; we then binned by
mass and made a least-squares fit to find the power-law expo-
nent of the mass spectrum for this subsample. Figure 6 plots
how the measured slope and formal least-squares error vary as
a function of the size N of the subsample. We ran 100 of these
“simulations” for each N, and plot the mean measured slope
and the mean error in the slope determination as a function of
N, with error bars indicating the dispersion over the 100
samples. Errors are very large (with very large swings from
sample to sample) for N < 50 clumps, but even at large N the
error remains large, and there appears to be an effective limit to
the minimal formal least-squares error of ~0.2. The measured
slope is systematically underestimated for all N, although the
effect is small for N > 100. This is due to the small numbers of

Vol. 428

1.8 ——————

FTTT ettt

1.2

<a>

PRI SR B

0.8

L

Loow o Lyu g

<Aa>
—e—i

0.2

L]
FERTETN IR U

T

PR R SRS RS
50 100 150
# Clumps in mass spectrum

FIREN B
200

(=)

F1G. 6.—Results of a least-squares fit to a sample of N clumps drawn from
an infinite pool with mass distribution dN/dM ~ M ~!-5, One hundred simula-
tions are run for each value of N. The top panel graphs the averaged measured
slope; the lower panel, the average formal least-squares error. Error bars in
each panel plot the dispersion over the 100 simulations. The slope is systemati-
cally underestimated, and the error decreases very slowly with increasing N.
Typically 2100 clumps are needed for a good estimation of the mass distribu-
tion (given sufficient mass coverage).

clumps in the higher mass ranges which do not constrain the
upper end of the mass distribution well, resulting in a fitted
slope that tends to be flatter than the original. We conclude
that, because of the need to sample the small numbers of high
mass clumps adequately, typically ~100 clumps should be
used in determining the mass distribution.

Aside from the statistics, there are three more possible errors
that can affect this measurement: not measuring clump masses
accurately, missing clumps because of blending, and including
false clumps because of noise. For clumps that match up in the
input and output lists Clumpfind measures the masses very
well. There is a small percentage of false clumps that are found,
but the main error comes from the clumps that are hidden in
the blending. This problem worsens as the blending becomes
more severe, and eventually clump deconvolution completely
fails—blending irretrievably causes loss of information about
the underlying distribution. Again, only by running simula-
tions can we evaluate the effect of blending on the measure-
ment of a mass spectrum.

We ran 50 simulations, similar to those described in § 3.3,
using the same clump list (200 clumps with masses from 1 to
500 M from a mass spectrum dN/dM ~ M ~!-%). Gaussian
random noise, AT/T,,,=0.25 K, was added each time
(Clumpfind parameters were fixed at AT = 0.5 K, N,,;, = 3),
and the clump positions (and therefore the blending) were ran-
domly changed. The average least-squares fit to the output
mass spectrum was o, = —1.45 + 0.08 (the least-squares
error in each individual fit was typically ~0.25), and the range
varied from —1.26 to —1.58, showing that there can be very
large swings depending on the degree of blending and the way
the observations fit into the (fixed) mass bins. Inspection of the
output distributions showed that although clumps with masses
at the theoretical sensitivity limit T,.,, = 2AT were detected,
the distribution was not necessarily complete down to this
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mass, i.e., not all the clumps at this mass were detected, because
of noise effects on the peaks of these clumps, as discussed in the
previous subsection.

Similar tests showed that the effect of additional noise, while
maintaining AT/T,,, = 2, has no significant effect on the slope
until AT becomes so large that contrast in the map decreases
to the point where blending of clump emission becomes severe:
merging of many clumps into one observed clump most affects
the comparison of measured slope with input. The blending of
clumps in a data cube will increase (intrinsically) if the number
density of clumps is higher or (apparently) if the resolution is
poorer. By running the following experiment, we find that the
effect on the measured slope is the same. Two sets of simula-
tions with the same input clump list, dN/dM ~ M~ '3, as the
earlier simulations were created: the first set was created in the
exact same manner as previous simulations, but the data were
smoothed to half the resolution in each axis before applying
Clumpfind. The second set consisted of the same clumps, but
forced into a data cube of half the size in each axis (doubling
the number density of clumps). The data cube in both sets of
simulations was therefore the same size and equal to half that
of the previous simulations. Approximately 100 clumps were
found in each data set. Power-law fits to the output mass
distributions averaged over 10 simulations each were &, =
—1.32 1 0.12 for the first set and «,,, = —1.30 + 0.10 for the
second set. We conclude that resolution effects on the mass
spectrum are indistinguishable from intrinsic blending effects.
Comparisons of mass distributions between clouds must there-
fore be made at similar linear resolutions. However, even then
they may still be affected by intrinsic differences in blending,
and clump number densities (see the following section) should
be calculated. In strongly blended regions, a higher density
tracer may be more appropriate.

4. APPLICATION TO TWO MOLECULAR CLOUD DATA CUBES

The major advantage of an automated routine is that, both
across an individual data cube and from one cube to another,
the analysis is uniform (with the caveat about differences in the
intrinsic blending of emission discussed in the last section).
Hence comparisons between different regions of a data cube or
between two different data cubes are far more reliable than
they would be if done by eye (especially when comparing
analyses done by two different observers). In this section we
apply Clumpfind to real data by comparing two clouds appar-
ently in different evolutionary states, concentrating on the
application of the algorithm rather than giving a detailed
scientific discussion, which we defer to a later paper (Williams
& Blitz 1994).

All stars form in molecular clouds, and, conversely, all
GMCs that have been studied in detail are associated with
signs of active star formation. The one known exception is a
large, cold cloud discovered in a CO survey by Maddalena &
Thaddeus (1985) that lacks any clear optical signs of star for-
mation. The Maddalena molecular cloud, or MMC, is also not
obviously noticeable in the IRAS survey: its integrated lumi-
nosity is less 5000 L at 100 um (Blitz 1993 and references
therein), corresponding to a star formation efficiency less than
0.1%. The preponderance of star-forming clouds in the solar
neighborhood (Dame et al. 1986)—where even such cold
clouds should be apparent—suggests that all large molecular
clouds will eventually harbor star formation, and that the
MMC is simply a young cloud in which star formation has not
yet begun.

MOLECULAR CLOUD STRUCTURE 703

On the other hand, the Rosette molecular cloud, or RMC, is
a more typical star-forming cloud surrounded by H 11 regions
and supernova remnants and also containing strong embedded
infrared sources (Blitz & Thaddeus 1980; Cox et al. 1991). Blitz
& Stark (1986) mapped the RMC in 3CO at a resolution of
1'7, and recently Williams & Blitz (1993) mapped two regions
of the MMC in '3CO at 1, corresponding to the same linear
resolution of 0.7 pc for adopted kinematic distances of 1600
and 2500 pc to the RMC and the MMC, respectively. The area
mapped in each cloud is similar, and the two data sets are well
suited for a comparative study using Clumpfind.

This comparison was in fact made by Williams & Blitz
(1993), although only in order to measure the mass spectrum of
each cloud. We repeat the analysis here to show the compari-
son of other clump quantities, and also as a recalculation of the
mass spectra, previously made with an older, less well tested
version of the clump algorithm will an effective value of
N..is = 1, which we have since learned is prone to error.

For the analysis presented here, we used parameters N, ;=
3 and AT/T,,,, = 2, corresponding to AT = 0.5 K for the RMC
and AT = 0.25 K for the MMC. Any clumps that were too
close to the edges of the data cube were not used in the
analysis, since a significant fraction of their emission is not
mapped. The final clump lists consist of 83 clumps for the
RMC and a total of 78 for the two observed regions in the
MMC (see Tables 2, 3A, and 3B, respectively). Sizes, AR, and
line widths, AV, have been calculated (and corrected for instru-
mental resolution) in the manner described in Appendix A. We
assume that the **CO line is optically thin throughout, so that
the mass, M, 1, is proportional to the integrated temperature.
The size and line width combine to give the virial mass M;,
(Appendix A); for virialized clumps Mg > M,;,. Clump peak
temperatures, sizes, line widths, and virial parameter
M, /M, are plotted against M| g in Figure 7. Both clouds
are shown on the same plot for comparison.

It is immediately apparent that there are simple relations
between these independently measured clump properties. Peak
temperature, size, line width, and virial parameter all vary as a
positive power of the clump mass M,y (as noted by, e.g.,
Larson 1981 and Bertoldi & McKee 1991). The relations are
remarkably similar for each cloud. Least-squares fits have been
calculated separately for each cloud and have been drawn on
the plots to further emphasize that, despite the differences in
cloud star formation history, the clump ensembles in each
cloud obey the same scaling laws.

The plots with the most scatter are the line-width-mass and
virial parameter-mass relations. The second follows from the
first, since M,;, oc ARAV2. The scatter is large because the
resolution in velocity (0.68 km s~ ) is poor: clumps are only a
few pixels wide along the velocity axis, making it difficult to
measure the dispersion accurately. Observations of the MMC
were made simultaneously with 100kHz filter banks corre-
sponding to a velocity resolution of 0.26 km s~ %, but then the
noise, and hence mass detectability (My1g ~ Theax), Would be
higher. We estimate that only about half the number of clumps
would then have been found, which would be inadequate for a
reliable statistical analysis. A secondary factor is the small
range in clump line width from the most massive clumps to the
least massive. For the clumps that were observed in each cloud,
the integrated temperature (proportional to mass) varies by
more than two orders of magnitude, but the line width varies
by only about a factor of 6.

In contrast to the similarities in the slope of the relations
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TABLE 2
CLUMPS IN THE ROSETTE MOLECULAR CLOUD

'_,I
Ig-: lpelk bpeak upeak T;»eak AR‘ Avb MI.TEc Mvird
g: 207.000 —1.823 15.6 8.6 2.36 1.95 1183 1126
?l 207.100 —1.848 10.8 6.3 2.82 1.73 1030 1055
! 207.550 —-1.723 129 6.1 4.21 228 1878 2749
207.250 —1.823 129 6.0 3.06 2.30 1618 2033
207.275 —2.148 15.6 6.0 279 1.33 742 623
207.125 —1.898 129 5.5 1.90 1.64 753 644
207.075 —1.873 129 50 1.98 2.00 493 1003
206.850 —2.373 14.2 5.1 221 1.89 595 995
206.825 —1.998 163 52 1.94 2.03 592 1013
206.775 —1.948 15.6 51 133 1.50 296 378
207.400 —1.948 163 53 231 1.39 386 561
207.150 —1.798 12.2 4.5 1.50 1.50 318 423
206.750 —1.923 142 4.9 0.73 1.29 88 153
207.100 —1.873 16.3 4.5 1.95 1.47 327 533
207.775 —-1.773 11.5 4.3 3.77 1.51 1546 1088
207.350 —1.898 122 4.1 2.96 1.85 793 1280
206.775 —1.773 12.9 40 1.40 2.07 237 757
206.875 —1.898 149 4.5 1.99 2.24 457 1255
207.700 —1.923 149 39 3.60 1.92 1397 1681
207.900 —1.798 10.8 31 1.93 1.18 251 338
207.350 —1.423 12.2 3.0 2.64 1.92 621 1227
206.925 —1.598 14.2 32 0.57 1.11 62 89
207.600 —1.898 15.6 31 1.52 1.89 148 685
207.325 —2.573 16.3 30 0.78 1.18 75 137
207.250 —2.523 16.3 33 1.24 0.96 126 143
207.100 —1.648 9.5 27 0.79 111 49 122
207.600 —1.948 11.5 29 1.85 1.58 254 581
207.675 —1.923 115 25 2.09 1.12 291 327
207.225 —1.573 11.5 28 223 248 335 1725
207.250 —1.423 129 2.7 1.48 2.67 210 1329
206.800 —2.523 13.6 2.8 1.42 0.96 142 167
207.650 —1.573 149 29 1.89 1.43 255 487
206.925 —1.648 14.9 29 1.31 1.56 120 402
207.450 —1.248 4.7 22 3.08 0.94 382 341
207.500 —2.048 10.2 22 3.01 2.54 592 2446
207.925 —2.573 11.5 20 0.92 1.51 65 262
206.775 —2.498 11.5 22 1.13 1.04 61 153
207.750 —2.273 122 23 0.90 0.82 47 76
206.900 —2.248 129 20 1.14 1.30 52 244
206.825 —-2.073 14.2 2.1 1.49 2.08 85 815
207.375 —-1.273 14.2 23 1.54 1.26 105 307
207.450 —-1.273 13.6 23 0.71 0.90 30 73
207.800 —-1.773 14.9 20 217 1.25 199 430
207.325 —2.298 16.3 2.1 0.72 1.06 39 102
207.250 —2.448 170 21 0.83 0.68 48 48
207.500 —1.773 54 1.6 1.09 1.74 34 418
207.475 —1.723 54 19 1.08 1.13 65 174
207.500 —-1.273 54 1.8 0.74 0.68 30 43
207.275 —1.198 8.8 1.7 1.70 332 115 2355
207.275 —1.723 10.2 15 1.02 1.71 54 376
207.275 —1.223 10.2 1.8 0.74 1.10 52 113
207.300 -1.073 10.2 1.5 1.02 1.60 56 330
206.975 —2.498 11.5 1.6 1.88 1.20 145 342
207.500 —1.873 10.8 1.5 0.76 2.89 34 802
207.850 —1.598 10.8 1.9 225 2.56 191 1858
207.750 —2.198 11.5 1.7 1.09 191 54 498
208.225 —1.698 115 1.5 0.52 1.13 16 113
207.725 —1.523 122 1.9 2.38 3.96 193 4689
207.825 —2.073 12.9 1.7 0.46 0.68 18 27
207.425 —1.523 129 1.7 2.03 299 143 2288
207.500 —1.348 129 1.6 1.40 1.78 59 560
206.925 —2423 14.2 L5 0.76 1.10 36 116
207.825 —1.698 14.9 1.7 1.34 1.26 51 270
207.900 —2.048 15.6 1.9 1.55 1.04 94 210
207.575 —2.048 15.6 15 0.65 0.68 21 38
207.300 —1.923 16.3 1.6 0.52 0.68 18 30
206.950 —-2.073 19.0 1.8 1.45 317 77 1833
207.500 —1.373 5.4 1.1 1.31 0.68 36 77
207.425 —1.373 6.8 14 1.71 141 88 430
207.325 —2.048 8.1 14 2.00 1.16 130 337
207.475 —1.873 6.8 1.3 1.11 1.12 36 176
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TABLE 2—Continued

-
:;2'.-: Clump lpeak bpeak vpeak T;)eak AR® Avb I‘ll.TEc Alvird
5: T4.......... 207.400 —1.548 74 1.0 1.43 2.29 53 941
L 5., 207.300 —1.273 8.8 1.3 0.78 217 23 464
76.......... 207.350 —1.673 9.5 1.5 0.76 2.14 24 441
TTeeeeinnn. 208.150 —-2.073 10.2 1.0 0.58 1.24 10 113
78..cn.. 208.175 —-1.973 10.2 1.3 1.57 0.68 49 92
80.......... 207.075 —2.498 11.5 14 0.87 0.88 31 84
82.......... 208.150 —1.698 10.8 12 0.56 221 14 342
83.......... 207.475 —1.873 12.2 12 0.56 295 17 609
84.......... 207.900 —1.573 122 1.1 0.58 1.55 13 174
85.. ... 207.300 —2.098 129 13 0.78 0.68 20 46
86.......... 207.675 —2.073 129 1.1 0.69 0.93 13 76
87. ... 208.100 —-1.723 129 1.1 0.70 0.90 18 71
89.......... 207.075 —2423 14.9 1.1 0.70 0.68 13 41
90.......... 207.450 —1.523 15.6 1.2 0.56 0.68 12 32
9. 208.000 —1.573 15.6 1.0 1.13 2.26 27 724
... 206.950 —2.298 17.0 13 1.11 0.68 35 65
95. il 207.500 —1.798 17.6 1.2 0.88 1.16 13 151

* Equivalent circular radius in pc, corrected for beam size as described in Appendix A.

®* FWHM in km s ~*, corrected for beam size as described in Appendix A.

¢ Clump masses in Mg, derived from the integrated *3CO luminosity assuming LTE, 7,5 <
0.5, Ny,/N1sco = 4.8 x 10%,and T,, = 20 K. Includes an additional factor of 1.4 for helium.

4 Virial mass in M, assuming an inverse-square power-law density profile (see Appendix A).

TABLE 3A
CLUMPS IN THE MADDALENA MOLECULAR CLOUD: REGION 1 (& = 6"46™50°, 6 = —4°31'14")
Clump A"‘pcaka A‘spenkb Upeak T;)eak AR® A M, 1’ M virr
1o -5 -2 226 34 299 2.63 590 2593
2. -2 2 239 32 421 227 872 2739
3 -9 —4 233 2.8 474 3.51 1056 7347
4ol -2 -1 22.6 2.7 3.58 3.01 610 4084
Seeeiinnn. —11 2 22.6 22 297 2.64 302 2610
6.eeeennn. -17 -3 239 20 2.12 2.08 169 1153
Teeeinnen. —14 -5 239 1.8 1.21 1.85 53 523
8., —13 -3 239 1.8 1.52 1.86 91 663
9 —10 -8 219 1.5 1.74 2.32 71 1175
10.......... -17 -10 239 1.7 2.87 191 201 1320
M.......... —-17 -7 239 1.6 2.35 2.70 136 2168
12.......... 20 2 19.2 14 1.74 2.14 67 1004
13.......... 20 4 19.2 1.3 1.93 2.81 52 1916
14.......... 20 0 27.3 14 3.28 2.60 217 2799
15.......... 32 2 28.0 1.3 1.89 1.89 75 844
16.......... 27 6 18.5 12 2.22 244 82 1660
17, 34 5 19.9 1.1 1.61 1.29 27 336
18.......... 35 6 21.9 11 2.06 1.86 56 900
19.......... 8 —4 233 12 1.49 1.53 37 440
20...c.unnt 2 8 239 12 2.06 2.16 110 1211
21 -23 3 24.6 1.0 1.45 1.77 40 572
2. 6 7 25.3 1.0 1.81 2.34 76 1246
23...eee. 29 2 273 1.0 2.15 245 74 1628
24.......... 26 9 19.9 0.8 1.21 3.98 20 2409
25 . 27 1 20.5 0.8 1.35 3.76 20 2395
26.......... 28 3 21.2 09 0.96 1.76 15 374
27 ceiiinnnn. —-20 -1 233 09 1.99 2.07 67 1073
28...ceee. 8 5 233 09 2.34 3.05 82 2735
29 e, -20 4 226 0.8 1.21 091 20 128
30.......... —-24 -2 24.6 09 1.56 2.72 59 1455
3., —13 6 233 0.8 1.28 1.90 34 584
2. 40 9 233 09 0.48 1.01 6 63
3B -23 7 239 09 2.23 2.53 107 1790
34.......... 2 -5 24.6 0.9 1.27 1.77 28 502
35 3 -3 24.6 0.8 0.46 145 4 122
36.......... -23 5 24.6 0.9 0.97 1.59 17 307
37 35 —-12 26.7 0.8 1.05 1.99 13 527
38l 23 8 273 0.8 1.27 2.07 27 688
39, 37 —10 273 0.8 2.00 3.12 43 2448
40.......... 32 -2 273 09 1.20 2.13 17 687
41 26 4 28.0 09 1.67 1.48 57 458
42.......... -20 7 14.4 0.6 0.72 0.68 4 42
705
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TABLE 3A—Continued

Clump Aapeaka A‘speakb vpeak T;aeak AR® Avd IWLTE= I‘lvirr
43.......... 25 -2 19.2 0.6 1.59 2.18 19 952
4. 18 -1 20.5 0.6 1.97 3.26 32 2643
45.......... —14 9 21.2 0.7 129 3.99 23 2580
47.......... 20 7 233 0.6 1.69 4.28 21 3891
48.......... 2 —-12 239 0.5 1.60 232 27 1083
S50......el 16 9 239 0.7 0.81 1.40 7 199
Sloo. 16 7 24.6 0.5 0.84 3.01 10 956
52 i, 6 -8 253 0.6 1.36 2.15 18 789
S3.. 14 8 253 0.5 0.73 0.95 4 84
56.......... —-17 -9 273 0.6 1.23 0.68 10 72
58..iiiiint -25 -5 294 0.5 1.49 0.77 11 112

® Offset in arcminutes from o = 6"46™50°.

b Offset in arcminutes from 6 = —4°31'14",

¢ Equivalent circular radius in pc, as in Table 2.

4 FWHM in kms™!, asin Table 2.

¢ Clump masses in M, as in Table 2, but assuming T, = 10K.
f Virial mass in M, as in Table 2.

TABLE 3B
CLUMPS IN THE MADDALENA MOLECULAR CLOUD: REGION 2 (a = 6"43™39%, § = —3°30'23")
Clump Aapeaka A‘speak vpclk ’I;)eak ARc Avd ML’I'Ee Alvirr
-6 1 22.6 1.6 3.25 3.15 236 4062
4 -8 24.6 1.7 3.78 2.57 356 3149
—15 -1 22.6 1.3 2.36 2.65 139 2086
-1 1 239 1.3 3.44 2.85 258 3506
4 —-11 24.6 13 2.36 2.64 138 2072
4 -5 24.6 1.3 2.10 1.43 90 543
8 -4 25.3 1.5 3.85 3.39 408 5562
-1 —12 233 1.1 1.90 1.98 59 933
-4 5 24.6 1.1 2.18 1.93 78 1027
0 -8 25.3 1.1 3.13 347 219 4763
—10 -3 25.3 1.0 1.26 1.36 22 294
8 2 26.0 1.1 1.32 0.93 31 144
—6 —4 22.6 0.8 1.47 1.09 26 219
-7 -2 233 0.8 0.88 0.68 10 52
14 —12 239 09 1.51 1.66 37 526
-5 —12 23.9 0.9 1.51 1.94 28 715
3 —15 24.6 09 1.27 2.35 23 881
12 -1 24.6 0.8 2.31 2.68 43 2090
-6 —4 25.3 09 1.20 2.73 17 1127
7 4 25.3 0.8 1.57 1.76 30 616
11 1 26.0 0.8 1.14 1.21 14 209
0 -13 26.7 0.8 0.68 1.69 7 243
11 -7 20.5 0.6 1.54 2.03 16 794
15 —11 219 0.5 0.73 0.68 4 43
—-13 —13 22.6 0.6 1.88 4.86 31 5604
8 0 22.6 0.6 1.37 242 13 1006
—15 -6 233 0.5 0.44 1.00 3 56
—-10 4 24.6 0.6 0.82 1.90 10 3N
—15 -9 24.6 0.7 1.53 2.99 28 1719
15 0 23.9 0.5 0.60 2.80 8 597
8 3 23.9 0.6 0.81 1.08 5 119
—-12 4 239 0.6 0.83 1.72 6 309
—11 -9 25.3 0.5 1.10 2.01 14 556
6 6 26.0 0.6 041 1.35 4 93
—11 1 26.0 0.6 1.09 1.27 8 221
-9 3 26.0 0.5 0.73 0.68 4 42
-9 -4 27.3 0.5 0.73 0.83 3 64
-10 5 27.3 0.5 0.73 1.12 4 116
2 6 29.4 0.6 1.01 1.01 6 128

@ Offset in arcminutes from a = 6"43™39°,

b Offset in arcminutes from 6 = —3°30'23".

¢ Equivalent circular radius in pc, as in Table 2.

¢ FWHM inkm s ™!, asin Table 2.

¢ Clump masses in M, as in Table 2, but assuming T, = 10K.
f Virial mass in M, as in Table 2.
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Fi1G. 7—Relations between temperature, size, line width, and mass for clumps in the RMC (filled circles) and the MMC (open circles). A least-squares fit to the
clumps in each cloud is indicated on each plot. The slope, equal to the power-law exponent, is also displayed at the top of each plot (averaged over the two clouds).
The slopes, or forms of the relationships, between clump peak temperature, size, line width, and virial parameter are remarkably similar between the two clouds, but
there are clear individual differences indicated by the offsets of one cloud from another. Clumps in the star-forming RMC are hotter, smaller (and hence denser),
possess a smaller line width, are are more bound that clumps of the same mass in the MMC. These differences cannot all be simultaneously resolved by assuming that

the distances to the clouds are in error.

between basic clump quantities and mass, there are clear differ-
ences in the individual clump properties between the two
clouds (the offset of one cloud from another in each plot).
Clumps in the star-forming RMC are hotter, smaller, possess a
smaller line width, and are more bound than clumps of the
same mass in the MMC.

Could any or all of these differences be attributed to errors
in the assumed distances to the clouds? The distance to the
RMC, diyc, is fairly well determined (see Blitz 1978 and refer-
ences therein), but the distance to the MMC, dyc, is less well
known, perhaps accurate only to 50%. The line-width differ-
ence cannot be explained in this way, since the measurement of
the velocity dispersion is distance-independent. Differences in
clump peak temperatures, sizes, and virial parameter could
each conceivably be explained by distance errors, but not all
simultaneously. The measured clump peak temperature is a
resolution smeared average and therefore givés a lower limit to
the intrinsic peak intensity. The assumed distances imply that
the linear resolution of the observations is about the same for
each cloud, therefore the difference in peak temperatures might
be smaller if the actual linear resolution, were greater in the
RMC than in the MMC, which corresponds to dgyc being
overestimated and/or dyyc being underestimated. The clump
size directly scales with the assumed distance to each cloud, so

the observed difference in clump sizes could be explained by
drmc being underestimated and/or dyyc being overestimated.
Finally, the virial parameter M g/M,;, varies as (distance)?/
(distance), i.e., linearly with distance, which is the same scaling
as clump size. However, the observed difference between the
two clouds is in the opposite sense: to take away the difference
in virial parameter between the two clouds requires dgyc to be
overestimated and/or dyyc to be underestimated. Therefore,
although each difference could, in principle, be due to errors in
the distance determination to one or both of the clouds, they
cannot all be explained simultaneously this way, and we con-
clude that there are real, fundamental differences in individual
clump properties between the two clouds.

For clumps of the same mass, greater clump sizes in the
MMC than in the RMC imply lower average densities. Obser-
vations of clumps in each cloud in higher transition CO lines
and higher dipole moment molecules confirm this result inde-
pendently (Williams & Blitz 1994). If the MMC is truly at an
earlier evolutionary state than the RMC, then theories of
clump and cloud formation and evolution must explain not
only how these scaling relations arise but also how they are
preserved as the clumps become denser, hotter, more bound,
and ultimately star-forming.

Using the output (clump assignments) data cube, we plot a
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F1G. 8—Outline of the five most massive clumps in the RMC (M > 1000
M ;) against an integrated velocity map of the entire data cube. The velocity
range is v = 0-20 km s~ !, and contours are at intervals of 2 K km s~ ! begin-
ning at 4 K km s~ *. Their proximity to the midplane of the cloud along a line
of constant Galactic latitude is evidence of dynamical evolution.

single contour at the lowest level for the six most massive
clumps (M > 1000 M) over an integrated velocity map of the
RMC (Fig. 8). That they all lie along the midplane of the cloud
is evidence that dynamical evolution of the system of clumps
has taken place (Blitz 1987, 1993). A similar plot for the MMC
is not as useful, and may in fact be misleading because only a
small fraction of the entire cloud was mapped and the spatial
sampling is insufficient for such a comparison.

Although the observed clump velocities in the MMC do not
cover the entire cloud velocity range, an analysis of the velocity
distribution has more validity than an equivalent positional
analysis because the range about the mean velocity for the
observed ensemble is reasonably large. In Figure 9 we plot
histograms of the velocity distribution about the mean of the
clump ensemble for the RMC observations and for the larger
of the two mapped regions in the MMC. It is clear that, in each
cloud, the more massive clumps are more clustered about the
mean than the less massive clumps. However, there is little
difference in the distribution of small-mass clumps, M = 10-50
M, and intermediate masses, M = 50-250 M o, in the MMC,
although the dispersion about the mean decreases uniformly
for the same mass ranges in the RMC. The dispersion about
the mean strongly decreases at high masses, M > 250 M, in
the MMUC, and it also decreases in the RMC, but there may be
a large uncertainty because of the small number of clumps in
the MMC with these masses. The difference between the two
clouds at small to intermediate clump masses may be a
dynamical indication of the evolutionary difference between
the two.

As long as a representative region of the cloud is mapped,
complete spatial and velocity coverage is not necessary to
determine the mass distribution of clumps, and a comparison
of the RMC and the MMC is valid (Fig. 10). Logarithmic bins
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F1G. 9—Histograms of clump centroid velocity about the mean cloud
velocity for different mass ranges. The solid line is the distribution for clumps
in the RMC, and the dashed line is for the MMC. The dispersion about the
mean decreases with increasing mass in both clouds. However, although the
dispersion is very similar for the small to intermediate mass clumps, M = 10—
250 M, (top two panels), in the MMC, it decreases more uniformly with mass
in the RMC—a possible dynamical indication of evolutionary differences.
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Fi1G. 10.—Mass spectra of, and least-squares power-law fits to, the RMC
and the MMC. The error bars are equal to the square root of the number of
clumps in each mass bin and are used as weights in the fitting process. The
power law is shown only over those bins used in the fit.
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of size log,, 2 are chosen, ending at the highest mass clump in
each cloud. N(M) is the number of clumps within the bin at
mass M and decreases with increasing mass for each cloud. A
least-squares fit to each implies power laws, which seem to be a
reasonable description of the data. We choose to plot N(M)
versus M rather than the more commonly quoted exponent of
dN/dM versus M, because it makes differences in slope easier
to see. Since dN/dM ~ N(M)/M, the exponent of dN/dM
versus M is 1 less than for N(M) versus M. We find that
N(M) ~ M~%44 for the MMC and N(M) ~ M ~°32 for the
RMC. We note that both are close to the value of —0.5 (—1.5
for dN/dM) found for other clouds.

The temperature-sensitivity limit is T,.,, = 2AT = 0.5 K for
the MMC and 1 K for the RMC. Figure 7 shows that this
corresponds roughly to clumps of masses ~3 M, (MCC) and
~10 M, (RMC. The mass spectra are therefore probably
complete at a mass 210 My (MMC) and 230 M, (RMC), so
the power-law fits only include bins with masses greater than
this. The surveyed areas of the two clouds are very similar:
1100 pc? for the MMC and 900 pc? for the RMC. The cloud
extent along the line of sight is unknown, but since the project-
ed cloud size of the MMC is larger than that of the RMC, it
might be expected that the extent is greater for the former, so
that the actual volume of the MMC data cube is probably a
little larger than that of the RMC data cube. Approximately
equal numbers of clumps were found in both data sets, so the
clump number density is about the same between the two
clouds—perhaps somewhat smaller in the MMC, but the dif-
ference is small enough that the mass spectrum comparison is
probably not biased by blending differences.

The similar values of the exponents, both similar to the
seemingly ubiquitous —1.5, disagree with the conclusions of
Williams & Blitz (1993), which used an older, less well tested
version of the same clump-finding method. The old method
used a different criterion for connecting pixels, without the
N,.is parameter as we have defined it here. However, a neigh-
borhood of a pixel in the old method is the same as in the new
with an effective N, = 1. As we showed in § 3.2, setting
N, = 1 creates large numbers of false clumps because the
contours cannot be followed adequately. The present analysis,
which has been comprehensively tested with simulations such
as those we have presented here, shows no evidence for a differ-
ence in the mass distribution between the two clouds. We con-
clude that, if the two clouds are at different evolutionary states
and representative of each state, then it appears that the mass
spectrum of a GMC is determined at its formation and does
not significantly evolve over the lifetime of a GMC. In addi-
tion, it appears that other collective properties of the clouds,
such as mass—temperature—size-line-width relations, are also
very similar. On the other hand, the largest difference between
the two clouds appears to be the degree of virialization of the
clumps. This deviation from gravitational boundedness may,
in fact, turn out to be a useful indicator of the evolutionary
status of a GMC.

5. CONCLUSIONS

We have developed an automatic procedure for finding
clumps or discrete density enhancements in three-dimensional

MOLECULAR CLOUD STRUCTURE 709

(primarily molecular spectral line) data cubes. The algorithm,
Clumpfind, operates on the data in much the same way as the
eye would analyze a set of maps, but with the advantage of
visualizing the full position-position-velocity nature of the data
at once in a uniform manner from region to region across any
one data cube and also between different data cubes. The algo-
rithm’s performance has been evaluated by creating simulated
data sets consisting of a family of model clumps to which noise
is added and which are either allowed to blend together or not.

Clumpfind works by first contouring the data. Noise can
look like cloud structure if contour increments are too small.
Simple consideration of the numbers of apparent clumps
shows that contour levels must be at least equal to twice the
rms noise level to depict the cloud structure accurately. This
condition imposes a certain maximum contrast on the map
which determines the minimum detectable clump mass and the
ability to distinguish closely merged clumps. This is analogous
to the beam size of the telescope determining the minimum size
scale of structure that can be observed.

Clumpfind deals with blended emission (or shared contours)
by breaking them up and assigning them to contributing
clumps using a simple “friends-of-friends” method. That this
method is adequate for the case of relatively mild blending,
when clump peaks can be separately resolved, is shown both
theoretically in Appendix B and practically by the results of the
simulations. The algorithm inevitably fails when blending is so
strong that clumps cannot be resolved as distinct. The effect of
such severe blending, whether caused by inadequate resolution
or low signal-to-noise ratio, or intrinsic to the cloud structure,
is to count many clumps as one large object, flattening the
measured mass spectrum.

As an example of its use, Clumpfind has been applied to two
real data sets. The information contained in each clump decon-
volution, and the comparison between the two, demonstrate
the power of this type of structure analysis. The collection of
large data cubes is becoming more common with the advent of
faster telescope systems: we therefore expect this routine, or
similar versions, to become an important part of molecular
cloud studies. Clumpfind is available as a task in the MIRIAD
framework, the data analysis package for the Berkeley-Illinois-
Maryland Millimeter Array (BIMA) at Hat Creek.
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APPENDIX A
DETERMINATION OF CLUMP SIZES AND MASSES

Clumpfind finds clumps in the data set, but does not itself determine their properties. Other programs read in the two data
cubes—the raw data set of temperature as a function of position and Clumpfind output clump assignment cube—to determine the
position and temperature of each pixel of each clump and then calculate the desired clump statistics. Fundamental quantities are the
peak temperature, peak position, and size. The size is calculated as

PG

where x can be any coordinate, either position or velocity; ¢t = #(x) is the temperature at this position; and the summation is over all
pixels assigned to the clump. For an assumed Gaussian profile—most appropriate for the velocity axis—this translates into a
diameter at half-peak temperature equal to 2.355 o,.

An alternative definition of clump size is the effective circular radius,

AR = (4/m)"?, (A2)

where A is the projected area of the clump on the sky. This is a better estimator to use in calculating the virial mass because it takes
into account the full clump extent, which is precisely what is needed for the calculation of the potential energy term,

3 GM?
W=—-au, .
5 aVll’ AR
The parameter a,;, allows for the effect of nonuniform densities in the calculation of the gravitational potential energy; a,;, is unity
for a uniform density profile and 5/3 for an inverse-square profile (the value used in § 4). On the other hand, the kinetic energy
T = (3/2)Ma? requires the one-dimensional velocity dispersion o, rather than a measure of the maximum velocity range of the
clump. The virial condition 2T + W = 0 then determines the virial mass,

(A3)

M, = 5ARc2/a,;, G . (Ad)
The other basic clump statistic is its mass, or integrated intensity:
Mo (Y )Ax* Av, (AS)

where the summation is again over all pixels in the clump, Ax is the pixel size (grid spacing of the map), and Av is 1 spectrometer
channel velocity width. The constant of proportionality depends on the abundance of the molecular tracer, line optical depth,
excitation temperature, etc. (e.g., Martin & Barrett 1978).

Since there is a spectrum of clumps, with increasing numbers at small masses and sizes, there will be many clumps at or near the
resolution limit. It is therefore important that dispersions be corrected for the beam size (o,,, = beam FWHM;/2.355) and velocity
resolution, ¢, = Av(spectrometer), of the observations,

o' = (0% — 0" . (A6)

Similarly, the circular radius should be corrected for the (Gaussian) beam size of a point source with the same T,,, as the clump,
computed at the farthest extent at which the projected area is measured, T = AT

2 b Teak 1/2)271/2
o o2 o)1 o

where b is the beam FWHM is the same units as AR. These corrected forms for size (equivalent circular radius for position, and
2.355 times the dispersion for line width) were used in § 4. We also note that the measured peak intensity of a clump is a resolution
smeared average and therefore a lower limit to the intrinsic peak. However, integral quantities, such as clump mass, are independent
of resolution.

Other quantities, such as clump pressure, density, etc., are generally a combination of sizes, masses, and line widths. More
complicated statistics, e.g., higher order clump moments, may be simply calculated by integrating over the clump profile in the same
manner.

APPENDIX B
MINIMUM SEPARATION FOR RESOLUTION OF TWO CLUMPS
In this appendix we calculate the criterion for the resolution of two clumps. Gaussian profiles are assumed, and we work only in

one dimension, since the axes of the data cube can be considered independently. In a real data cube two clumps would be unresolved
if the criterion were not met in all three axes simultaneously.
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Resolved

Limiting case
o dy/dx = d/dx* = 0

2u=0,+a,

F1G. 11.—Two Gaussians separated by x = 2u. Top: resolved; bottom: limiting criterion for resolution.

We start with the case of two identical Gaussians separated by x = 2y,
y(x) = ’I;aeak e—x2/2¢12 + T;)eak e—(x—Zu)z/Zo'Z . (Bl)

Widely spaced, the two Gaussians are clearly distinguishable, but as the separation 2u decreases, the two peaks will begin to merge
into one. At this point the clumps are no longer resolvable. To be resolved into two clumps implies that there are two maxima, i.e.,
there is a minimum between the two (Fig. 11). Since the Gaussians are identical, this minimum must occur at the midpoint between
the two, and therefore the criterion for resolution is

&y
dx?|.-,

>0. (B2)

This reduces to
p>oa, (B3)

that is, the separation between the two must be greater than twice their standard deviation, or almost equal to their FWHM. This is
a basic limit, independent of resolution or signal-to-noise limitations. For the observational case of finite signal-to-noise, the
situation is even worse: the minimum between the two clumps must be sufficiently strong so as not to be confused with random
noise fluctuations. For instance, Clumpfind works by contouring the data and searches for isolated peaks. For clumps to be
resolved, minima must be at a lower contour level, so the condition for resolution is

Yx=0)—yx=p>AT, (B4)

where AT is the contour interval optimally set at twice the rms noise (see § 3.2). For typical large-scale maps of molecular clouds, the
ratio of clump peak temperature to noise ranges from S ~ 2-3 for small clumps near the detection limit to perhaps S 2 20 for the
most massive clumps. Then AT = 2T, = 2T,.,,/S, and the above criterion becomes

1 1
-u2/202 _ _ _ _ BS
e <373 (BS)
ignoring a small fourth-order term from the contribution of the second Gaussian to the peak of the first. Therefore, resolution
requires a separation between the two clumps of
28 12
2u > 20| 21 R B6
oafon(2)] .

which is 3.1 6,2.7 6, and 2.5 ¢ for S = 5, 10, and 20, respectively. Clumpfind would assign the emission out to the midpoint (x = y) to
each clump, and in doing so would miss, respectively, 6%, 9%, and 11% of the flux of each clump. Thus, the errors introduced by
such a rudimentary treatment of the shared contours is small.

The situation becomes more serious if several clumps are blended together, because then up to ~10% of the flux of the central
clump may be blended with each clump that it is blended with. For maps with good signal-to-noise this may amount to more than
50% in the worst cases. A more sophisticated treatment is then necessary.

What about two clumps of different sizes and peak temperatures? It is possible to imagine the case where a very narrow spike
could in principle be resolved arbitrarily close to the center of a Gaussian. However, lower mass clumps have lower peak
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temperatures along with their smaller sizes, in fact the scalings with mass are very similar (Fig. 7), so to a first approximation

+ o0,e

—(x—2u)2/2022

(B7)

The limiting case between resolvability and nonresolvability is when there is an inflection point (Fig. 11). That is, for some x,,

T,cax ¢ 0. Then
Y(x) oc 7y €7 2007
0<xy<2p,
dy _&y_
dx  dx?

at  x=Xxg. (B8)

One can quickly verify that the solution is x, = ¢, and 2u = ¢, + 7,. Again, this is a basic limit independent of resolution or
temperature-sensitivity considerations. Such observational considerations will increase the separation required to resolve the
clumps, implying that the contribution of one clump to another is smaller still, as we calculated analytically for the case of two equal
clumps above. By generalizing that result, therefore, we conclude that splitting up the merged contours, in the manner of the
friends-of-friends algorithm, makes relatively minor errors for the case of moderate blending.
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