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ABSTRACT

We analyze the light curve of the optically violent variable quasar 3C 345, with the goal of determining the
possible presence of low-dimensional chaos in the system dynamics. The results of the phase-space reconstruc-
tion and of the correlation integral analysis provide a convergent, noninteger estimate of the correlation
dimension, naively suggesting the presence of deterministic chaos. However, we show that this result is gener-
ated by the long memory and by the power-law shape of the power spectrum of the signal, with no relation-
ship to any underlying chaotic behavior. In fact, the light curve of 3C 345 is consistent with the output of a
nonlinear stochastic process, and it is characterized by a well-defined intermittent nature.

Subject headings: methods: numerical — quasars: individual (3C 345)

1. INTRODUCTION

In a recent paper Vio et al. (1991) have shown that the
optical light curve of the optically violent variable (OVYV)
quasar 3C 345 may be described in terms of a nonlinear sto-
chastic process. This means that the light emission of this
object depends, in a nonlinear way, on a potentially very large
number of physical parameters. The nonlinearity of the process
is necessary for explaining the “explosive” character of the
light curve, whereas the stochasticity has been introduced for
explaining its unpredictable temporal evolution.

In the last years, however, it has become increasingly clear
that even simple, deterministic nonlinear systems with chaotic
behavior may produce “noisy ” time series which may display
some of the properties of stochastic systems, even though their
dynamics is governed by a small set of deterministic differential
equations, see, e.g., Eckmann & Ruelle (1985) and Ott (1993),
for an introduction to chaos in dynamical systems.

Along these lines, many works have then been devoted to the
attempt of determining whether the observed variability of dif-
ferent astronomical objects might be ascribed to the action of a
low-dimensional, deterministic nonlinear entity such as a
strange attractor in the system phase space, see, e.g., Voges,
Atmanspacher, & Scheingraber (1987), Cannizzo & Goodings
(1988), Lochner, Swank, & Szymkowiak (1989), Norris &
Matilsky (1989), Cannizzo, Goodings, & Mattei (1990),
Harding, Shinbrot, & Cordes (1990), Kollath (1990), Krolik,
Done, & Madejsky (1993). In particular, the visible and X-ray
variability of several different quasars has been analyzed by the
most common methods developed in dynamical system theory,
and in some cases claims on the presence of low-dimensional
chaos in the quasar system have been advanced (see for
example Letho, Czerny, & McHardy 1993).

In order to assess the properties and limitations of phase-
space analysis when applied to astronomical data, in the
present work we reconsider the light curve of the OVV quasar
3C 345 and we test whether its unpredictable nature may be
associated with an underlying low-dimensional chaotic behav-
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ior. To this end, we use the procedures recently discussed by
Theiler et al. (1992) and Provenzale et al. (1992), that constitute
a sort of “reliability test” to be applied to any system which is
candidate to an interpretation in terms of low-dimensional
dissipative chaos. The basics of this approach are to create
appropriate surrogate stochastic time series which have to be
analyzed and compared to the original signal.

The remainder of this paper is as follows. Section 2 provides
an introduction to the standard methods to search for chaos in
measured signals; here we also review the appropriate tests for
chaoticity to be used on the light curve of 3C 345. Section 3
reports the analysis of the luminosity variations of the OVV
quasar 3C 345; here we show that this light curve does not
display any evidence of low-dimensional chaos. Finally, § 4
gives conclusions and perspectives.

2. THE SEARCH FOR CHAOS IN MEASURED SIGNALS

Among the various methods now available for testing the
chaoticity of a measured time series (see Drazin & King 1992
for an up-to-date view of the field), here we just recall the
evaluation of the correlation dimension D, and of the K,
entropy (Grassberger & Procaccia 1983, 1984), the determi-
nation of the Lyapunov exponents (Sano & Sawada 1985;
Eckmann et al. 1986; Abarbanel, Brown, & Kadtke 1990) and
of the approximate number of excited empirical modes
(Broomhead & King 1986), as well as the various predictive
algorithms based on appropriate modifications of classical AR
approaches or on neural network algorithms (Farmer & Sido-
rovich 1987; Casdagli 1989; Sugihara & May 1990; Elsner &
Tsonis 1992; Smith 1992). In this section we provide a brief
introduction to the procedures of phase-space reconstruction
and correlation dimension estimate, for further details see, e.g.,
Eckmann & Ruelle (1985), Provenzale et al. (1992), and refer-
ences therein.

In general, the first step in practically all these analysis
methods is a procedure of phase-space reconstruction which is
commonly known as the “time embedding ” technique (Takens
1981). In short, this is based on conceptually substituting the
true phase-space variables of the system with the time deriv-
atives of increasing order of the signal under study, and then,
from a practical standpoint, to substitute the time derivatives
with time-delayed values of the measured variable. Given the
scalar time series x(t;), t; =to + iAt,i=1,..., N, where At is
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the sampling interval and N is the number of points in the
signal, the vector signal x(z;) in the reconstructed space is
obtained as

x(t) = {x(t), x(t; + 1), ..., x[t; + (M — 1)7]}, 1)

where 7 is an appropriate multiple of the sampling interval,
t=mAt, and M is the dimensionality of the reconstructed
phase space. The choice of the value of t is not devoid of
danger; see, e.g., Grassberger, Schreiber, & Schraffrath (1991)
for a discussion on the optimal choice (if any) of the time delay.
As a minimal requirement, the value of T should be taken in an
interval such that variation of the time delay inside this inter-
val does not modify the results of the analysis. One of the most
common choices is to take a value of t which is close to the first
zero of the autocorrelation of the scalar signal x(t;). In the
reconstructed space, the correlation integral may then be
defined as

1

.
N2 L Ol — () — ()11, @

ij=1

Culr) =

where © is the Heaviside step function, N =N — (M — I)m
and the vertical bars indicate the norm of the vector. For a
deterministic attractor in its true phase-space (or in a properly
reconstructed space when M is large enough), for small values
of r the correlation integral has a power-law behavior

Cpflr) oc P2, 3)

where D, is the correlation dimension of the attractor; the
value of D, provides an approximation to its fractal
(Hausdorff) dimension. For nonfractal attractors the corre-
lation dimension coincides with the topological dimension. A
power-law behavior of the correlation integral is observed also
for fractal, nondeterministic objects such as the trajectories
produced by fractional Brownian motions in the reconstructed
space; in this case, D, is the correlation dimension of the trajec-
tory (see, eg., Osborne & Provenzale 1989). An alternative
technique for evaluating the attractor dimension has been pro-
posed by Termonia & Alexandrowicz (1983); in general,
several algorithms are now available for the evaluation of the
entire multifractal spectrum of generalized dimensions, see,
e.g., Borgani et al. (1993) for a critical analysis of the properties
and pitfalls of the various methods.

If the dimension M of the reconstructed space is smaller
than the fractal dimension of the attractor, then the correlation
integral has a power-law behavior C,(r) oc . When M has
been chosen sufficiently large (typically, M > 2D, + 1), the
slope of the correlation integral saturates to the constant (M-
independent) value D,. Thus, in the analysis of time series
produced by a low-dimensional attractor, the correlation inte-
grals corresponding to increasing values of M display an
rincreasing logarithmic slope until saturation at the value D, is
attained. After saturation, the estimated value of D, provides a
‘reliable measure of the attractor dimension.

In the study of a measured signal with a poorly understood
dynamical origin (i.e., without an explicit knowledge of the
low-dimensional deterministic nature of the generating
system), the same procedure is usually followed; the corre-
lation integrals C,,(r) for increasing values of M are evaluated
and their possible scaling nature is determined. If the integrals
C\(r) display a power-law behavior, i.e., if

Cy(r) oc rP2M) @
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in an appropriate range of scales, the following step is to evalu-
ate the behavior of D,(M) at increasing M’s. By analogy with
the behavior of systems whose dynamics is governed by a
strange attractor, a convergence of the scaling exponent D,(M)
to a finite, noninteger value D, is usually taken as an indication
that the system under study is dominated by low-dimensional
chaos; the value of D, is then taken as an estimate of the
dimension of the strange attractor. By contrast, a non-
saturation of D,(M) is taken as an indication that the dimen-
sionality of the system (related to the number of excited modes
in the dynamics) has not yet been attained. For example, a
white noise signal induces a nonsaturation of the slope of C,(r)
for every M.

The main problem with the above approach (apart from the
possibility of spurious results due to limited statistics, see, e.g.,
Smith 1988; Eckmann & Ruelle 1992), is due to the fact that a
convergence of D,(M) to a finite value D, may be generated
not only by low-dimensional chaos but also from various types
of stochastic processes with long time correlations and power-
law power spectra (Osborne & Provenzale 1989; Provenzale,
Osborne, & Soj 1991; Provenzale et al. 1992; Vio et al. 1992).
For this reason, simply observing a convergence of the corre-
lation dimension to a finite value cannot be taken as a reliable
indication of low-dimensional chaos.

To overcome the above difficulty, in the last few years
various specific tests have been developed (Osborne et al. 1986;
Theiler et al. 1992; Provenzale et al. 1992). In general, these
tests are based on the concept of “surrogate data” (Theiler et
al. 1992; Smith 1992), i.e., on the idea of appropriately modify-
ing the original signal in order to determine whether the con-
vergence of D, (or any other result of the analysis) is destroyed
together with the property which has been modified or whether
its origin lies in some other (untouched) characteristics of the
data.

Among the various methods, a useful and effective approach
is that based on the procedure of Fourier phase randomization
(Osborne et al. 1986; Theiler et al. 1992). This approach con-
sists in substituting the original Fourier phases of the time
series with random, uniform distributed phases and then in
inverting the phase randomized Fourier spectrum. In this way
it is possible to obtain a surrogate stochastic time series which
has the same power spectrum (autocorrelation) of the original
signal but no phase correlations.

In the case of a signal produced by a low-dimensional
chaotic system, the phase randomization destroys the con-
vergence of the correlation dimension to a finite value. This
implies that the convergence of the dimension for a nonlinear
deterministic system is generated by the Fourier phase corre-
lations, which are in turn related to the higher order moments
of the probability distribution of x(t;). For a low-dimensional
chaotic system, the Fourier phase-correlations at small fre-
quency may be thought of as being generated by the existence
of “close returns” in phase space, while correlations at large
frequencies are induced by the differentiable nature of the
signal x(t,).

Conversely, the convergence of the dimension for long-
memory stochastic signals is due to the shape of the power
spectrum, i.e., to the form of the autocorrelation, which is not
changed by phase randomization. The procedure of phase ran-
domization has thus proven to be an effective way for dis-
tinguishing between a convergence of the dimension generated
by the presence of low-dimensional chaos and that induced by
the possible fractal nature of the signal under study. In case the
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results provided by the correlation integral analysis do not
change under phase randomization, then it is clear that the
interpretation of the system dynamics in terms of a low-
dimensional deterministic attractor should be drastically
revised.

In case the results of the correlation integral analysis do
significantly change under phase randomization [i.c., D,(M)
does not converge anymore for the phase-randomized surro-
gate signal], then there is some chance that a low dimensional
attractor may govern the system dynamics. However, in this
case further tests are needed in order to assess the robustness of
the results (see, e.g., the “ Algorithm 2 in Theiler et al. 1992).

In addition to phase randomization, a different test to verify
the presence of low-dimensional deterministic dynamics is
based on repeating the analysis on the time series obtained by
taking the first differences of the original signal (Provenzale et
al. 1992). For a signal produced by a low-dimensional attrac-
tor, both the original and the first-differenced data give
approximately the same estimate of the correlation dimension.
By contrast, in the case of signals generated by a stochastic
process with long time correlations (“colored noise”), even
though the original data give a finite estimate of the dimension,
the differenced data provide a nonsaturating value of D,(M).
Again, this is due to the fact that for stochastic systems the
convergence of the estimated dimension is forced by the power-
law shape of the power spectrum which, conversely to the
Fourier phases, is modified by differentiating the signal. The
main drawback of this technique is its sensitivity to measure-
ment errors in the data. Consequently, this method may be
safely used only on data characterized by a good signal-to-
noise ratio.

3. ANALYSIS OF THE LUMINOSITY VARIATIONS OF 3C 345

We now consider the phase-space reconstruction and
analysis of the luminosity variations of the OVV 3C 345. The
light curve of this object has already been studied by several
authors; see, e.g., Vio et al. (1991).

3.1. Phase Space Reconstruction and Analysis

In the case of 3C 345, the main problem in the correlation
integral analysis is the discontinuous and irregular sampling of
the signal. This fact complicates the direct use of the phase-
space reconstruction procedure discussed in the previous
section. To overcome this difficulty, a possible approach (and
the one most commonly used) is the interpolation of the gaps
of the time series. In the following we use this procedure, by
considering a simple linear interpolation. Of course, such a
simple operation may influence the results of the analyses.
However, in the present case, the use of more sophisticated
smooth interpolators (e.g., cubic spline interpolation) does not
improve the situation, since without “a priori” information
there is no reason to prefer an oscillating interpolation to a
simpler one. On the other hand, the techniques for the recon-
struction of uneven time series, such as those proposed by
Scargle (1989) or Roberts, Lehar, & Dreher (1987), are useless
here because they are able to deal only with linear signals. The
only possibility to reliably quantify the effects of “filling the
gaps” is by means of numerical simulations, as it is discussed
below.

Figure 1 shows the light curve of 3C 345 (a) and the power
spectrum of the linearly interpolated curve (b). Note the power-
law shape of the power spectrum, approximately P(f) oc f ~1-5,
over a large frequency range.

In order to proceed with the phase space reconstruction, a

LUMINOSITY VARIATIONS OF 3C 345 593
100 T T 1 [T - LA I R I B B B
o |- 3
g C (a) n
5 60— -
3] C -
- ~ —
£ 40 [— —
2 - .
20 |- -
o I [ B L1 1 [
0 200 400 600 800
time
[T T 11 T T 1 LI R A B
4 |
E L 4
= -
I -
Q 2 ]
@ - .
[}
n - -
& i _
3 ° _
-2 Lo [ [ Ll 1]
-3 -2 -1 0 1

Log frequency

F1G. 1.—Panel (a) shows the light curve of the OVV 3C 345. Time is in unit
of the sampling period At = 11 days. Panel (b) shows the power spectrum of
the light curve of 3C 345.

value of the time delay t to be used in the embedding pro-
cedure has to be chosen. Here we use a value of = which is close
to the first zero of the autocorrelation function, namely
7 = 80 At. Other values of T around the chosen value provide
analogous results. Figures 2a and 2b report the correlation
integrals C,(r) versus r, for M = 1, ..., 6 and the correspond-
ing average logarithmic slopes D,(M) versus M. The average
slopes have been obtained from least-square-fits of log C(r)
versus log r over the scaling range for 0.005 < Cy{(r) < 0.5.
From Figure 2, a neat saturation of D,(M) to a value D, ~ 2.4
is observed, naively suggesting the possible presence of low-
dimensional chaos. To verify this inference, in the following we
apply the phase-randomization and differentiation tests dis-
cussed in the previous section.

3.2. Phase Randomization

The procedure of Fourier phase randomization provides the
time series shown in Figure 3a. Such a signal is now consistent
with the output of a linear stochastic process with the same
second order moment as the original signal. Figure 3b shows
the correlation integrals for this time series, and Figure 3c
reports the average slopes D,(M) versus M. Again, a clear
saturation, now at D, ~ 3.1; is visible, suggesting that the
system is characterized by stochastic dynamics. The results
provided by a low-dimensional deterministic system are in fact
completely different. To give an example of this latter behavior,
in Figure 4a we show a 800 point time series obtained from the
well-known Lorenz model (Lorenz 1963). This time series has
been obtained by taking {[20z(¢) + x(t)*]/100}?, where x and z
are the x and z components of the Lorenz system, in order to
obtain a postive-defined signal with enhanced bursts of activ-
ity. To illustrate the effect of phase randomization on this time
series, in Figure 4b we show the surrogate signal obtained by
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F1G. 2—Panel (a) shows the correlation integrals Cp(r), M = 1,..., 6, in
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phase randomizing the chaotic time series. Figure 4¢ shows
D,(M) versus M for the two signals; note that the phase
randomized time series generates a nonconvergent correlation
dimension. Thus, the results obtained from the analysis of the
light curve of 3C 345 suggest that this signal should be better
described in terms of a nonlinear stochastic process, and
confirm that obtaining a convergent estimate of D, in the
analysis of a long-memory signal is not sufficient to infer the
presence of a strange attractor.

As a further comment on phase randomization, we note that
the value of D, obtained from the phase-randomized light
curve of 3C 345 is slightly larger than the value found for the
original data. This effect, although small, may be ascribed to
linear interpolation. To verify this, we have considered the
phase randomized signal shown in Figure 3a with the same
temporal sampling as the original time series of 3C 345 and
with the gaps filled by linear interpolation, as shown in Figure
Sa. In this case, the correlation dimension converges to the
value D, ~ 2.4, as indicated by Figure 5b where we show
D,(M) versus M for this signal (solid points) and for the original
phase-randomized data (open circles). This result indicates that
the interpolation and filtering procedures have forced the esti-
mated dimension to a smaller value. Note that this is opposite
to what is observed for low-dimensional attractors, where the
filtering may force the estimated dimension to larger values.

In fact, the interpolation effects observed for 3C 345 are
consistent with the behavior of a stochastic system. To illus-
trate this, in Figure 6a we show a 800 point time series gener-
ated by the nonlinear stochastic process

log-log coordinates for the light curve of 3C 345. The time delay is T = 80At. dy
Panel (b) shows the quantities D,(M) vs. M as obtained by linear least-square —= = (a — 0.5)8 — y(t) + [2By()]**w(1) , (5)
fits of log C),(r) vs. log r in the scaling range 0.005 < C,,(r) < 0.5. dt
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F1G. 3.—Panel (a) shows the phase-randomized light curve of 3C 345. Panels (b) and (c) show, respectively, the correlation integrals and the values of D,(M) vs. M

for the phase-randomized signal.
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FiG. 4—Panel (a) shows a deterministic time series, obtained from the
Lorenz model as discussed in the text. Panel (b) shows the corresponding
phase-randomized signal, and panel (c) shows D,(M) vs. M for the two time
series. The solid points are for the original data and the open circles for the
phase-randomized signal.

where a = f =1, w(t) is a standard Gaussian white noise
process and the sampling time is At = 0.01; see Vio et al. (1992)
for a thorough discussion of this model. The signal y(¢) has a
power-law power spectrum P(w)oc 0" with nx~ —2 for
angular frequencies larger than w =~ 1. The signal shown in
Figure 6a has been sampled with the same distribution of gaps
as the 3C 345 light curve and linear interpolation has been
used in order to “fill the gaps.”

To apply the time embedding procedure to the time series
shown in Figure 6a, we have again taken a time delay close to
the first zero of the signal autocorrelation; in this case we use
7 = 100 At. The correlation integrals corresponding to different
embedding dimensions display a good scaling behavior;
Figure 6b shows the values of D,(M) versus M for this stochas-
tic time series (solid circles). As a comparison, the same panel
shows also the values of D,(M) for the original time series y(t)
produced by equation (5), when no gaps and linear inter-
polation are made (open circles). These latter are larger than
the corresponding values of D,(M) obtained for the linearly
interpolated data, confirming that linear interpolation tends to
lower the estimated dimension of a stochastic signal.

By phase randomizing the signal shown in Figure 6a, a
linear Gaussian time series is obtained. In Figure 6¢ we show
the values of D,(M) versus M for the phase-randomized data
(solid circles). The estimated dimension still saturates for the
stochastic signal; however, the saturation value of D, is now
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phase randomized data
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time

slightly larger than that obtained for the signal shown in
Figure 5a and it is comparable with the value obtained for the
signal without gaps. Again, the difference between these two
saturation values may be entirely ascribed to the effects of
interpolation: the values of D,(M) obtained by sampling the
phase-randomized signal with the same gaps as the original
time series, and by filling the gaps by linear interpolation, satu-
rate to a lower value (open circles). In this latter case, the values
of D,(M) are the same as those obtained for the signal in
Figure 6a. In general, the behavior of this time series is quite
similar to that observed for the light curve of 3C 345, confirm-
ing the non-low-dimensional nature of this data set.

3.3. Signal Differentiation

To further determine the absence of low-dimensional chaos
in 3C 345, we have applied the differentiation test to the mea-
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F1G. 5—Panel (a) shows the linearly interpolated, phase-randomized light
curve of 3C 345. Panel (b) shows the values of D,(M) for the interpolated signal
(solid points) together with the corresponding values obtained for the phase-
randomized signal shown in Fig. 3a (open cirles).
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Fi1G. 6.—Panel (a) shows a time series obtained from the nonlinear stochastic process discussed in the text. Time is in unit of Az = 0.01 and the series have been
sampled and linearly interpolated as done for the 3C 345 data. Panel (b) shows the values of D,(M) for the original, noninterpolated signal (open circles) and for the
linearly interpolated data (solid points). Panel (c) shows the values of D,(M) for the sigmal obtained by phase-randomizing the signal in panel (a). The solid points are
for a purely phase-randomized time series and the open points are for a phase-randomized signal with sampling and linear interpolation as for 3C 345.

sured data. Figure. 7a shows the first differenced signal and
Figure 7b shows the corresponding autocorrelation function
overlapped to that of the original time series. As one can see
from this figure, a remarkable difference exists between the two
signals and the corresponding autocorrelation functions. As a
comparative example, in Figure 7c we show the first differences
for the stochastic signal shown in Figure 64, and in Figure 7d
we show the autocorrelation for the original and the first differ-
enced stochastic time series. The behavior observed in this
example is very similar to that obtained for 3C 345, again
pointing toward a nondeterministic nature of the system. As an
opposite example, in Figure 7¢ we show the first differenced
signal obtained from the chaotic time series reported in Figure
4a, and in Figure 7f we show the autocorrelation functions of
the original signal and of its first difference. For a chaotic
system, the original and differenced signals have basically the
same properties.

Figure 8 shows the values of D,(M) versus M for the differ-
enced signal shown in Figure 5a (solid points), together with the
values obtained for the original light curve (open circles). As
one can see, no saturation is present in D,(M) for the differ-
enced signal. From the results reported in this section, one has
thus to conclude that the apparent convergence of the esti-
mated dimension for the OVV 3C 345 cannot be considered as
an evidence of low-dimensional chaos. Conversely, the lumi-
nosity variations of 3C 345 are consistent with the output of a
nonlinear, intermittent stochastic process, as already discussed
by Vio et al. (1991, 1992).

4, SUMMARY AND CONCLUSIONS

In this work we have applied the time embedding procedure
and the correlation integral analysis to the light curve of the
OVYV 3C 345, finding a convergence of the estimated corre-
lation dimension to a finite, noninteger value. By properly
applying the phase randomization and differentiation tests, we
have shown that such a result, which could have been naively
interpreted as an evidence for low-dimensional chaos in the
dynamics of this system, must be ascribed to the long corre-
lation time and to the power-law shape of the power spectrum
of the signal under study. In other words, we have to conclude
that the present analysis does not indicate any evidence of
low-dimensional chaotic dynamics in the variability of 3C 345.
The properties of the time series are consistent with the output
of a nonlinear stochastic process, as formerly discussed by Vio
et al. (1991, 1992).

We stress the fact that simply determining a finite, con-
vergent estimate of the correlation dimension in a measured
signal should not be taken as a serious indication of the pres-
ence of low-dimensional chaos. In past years, such a simplistic
view has led in fact to several uncorrect conclusions and to
oversimplified pictures of the variability of natural systems.
For these reasons, the use of appropriate tests (usually based
on the concept of surrogate data) for verifying the inferences
drawn from standard methods of phase space analysis should
be considered as a necessary step for properly understanding
the system dynamics.
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F16. 7—Panel (a) shows the first difference signal obtained from the light curve of 3C 345 and panel (b) shows the autocorrelation functions for the original signal
and for the first differences. Panels (c) and (d) show respectively the first difference for the nonlinear noise and the autocorrelations for the original and the differenced
signals. Panels () and (f) show the differenced data and the autocorrelations for the deterministic time series shown in Fig. 4a.

Before concluding, we want to venture a last remark:
undoubtedly, the question on whether low-dimensional chaos
may be a relevant paradigm for the understanding of natural
astrophysical and geophysical systems, must be considered as a

challenging problem.

In fact, low-dimensional

chaotic

dynamics and strange attractors have proven to be extremely
important from a conceptual point of view; they have also
been shown to be relevant in the behavior of controlled labor-
atory systems, where the access to external control parameters
allows for determining the bifurcation sequence and the
properties of the system attractors. However, it is necessary to
stress that it is by far less clear whether the notion of low-

F16. 8.—Values of D,(M) for the first differences obtained from the 3C 345
light curve (solid points) compared to those obtained for the original data (open

circles).
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dimensional strange attractor is relevant to the behavior of
uncontrolled geophysical and astrophysical systems, outside
laboratory conditions: very few, if any, presumed discoveries of
strange attractors in natural systems have survived more
refined verifications. Therefore, if from one hand it would be of
extreme interest to discover a “genuine” low-dimensional

attractor in astrophysics, on the other hand it is necessary to
consider any assertion in this sense with great care.

R.V. acknowledges an ESA research fellowship. This work
has benefited by several discussions with F. Paparella and L. A.
Smith and by useful comments of the referee.
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